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TOPICAL REVIEW

Multireference explicitly correlated F12 theories

Toru Shiozaki† and Hans-Joachim Werner∗

Institut für Theoretische Chemie, Universität Stuttgart, Stuttgart, Germany

(Received 4 December 2012; final version received 13 February 2013)

We review our recent developments in multireference explicitly correlated F12 theories (explicitly correlated internally
contracted multireference perturbation and multireference configuration interaction theories) that achieve near-basis-set-limit
accuracy of the underlying multireference electron correlation methods with basis sets of medium size. The applicability
of the multireference F12 theories is the same as that of their non-F12 counterpart, and therefore it is a computational
tool with predictive accuracy for complicated electronic structures with strong correlation. A comparison with the earlier
developments by others is also discussed.
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1. Introduction

Even though the single-reference coupled-cluster (CC) hi-
erarchy of methods [1] has been successful in achieving
chemical accuracy or more for well-behaved systems [2],
many important chemical processes undergo complicated
electronic structures that demand multireference electron
correlation theories. Such situations include many catalytic
reactions with transition metal compounds, photorelaxation
processes that go through conical intersections or low-spin,
open-shell materials in spintronics. Many-electron excited
states, such as the lowest states of long polyenes, retinal or
carotene, are also often treated by multireference methods
since the computation by standard single-reference methods
involves unnecessarily large computational costs. However,
since most theory developments in electronic structure the-
ory have been devoted to single-reference theories, there
is still a large gap between the sophistication of single-
reference theories and that of multireference theories. In
this paper, we review some recent developments that at-
tempt to fill this gap.

The developments of multireference correlation meth-
ods in past decades have led to various well-established
models. A complication arises through the fact that – in
contrast to single-reference methods – the configuration
space is not uniquely defined in the multireference case.
Individual configuration state functions (CSFs) can be de-
fined by specifying the occupation numbers for each spatial
orbital (orbital configurations) and in addition the spin-
coupling of the open-shell orbitals. The most straightfor-
ward way is to include in the wavefunction all single and
double orbital excitations relative to each reference config-
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uration and to take into account all possible spin-couplings
for each orbital configuration. This leads to an expansion
of CSFs whose number strongly increases with the num-
ber of reference configurations and open-shell orbitals. The
coefficients (amplitudes) of the CSFs and the energy can
be determined either variationally [multireference config-
uration interaction (MRCI)] [3] or by perturbation theory
(multireference perturbation theory) [4–7].

Despite the fact that the Hamiltonian in a basis of CSFs
is very sparse, the computational cost of standard MRCI
very quickly increases with the number of reference con-
figurations and electrons, and therefore the applicability of
this method is limited. An alternative, which avoids this
problem to a large extent, is to use contracted configura-
tion expansions. Various contraction schemes have been
proposed in the past. Probably most widely used are in-
ternally contracted configuration expansions [8, 9]. The
internally contracted configurations are generated by ap-
plying excitation operators to the reference wavefunction
as a whole. This means that the number of excited config-
urations becomes independent of the number of reference
configurations; it only depends on the number of correlated
orbitals, just as in single-reference theories. The internally
contracted configurations exactly span the first-order inter-
acting space of the reference function [8], and therefore the
contraction has only a minor impact on the accuracy. As
will be discussed in more detail later, it is also possible to
mix contracted and uncontracted schemes.

Internally contracted [10] methods include the complete
active space second-order perturbation method (CASPT2)
[11–18] and N-electron valence state perturbation theory
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(NEV-PT) [19–21], the internally contracted MRCI the-
ory [10, 22–26], the canonical transformation theory [27–
29], and the internally contracted multireference coupled-
cluster theory (MRCC) [30, 31]. The applicability and
efficiency of CASPT2 has recently been improved by com-
bining CASPT2 with density fitting or Cholesky decom-
position by Aquilante et al. [17, 32]. Recent developments
in our group include a new internally contracted MRCI
method for larger molecules by Shamasundar et al. [26], ex-
plicitly correlated CASPT2-F12 [33] and MRCI-F12 meth-
ods [34, 35] and the extended multistate CASPT2 method
(XMS-CASPT2) of Shiozaki et al. [36, 37], which is based
on Granovsky’s work [38]. Analytical nuclear gradients
for internally contracted CASPT2 were first implemented
by Celani and Werner [39] and recently generalised to
XMS-CASPT2 [36]. Analytical energy gradients for XMS-
CASPT2 with density fitting have been implemented as well
[40].

In the current work, we focus on our explicitly cor-
related multireference theories, namely CASPT2-F12 and
MRCI-F12 [33–35]. The addition of -F12 to the denomina-
tion of a method means that terms that explicitly depend on
the interelectronic distances r12 are included in the wave-
function. While early theories just used a linear r12 factor
[41–43], most recent methods use an exponential function
F12(r12) =−γ−1exp (− γ r12) [44, 45]. These terms greatly
improve the description of the wavefunction in the vicinity
of electron–electron coalescence (rij → 0) and therefore
greatly improve the convergence of the energy with basis
set size. Even though the F12 theory has been mainly de-
veloped in conjunction with the single-reference electronic
structure methods, it is equally applicable to multireference
theories since it is based on general physics encoded in the
first quantised molecular Hamiltonian. An overview of our
developments in MR-F12 theories will be presented with
representative numerical results. Furthermore, a compari-
son will be made with related theories developed by others
[46–52].

