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We propose to account for the large basis-set error of a conventional coupled-cluster energy and

wave function by a simple perturbative correction. The perturbation expansion is constructed by

Löwdin partitioning of the similarity-transformed Hamiltonian in a space that includes explicitly

correlated basis functions. To test this idea, we investigate the second-order explicitly correlated

correction to the coupled-cluster singles and doubles (CCSD) energy, denoted here as the

CCSD(2)R12 method. The proposed perturbation expansion presents a systematic and easy-to-

interpret picture of the ‘‘interference’’ between the basis-set and correlation hierarchies in the

many-body electronic-structure theory. The leading-order term in the energy correction is the

amplitude-independent R12 correction from the standard second-order Møller–Plesset R12

method. The cluster amplitudes appear in the higher-order terms and their effect is to decrease the

basis-set correction, in accordance with the usual experience. In addition to the use of the

standard R12 technology which simplifies all matrix elements to at most two-electron integrals,

we propose several optional approximations to select only the most important terms in the energy

correction. For a limited test set, the valence CCSD energies computed with the approximate

method, termed CCSDð2ÞR12, are on average precise to (1.9, 1.4, 0.5 and 0.1%) when computed

with Dunning’s aug-cc-pVXZ basis sets [X = (D, T, Q, 5)] accompanied by a single Slater-type

correlation factor. This precision is a roughly an order of magnitude improvement over the

standard CCSD method, whose respective average basis-set errors are (28.2, 10.6, 4.4 and 2.1%).

Performance of the CCSDð2ÞR12 method is almost identical to that of the more complex iterative

counterpart, CCSD(R12). The proposed approach to explicitly correlated coupled-cluster methods

is technically appealing since no modification of the coupled-cluster equations is necessary and the

standard Møller–Plesset R12 machinery can be reused.

1. Introduction

A low-rank coupled-cluster (CC) ansatz1–4 has sufficient

accuracy for confident quantitative description of molecular

structure, properties and reactivity.5 Unfortunately, large one-

electron basis sets are required to reach the quantitative

threshold of precision. The problem is the determinantal

n-electron basis, which differs qualitatively from the exact

wave function at short interelectronic distances rij where the

Coulomb repulsion dominates. Terms with explicit depen-

dence on rij can model the Coulomb hole more directly and

efficiently6 and, therefore, dramatically reduce the basis-set

error of the correlation energy. The Achilles heel of the

explicitly correlated methods is the appearance of nonfactor-

izable many-electron integrals. Although such integrals can be

evaluated in closed form,7 the high computational cost of even

three-electron integrals makes such methods non-competitive

in the ‘‘chemical’’ accuracy regime with the basis-set extra-

polation. The R12 (or F12w) methods8–10 are the most prac-

tical of modern explicitly correlated techniques because the

many-electron integrals are ingeniously reduced to two-elec-

tron integrals only.

The R12 version of the second-order Møller–Plesset

energy (MP2) method has been most studied because it is

technically the simplest. Several types of three- and

four-electron integrals appear in the MP2-R12 methods, but

all can be reduced,9 although tediously, to at most

two-electron integrals with controlled and negligible error.11

The MP2-R12 method becomes competitive with extra-

polation schemes when combined with a Slater-type correla-

tion factor, suggested by Ten-no,12 which is more appropriate

for modeling the Coulomb hole than the linear term.

A precision of 1–2% can typically be achieved on average

for valence correlation contributions to electronic energies,

reaction enthalpies, and atomization energies with only a

triple-zeta orbital basis set accompanied by a single

Slater-type geminal correlation factor.13–16 Use of several

Gaussian-type correlation factors can result in a slightly higher

precision.14

Department of Chemistry, Virginia Tech, Blacksburg, VA 24061,
USA. E-mail: evaleev@vt.edu
w The R12 methods that use nonlinear correlation factors are often
called F12 in the literature to distinguish them from the methods with
the linear r12 factor. The F12 method is formally identical to the R12
method, and, furthermore, the F12 notation does not uniquely identify
the method because the correlation factor must be fully specified.
Hence, we use the name ‘‘R12’’ here, except when referring to
previously published data.
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It is difficult to translate the high precision of the MP2-R12

method to predictive chemical applications because the MP2

method generally lacks the necessary accuracy. One possible

solution is to use the MP2-R12 method to correct the basis-set

incompleteness of the energy in the context of additive model

chemistries, such as Gaussian-n (Gn) methods,17–19 Weiz-

mann-n (Wn) methods,20,21 the ‘‘focal point’’ framework,22,23

or the correlation-consistent composite approach24 among

many. Unfortunately, because of the ‘‘interference effects’’25,26

between the correlation and basis-set hierarchies, the basis-set

incompleteness at the MP2 level is usually larger than that of

higher-order correlated methods.27,28 Such interference effects

are accounted for in the complete basis-set (CBS) model

chemistry of Petersson et al.29,30 via an empirical formula,

and in principle such an approach could lead to a model

chemistry based on an MP2-R12 method. It is, however,

desirable to exploit the high precision of the state-of-the-art

R12 methodology by directly combining it with methods of

comparable accuracy.

