
Abstract. The second-order correlation energy of
Møller–Plesset perturbation theory is computed for the
neon atom using a wave function that depends explicitly
on the interelectronic coordinates (MP2-R12). The reso-
lution-of-identity (RI) approximation, which is invoked
in the standard formulation ofMP2-R12 theory, is largely
avoided by rigorously computing the necessary three-
electron integrals. The basis-set limit for the second-order
correlation energy is reached to within 0.1 mEh. A
comparison with the conventional RI-based MP2-R12
method shows that only three-electron integrals over s
and p orbitals need to be computed exactly, indicating
that the RI approximation can be safely used for integrals
involving orbitals of higher angular momentum.
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1 Introduction

Most ab initio methods represent the electronic wave
function by a linear combination of products of
one-electron functions; however, since the early work
of Hylleraas and Slater in the 1920s, it has been known
that such functions give a poor description of the
correlation cusp [1, 2]. For example, as a result of the
poor representation of the cusp, it is exceedingly difficult
to converge total atomization energies to an error of less
than 1 kJ/mol using a product wave function [3]. For an
accurate quantitative description of the correlation cusp
(and small errors in the calculated energies), the cusp is
better described by an explicitly correlated wave func-
tion, i.e., by a wave function that depends explicitly on
the interelectronic distances.

Among the different explicitly correlated models that
have been proposed, the R12 method [4] has several
appealing features, being applicable to relatively large
molecules. The principal advantage of this method is the
scheme by which the costly evaluation of three- and
four-electron integrals is avoided. A key ingredient is the
use of the resolution of the identity (RI) to split the
three-electron integrals into linear combinations of
products of two-electron integrals. Formally, use of the
RI assumes that the one-electron basis is complete – at
least up to angular momentum ‘ ¼ 3‘occupied [5].

In practical calculations, this condition is never sat-
isfied and it becomes important to study the limitations
of this approximation. Recently, an efficient algorithm
for the exact evaluation of certain one-center three-
electron integrals was proposed [6]. Several terms in the
R12 method can now be computed using either the RI
approximation or the exact three-electron integrals,
making it possible to study directly the consequences of
the RI approximation.

The bulk of this article consists of two sections. We
derive the necessary formulas for the calculation of the
second-order M/ller–Plesset (MP2) correlation energy
using explicitly correlated functions, with and without
the use of the RI approximation, in Sect. 2. Next, in
Sect. 3, we present calculations on the neon atom,
comparing the different R12 approximations to the MP2
energy with one another and also with energies obtained
by other methods.

2 The MP2-R12 method

We here derive the equations of the MP2-R12 method without the
simplifications that occur when the RI approximation is introduced
as in the original method [7, 8].

2.1 The MP2-R12 ansatz

Assuming that all operators and basis functions are real, we start
from the second-order Hylleraas functionalCorrespondence to: W. Klopper
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JHðwÞ ¼ 2hwjH ð1Þ � Eð1Þj/i þ hwjH ð0Þ � Eð0Þjwi : ð1Þ
Here, H ð0Þ is the zeroth-order Hamiltonian, which we take as the
n-electron Fock operator

H ð0Þ ¼
Xn
i¼1

Fi ; ð2Þ

and / is the n-electron restricted Hartree–Fock wave function
constructed from a set of canonical spin orbitals with orbital
energies ep,

hupjF1juqi ¼ dpqep : ð3Þ

The perturbation operator is defined in the usual manner as
H ð1Þ ¼ H � H ð0Þ.