2. Internally contracted multireference electron
correlation methods

We begin with a short introduction to internally contracted
multireference electron correlation methods. In what fol-
lows, multiconfiguration self-consistent field (MCSCF) ref-
erence wavefunctions are used, which are a linear combi-
nation of reference CSFs (|R⟩):

|0⟩ =
∑

R

t
(0)
R |R⟩. (1)

Complete active space self-consistent field (CASSCF) type
reference functions can be considered as a special case
that is widely used. In this section, we will only consider
electronic ground states. Excited state treatments will be
summarised in the next section.

Table 1. Orbital spaces and associated indices used in this
review. All orbitals are assumed to be orthonormal. The CABS
space is orthogonal on all orbitals in the standard orbital basis set
(OBS).

Space Indices

Finite spaces:
Occupied orbitals (including the core) o, o′

Correlated (valence) orbitals i, j, k, l, m, n
External orbitals in the OBS a, b, c, d
All orbitals in the OBS r, s, t, u
Complete (infinite) spaces:
Any external orbitals α, β
Any orbitals κ , λ, µ, ν
CA orbitals x, y

The orbitals that occur in any of the reference configu-
rations are denoted by occupied or internal and labelled by
indices i, j, k, l. The remaining virtual or external orbitals
are labelled a, b, c, d. The occupied space can be further di-
vided into core (not correlated), valence (correlated), inac-
tive or closed-shell (doubly occupied in all reference CSFs),
and active orbitals. The index notation is summarised in
Table 1. In the following, we will distinguish internal con-
figurations that have no electrons in the external orbital
space, and singly and doubly external configurations with
one or two electrons in the external orbitals, respectively.

We will employ spin-summed excitation operators

Êu
s =

∑

σ=α, β

η†
uσ ηsσ , (2)

Êtu
rs =

∑

σ=α, β

η
†
tσ Êu

s ηrσ , (3)

where η
†
rσ and ηsσ are spin-orbital creation and annihila-

tion operators for spin σ = {α, β}. In general, internally
contracted configurations are generated by applying these
operators to the fixed reference function |0⟩, e.g.

)r
i = Êr

i |0⟩, (4)

)rs
ij = Êrs

ij |0⟩. (5)

The internally contracted configurations are not orthogonal
to each other and can be even linearly dependent. Their
overlap and Hamiltonian matrix elements depend on the
reduced density matrices (RDMs) of the reference function,

γij = ⟨0|Êi
j |0⟩, (6)

*ij,kl = ⟨0|Êik
j l |0⟩, (7)

*ij,kl,mn = ⟨0|Êikm
jln |0⟩, (8)

and so on. The highest order of the density matrix that is
needed can be obtained by counting the occupied indices
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i = Êr
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)rs
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*ij,kl,mn = ⟨0|Êikm
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that may be involved. For example, the overlap and Hamilto-
nian matrices of the internal double excitations !kl

ij depend
on the fourth- and sixth-order RDMs, respectively, while for
the Hamiltonian matrix elements between doubly external
configurations at most the second-order density matrix is
needed. In the latter case, it is useful to define spin-coupled
configurations

∣∣!ab
ijp

〉
= 1

2

(∣∣!ab
ij

〉
+ p

∣∣!ab
ji

〉)
(p = ±1), (9)

where p = 1 and p =−1 denote singlet and triplet coupling,
respectively, of the external electrons. The overlap matrix
then factorises

〈
!ab

ijp

∣∣!cd
klq

〉
= 1

2
(δacδbd + pδadδbc)Sijp,klq , (10)

Sijp,klq = δpq

〈
0
∣∣Êij

kl + pÊ
ij
lk

∣∣0
〉
, (11)

and orthogonal configurations (i ≥ j, a ≥ b) can be ob-
tained by diagonalising the internal overlap matrices Sijp, klp

(separately for p = 1 and p = −1).
Fully internally contracted wavefunctions have been

first investigated by Werner and Reinsch [10, 22, 23] and
have been used later in various contexts [12, 13, 15, 17–19,
24, 25, 27–31]. The wavefunction is parametrised as

∣∣#full〉 =
∑

ijp,kl

t
ijp
kl

∣∣!kl
ijp

〉
+
∑

ijk,a

t
ij
ak

∣∣!ak
ij

〉
+
∑

ijp,ab

t
ijp
ab

∣∣!ab
ijp

〉
.

(12)

For spin-coupled quantities, the summations are here and in
the following implicitly restricted as

∑
ijp≡

∑
i ≥ j
∑

p = ± 1,
and the amplitudes have the symmetry t

ijp
ab = pt

ijp
ba . The

summations over external orbital labels a, b are always
unrestricted. This implies

1
2

∑

ij

∑

ab

t
ij
ab

∣∣!ab
ij

〉
=
∑

ijp

∑

ab

t
ijp
ab

∣∣!ab
ijp

〉
. (13)

In efficient computer codes, the occupied orbital space
is divided into closed and active orbital spaces. All ex-
pressions can then be reduced so that all indices of the
RDMs refer to active orbitals only. Nevertheless, the cal-
culation and diagonalisation of high-order density matrices
may become a bottleneck with large active spaces. There-
fore, partially contracted wavefunction ansätze have been
proposed in which the highest order of the required RDMs
is reduced.

The first partially internally contracted wavefunction
was developed by Werner and Knowles (WK) [24, 25].