The rigorous R12 version of the coupled-cluster method

using the modern R12 technology, marked by the use of a

separate basis for the resolution-of-the-identity (RI) approx-

imation, is technically very demanding compared to the MP2-

R12 method. Numerous new three-, four-, and five-electron

integrals appear in the CC-R12 amplitude equations and make

implementation of such methods difficult. The CC-R12 meth-

ods through CCSD(T)-R12 have been explored by Noga

et al.,31–35 but only using the ‘‘old’’ R12 technology. The old

approach simplified the equations but required the use of a

very large Hartree–Fock basis and therefore was aimed at

benchmark-accuracy applications for rather small systems.

Fliegl and co-workers introduced the ‘‘(R12)’’ approxima-

tion36–38 to the CC-R12 method, with the coupling between

the standard and explicitly correlated amplitudes drastically

simplified à la CCn methods.39 The amplitudes of the R12

terms in the CC(R12) method are optimized iteratively (or

could be simply kept fixed, as in the rational generator

variant40 of the MP2-R12 method, to satisfy the cusp condi-

tions for the exact wave function). The authors found that the

(R12) approach closely tracks the results of the rigorous one-

basis CC-R12 method at a much lower computational cost.

The overall performance of the recent extension of the

CC(R12) method to nonlinear correlation factors has been

very promising: correlation energies and reaction enthalpies

computed with a triple-zeta basis are precise to better than

2%, on a par with the conventional quintuple-zeta result.41

Here we consider a new way to introduce the explicitly

correlated terms into the coupled-cluster method. Instead of

making approximations to the CC-R12 equations, as is done

in the CC(R12) method, our approach introduces the explicitly

correlated terms by perturbing the standard coupled-cluster

wave function via Löwdin partitioning42 of the similarity-

transformed Hamiltonian. This experiment is motivated by

the argument for the R12 method itself, i.e. the standard low-

rank determinantal expansion can effectively recover a signifi-

cant portion (480%) of the correlation energy and the rest

can be handled with few explicitly correlated terms. The

coupling between the standard and explicitly correlated am-

plitudes is weak in the MP2-R12 method, and, therefore, the

same can be assumed in general. This coupling should be well

described by a low-order perturbation theory and not require

the infinite-order treatment of CC-R12 or CC(R12) methods.

Development of perturbation expansions for the eigen-

values and eigenvectors of the similarity-transformed

coupled-cluster Hamiltonian by Löwdin partitioning is not a

new idea. The formalism in its current form was suggested by

Stanton and Gauss43 as a way to correct EOMIP-CCSD

energies to account for higher-order excitations. A related

approach was used earlier by Head-Gordon et al. to correct

configuration-interaction single-excitation energies for the ef-

fect of double excitations,44 as well as later to develop the

‘‘(2)’’ corrections for coupled-cluster energies.45,46 Notably,

Stanton used this route to ‘‘derive’’ the celebrated CCSD(T)

method by treating triple excitations via a perturbation

expansion defined with respect to the zeroth-order CCSD

wave function.47 The asymmetric,48 or L,49 (T) correction

naturally follows from such treatment. The general approach

has since been used in many related disguises.50–56 The com-

mon theme is that, until now, the use of explicitly correlated

basis functions has never been considered in such perturbative

approaches.

Our main hypothesis is that the effect of the explicitly

correlated terms on the coupled-cluster energy and

wave function can be recovered accurately with only a

low-order perturbation treatment. The immediate goal of this

work is strictly to examine this hypothesis and lay the ground-

work for a more thorough study. Thus this work will be

limited to the coupled-cluster singles and doubles model

corrected up to second-order for the explicitly correlated terms

(corrections due to triple and higher conventional excitations

will be incorporated in a future study). Furthermore, only

the dominant terms will be included here to simplify the

equations.