We now minimize the Hylleraas functional in a finite space of
conventional Slater determinants augmented with explicitly corre-
lated many-electron functions. As / is the restricted Hartree–Fock
wave function, the Hylleraas functional separates into a sum of pair
contributions,

JHðwÞ ¼
X
i<j

f ðuijÞ;

f ðuijÞ ¼ 2h½ij
jr�1
12 juiji þ huijjF1 þ F2 � ei � ejjuiji ;

ð4Þ

where ½ij
 denotes an antisymmetric two-electron function of the
form

½pq
 ¼ 2�1=2fupð1Þuqð2Þ � uqð1Þupð2Þg : ð5Þ

Thus, in addition to the standard linear combination of doubly
excited determinants ½ab
, each first-order two-electron function uij
contains an explicitly correlated part that is linear in the inter-
electronic distance r12 ¼ jr1 � r2j,
uij ¼ cijwij þ

X
a<b

cabij ½ab
 
 1
2cijQ12r12½ij
 þ

X
a<b

cabij ½ab
 : ð6Þ

Here, Q12 is an appropriate projection operator, which we shall
take as the strong-orthogonality (SO) projector

Q12 ¼ ð1� O1Þð1� O2Þ ¼ 1� O1 � O2 þ O1O2 ; ð7Þ
where O1 and O2 are projectors onto the one-electron occupied
orbital space,

O1 ¼
X
i

juið1Þihuið1Þj : ð8Þ

Note that the SO projector has the following properties

Q12½ij
 ¼ 0; Q12½aj
 ¼ 0; Q12½ab
 ¼ ½ab
 : ð9Þ
As we shall see, the presence of Q12r12 in the pair function (Eq. 6)
leads to three- and four-electron integrals, whose exact evaluation
is nontrivial but may be avoided by invoking the generalized
Brillouin theorem and the RI approximation.

2.2 The MP2-R12 energy

Minimizing the Hylleraas functional with respect to the coefficients
cij and cabij , we find that the variational problem gives the following
solution for the MP2 energy:

JHðwÞ ¼
X
i<j

f ðuijÞ ¼
X
i<j

eij þ fij
� �

; ð10Þ

where

eij ¼ �
X
a<b

h½ij
jr�1
12 j½ab
i

2

ea þ eb � ei � ej
ð11Þ

is the conventional MP2 pair energy, whereas fij represents a cor-
rection due to the explicitly correlated function,

fij ¼ �N2
ij=Dij ; ð12Þ

with

Nij ¼ h½ij
jr�1
12 jwiji �

X
a<b

h½ij
jr�1
12 j½ab
ih½ab
jF1 þ F2 � ei � ejjwiji

ea þ eb � ei � ej
;

ð13Þ

Dij ¼ hwijjF1 þ F2 � ei � ejjwiji �
X
a<b

hwijjF1 þ F2 � ei � ejj½ab
i2

ea þ eb � ei � ej
:

ð14Þ
As seen by inserting the wij term and by expanding the SO operator
and the exchange operator, the matrix elements h½ij
jr�1

12 jwiji and
h½ab
jF1 þ F2 � ei � ejjwiji contain up to three-electron integrals,
whereas the matrix element hwijjF1 þ F2 � ei � ejjwiji involves up to
four-electron integrals.

Up to this point, our development of MP2-R12 theory has been
exact within a given (finite) one-electron basis set. In the following,
we shall invoke a series of approximations, designed to simplify the
algebra needed for the evaluation of the R12 correction to the MP2
energy – in particular, by avoiding the calculation of the four-
electron integrals and some or all of the three-electron integrals.

2.3 The R12-SO approximation

Let us assume that the occupied orbitals are exact eigenfunctions of
the zeroth-order Hamiltonian (generalized Brillouin condition of
Ref. [8]),

F1uið1Þ � eiuið1Þ : ð15Þ
Within this approximation, the SO projector commutes with the
Fock operators,

½F1 þ F2;Q12
 � 0 ; ð16Þ
and we obtain [8]

ðF1 þ F2 � ei � ejÞwij ¼ 1
2 ðF1 þ F2 � ei � ejÞQ12r12½ij


� 1
2Q12½F1 þ F2; r12
½ij
 : ð17Þ

By introducing the approximate relation Eq. (17) in the various
matrix elements of Eqs. (13) and (14), we arrive at the following
R12-SO correction to the MP2 energy:

fR12�SO
ij ¼ �V 2

ij =Bij ; ð18Þ

where

Vij ¼ h½ij
jr�1
12 Q12 r12 �

X
a<b

j½ab
ih½ab
j
ea þ eb � ei � ej

½F1 þ F2; r12

 !

j½ij
i ;

ð19Þ

Bij ¼ h½ij
j½r12; F1

þ F2
Q12 r12 �
X
a<b

j½ab
ih½ab
j
ea þ eb � ei � ej

½F1 þ F2; r12

 !

j½ij
i : ð20Þ

Apart from some further simplification involving the exchange part
of the Fock operator (see Sect. 2.5), this is the expression used to
calculate the R12-SO energies reported in Sect. 3.