They used the ansatz

∣∣#WK〉 =
∑

I

tI
∣∣I
〉
+
∑

S,a

tSa
∣∣Sa
〉
+
∑

ijp,ab

t
ijp
ab

∣∣!ab
ijp

〉
, (14)

where only the doubly external space internally contracted,
while the standard CSFs |I ⟩ and |Sa⟩ are used for the inter-
nal and singly external CSFs, respectively. The N-electron
CSFs |I⟩ are obtained by generating all orbital configura-
tions that differ by at most two electrons from any refer-
ence configuration, and then associating all possible spin-
couplings to each orbital product. Note that this space in-
cludes all reference configurations ({R}⊆{I}), and the co-
efficients of the reference CSFs are therefore fully relaxed
in the MRCI (but not in CASPT2, see below). Similarly, the
N − 1 electron functions S are generated by two electron
annihilations and one creation, and again all spin-couplings
are included (the external electron in orbital a is coupled
last). For further details, we refer to Refs. [24, 25].

A more sophisticated partial internal contraction
scheme has been proposed by Celani and Werner (CW)
[16]. In this case, the internal contraction is used for all con-
figuration subspaces whose overlap matrix is described by
just the one- and two-particle active-space RDMs (1RDM
and 2RDM, respectively). The occupied orbital space is
divided into two spaces: the closed orbital (labelled by ic,
jc) and active orbital spaces (ia, ja). The CW contracted
wavefunction is defined as

∣∣#CW〉 =
∑

I0

tI0

∣∣I0
〉
+
∑

I1

tI1

∣∣I1
〉
+

∑

icjcp,iaja

t
icjcp
iaja

∣∣!iaja

icjcp

〉

+
∑

S0,a

tS0
a

∣∣Sa
0

〉
+

∑

ic,iaja,a

t
icia
aja

∣∣!aja

icia

〉

+
∑

ic,iaja,a

t
ia ic
aja

∣∣!aja

ia ic

〉
+

∑

icjc,ia ,a

t
icjc

aia

∣∣!aia
icjc

〉

+
∑

ijp,ab

t
ijp
ab

∣∣!ab
ijp

〉
, (15)

where subscripts on CSFs denote the number of holes in
the closed orbital space. Here only the spaces I0, I1 and
S0 are left uncontracted, since these are the only ones that
depend on more than two active orbital labels. This ansatz
was first used for CASPT2 [16] and has very recently been
extended to MRCI [26]. Since, on the one hand, the number
of uncontracted CSFs is strongly reduced and, on the other
hand, all RDMs and coupling coefficients depend on active
orbital labels only, these methods are much more efficient
than their older counterparts that used the WK scheme.
However, the explicit expressions for MRCI are extremely
lengthy and could only be derived and implemented using
automated techniques [26, 53].
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Given the parametrisation of the wavefunction, one
minimises the Hylleraas functional,

E2 =
〈
!(1)

∣∣Ĥ (0) − E0
∣∣!(1)〉+ 2

〈
!(1)

∣∣H
∣∣0
〉
, (16)

with respect to all t amplitudes in the wavefunction to arrive
at the CASPT2 method, or the energy expectation value,

E = ⟨!|H |!⟩
⟨!|!⟩

, (17)

to define the MRCI method. For example, in the WK-MRCI
case this leads to the CI eigenvalue equation

rI = ⟨I |Ĥ − E|!WK⟩ = 0, (18)

rS
a = ⟨Sa|Ĥ − E|!WK⟩ = 0, (19)

r
ijp
ab = ⟨"ab

ijp|Ĥ − E|!WK⟩ = 0. (20)

These coupled equations can be solved iteratively (direct
CI) by computing in each iteration the residuals rI, rS

a and
R

ijp
ab , and using these to obtain perturbative updates of the

amplitudes, e.g.

#tI = −rI

⟨I |Ĥ − E|I ⟩
, (21)

#tSa = −rS
a

⟨Sa|Ĥ − E|Sa⟩
. (22)

A slight compilation arises for the doubly external excita-
tions, since the internally contracted basis is not orthogo-
nal. In order to avoid convergence problems due to the non-
orthogonality, it is necessary to transform to an orthonormal
basis |"ab

Dp⟩, which is related to the non-orthogonal ones by
the linear transformation

∣∣"ab
Dp

〉
=
∑

i≤j

T
ijp
D

∣∣"ab
ijp

〉
, (23)

where T
ijp
D is the inverse of the square root of Sijp, klp [cf.

Equation 11]. Correspondingly, the residuals for the doubly
external configurations are transformed into the orthogonal
basis

R
Dp
ab =

∑

i≤j

T
ijp
D r

ijp
ab , (24)

and the amplitudes are then updated in this basis:

#t
Dp
ab = −R

Dp
ab

⟨"ab
Dp|Ĥ − E|"ab

Dp⟩
. (25)

The denominators can be approximated as described in
Ref. [22]. Finally, the amplitudes are transformed back to

the non-orthogonal one

#t
ijp
ab =

∑

D

T
ijp
D #t

Dp
ab . (26)

Internally contracted internal and singly external config-
urations, as used in the CW contraction scheme, can be
treated in an analogous way [16, 26]. A modified Davidson
procedure as described in Ref. [24] is used to guarantee and
speed up convergence.

In summary, the internal contraction reduces the num-
ber of amplitudes while increasing the rank of the RDMs
needed to evaluate the overlap and residual vectors. The
CW internal contraction is perhaps the best compromise
for most cases. However, due to the complicated structure
of the explicit expressions resulting in the CW scheme, we
have still used the WK internal contraction in the devel-
opment of our CASPT2-F12 and MRCI-F12 methods. The
extension to the CW scheme will be developed in the future.