2. Methodology

The present approach begins with the similarity-transformed

Hamiltonian of the standard CC method, �H = e�T̂ĤeT̂. In

this work, T̂ will be limited to one- and two-electron excita-

tions:

T̂1 ¼ Ti
a ~aai ; ð1Þ

T̂2 ¼
1

4
T

ij
ab ~aabij ; ð2Þ

where we used the standard tensor notation.9,32,57 The

T-amplitudes in eqn (1) and (2) are obtained from the standard

CCSDmethod. Matrix representation of �H will be constructed

in a basis that spans a ‘‘reference’’ space P, comprised of Slater

determinants up to the same rank as the excitation operator

(vacuum 0, singles S, and doubles D), and an ‘‘external space’’

Q, including the explicitly correlated double substitutions C:

�H ¼
�HPP

�HPQ
�HPQ

�HQQ

� �
ð3Þ
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The explicitly correlated basis functions are defined as usual:

jGxy
ij i �

1

2
�R
xy

ab ~aabij j0i; ð4Þ

where the choice of orbitals x and y that ‘‘generate’’ the

geminal space is flexible (such orbital pairs will be typeset in

bold33). In this work x and y will be occupied orbitals (this is

known as the kl-ansatz), but other choices have also been

considered.58 To ensure strong orthogonality, the geminal

integrals in eqn (5) are defined as in ref. 9.z

�R
xy

ab ¼
0; if both a and b are in the orbital basis

�rxyab; otherwise

�
ð5Þ

This ansatz ensures that space C, despite the non-unit metric

SCC, is orthogonal to D. The integral rrspq is over a correlation

function f(r12), which can be any well-behaved function.

Note that the Hamiltonian in eqn (3) is not identical to the

matrix that would be used in the EOM-CCSD-R12 method

because in the latter the full excitation operator (including

excitations into C block) would be used for the similarity

transformation. Therefore the �HPP block is the similarity-

transformed Hamiltonian used in the EOM-CCSD method.

Its left and right-hand ground-state eigenvectors,

L ¼
1
LS

LD

0
@

1
A R ¼

1
0
0

0
@

1
A; ð6Þ

can be considered a good approximation to the left- and right-

hand eigenvectors, L and R, of the full matrix in eqn (3).y
Löwdin partitioning42 of the Hamiltonian matrix expresses

the exact eigenvalue E of the full matrix in terms of sub-blocks

LP and RP of the exact eigenvectors:

EL
y
PRP ¼LyP �HPPRP þ L

y
P

�HPQ

ðESQQ � �HQQÞ�1 �HQPRP;
ð7Þ

where S is the overlap matrix. Rayleigh–Schrödinger pertur-

bation theory can then be straightforwardly applied to this

expression. We define the zeroth-order eigenvectors in terms of

the EOM-CCSD eigenvectors as

Lð0Þ � L
ð0Þ
P

L
ð0Þ
Q

 !
¼ L

0

� �
ð8Þ

Rð0Þ � R
ð0Þ
P

R
ð0Þ
Q

 !
¼ R

0

� �
ð9Þ

whereas the zeroth- and first-order Hamiltonians will be

defined as follows:

�Hð0Þ ¼
�HPP 0
0 �H

ð0Þ
QQ

� �
ð10Þ

�Hð1Þ ¼
0 �HPQ

�HPQ
�H
ð1Þ
QQ

 !
ð11Þ

The zeroth-order energy is the ground-state CCSD energy:

Eð0Þ ¼ ðLð0ÞÞy �Hð0ÞRð0Þ ¼Ly �H
ð0Þ
PPR � ECCSD: ð12Þ

The first-order energy correction vanishes whereas the second-

order energy is

Eð2Þ ¼Ly �HPQðEð0ÞSQQ � �H
ð0Þ
QQÞ

�1 �HQPR; ð13Þ

or, in terms of spaces 0, S, D, and C,

Eð2Þ ¼ �H0CðEð0ÞSGG � �H
ð0Þ
GGÞ
�1 �HG0

þ LyS �HSGðEð0ÞSGG � �H
ð0Þ
GGÞ
�1 �HG0

þ LyD �HDGðEð0ÞSGG � �H
ð0Þ
GGÞ
�1 �HG0

ð14Þ

To evaluate eqn (14) we must define �H(0)
CC. Before doing so,

note that the explicitly correlated correction of the MP2-R12

theory can be derived using the same approach if the bare

electronic Hamiltonian Ĥ is used in place of �H and the

‘‘reference’’ space only includes the vacuum. Then the energy

correction has the form of the first term on the right-hand side

of eqn (14):