2.4 The R12-SO* approximation

In deriving the R12-SO approximation, we assumed that the oc-
cupied canonical orbitals are exact eigenfunctions of the Fock
operator. We now make the stronger assumption that also the
virtual canonical orbitals are exact eigenfunctions of F1 in the sense
of what has been termed the extended Brillouin condition [8],

F1uað1Þ � eauið1Þ : ð21Þ
This allows us to make the identificationX
a<b

j½ab
ih½ab
j
ea þ eb � ei � ej

½F1 þ F2; r12
j½ij
i �
X
a<b

j½ab
ih½ab
jr12j½ij
i ;

ð22Þ
which gives us the R12-SO* correction to the MP2 energy,

fR12�SO�

ij ¼ � h½ij
jr�1
12 Q12ð1� V12Þr12j½ij
i2

h½ij
j½r12; F1 þ F2
Q12ð1� V12Þr12j½ij
i
: ð23Þ
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Here,

V12 ¼
X
a<b

j½ab
ih½ab
j ð24Þ

is the projector onto the finite two-electron space spanned by the
virtual orbitals.

In passing, we note that by replacing the SO projector Q12

everywhere by Q12ð1� V12Þ, the R12-SO� energy may be derived
in a manner that closely resembles that of the R12-SO energy.
Specifically, we then invoke the ansatz

uij ¼ cijwij þ
X
a<b

cabij ½ab
 
 1
2cijQ12ð1� V12Þr12½ij
 þ

X
a<b

cabij ½ab
 ð25Þ

under the assumption

½F1 þ F2;Q12ð1� V12Þ
 � 0 ; ð26Þ
rather than Eq. (6) under the assumption Eq. (16). The presence of
the projector ð1� V12Þ in Eq. (25) makes the explicitly correlated
part of the wave function rigorously orthogonal to the virtual ex-
citation space spanned by ½ab
.

Finally, we note that the difference between Eq. (23) and the
original MP2-R12 method [7] is that in the original method the
projector product Q12ð1� V12Þ is approximated as [9]

Q12ð1� V12Þ � 1�
X
p<q

j½pq
ih½pq
j : ð27Þ

Again, we may view this approximation as arising from the ansatz
Eq. (25), having first made the substitution Eq. (27) and having
neglected the SO constraint.

2.5 The commutator of the Fock operator with the
interelectronic distance

Let us now consider the commutator ½F1 þ F2; r12
. The Fock op-
erator F1 has three contributions: the kinetic-energy operator T1,
the Coulomb operator J1, and the (negative) exchange operator
�K1. Since the Coulomb operator is multiplicative, it commutes
with r12 and we obtain

½F1 þ F2; r12
 ¼ ½T1 þ T2; r12
 � ½K1 þ K2; r12
 : ð28Þ
The commutator with the kinetic-energy operator gives rise to a
new two-electron operator, which we denote by U12,

½T1 þ T2; r12
 ¼ � 2

r12
� ð~rr1 �~rr2Þ � ð~rr1 � ~rr2Þ

r12

 � 2

r12
þ 2U12 :

ð29Þ
Certain exchange terms do not simplify and still lead to four-
electron integrals. To restrict ourselves to three-electron integrals,
we apply the RI approximation to the terms

½K1 þ K2; r12
Q12r12
� K1P1r12 þ K2P2r12 � r12P1K1 � r12P2K2ð ÞQ12r12 ; ð30Þ

where P1 is the projector onto the finite one-electron basis set,

P1 ¼
X
p

jupð1Þihupð1Þj : ð31Þ

This approximation avoids all four-electron integrals as well as
three-electron integrals of the type r12r13r�1

23 . Note that the RI
approximation is inserted only into the first commutator in Eq. (20)
or into the commutator in Eq. (23).