3. Internally contracted wavefunctions for excited
states

The internally contracted configuration spaces defined
above are state-specific, since they are created from a given
reference state |0⟩. In order to compute electronically ex-
cited states, there are various choices: the first possibility
is to calculate each state separately, using the appropriate
reference function for each state. This works well in cases
where the states are energetically well separated and the
states under consideration do not strongly mix. Such single-
state (SS) internally contracted functions are often used in
CASPT2. Since in the first-order CASPT2 wavefunction
the reference function is not relaxed (i.e. the coefficients
of the reference CSFs do not change), the optimisation of
the amplitudes for excited states is no problem. However,
in MRCI it is much more difficult to converge to a specific
root since the coefficients of the reference configurations
may change and root-flipping problems can occur.

The internally contracted SS treatment fails entirely if
states become nearly degenerate and strongly mix in the
CASPT2 or MRCI wavefunctions. A partial remedy is pro-
vided by the MS-CASPT2 method proposed by Finley et al.
[15], in which at the end of the calculation an approximate
second-order effective Hamiltonian is constructed in the
basis of the SS wavefunctions and diagonalised. In the case
of MRCI, a projection method has been proposed [54] in
which one state after the other is computed, and in each
case the internal parts of the previous wavefunctions are
projected out. Each excited state calculation then proceeds
like a ground-state one and no convergence problems oc-
cur any more. Similar to the MS-CASPT2 case, at the end
the Hamiltonian and overlap matrices are constructed in
the (non-orthogonal) basis of the SS wavefunctions and the
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⟨I |Ĥ − E|I ⟩
, (21)

#tSa = −rS
a
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Dp
ab =

∑

i≤j

T
ijp
D r

ijp
ab , (24)

and the amplitudes are then updated in this basis:

#t
Dp
ab = −R

Dp
ab

⟨"ab
Dp|Ĥ − E|"ab

Dp⟩
. (25)

The denominators can be approximated as described in
Ref. [22]. Finally, the amplitudes are transformed back to

the non-orthogonal one

#t
ijp
ab =

∑

D

T
ijp
D #t

Dp
ab . (26)

Internally contracted internal and singly external config-
urations, as used in the CW contraction scheme, can be
treated in an analogous way [16, 26]. A modified Davidson
procedure as described in Ref. [24] is used to guarantee and
speed up convergence.

In summary, the internal contraction reduces the num-
ber of amplitudes while increasing the rank of the RDMs
needed to evaluate the overlap and residual vectors. The
CW internal contraction is perhaps the best compromise
for most cases. However, due to the complicated structure
of the explicit expressions resulting in the CW scheme, we
have still used the WK internal contraction in the devel-
opment of our CASPT2-F12 and MRCI-F12 methods. The
extension to the CW scheme will be developed in the future.

3. Internally contracted wavefunctions for excited
states

The internally contracted configuration spaces defined
above are state-specific, since they are created from a given
reference state |0⟩. In order to compute electronically ex-
cited states, there are various choices: the first possibility
is to calculate each state separately, using the appropriate
reference function for each state. This works well in cases
where the states are energetically well separated and the
states under consideration do not strongly mix. Such single-
state (SS) internally contracted functions are often used in
CASPT2. Since in the first-order CASPT2 wavefunction
the reference function is not relaxed (i.e. the coefficients
of the reference CSFs do not change), the optimisation of
the amplitudes for excited states is no problem. However,
in MRCI it is much more difficult to converge to a specific
root since the coefficients of the reference configurations
may change and root-flipping problems can occur.

The internally contracted SS treatment fails entirely if
states become nearly degenerate and strongly mix in the
CASPT2 or MRCI wavefunctions. A partial remedy is pro-
vided by the MS-CASPT2 method proposed by Finley et al.
[15], in which at the end of the calculation an approximate
second-order effective Hamiltonian is constructed in the
basis of the SS wavefunctions and diagonalised. In the case
of MRCI, a projection method has been proposed [54] in
which one state after the other is computed, and in each
case the internal parts of the previous wavefunctions are
projected out. Each excited state calculation then proceeds
like a ground-state one and no convergence problems oc-
cur any more. Similar to the MS-CASPT2 case, at the end
the Hamiltonian and overlap matrices are constructed in
the (non-orthogonal) basis of the SS wavefunctions and the

corresponding eigenvalue problem is solved in order to get
orthogonal states and variational energies.

The most accurate approach to treat excited states is
to generate the internally contracted configurations from
all reference states under consideration, and then use the
union of all these to expand the wavefunctions of all states
[54]. This basis is invariant with respect to rotations among
the reference functions and is therefore suitable to treat
narrow avoided crossings or conical intersections. In the
MRCI, all states can then be optimised simultaneously and
orthogonal eigenstates are obtained. A disadvantage of this
method is, however, that the computational effort increases
almost quadratically with the number of states. The MS
basis can also be used in MS-CASPT2 (as implemented in
MOLPRO). However, artefacts on the potential energy sur-
faces (PESs) can still occur near conical intersections. This
problem can be solved by using a zeroth-order Hamiltonian
that is also invariant to unitary transformations of the ref-
erence functions, as first proposed by Granovsky [38] for
uncontracted wavefunctions and extended by us to inter-
nally contracted MS-CASPT2 [36, 40]. Using the resulting
so-called XMS-CASPT2 method perfectly smooth PESs
are obtained even near conical intersections [55].

4. Background of explicitly correlated F12 theories

In this section, we briefly review the single-reference F12
theories. Interested readers should refer to, for instance, the
reviews in Refs. [56–59], and references therein, for more
details.