E
ð2Þ
MP ¼ H0CðEð0ÞMPSCC �H

ð0Þ
CCÞ
�1
HC0 ð15Þ

The standard MP2-R12 expression is obtained if the Fock

operator is chosen as the zeroth-order Hamiltonian, or

Ĥ(0)
MP = E(0)

MP + F̂N in the normal-ordered form. To maximize

the resemblance to the MP2-R12 method, we will choose the

zeroth-order Hamiltonian as

�H
ð0Þ ¼ P̂P

�HP̂P þ P̂QðEð0Þ þ F̂NÞP̂Q; ð16Þ

with normal-ordered Fock operator F̂N. In this formulation

the E(0)SCC � �H(0)
CC matrix of eqn (14) is independent of

T-amplitudes and identical to the E(0)SCC � H(0)
CC matrix of

eqn (15). Its evaluation has been discussed else-

where9,10,15,59,60.

Eqn (14) and (16) correspond to the method that we

term CCSD(2)R12, by analogy with the established conven-

tion.52 All remaining matrices in eqn (14) include up to

three-electron integrals and have truncating partial wave

expansions (it was not the case for the matrix elements of

the exchange operator in the H(0)
CC matrix8,9). They can be

evaluated straightforwardly using the standard approximation

of the R12 method (full details will be given elsewhere).

To judge the performance of the proposed method, here we

are only interested in computing the dominant contributions

to each matrix. Thus we propose several approximations,

which, while not mandatory, will simplify the equations

drastically:

1. Each term can be classified according to the standard CC

perturbation theory defined with respect to the Hartree–Fock

reference, in which the one-electron Hamiltonian elements are

zeroth-order, T2-amplitudes have a leading first-order contri-

bution, etc. For example, �H0C matrix elements,

h0j �HjGxy
ij i ¼ V

xy
ij ; ð17Þ

are purely first-order. The �HC0 matrix is more complicated: in

addition to the same first-order term identical to �Hw
0C, it

z Werner et al. recently referred to this choice as Ansatz.15

y L amplitudes are the standard lambda-amplitudes of the ground-
state coupled-cluster theory,2 also known as the Lagrange multipliers
in the variational formulation of the coupled-cluster method.5
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contains second and higher-order terms:

hGxy
ij j �Hj0i ¼ Vij

xy þ
1

2
Vab

xyT
ij
ab þ � � � ð18Þ

In this work we will include up to third-order contributions to

the energy and up to second-order terms in the matrix

elements.

2. Most many-electron integrals that appear in matrices
�HC0, �H0C, �HSC and �HDC vanish if the Hartree–Fock basis is

used to resolve the identity (such an approach was used in the

original R12 method). In this work we will keep only the

integrals that do not vanish under such an approximation:

namely, the V intermediate of the R12 theory.

3. Although the left-hand eigenvector is not necessary to

compute the reference energy, it is needed to evaluate the

energy correction. To avoid having to solve L-equations, we
can simply replace them with the corresponding T-amplitudes

(they have the same leading-order term). The motivation for

such replacement can be found in the argument for the

standard (T) correction to the CCSD energy.

4. Extended (EBC) and generalized Brillouin conditions

(GBC)9,11 will be assumed in this work. While the effect of

the generalized Brillouin condition is always small,11 its

extended counterpart usually affects the MP2-R12 energies

appreciably, especially if only a double-zeta basis is used. If

EBC is not assumed, the coupling term between the doubles

and geminals functions appears in the zeroth-order opera-

tor.z10,59 In the current method the coupling between doubles

and geminals blocks only appears in the first-order (see

eqn (10) and (11)). For consistent comparison with the MP2-

R12 results, we will postpone this issue until later and simply

assume EBC here.

The CCSD(2)R12 method using these approximations will be

termed CCSDð2ÞR12. Its energy correction is extremely simple:

Eð2Þ ¼ �H0CðEð0ÞSCC � �H
ð0Þ
CCÞ
�1ð �HC0 þ �HyDCTDÞ; ð19Þ

where TD is a vector of T2 amplitudes. Furthermore, the

elements of matrices H0C, HC0 and HDC become, respectively,

h0j �HjGxy
ij i ¼ V

xy
ij ð20Þ

hGxy
ij j �Hj0i � Vij

xy þ
1

2
Vab

xyT
ij
ab ð21Þ

h~aabkl j �HjG
xy
ij i � ðdki dlj � dkj d

l
iÞVab

xy : ð22Þ

The final energy correction E(2) is a sum of pair contributions

Eð2Þ ¼ 1

2

X
ij

eð2Þij ¼
1

4
T

xy
ij

~V
ij

xy; ð23Þ

computed from the ‘‘dressed’’ interaction matrix,

~Vij
xy ¼ Vij

xy þ Vab
xyT

ij
ab; ð24Þ

and the geminal amplitudes Txy
ij determined from the linear

system,

V
xy
ij ¼ �Twz

ij ð ~BðijÞÞ
xy
wz: ð25Þ

The zeroth-order matrix in eqn (25) is expressed in terms

of the standard B and X intermediates of the MP2-R12

method9,59 as:

ð ~B
ðijÞÞxywz ¼ Bxy

wz � ðei þ ejÞXxy
wz ð26Þ

A diagrammatic representation for the ð2ÞR12 correction is

shown in Fig. 1.

It is immediately clear that the pair energy correction in eqn

(23) becomes identical to its MP2-R12 counterpart if the

dressed interaction Ṽ is replaced with the standard interaction

V. Since the second term on the r.h.s. of eqn (24) has the

second-order leading contribution according to the standard

Hartree–Fock-based CCPT, it should be small compared to

the first. The MP2 basis-set incompleteness error (BSIE) is,

therefore, the leading-order contribution to the CCSD BSIE,

whereas the dependence on T-amplitudes only appears in the

next order. This next-order term can be understood as the

source of interference effects, identified by Petersson and

Nyden25,26 as responsible for lower BSIE of infinite-order

theories, like CI and CC, compared to the MP2 counterpart.

We must note that Petersson and Nyden also exploited a

perturbation expansion of a correlated wave function to

develop an empirical correction for the interference effect. It

is striking that the current non-empirical picture of the inter-

ference effect is not only reminiscent of these pioneering

efforts, but was also obtained from a similar mathematical

approach.

The computational implementation of the proposed method

is very straightforward. Converged coupled-cluster amplitudes

from a coupled-cluster code and the standard MP2-R12

intermediates V, B, and X are all that is needed to evaluate

the energy correction. The expressions for the intermediate B

in standard approximations B or C involve two-electron

integrals with 2 indices from the complementary auxiliary

basis set (CABS) space; however, such terms may be ig-

nored15,62 (this was not done in this work). The computation

of the intermediates formally scales with the sixth power of the

size of the system, i.e. the same as the cost of the CCSD

procedure. Although the cost of solving the linear system in

eqn (25) scales with the eighth power of the system size, the

prefactor is so small that this step has a negligible cost (the

scaling of this step can be reduced to the sixth power if the

linear system is solved iteratively). The extra cost of the

explicitly correlated correction can be decreased by the use

of density-fitting techniques63 and/or their combination with

the resolution-of-the-identity method.64

Fig. 1 A diagrammatic illustration of the ð2ÞR12 correction. The T

amplitudes, the two-electron component of the Hamiltonian and the

correlation factor are denoted as single lines, dashed lines and double

lines respectively.

z Such coupling is zero if the less-efficient Ansatz 159,61 is used.
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3. Computational details

Geometries for H2O and F2 were fixed at their experimental

equilibrium values: rOH = 95.72 pm,65 aHOH = 104.521,65

rFF = 141.193 pm.66

Hartree–Fock orbitals were expanded in standard correla-

tion-consistent basis sets of Dunning and co-workers.67,68 The

RI basis sets consisted of the primitive 19s14p8d6f4g3h2i and

9s6p4d3f2g sets of spherical harmonic Gaussians for Ne/O/F

and H respectively.59

The Slater-type correlation factor exp(�1.5r12) was repre-

sented as a least-squares fit to 6 Gaussian-type geminals

(the optimal exponents and coefficients are (303.393,

54.8852, 14.6991, 4.50631, 1.36066, 0.36439) and (0.0510844,

0.081916, 0.129811, 0.205298, 0.299458, 0.207455) respec-

tively). All integrals necessary for the explicitly correlated

calculations were evaluated using the recurrence relations of

Valeev and Schaefer69 and Weber and Daul70 as implemented

by an integrals code generator LIBINT.71 The complementary

auxiliary basis set (CABS) method in its CABS+ variant72

was used to reduce the many-electron integrals. The geminal–

geminal block of the zeroth-order Hamiltonian was treated

using standard approximation C of Ked�zuch et al.60 Since

approximation C does not assume either extended or general-

ized Brillouin conditions, it is slightly inconsistent to assume

such conditions elsewhere (in matrices HC0, and HDC).

However, the effect of these conditions on the zeroth-

order Hamiltonian matrix is negligible: we recomputed Ne

correlation energies with the linear correlation factor

using standard approximation B, in which EBC and

GBC were avoided, and the energy changed by less

than 0.05 mEh.