We observe that our expressions require the computation of
three types of three-electron integrals: hpqrjr�1

13 r12jstui, hpqrjr13
U12jstui, and hpqrjr13r12jstui. For Gaussians, the second integrals
are essentially of the same type as the first ones. The evaluation of
the third type of integrals may also be related to the first type. A
method for the efficient calculation of these integrals in the case of a
one-center basis has been presented elsewhere [6].

3 Calculations of the neon atom

3.1 Basis sets and computational details

The contracted 7s5p3d2f basis set was obtained from
Dunning’s cc-pVQZ basis [10] by removing the g
functions and adding some primitive s and p functions,
(Table 1).1 The uncontracted 20s14p11d9f7g5h basis set
in Table 2 was derived from Partridge’s 18s13p basis [11]
by adding two diffuse s functions (with exponents 0.10
and 0.05) and one diffuse p shell (with exponent 0.05).
The exponents f‘ of the 11d9f7g5h part of the basis were
obtained by multiplying selected exponents f1 of the 14p
set by the factor ð2‘þ 3Þ=5 [12]. With the 14p exponents
sorted in decreasing order, the exponents 3–13, 5–13, 7–
13, and 8–12 were used for the d, f, g, and h sets,
respectively. Only the spherical components of the basis
sets were used.

In our calculations, we used spin- and symmetry-
adapted singlet and triplet pairs rather than antisym-
metrized pairs of spin orbitals. This means that, for the
2p2 pair energy of neon, we consider 1S, 1D, and 3P pairs
rather than Cartesian 2p2x and 2px2py spin–orbital pairs.
Finally, we note that we have nowhere employed the
orbital-invariant generalization of the MP2-R12 method
[13]; all the results were obtained with the ansatz Eq. (6).

Table 1. 7s5p3d2f Gaussian
basis set s Contraction p Contraction d f

99920.0000 0.000086 0.000020 99.6800 0.006566 6.4710 4.6570
14960.0000 0.000669 0.000158 23.1500 0.045979 2.2130 1.5240
3399.0000 0.003518 0.000824 7.1080 0.7470
958.9000 0.014667 0.003500 2.4410
311.2000 0.050962 0.012233 0.8339
111.7000 0.143744 0.037017 0.2662
43.3200 0.304562 0.086113
17.8000
7.5030
2.3370
0.9001
0.3301

1 The basis sets were obtained from the Extensible Computational
Chemistry Environment Basis Set Database, version 1/29/01, as
developed and distributed by the Molecular Science Computing
Facility, Environmental and Molecular Sciences Laboratory which
is part of the Pacific Northwest Laboratory, P.O. Box 999,
Richland, WA 99352, USA. Contact David Feller or Karen
Schuchardt for further information
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3.2 Calculations in small basis sets

Let us first consider calculations in a medium-sized basis
constructed from a 12s6p3d2f Gaussian basis, compar-
ing the results obtained with the conventional MP2
method and other explicitly correlated models (Table 3).
The original MP2-R12/A model [7] makes use of only
two-electron integrals and corresponds to Eq. (23) but
with the SO operator replaced by Eq. (27) and with all
terms involving the exchange commutator neglected;
the MP2-R12/B model is similar to MP2-R12/A but
includes some of the exchange-operator terms [8]; the
MP2-R12-SO model uses Eq. (18) for the calculation of
the second-order correlation energy.

By comparing the energies in Table 3, we note that
different MP2-R12-SO methods converge much more
smoothly than the standard MP2-R12 energies. More-
over, the differences between the various MP2-R12-SO
levels are negligible compared with the differences rela-
tive to the standard MP2-R12 method and the conven-
tional (orbital-based) MP2 method. Also, even in the
very small 7s5p basis, the MP2-R12-SO energies con-
stitute a vast improvement on the orbital-based MP2
energy, reducing the error in the correlation energy by a
factor of 0.5.