In the complete basis set (CBS) limit, an electronic
wavefunction of N electrons is a vector in the antisym-
metrised part of the 3N-dimensional Hilbert space, where
antisymmetrisation is the reflection of the Pauli exclusion
principle. Practically, however, the molecular Schrödinger
equation needs to be cast onto a finite problem and to be
solved numerically, since the first quantised Schrödinger
equation has no analytic solutions in a closed form except
for a few simplest cases. In conventional (non-F12) theories,
this is done by introducing a so-called one-electron basis
set, and expressing the wavefunction in terms of antisym-
metrised products of spin-orbitals (Slater determinants).

However, molecular electronic wavefunctions repre-
sented by products of one-electron basis functions have
been known to converge only slowly with respect to ba-
sis size towards the CBS limit, as already pointed out by
Hylleraas in 1929 [60]. The slow convergence is attributed
to the poor description of the electron–electron cusps at
electron coalescence (r12 = 0) and the electronic structure
around them. According to Kato’s condition [61] and its
refinement by Pack and Byers Brown [62], the first-order
wavefunctions for two electrons have the cusps of the form

!
(1)
m=0 =

(
1 + 1

2 r12
)
!(0)(r12 = 0) + O

(
r2

12

)
, (27)

!
(1)
m=1 =

(
1 + 1

4 r12
)

r12 · ∂!(0)

∂r12
+ O(r3

12), (28)

where !
(1)
m=0 and !

(1)
m=1 are the singlet and triplet coupled

first-order wavefunctions, whereas !(0) is the correspond-
ing Hartree–Fock (HF) determinant. r12 = |r1 − r2| is the
distance between the two electrons. These conditions cannot
be fulfilled by a finite expansion in terms of Slater deter-
minants. Back in the 1920s, Hylleraas already proposed to
represent the wavefunctions of two-electron atoms as

# = e−ζ (r1+r2)
∑

lmn

Clmn(r1 + r2)l(r1 − r2)mrn
12, (29)

which directly span the six-dimensional Hilbert space for
totally symmetric wavefunctions. The convergence of to-
tal energies with respect to basis size has been shown to
be much faster than the conventional CI expansions [60].
Since then, there have been many studies along this line,
including the ‘transcorrelated’ [63–65] and Gaussian-type
geminal methods [66–68] to name a few, which have been
nonetheless limited to very small systems. For detailed ac-
counts on earlier works, refer to other reviews [69, 70].

A major breakthrough was brought by the seminal work
of Kutzelnigg in 1985 [41], in which he has proposed the so-
called R12 method that uses two-electron basis functions to
augment the conventional determinant-based wavefunction
expansions. In the R12 method, a two-electron wavefunc-
tion was parametrised as

|#⟩ = (1 + tQ̂12r12)!HF +
∑

ab

tab!ab, (30)

Q̂12 =
∑

αβ

|αβ⟩⟨αβ|, (31)

where !HF and !ab are the reference and excited Slater
determinants, respectively, and t and tab are the parameters
to be optimised. Q̂12 is a strong orthogonality projector
that keeps the r12-dependent term orthogonal to the refer-
ence function and singly excited Slater determinants. Here
α and β label virtual orbitals in the complete basis whose
size is infinite (cf. Table 1). The essential difference be-
tween the R12 and earlier methods lies in the fact that the
R12 method introduces the geminal factor as a (normally
small) correction to the conventional wavefunction. The
projection makes the geminal excitation commutable with
the conventional excitations, thereby making it possible to
include them in conventional electron correlation methods.

In the following years, this ansatz was generalised for
many-electron systems by Klopper and Kutzelnigg and first
implemented for the Møller–Plesset perturbation theory
(MP2-R12) [42, 43, 71]. We restrict the following discus-
sion to the closed-shell case in a real spin-free formulation
that does not follow exactly the original formulation of
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Klopper and Kutzelnigg. Throughout this paper, the two-
electron bras and kets are simple orbital products, e.g. |ij⟩=
φi(r1)φj(r2), and the integrals over two-electron operators
Ô12 are defined as

⟨αβ|Ô12|ij ⟩ =
∫

R3

dr1

∫

R3

dr2 φα(r1)φβ(r2)

× Ô12φi(r1)φj (r2). (32)

In the orbital invariant ansatz of Klopper [71], the MP2-
R12 first-order wavefunction is parametrised as

∣∣$ (1)〉 = 1
2

∑

ij

[
∑

ab

t
ij
ab

∣∣%ab
ij

〉
+
∑

kl

t
ij
kl

∣∣%kl
ij

〉
]

, (33)

∣∣%kl
ij

〉
=
∑

αβ

∣∣%αβ
ij

〉 〈
αβ
∣∣Q̂12r12

∣∣kl
〉
, (34)

Q̂12 = (1− ô1)(1− ô2)− v̂1v̂2. (35)

The parameters (‘amplitudes’) t
ij
kl and t

ij
ab can be optimised

by minimising the Hylleraas functional [cf. Equation 16].
The minimum of E2 with respect to the amplitudes equals
the second-order MP2-R12 energy E(2).

The first summation in the square brackets of Equa-
tion (33) corresponds to the conventional double excita-
tions from occupied orbitals i, j into virtual orbitals a, b,
as present in any MP2 wavefunction. The second summa-
tion involves in addition explicitly correlated configurations
%kl

ij , which can be viewed as an “external contraction” of an

infinite set of double excitations %
αβ
ij with contraction co-

efficients ⟨αβ|Q̂12r12|kl⟩. The summation in Equation (34)
over the infinite number of virtual orbitals (α and β) is just
a mathematical device and avoided in the actual working
equations by new analytical integrals (see further below).