All computations were performed with the developers’

versions of MPQC73 and PSI374 programs. The massively-

parallel implementation of the MP2-R12 method in MPQC75

is used to compute intermediates V, B, and X in a fully

integral-direct fashion. These intermediates are then combined

with the converged CCSD amplitudes obtained from PSI3.

Both programs were made to adhere to the recently-developed

Common Components Architecture standard for the molecu-

lar integrals76 to enable data exchange between the programs.

Snapshots of the MPQC and PSI3 source codes can be

obtained from the respective code repositories using tags

libint2-branch-ccsd-pt2r12 and 3499.

4. Results

Table 1 lists MP2 and CCSD valence correlation energies for

the neon atom computed with a ‘‘partial wave’’-style basis

set accompanied by a linear correlation factor. Convergence

of the standard and explicitly correlated energies is

expected to follow the established (at least for the MP2 case27)

O[(Lmax + 1)�3] and O[(Lmax + 1)�7] asymptotics. The basis-

set incompleteness errors plotted in Fig. 2 indeed follow these

trends. With every basis set, precision of the CCSDð2ÞR12

energy is close to that of the MP2-R12 energy. The explicitly

correlated energies computed with the largest basis set are at

most 0.1 mEh removed from their CBS estimates. We conclude

that the approximations introduced in this work do not seem

to affect the convergence in the asymptotic regime. However, a

more complete study is still warranted.

It is clear that the T-dependent contribution to the basis-set

incompleteness is non-negligible even with the largest basis set.

Table 1 Valence MP2 and CCSD correlation energies for the neon atom, in mEh. The explicitly correlated values were obtained with the r12
correlation factor

MP2 MP2-R12 CCSD CCSDð2ÞR12

Basis seta E % db E % E % dc E %

sp �146.38 45.7 �114.57 �260.92 81.5 �145.25 46.0 �109.75 �254.97 80.8
spd �259.24 81.0 �55.56 �314.81 98.3 �258.97 82.0 �47.67 �306.61 97.1
spdf �294.08 91.8 �25.50 �319.54 99.8 �294.03 93.1 �19.74 �313.74 99.4
spdfg �307.93 96.2 �12.11 �320.04 100.0 �306.78 97.2 �8.59 �315.37 99.9
spdfgh �313.19 97.8 �6.92 �320.11 100.0 �310.90 98.5 �4.68 �315.59 100.0
Complete �320.2d 100 0 �320.2d 100 �315.7e 100 0 �315.7e 100

a Subsets of the 20s14p11d9f7g5h3i basis set from ref. 59. b E(MP2-R12) � E(MP2). c EðCCSDð2ÞR12Þ � EðCCSDÞ. d MP2-R12

20s14p11d9f7g5h3i energy from ref. 59. e The CCSD-R12 19s14p8d6f4g3h energy from ref. 78 including the residual basis-set error correction

estimated as the difference between the MP2-R12 20s14p11d9f7g5h3i energy from ref. 59 and the MP2-R12 19s14p8d6f4g3h energy from ref. 78.

Fig. 2 Convergence of the basis-set error in standard and explicitly

correlated valence correlation energies for the Ne atom (see Table 1).

A (L + 1)�3 fit to the average error of the standard MP2 (+) and

CCSD (}) energies is shown with the solid line. The dashed line

shows a (L + 1)�7 fit to the average error of the MP2-R12 (�) and
CCSDð2ÞR12 ( ) energies.
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Whereas the explicitly correlated corrections at the MP2 and

coupled-cluster levels differ by less than 5 mEh with the

smallest basis set, they still differ by more than 2 mEh when

computed with the largest basis set. The assumption of

additivity, often employed to approximate the CBS limit of

a coupled-cluster method by combining the CBS limit at the

MP2 level and a small basis CC energy,22,77 does not seem to

work well for absolute electronic energies.28 For example, if it

were applied to estimate the CCSD CBS limit from the MP2-

R12/spdfgh energy (precise to 0.1 mEh) and the CCSD/spdfgh

energy, the predicted energy would be �317.81 mEh, certainly

more than 2 mEh below the actual CCSD CBS limit. The

interference effects,25,26 which are responsible for this discre-

pancy, seem to be quantitatively described by the CCSDð2ÞR12

method.