It is also interesting to note that whereas the original
MP2-R12 energy overshoots the correlation energy (at

least for small basis sets), the MP2-R12-SO energies
converge from above, just like the orbital-based MP2
energy. The overshooting by the MP2-R12 method oc-
curs because of the neglect of the SO constraint in this
method. Indeed, the relaxation of this constraint is the
single most important effect of the RI approximation
in the standard R12 method. For larger basis sets, the
effects on the final results are much smaller, as
demonstrated in Sect. 3.4.

3.3 The RI approximation for high-angular-
momentum functions only

The evaluation of the full set of three-electron integrals
is time-consuming. Clearly, we would be able to treat
much larger basis sets if only a subset of the three-
electron integrals is calculated explicitly. In the last
column of Table 3, only three-electron integrals over
s and p functions were computed exactly whereas the
remaining three-electron integrals were computed using
the RI approximation. While this approach reduces
drastically the number of integrals to be computed, it
has a very small effect on the solution. This behavior can
be understood by looking more closely at the terms in
Eqs. (19) and (20).

Table 3. Second-order correlation energy (�E/mEh) of the neon atom. Comparison of different methods

Basis MP2 MP2-R12/Aa MP2-R12/Bb MP2-R12-SOc MP2-R12-SO*d MP2-R12-SO(sp)e

7s5p 184.031 652.159 488.908 307.528 307.884 307.528
7s5p3d 304.504 394.617 372.412 366.006 366.988 365.816
7s5p3d2f 336.379 376.212 365.948 371.036 370.932 371.047

aOriginal MP2-R12/A method as defined in Ref. [7]
bOriginal MP2-R12/B method as defined in Ref. [8]
c Eqs. (18), (19), (20)
d Eq. (23)
e Eqs. (18), (19), (20), but with exact three-electron integrals only over s and p functions

Table 2. 20s14p11d9f7g5h
Gaussian basis set s p d f g h

2598845.0 3257.3130 350.746340 73.1402640 19.2774296 11.2172086
389291.20 771.04600 134.265222 33.1370820 9.49148420 5.59390260
88614.780 250.53310 56.8868720 15.7724424 4.73330220 2.77585100
25103.590 95.903730 25.7732860 7.76575980 2.34879700 1.35824000
8190.9100 40.633480 12.2674552 3.87270180 1.14928000 0.65219180
2957.4970 18.409490 6.04003540 1.92174300 0.55185460
1153.7430 8.7624680 3.01210140 0.94032000 0.25455760
478.68000 4.3143110 1.49468900 0.45151740
208.86450 2.1515010 0.73136000 0.20827440
94.993240 1.0676350 0.35118020
44.686810 0.5224000 0.16199120
21.623280 0.2508430
10.694420 0.1157080
5.3116890 0.0500000
2.4260420
1.1181120
0.5073780
0.2239600
0.1000000
0.0500000
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The only terms involving three-electron integrals
over high-‘ virtual orbitals are integrals over the
exchange operator, which plays only a secondary role
in the equations. In fact, in the MP2-R12/A model,
the exchange terms are neglected altogether [8]. The
most important terms involving the exchange operator
– they are included in the MP2-R12/B model – occur
in the evaluation of h½ij
jK1P1r12Q12r12j½ij
i and
h½ij
jK1P1r12j½ab
i. However, a closer examination
shows that if the occupied orbitals are only of s or p
types, then the terms of higher angular momentum do
not contribute (by orthogonality since K1 is adjacent
to ½ij
). The other terms that involve the exchange
operator, h½ij
jr12P1K1Q12r12j½ij
i and h½ij
jr12P1K1j½ab
i,
do in fact involve integrals over high-‘ orbitals.
However, in Ref. [8], it was shown that these contri-
butions are very small – they are neglected in the
original MP2-R12/B model.