The strong orthogonality projector Q̂12 defined in Equa-
tion (35) makes the explicitly correlated part in the wave-
function strongly orthogonal to the conventional MP2 wave-
function. ô1 and ô2 are one-electron projectors onto the
occupied orbital space, i.e. ôi =

∑
o |φo(ri)⟩⟨φo(ri)|. Sim-

ilarly, the operators v̂i =
∑

a |φa(ri)⟩⟨φa(ri)| project onto
the virtual space. The last term in the projector ensures
that ⟨ab|Q̂12r12|kl⟩ = 0, i.e. there are no contributions of
the conventional double excitations in Equation (34). The
terms involving ô1 and ô2 further ensure that all terms van-
ish in which α or β correspond to an occupied orbital. One
can therefore replace the double sum over the complete
virtual space by a double sum over the full space. In the
explicit expressions of the Hamiltonian matrix elements,
this leads to exact resolutions of the identity, which make it
possible to remove these summations entirely. For example,
the Hylleraas functional contains terms such as

⟨%HF|Ĥ |%kl
ij ⟩ =

∑

µ,ν

⟨%HF|Ĥ |%µν
ij ⟩⟨µν|Q̂12r12|kl⟩

=
∑

µ,ν

[2⟨ij |r−1
12 |µν⟩ − ⟨ji|r−1

12 |µν⟩]⟨µν|Q̂12r12|kl⟩

= 2⟨ij |r−1
12 Q̂12r12|kl⟩ − ⟨ji|r−1

12 Q̂12r12|kl⟩. (36)

The difficulty now is that the terms ô1 + ô2 in the projector
lead to three- and four-electron integrals, e.g.

〈
ij
∣∣r−1

12 ô1r12
∣∣kl
〉
=
∑

o

〈
ijo
∣∣r−1

12 r23
∣∣olk

〉
. (37)

Kutzelnigg proposed to avoid these integrals by approxi-
mate resolutions of the identity [41–43]. By inserting iden-
tity operators ui =

∑
κ |κ(i)⟩⟨κ(i)| the strong-orthogonality

projector can be rewritten as

Q̂12 = 1− (ô1û2 + û1ô2) + ô1ô2 − v̂1v̂2

= 1−
∑

o

∑

κ

(|oκ⟩⟨oκ| + |κo⟩⟨κo|)

+
∑

o,o′

|oo′⟩⟨oo′|−
∑

a,b

|ab⟩⟨ab|. (38)

The three-electron integrals then factorise into sums of
products of two-electron integrals:

⟨ij |r−1
12 ô1r12|kl⟩ = δikδj l

−
∑

o,κ

(
⟨ij |r−1

12 |oκ⟩⟨oκ|r12|kl⟩+ ⟨ij |r−1
12 |κo⟩⟨κo|r12|kl⟩

)

+
∑

o,o′

⟨ij |r−1
12 |oo′⟩⟨oo′|r12|kl⟩ −

∑

a,b

⟨ij |r−1
12 |ab⟩⟨ab|r12|kl⟩

(39)

This expression is exact if the summation over κ runs over
a complete orthonormal basis of one-electron orbitals. In
the resolution of the identity (RI) approximation, this is
replaced by a finite basis (RI basis).

In the early R12 methods, the RI basis was taken equal to
the orbital basis (‘Standard Approximation’). The projector
in Equation (38) then reduces to

Q̂12 = 1−
∑

r,s

|rs⟩⟨rs| (40)

and all integrals can be expressed in the orbital basis. Fur-
thermore, the equations for the amplitudes of the conven-
tional and explicitly correlated terms decouple and can be
solved independently.

Subsequently, the R12 method was generalised to CI
and CC theories [72, 73] as well as to multireference meth-
ods [46, 47]. The problem with all these approaches was,
however, that a very large orbital basis had to be used in
order to get a sufficiently accurate representation of the RIs
in the standard approximation. Therefore, these methods
could be applied only for benchmark calculations on atoms
and very small molecules.
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Klopper and Kutzelnigg. Throughout this paper, the two-
electron bras and kets are simple orbital products, e.g. |ij⟩=
φi(r1)φj(r2), and the integrals over two-electron operators
Ô12 are defined as

⟨αβ|Ô12|ij ⟩ =
∫

R3

dr1

∫

R3

dr2 φα(r1)φβ(r2)

× Ô12φi(r1)φj (r2). (32)

In the orbital invariant ansatz of Klopper [71], the MP2-
R12 first-order wavefunction is parametrised as

∣∣$ (1)〉 = 1
2

∑

ij

[
∑

ab

t
ij
ab

∣∣%ab
ij

〉
+
∑

kl

t
ij
kl

∣∣%kl
ij

〉
]

, (33)

∣∣%kl
ij

〉
=
∑

αβ

∣∣%αβ
ij

〉 〈
αβ
∣∣Q̂12r12

∣∣kl
〉
, (34)

Q̂12 = (1− ô1)(1− ô2)− v̂1v̂2. (35)

The parameters (‘amplitudes’) t
ij
kl and t

ij
ab can be optimised

by minimising the Hylleraas functional [cf. Equation 16].
The minimum of E2 with respect to the amplitudes equals
the second-order MP2-R12 energy E(2).