Use of more practical correlation-consistent basis sets calls

for short-range nonlinear correlation factors, such as a Slater-

type geminal. The results for Ne, presented in Table 2, are

essentially similar to those from Table 1. Errors smaller than

2% are achieved with all basis sets with both MP2-R12 and

CCSDð2ÞR12 methods (the double-zeta energies are, in all

likelihood, artificially precise because of the fortuitous effect

of assuming the extended Brillouin condition). With the

largest, sextuple-zeta basis set, the MP2-R12 and

CCSDð2Þ
R12

energies are within a few tenths of a millihartree

of the CBS-limit estimates. As with the r12 results in Table 1,

the T-dependent contribution to the BSIE is also unequivo-

cally important here.

Molecular MP2 and CCSD valence correlation energies,

presented in Tables 3 and 4, fully support the above analysis.

For the molecules we are also able to compare the

CCSDð2ÞR12 energies to those obtained with the CCSD(F12)

method of Klopper et al.41 Although the latter values were

evaluated at geometries different from ours, the apparent

Table 2 Valence MP2 and CCSD correlation energies for the neon atom, in mEh. The explicitly correlated values were obtained with the
exp(�1.5r12) correlation factor

MP2 MP2-R12 CCSD CCSDð2ÞR12

Basis set E % da E % E % db E %

aug-cc-pVDZ �206.87 64.6 �112.44 �319.31 99.7 �210.15 66.6 �100.78 �310.93 98.5
aug-cc-pVTZ �272.52 85.1 �43.71 �316.22 98.8 �274.09 86.8 �35.83 �309.93 98.2
aug-cc-pVQZ �297.24 92.8 �20.51 �317.75 99.2 �297.76 94.3 �15.47 �313.23 99.2
aug-cc-pV5Z �307.97 96.2 �11.37 �319.34 99.7 �306.79 97.2 �8.14 �314.94 99.8
aug-cc-pV6Z �312.87 97.7 �6.98 �319.85 99.9 �310.61 98.4 �4.81 �315.41 99.9
Complete �320.2c 100 0 �320.2c 100 �315.7d 100 0 �315.7d 100

a E(MP2-R12) � E(MP2). b EðCCSDð2ÞR12Þ � EðCCSDÞ. c MP2-R12 20s14p11d9f7g5h3i energy from ref. 59. d The CCSD-R12 19s14p8d6f4g3h

energy from ref. 78 including the residual basis-set error correction estimated as the difference between the MP2-R12 20s14p11d9f7g5h3i energy

from ref. 59 and the MP2-R12 19s14p8d6f4g3h energy from ref. 78.

Table 3 Valence MP2 and CCSD correlation energies for the water molecule, in mEh. The MP2-R12 and CCSDð2ÞR12 values were obtained with
the exp(�1.5r12) correlation factor

MP2 MP2-R12 CCSD CCSDð2Þ
R12 CCSD(F12)a

Basis set E % E % E % E % E %

aug-cc-pVDZ �219.34 73.0 �297.34 99.0 �227.11 76.2 �290.72 97.6 �284.79 95.4
aug-cc-pVTZ �268.35 89.3 �298.72 99.4 �273.05 91.7 �294.75 98.9 �295.02 98.9
aug-cc-pVQZ �285.91 95.2 �299.59 99.7 �288.21 96.7 �296.93 99.7 �297.49 99.7
aug-cc-pV5Z �292.90 97.5 �300.18 99.9 �293.65 98.6 �297.65 99.9 �298.10 99.9
Complete �300.4b 100 �300.4b 100 �297.9b 100 �297.9b 100 �298.4c 100

a See ref. 41. These values were computed with the exp(�1.3r12) correlation factor at the optimized MP2(fc)/aug-cc-pVTZ geometry. b Estimate

from ref. 78. c Obtained from the CCSD/aug-cc-pVXZ data (X = Q, 5) of ref. 41 using a Schwenke extrapolation scheme.79

Table 4 Valence MP2 and CCSD correlation energies for the fluorine molecule, in mEh. The MP2-R12 and CCSDð2ÞR12 values were obtained
with the exp(�1.5r12) correlation factor

MP2 MP2-R12 CCSD CCSDð2ÞR12 CCSD(F12)a

Basis set E % E % E % E % E %

aug-cc-pVDZ �428.06 70.0 �608.52 99.5 �435.45 72.5 �591.02 98.3 �568.58 94.8
aug-cc-pVTZ �536.12 87.7 �606.56 99.2 �538.96 89.7 �593.59 98.8 �592.01 98.7
aug-cc-pVQZ �575.84 94.2 �608.58 99.5 �575.16 95.7 �598.20 99.5 �597.57 99.6
aug-cc-pV5Z �592.78 97.0 �610.79 99.9 �588.57 97.9 �600.50 99.9 �599.43 99.9
Complete �611.4b 100 �611.4b 100 �601.0b 100 �601.0b 100 �599.9c 100

a See ref. 41. These values were computed with the exp(�1.3r12) correlation factor at the optimized MP2(fc)/aug-cc-pVTZ geometry. b Estimate

from ref. 78. c Obtained from the CCSD/aug-cc-pVXZ data (X = Q, 5) of ref. 41 using a Schwenke extrapolation scheme.79
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differences in the CBS limits are small. We found that the