3.4 Calculations in large basis sets

Having established in Sect. 3.3 that we may safely ignore
all three-electron integrals except those involving s and p
functions, we may proceed to carry out calculations in
much larger basis sets (Tables 4, 5, 6). Our best result of
�388:06 mEh is, to our knowledge, the most accurate,
rigorous (i.e., nonextrapolated) value obtained for the
second-order correlation energy of neon. It can be
compared with results obtained by numerical methods
[14], where �383:55 mEh was obtained including up to i
functions and �388:31 mEh with extrapolation. Using
a finite-elements method with angular extrapolations,
Flores obtained �388:11 mEh [16] and Flores and Kolb
obtained �388:13 mEh [17]. A similar extrapolation of
our results would be meaningless since most of the error
arises from the incompleteness of basis functions of low
angular momentum, demonstrating the efficiency by
which the R12 method includes the contributions of the
functions of high angular momentum. For comparison,
we also quote the results obtained with the standard
MP2 method in the cc-pCVXZ basis [18] with
2 � X � 6: �228:3, �329:1, �361:5, �374:1, and
�379:8 mEh; two-point extrapolation from the last two
energies yields �387:6 mEh. We also add that the
orbital-invariant CCSD-R12/B method in the same
20s14p11d9f7g5h basis gives a value of �383:90 mEh

for the correlation energy, of which �7:27 mEh is due to
the R12 terms.

Clearly, the inclusion of the explicitly correlated
functions improves the convergence dramatically. If f
functions are included, the differences between the MP2-
R12-SO and MP2-R12/B energies become negligible.
illustrating the ‘‘‘max � 3‘occupied’’ rule.

On comparing the MP2-R12 and MP2-R12-SO en-
ergies in the 7s5p3d2f basis in Table 3, we find that the
effect of the RI approximation is small. When the basis
is almost complete up to f functions (Table 4), the RI
approximation gives rise to negligible errors (compared
with the exact evaluation of three-electron integrals);
when only s, p, and d functions are retained, the results
are still not unreasonable.

3.5 Calculations in standard Gaussian basis sets

When this article was submitted for publication, a
referee remarked that it would be interesting to inves-
tigate the performance of the R12-SO approximation for
standard Gaussian basis sets – in particular, for small
sets such as cc-pVDZ or cc-pVTZ. We agree but note
that R12-SO calculations in small basis sets are only
partly useful since the RI approximation is still applied
to the integrals arising from the exchange commutator
(see Eq. 30). In the cc-pVDZ basis, for example, the
energy is contaminated by about 4–5 mEh owing to
the RI approximation in the exchange commutator.
To compute meaningful R12 energies (i.e., energies
without RI contamination) with small basis sets, we
decided to employ a very large auxiliary basis of the

Table 4. Second-order correlation energy (�E/mEh) of the neon atom. Convergence with respect to the size of the basis

Basis MP2 MP2-R12/Aa MP2-R12/Bb MP2-R12-SO(sp)c

20s14p 191.992 653.039 492.416 309.448
20s14p11d 322.266 407.909 394.374 380.318
20s14p11d9f 359.835 389.621 387.096 387.124
20s14p11d9f7g 374.115 388.598 387.869 387.912
20s14p11d9f7g5h 379.455 388.285 387.999 388.061

aOriginal MP2-R12/A method as defined in Ref. [7]
bMP2-R12/B method as defined in Ref. [8]
c Eqs. (18), (19), (20), but with exact three-electron integrals only over s and p functions

Table 5. Pair contributions (�E/mEh) to the second-order correla-
tion energy of the neon atom, computed in the 20s14p11d9f7g5h
basis

Pair MP2-R12-SO(sp) R12-SO(sp)a cij

1s2 (1S) 40.252 1.100 0.94
1s2s (1S) 3.974 0.090 0.93
1s2s (3S) 1.582 0.010 0.44
2s2 (1S) 12.038 0.384 0.94
1s2p (1P) 8.176 0.386 0.91
1s2p (3P) 13.911 0.048 0.45
2s2p (1P) 60.472 2.575 0.92
2s2p (3P) 26.708 0.105 0.46
2p2 (1S) 45.565 0.961 0.90
2p2 (3P) 87.341 0.192 0.46
2p2 (1D) 88.042 2.754 0.92

aR12 contribution
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form 32s24p18d15f12g9h6i for the remaining RI ap-
proximation2. The resulting energies can be regarded as
obtained by a method where all (four-electron as well as
three-electron) integrals are computed exactly.

