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Basis set incompleteness error for an arbitrary approximate electronic wave function is robustly
reduced using a second-order perturbative correction into a basis of explicitly correlated, internally
contracted geminal functions. The Hylleraas functional for the second-order energy correction is
evaluated algebraically involving at most a four-electron reduced density matrix and four-electron
integrals. By using the R12 technology in combination with screening approximations such a
correction only requires a two-electron reduced density matrix and two-electron integrals.
Preliminary investigations of potential energy surfaces of hydrogen fluoride and nitrogen molecules
at the multireference configuration interaction singles and doubles indicate that with the perturbative
correction only an aug-cc-pVDZ basis is necessary to compute correlation energies of an
aug-cc-pVQZ quality, or better. The proposed correction, dubbed �2�R12, can in principle be
combined with any single reference and multireference method in use today. © 2009 American
Institute of Physics. �doi:10.1063/1.3254836�

The large, slowly converging basis set error of the elec-
tron correlation energy severely limits the relevance of
many-body electronic structure methods to the majority of
practicing chemists. The R12 �or F12� methods1 overcome
this slow convergence by modeling the two-particle correla-
tion directly in terms of the interelectronic coordinates while
avoiding nine-dimensional and higher-dimensional integrals.
The “modern” R12 technology recently has been incorpo-
rated in an efficient manner into the standard coupled-cluster
�CC� hierarchy,2–5 with several production programs featur-
ing CC-R12 methods. Only a triple-zeta quality basis is
needed with R12 methods to match the precision of the stan-
dard quintuple-zeta energy.

To study systems with near degeneracies �most electroni-
cally excited states, ground states at stretched geometries,
low-spin systems�, true multireference methods are also de-
sired. Gdanitz has developed the R12 versions of the multi-
reference configuration interaction �MRCI� and averaged
coupled-pair functional methods using the old R12 technol-
ogy applicable to small systems.6 Ten-no7 has recently pro-
posed the R12 extension of the MR-MP2 method that uses
internal contraction and thus can be applied to larger sys-
tems.

Here we present an initial report on an internally con-
tracted formulation of a perturbative R12 correction that can
in principle be applied to any electronic state for which the
reduced density matrices are available, e.g., general multide-
terminantal wave function. Our approach reduces to the R12
correction of the MP2-R12 method when a Hartree–Fock
wave function is used as a reference. We demonstrate that the
method robustly decreases the basis set error of the potential
energy surfaces in prototypical bond-breaking scenarios.

We start with a general multiconfiguration reference
wave function �0� expressed in a n-electron space obtained as
a tensor product of a finite set of orbitals �p�. �Symbols �, �,
and � represent functions from the formal complete basis set
�CBS�. Symbol �� denotes functions from CBS which are
not part of the orbital basis set �OBS�. All other symbols
represent functions from OBS.� To correct for the two-
electron basis set incompleteness we expand the first-order
wave function in terms of strongly orthogonal geminal re-
placements

��1� = 1
4 tpq

rs ��̃rs
pq� , �1�

��̃pq
rs � = 1

2 ŜR̄��
rs ãpq

���0� , �2�

Ŝ = 1 − 	
t,��

��t
���
�t

���, where ��t
��� = ãt

���0� . �3�

Operators ã are the elementary normal-ordered operators in
the Mukherjee–Kutzelnigg �MK� sense8,9 �the covariant ten-
sor notation is thoroughly explained elsewhere10�. Although
the use of MK operators is not essential, it conveniently en-
sures that the geminal functions are orthogonal to the refer-

ence. The role of projector Ŝ is to ensure the strong-
orthogonality condition


�̃pq
rs �a�

��0� = 0, ∀ �,� �4�

so that ��̃pq
rs � describe purely two-electron effects. Neither the

geminal functions nor the single replacements ��t
��� are mu-

tually orthonormal, hence the inverse metric is implicit in
Eq. �3�.