CCSDð2ÞR12 and CCSD(F12) methods perform almost iden-

tically to each other unless the aug-cc-pVDZ basis is used. The

likely issue with the latter is, again, the assumption of EBC in

our method. Assuming EBC has little effect on the explicitly

correlated energies for larger basis sets, the two methods can

be compared directly. Even disregarding the geometrical dif-

ferences, the CCSDð2ÞR12 and CCSD(F12) energies differ by

less than 0.6 mEh for H2O and less than 1.6 mEh for F2. If we

subtract the difference in the CBS limit, the two methods agree

to within 0.2 and 0.5 mEh respectively. Although the

CCSD(F12) method couples the standard and explicitly cor-

related amplitudes iteratively, it appears that this coupling is

very weak and can be confidently treated using our perturba-

tive approach.

5. Conclusions and perspective

Here we outlined a simple perturbative approach to coupled-

cluster R12 methods and explored the second-order explicitly

correlated correction to the coupled-cluster singles and dou-

bles energy, dubbed CCSD(2)R12. Although the formalism

does not require use of any approximations other than the

resolution of the identity for the many-electron integrals, we

introduced a simplified method, CCSDð2ÞR12 , with several

additional approximations that maximally truncated the

working equations without apparent negative impact. In the

future we will test these approximations in more detail as well

as explore various partitioning of the similarity-transformed

Hamiltonian.

The proposed perturbation expansion is a systematic, easy-

to-interpret view of the ‘‘interference’’ between the basis-set

and correlation hierarchies in the many-body electronic-struc-

ture theory. The leading-order term in the second-order energy

expression in the CCSDð2ÞR12 method is simply the R12

correction of the MP2-R12 method and does not depend on

the coupled-cluster amplitudes (hence it is the same for any CC

method). The next-order term includes coupled-cluster ampli-

tudes linearly and makes the correction dependent on the

particular coupled-cluster method used. This term is respon-

sible for the interference effects25,26 and its effect is to lower

the magnitude of the correction compared to the MP2-R12

method, in accordance with the usual experience.

Performance of the CCSDð2ÞR12 method is (unexpectedly)

good. It is remarkable that, despite several approximations, a

simple non-iterative correction can be used to compute the

CCSD energy of a Ne atom precise to a few tenths of a

millihartree, i.e. much better than 0.1%. With a single Slater-

type geminal as a correlation factor, the CCSD valence

correlation energy can be computed to better than 2% preci-

sion with only a triple-zeta basis set. We also found that the

CCSDð2ÞR12 method performed almost identically to the

more expensive, iterative CCSD(F12) method of Klopper

et al.36–38,41

Another virtue of the CCSDð2ÞR12 is its technical simplicity:

no modification of a standard coupled-cluster program is

required and an MP2-R12 energy program has to be changed

very little. The computational cost of the second-order energy

correction is virtually identical to that of the MP2-R12 energy,

the dominant contribution of which scales with the sixth

power of the size of the system. Therefore, the presented

method can be applied to systems of the same size as the

underlying coupled-cluster method. The idea of the presented

approach is very general and should be widely applicable, for

example, to accurate computation of excited-state energies and

properties, or in combination with multireference coupled-

cluster methods.
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and J. F. Stanton, J. Chem. Phys., 1998, 70(4–5), 601–611.
51 S. Hirata, M. Nooijen, I. Grabowski and R. J. Bartlett, J. Chem.

Phys., 2001, 114(9), 3919–3928.
52 S. Hirata, P. D. Fan, A. A. Auer, M. Nooijen and P. Piecuch, J.

Chem. Phys., 2004, 121(24), 12197–12207.
53 P. R. Surján, A. Szabados and Z. Szekeres, Int. J. Quantum Chem.,

2002, 90(4–5), 1309–1320.

54 K. Kowalski and P. Piecuch, J. Chem. Phys., 2000, 113(1), 18–35.
55 P. Piecuch and M. W"och, J. Chem. Phys., 2005, 123(22), 224105.
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