There is one particular case, however, where the RI
approximation is not needed at all. Consider the R12-
SO� approximation as defined by Eq. (23). In the present
work, all integrals in Eq. (23) are computed analytically
except those involving the exchange commutators aris-
ing from ½F1 þ F2; r12
, for which the RI approximation is
still used (Eq. 30). Hence, if we neglect these exchange

commutators in our model, RI-free results are obtained.
Since this approach is closely related to the ‘‘standard
approximation A’’ of MP2-R12 theory [8], we denote it
the R12-SO�/A approximation. In the cc-pVDZ basis,
the R12-SO�/A second-order energy is �317:6362 mEh.
Note that all the integrals that contribute to this energy
were computed analytically.

In principle, when all three-electron integrals are
computed analytically, the R12-SO� and R12-SO cal-
culations (without standard approximation A) use the
auxiliary RI basis only for the exchange commutators;
however, in such calculations, we may utilize the same
large RI basis for the three-electron integrals as well,
giving an R12-SO�/A energy of �317:6308 mEh. Thus,
the effect of using this auxiliary basis to approximate all
three-electron integrals is less than 0.01 mEh. Since it is

Table 7. Valence-shell and all-electron second-order correlation energies (�E/mEh) of the neon atom, computed in a standard Gaussian
basis

Basis Valence-shell All-electron

MP2 MP2-R12-SO* MP2-R12-SO MP2 MP2-R12-SO* MP2-R12-SO

cc-pVDZ 185.5 253.1 261.7 187.6 298.0 306.6
cc-pVTZ 264.3 287.5 292.7 277.3 338.7 343.1
cc-pVQZ 293.6 306.4 307.7 326.3 365.0 365.9
cc-pV5Z 306.2 313.4 313.9 346.1 375.4 375.2
cc-pV6Z 311.8 316.7 316.9 358.1 380.7 380.3
aug-cc-pVDZ 206.9 278.4 277.4 209.1 323.6 322.7
aug-cc-pVTZ 272.5 305.0 305.4 285.9 356.4 356.1
aug-cc-pVQZ 297.2 314.2 314.8 330.0 373.0 373.2
aug-cc-pV5Z 308.0 317.5 318.0 348.0 379.5 379.3
aug-cc-pV6Z 312.9 318.9 319.2 359.2 382.7 382.6
cc-pCVDZ 190.3 257.2 265.0 228.3 309.3 318.7
cc-pCVTZ 271.6 293.9 298.4 329.1 357.6 362.4
cc-pCVQZ 297.5 308.9 310.3 361.5 375.6 377.1
cc-pCV5Z 308.1 314.9 315.3 374.1 382.3 382.7
VTZ(2d1f)a 261.6 287.8 291.5 280.8 339.7 343.5
6-31G* 150.3 252.9 252.8 151.4 298.1 298.0
6-311++(3d1f) 265.7 302.6 305.2 289.7 356.5 359.8
cc-pVDZ (unc.,Car.)b 215.7 269.4 278.2 256.9 327.4 336.2
cc-pVTZ (unc.,Car.)b 273.2 294.7 298.9 323.4 357.9 361.8
Limit 320.2 388.1

a VTZ basis [20] augmented with 2d1f set of cc-pVTZ basis
bUncontracted basis with Cartesian d and f sets, as in Ref. [21]

Table 6. Pair contributions (�E/mEh) to the second-order correlation energy of the neon atom