Matrix elements R̄��
rs are the antisymmetrized matrix el-

ements of the correlation function f�r12�,a�Electronic mail: evaleev@vt.edu.
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R��
rs = 
���Q̂12f�r12��rs� , �5�

with an optional projector Q̂12 invoked to simplify the for-

malism �r��
rs will denote matrix elements without Q̂12�. Set-

ting Q12=1 leads to very complicated equations that involve
up to five-electron reduced density matrices �5-RDM� and
will not be explored here. Projector

Q12 = �1 − P̂1��1 − P̂2�, where P̂ = 	
p

�p�
p� , �6�

produces the simplest matrix elements of the Hamiltonian
�only 3-RDM appear� and automatically ensures the strong
orthogonality. For single-determinant references this choice
leads to the expressions of MP2-R12 with projector 1,11

which is known to produce a relatively modest reduction in
the basis set error. Our initial tests confirmed its poor perfor-
mance and thus we used a less restrictive projector

Q12 = 1 − P̂1P̂2, �7�

which, for a single-determinant reference, leads to the R12
correction of MP2-R12 with modified projector 2.12

A Rayleigh–Schrödinger perturbation expansion was
then straightforwardly derived with Löwdin partitioning.13

We selected a block-diagonal zeroth-order Hamiltonian, with

its geminal block defined as E�0�+ F̂N, where E�0� is the ref-

erence energy and F̂N= f�
�ã�

� , f�
�=h�

�+ ḡ�p
�q�q

p is the normal-
ordered Fock operator. The second-order energy is evaluated
as a Hylleraas functional

H�2� = 1
2 
0�ĤN��̃pq

rs �trs
pq + 1

16 ttu
vw
�̃tu

vw�F̂N��̃pq
rs �trs

pq. �8�

The matrix elements, evaluated using the extended Wick’s
theorem,9 involve up to 4-RDM and are relatively compli-
cated. Therefore we made two additional approximations. �1�
We neglected all terms that involve three-electron and four-
electron cumulants14 of the reduced density matrices, as well
as terms quadratic in two-electron cumulants �similar ap-
proximations have appeared elsewhere15�. �2� In the spirit of
screening approximations2 we omitted all diagrams in which
two r̄ matrix elements or a r̄ and a Coulomb �ḡ� matrix
elements are connected via a two-electron cumulant. We thus
arrived at the final expressions
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with “R12” intermediates
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where P�pq� is a permutation operator, acting on a given
function as P�pq�f�p ,q�= f�p ,q�− f�q , p�. Instead of mini-
mizing the Hylleraas functional we fixed the geminal ampli-
tudes so that first-order cusp conditions are satisfied.16 This
approximation performs well for single-reference R12
methods17 and, furthermore, has potential to alleviate the im-
pact of other approximations, such as the neglect of higher
rank cumulants, which can affect amplitude optimization by
changing the spectrum of the zeroth-order Hamiltonian.
Henceforth we will denote the explicitly correlated energy
correction specified by Eqs. �9�–�13� with �2�R12.

Intermediates V, B, and X were evaluated using the stan-
dard R12 technology18,19 with an exponential correlation
factor20 �exponent �=1.5a0

−1� fit to six Gaussian geminals.
The uncontracted cc-pV6Z basis set21 supported the comple-
mentary auxiliary basis set �CABS� and the aug-cc-pVXZ
basis sets,22 abbreviated as aXZ, were used for orbital expan-
sion. The two-point X−3 extrapolation23 was used to estimate
the CBS limit for correlation energies, denoted as aXYZ
when obtained from aXZ and aYZ basis sets. The uncon-
tracted MRCI singles and doubles wave function based on
valence complete active space self-consistent field
�CASSCF� were used. Core orbitals were frozen in MRCI.
All R12 calculations utilized MPQC program,24 with CI wave
functions computed with PSI suite.25

To test our approach we investigated the ground-state
potential energy surfaces of HF and N2 molecules. These
ground-state bond-breaking prototypes exhibit transitions be-
tween weak correlation and strong-correlation regimes which
cannot be described by standard single-reference methods.
The MRCI correlation energies, defined as EMRCI−ECASSCF,
are plotted in Fig. 1 for hydrogen fluoride �HF� and Fig. 2 for
N2. The aDZ MRCI�2�R12 correlation energy is comparable
in quality with the conventional a5Z MRCI result for HF. In
the more difficult case of N2, the aDZ MRCI�2�R12 is com-
parable to the conventional aQZ MRCI. Note that in N2 the
drastic underestimation of the correlation energy by the aDZ
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FIG. 1. MRCI correlation energy for the hydrogen fluoride molecule com-
puted with the conventional and �2�R12 approaches.
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MRCI at the equilibrium and shorter distances is nicely cor-
rected by the R12 correction.