The first summation in the square brackets of Equa-
tion (33) corresponds to the conventional double excita-
tions from occupied orbitals i, j into virtual orbitals a, b,
as present in any MP2 wavefunction. The second summa-
tion involves in addition explicitly correlated configurations
%kl

ij , which can be viewed as an “external contraction” of an

infinite set of double excitations %
αβ
ij with contraction co-

efficients ⟨αβ|Q̂12r12|kl⟩. The summation in Equation (34)
over the infinite number of virtual orbitals (α and β) is just
a mathematical device and avoided in the actual working
equations by new analytical integrals (see further below).

The strong orthogonality projector Q̂12 defined in Equa-
tion (35) makes the explicitly correlated part in the wave-
function strongly orthogonal to the conventional MP2 wave-
function. ô1 and ô2 are one-electron projectors onto the
occupied orbital space, i.e. ôi =

∑
o |φo(ri)⟩⟨φo(ri)|. Sim-

ilarly, the operators v̂i =
∑

a |φa(ri)⟩⟨φa(ri)| project onto
the virtual space. The last term in the projector ensures
that ⟨ab|Q̂12r12|kl⟩ = 0, i.e. there are no contributions of
the conventional double excitations in Equation (34). The
terms involving ô1 and ô2 further ensure that all terms van-
ish in which α or β correspond to an occupied orbital. One
can therefore replace the double sum over the complete
virtual space by a double sum over the full space. In the
explicit expressions of the Hamiltonian matrix elements,
this leads to exact resolutions of the identity, which make it
possible to remove these summations entirely. For example,
the Hylleraas functional contains terms such as

⟨%HF|Ĥ |%kl
ij ⟩ =

∑

µ,ν

⟨%HF|Ĥ |%µν
ij ⟩⟨µν|Q̂12r12|kl⟩

=
∑

µ,ν

[2⟨ij |r−1
12 |µν⟩ − ⟨ji|r−1

12 |µν⟩]⟨µν|Q̂12r12|kl⟩

= 2⟨ij |r−1
12 Q̂12r12|kl⟩ − ⟨ji|r−1

12 Q̂12r12|kl⟩. (36)

The difficulty now is that the terms ô1 + ô2 in the projector
lead to three- and four-electron integrals, e.g.

〈
ij
∣∣r−1

12 ô1r12
∣∣kl
〉
=
∑

o

〈
ijo
∣∣r−1

12 r23
∣∣olk

〉
. (37)

Kutzelnigg proposed to avoid these integrals by approxi-
mate resolutions of the identity [41–43]. By inserting iden-
tity operators ui =

∑
κ |κ(i)⟩⟨κ(i)| the strong-orthogonality

projector can be rewritten as

Q̂12 = 1− (ô1û2 + û1ô2) + ô1ô2 − v̂1v̂2

= 1−
∑

o

∑

κ

(|oκ⟩⟨oκ| + |κo⟩⟨κo|)

+
∑

o,o′

|oo′⟩⟨oo′|−
∑

a,b

|ab⟩⟨ab|. (38)

The three-electron integrals then factorise into sums of
products of two-electron integrals:

⟨ij |r−1
12 ô1r12|kl⟩ = δikδj l

−
∑

o,κ

(
⟨ij |r−1

12 |oκ⟩⟨oκ|r12|kl⟩+ ⟨ij |r−1
12 |κo⟩⟨κo|r12|kl⟩

)

+
∑

o,o′

⟨ij |r−1
12 |oo′⟩⟨oo′|r12|kl⟩ −

∑

a,b

⟨ij |r−1
12 |ab⟩⟨ab|r12|kl⟩

(39)

This expression is exact if the summation over κ runs over
a complete orthonormal basis of one-electron orbitals. In
the resolution of the identity (RI) approximation, this is
replaced by a finite basis (RI basis).

In the early R12 methods, the RI basis was taken equal to
the orbital basis (‘Standard Approximation’). The projector
in Equation (38) then reduces to

Q̂12 = 1−
∑

r,s

|rs⟩⟨rs| (40)

and all integrals can be expressed in the orbital basis. Fur-
thermore, the equations for the amplitudes of the conven-
tional and explicitly correlated terms decouple and can be
solved independently.

Subsequently, the R12 method was generalised to CI
and CC theories [72, 73] as well as to multireference meth-
ods [46, 47]. The problem with all these approaches was,
however, that a very large orbital basis had to be used in
order to get a sufficiently accurate representation of the RIs
in the standard approximation. Therefore, these methods
could be applied only for benchmark calculations on atoms
and very small molecules.

On the basis of these pioneering works, there has been
an explosion of theoretical developments in the 2000s lead-
ing to sophisticated implementations [74–77]. This started
with the introduction of auxiliary basis functions for the
RI, first by Klopper and Samson [78], and later refined
by Valeev [79] [the so-called complementary auxiliary ba-
sis set (CABS) scheme]. In the CABS approach, the one-
electron unit operators are expressed by the union of the
orbital basis (denoted by indices r, s) and a CA basis (de-
noted by indices x, y), which is orthogonal to the orbital
basis, i.e. ⟨r|s⟩ =δrs, ⟨x|y⟩ =δxy, ⟨x|r⟩ =0 for all r, s, x, y.
Using Equations (35) and (38) this leads to

ûi =
∑

r

|r(i)⟩⟨r(i)| +
∑

x

|x(i)⟩⟨x(i)|, (41)

Q̂12 = 1−
∑

r,s

|rs⟩⟨rs|

−
∑

x,o

( |xo⟩⟨xo| + |ox⟩⟨ox| ) . (42)

The main advantage of the CABS approach is that various
contributions in the orbital basis cancel, and this leads to
simplifications in the equations, in particular in explicitly
correlated CC methods. Furthermore, the last summation
in Equation (42) that involves the CA orbitals x is usually
a small correction and can be neglected in some coupling
terms without significant loss of accuracy.