Pair Ref. [14]
extrapolationa

Ref. [15]
extrapolationb

Ref. [5]
extrapolationc

Ref. [16] This work
calculatedf

Calculatedd Extrapolatione

1s2 40.24 40.22 40.25 40.229 40.255 40.252
1s2s 5.55 5.56 5.55 5.555 5.557 5.556
2s2 12.05 12.02 12.02 12.003 12.037 12.038
1s2p 22.16 22.17 22.06 22.078 22.094 22.087
2s2p 87.30 87.15 87.10 86.982 87.188 87.180
2p2 221.01 220.80 220.81 220.686 220.973 220.948

Total 388.3 387.9 387.8 387.53 388.11 388.06

aWith extrapolation for ‘ > 6
bWith extrapolation for ‘ > 9
c Recommended values from R12 calculations and extrapolations
dCalculated with ‘ � 12
eWith extrapolation for ‘ > 12
fMP2-R12-SO(sp) energies calculated in the 20s14p11d9f7g5h basis of Table 2

2 The 32s (n0 ¼ 32) and 24p (n1 ¼ 24) sets are even-tempered sets of
the form 0:005� 3ðk�1Þ=2 for k ¼ 1; . . . ; n‘ while the exponents of
the d (‘ ¼ 2) through i sets (‘ ¼ 6) are given by the expression
0:002‘þ 0:003ð Þ � 3ðkþ‘�1Þ=2 for k ¼ 1; . . . ; n‘
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sufficient to compute the energies to within 0.1 mEh, we
decided to employ the auxiliary RI basis in all the cal-
culations reported in Table 7, saving large amounts of
computer time and making possible the investigation of
a variety of standard Gaussian basis sets. In these fully
RI based R12 calculations, a molecular rather than
atomic code was used; it employs Cartesian spin–orbital
pairs such as 2p2x and 2px2py .

In Table 7, we have listed the valence and all-electron
second-order energies for various standard basis sets, in
particular, for the correlation-consistent sets cc-pVXZ
[10], aug-cc-pVXZ [19], and cc-pCVXZ [18]. In the
standard orbital-based treatment, triple-zeta basis sets
[e.g., cc-pVTZ, aug-cc-pVTZ, cc-pCVTZ, VTZ(2d1f),
and 6-311++G(3d1f)] recover 80–85% of the valence
correlation energy. By contrast, the R12-SO approach
recovers 90–95% of the energy, reducing the error by a
factor of 0.5. The same reduction is observed for the
other basis sets in Table 7 but the improvements are
more pronounced for X � 5. For all basis sets in the
table, the average error reduction due to explicit corre-
lation is about 40 and 35% at the valence-only and all-
electron levels, respectively.

Table 7 also includes results for the uncontracted
Cartesian cc-pVDZ and cc-pVTZ basis sets, as employed
in the Gaussian-geminal calculations of Ref. [21]. At the
valence R12-SO level, 86.8% of the correlation energy is
recovered with the uncontracted cc-pVDZ basis and
93.3% with the uncontracted cc-pVTZ basis. In Ref.
[21], 90.6 and 98.1%, respectively, of the correlation
energy were recovered using six (independent) Gaussian
geminals rather than a single linear r12 term. Clearly,
with more variational (linear) parameters, a larger pro-
portion of the correlation energy is recovered.

4 Conclusions

The test calculations presented here were restricted to the
neon atom; however, since the correlation cusp is only
weakly dependent on the chemical environment, most of
our conclusions should be valid for other many-electron
systems as well. Of course, in molecular systems, orbitals
of higher angular momentum are partly occupied and
higher-order functions are required in the basis. In this
sense, more test calculations would be useful.

Even with a rather small basis, the effects of
the standard RI approximation are small. This is an
important result since for molecular calculations the
completeness condition is never well satisfied.

We conclude that the standard RI approximation is a
good one and that the conventional R12 method with
approximation of integrals by way of the RI approxi-
mation is a robust method. Theoretical arguments for
the use of the RI approximation were given in Ref. [8]
and the method has been succesfully applied for a long
time; therefore these conclusions are not unexpected.
However, it was nevertheless important to quantify the
effects of the RI approximation in a direct way.
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