To gauge the performance of the R12 correction for rela-
tive energies, we computed the electronic 0 K bond dissocia-
tion energies for the two molecules �see Table I�. Although
the basis set error of the correlation energy is the dominant
source of error in small-basis conventional MRCI, the one-
electron basis set error �i.e., the basis set error of CASSCF�
dominates the MRCI�2�R12 energies even when the smallest
aDZ basis set is used. To account for this effect, the listed
aXZ MRCI energies were obtained as E�a5Z CAS�
+E�aXZ MRCI�−E�aXZ CAS�. For the hydrogen fluoride
the aDZ MRCI�2�R12 energy is in an excellent agreement
with the CBS MRCI estimate. The observed agreement with
the “exact” reference De is not nearly as good, partially be-
cause of the residual method �FCI-MRCI� and basis set er-
rors. For the nitrogen molecule the aDZ MRCI�2�R12 disso-
ciation energy is better than the aQZ MRCI dissociation
energies. Overall, the significant improvement of relative en-
ergies from the �2�R12 correction is undeniable.

In contrast to the MR-CI-R12 method of Gdanitz, the
�2�R12 method involves internal contraction and modern R12

technology, and introduces geminal functions perturbatively,
not iteratively. The proposed correction bears resemblance to
the MR-MP2-F12 method of Ten-no7 in that it uses internally
contracted geminal functions. �Note that “internally-
contracted” in this context does not mean that internal con-
traction was used in computing the reference wave function.
It refers to the fact that an entire multideterminantal refer-
ence function with fixed coefficients is used to generate
geminal replacements in Eq. �2�. In this paper we use uncon-
tracted MRCI wave functions, but the geminal functions ob-
tained from them are internally contracted.� Technically our
methods are quite different and use different sets of approxi-
mations to arrive at the simple final expressions. Although
our method assumes that all orbitals in �p� are occupied �i.e.,
belong to the space spanned by occupied natural orbitals of
the reference wave function�, its generalization to active-
space references, such as complete active space CI or density
matrix renormalization group �DMRG�, is straightforward.

We presented a novel approach to incorporate the explic-
itly correlated terms into highly correlated wave functions by
perturbation theory. The resulting second-order correction
for the two-electron basis set incompleteness can be com-
puted for any reference state for which 1-RDM and 2-RDM
are available. The performance of the method for the two
prototypical diatomic potential energy surfaces is promising,
with the double-zeta basis sufficient to match or exceed the
precision of the conventional quadruple-zeta result. An in-
depth investigation of this method seems warranted.
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FIG. 2. MRCI correlation energy for the nitrogen molecule computed with
the conventional and �2�R12 approaches.

TABLE I. The electronic dissociation energies of the HF and N2 molecules
�kJ/mol� �Dissociation energies computed as difference of the molecular
energies E�RHF=10.0 Å�−E�RHF=0.916808 Å� for the HF molecule and
E�RNN=10.0 Å�−E�RNN=1.097685 Å� for the N2 molecule.�

Basis set

HF N2

CASSCF MRCIa CASSCF MRCIa

aDZ 475.64 563.92 862.90 906.94
aTZ 481.49 575.79 886.20 920.51
aQZ 482.57 580.79 891.05 938.88
a5Z 482.56 581.81 891.53
CBS extrapolation 582.87 952.29
aDZ �2�R12 583.56 942.19
Referenceb 593.03 955.50

aComputed as ECASSCF�a5Z� plus �EMRCI−ECASSCF� in the given basis set.
bThe nonrelativistic Born–Oppenheimer electronic energy from HEAT �Ref.
26� minus the core contribution to the atomization energy from Table 15.25
of Ref. 27.
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