The hope was that accurate results could be obtained
by using small orbital basis sets along with larger RI or
CABS basis sets. It turned out, however, that the accuracy
of the MP2-R12 method was still unsatisfactory, unless
large orbital basis sets were used. The reason is that the
linear r12 correlation factor is only reasonable for small
r12, but unphysical at large values of r12. A large basis set
is then needed to compensate for this qualitatively wrong
behaviour, and serious numerical problems can occur in
larger molecules. These problems were cured by Ten-no [44,
45], who proposed to replace the linear correlation factor
r12 in Equation (34) by a Slater-type geminal function

F12(r12) = −γ−1e−γ r12 = −γ−1 + r12 −
1
2
γ r2

12 + · · · (43)

It was shown in numerous benchmarks that this leads to
a dramatic improvement of the accuracy and numerical
stability. Note that the first-order cusp conditions can still
be satisfied using this function, since due to the strong-
orthogonality projector the first term (−γ−1) in the Taylor
expansion of the exponential gives no contribution in Equa-
tion (34). Furthermore, Ten-no showed that the amplitudes
t
ij
kl can be determined from the first-order cusp conditions.

This yields

t
ij
kl = 3

8
δikδj l + 1

8
δilδjk. (44)

This so-called SP or FIX ansatz avoids the need to solve any
equations for the amplitudes t

ij
kl . Nevertheless, it gives often

more accurate relative energies than the full optimisation
of all t

ij
kl . This is due to the fact that so-called geminal

superposition errors are avoided [80, 81]. These errors can
also be avoided by just optimising the amplitudes t

ij
ij and

t
ij
j i and setting all remaining ones to zero (diagonal ansatz)

[78, 81]. In contrast to the FIX ansatz, the diagonal ansatz
is not orbital-invariant and only size-consistent if localised
orbitals are used. However, it is advantageous in cases where
the core–valence correlation is important [82].

Further improvements were density fitting for the F12
integrals [83, 84], efficient ways to compute intermedi-
ate quantities [81, 85], CABS singles corrections [86–89]
that reduce the error of the underlying HF energies, and
automated implementation schemes [90–93]. Recently the
F12 theory has been extended to local correlation theo-
ries [94–98], theories with periodic boundary conditions
[99], relativistic theories [100–104], response properties
[105–109], and high-rank connected excitations [110, 111].
Of most practical importance was probably the develop-
ment of accurate and efficient approximate CC-F12 models
(such as CCSD(T)(F12) [112–114], CCSD(T)-F12x [86,
87, 115], CCSD(T)F12 [116–118], and CCSD(T)(F12*)
[119]), which can now be routinely used in computational
chemistry. It is generally accepted that the F12 methods
yield with triple-ζ basis sets results that are at least as ac-
curate as conventional calculations with quintuple-ζ basis
sets. In the CCSD(T)-F12x methods [86, 87, 115] devel-
oped in our group, the extra effort for the F12 contributions
only scales as O(N5), where N is a measure of the molec-
ular size. Since CCSD(T) calculations scale as O(N7), the
extra effort for the F12 treatment is very small in larger
molecules, and therefore the F12 terms should always be
included. The scaling can be further reduced by local ap-
proximations with hardly any loss of accuracy [96, 98]. Us-
ing such LCCSD(T)-F12 methods it is currently possible to
carry out highly accurate calculations for molecules with
more than 50 atoms. A new massively parallel linear-scaling
implementation of closed-shell and open-shell LCCSD(T)-
F12 methods, which will allow calculations on even much
larger molecules, is currently in progress in our group.

5. Earlier multireference R12/F12 theories

In this section, some earlier multireference R12/F12 the-
ories are reviewed with emphasis on the relation with our
methods that will be presented in the subsequent sections.
The main difference lies in how we define the excitation
part of the geminal function with respect to the multideter-
minant reference function.

In the early 1990s, Gdanitz was the first to combine the
R12 and multireference theories [46, 47], in which the exci-
tation part of the geminal function (a linear factor F12(r12)
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= r12 back then) with respect to each determinant |I⟩ in
the reference space was included. The wavefunction was
parametrised as

|!⟩ = |!conv⟩+
1
2

∑

I∈R

∑

ijkl

t
ij
kl,I

∑

αβ

〈
αβ
∣∣Q̂I

12r12
∣∣kl
〉
Ê

αβ
ij

∣∣I
〉
,

(45)

where i, j in this equation are the occupied orbitals in each
|I⟩, and α and β are the corresponding virtual (unoccupied)
orbitals for the same |I⟩. Q̂I

12 projects out the contribu-
tions of conventional excitations arising from the reference
configuration |I⟩. The implementation of Gdanitz has been
based on the Standard Approximation that employs the or-
bital basis functions for the RI, and therefore has been lim-
ited to application for small systems with a large basis set.
In addition, since the geminal excitations become quickly
linearly dependent, one had to omit some unimportant con-
figurations in the reference space. The very recent extension
of the F12 method to the Brillouin–Wigner MRCC method
by Kedžuch et al. [50] can be seen as a generalisation of
Gdanitz’s work, though they have adopted the FIX ansatz.

For the following discussion it is useful to define the
geminal excitation operator

F̂ = 1
2
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ij
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αβ

F ij
αβÊ

αβ
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ij

∑

αk

F ij
αkÊ
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ij , (46)

F ij
µν =

∑

kl

⟨µν|F12(r12)|kl⟩t ijkl , (47)

as well as the strong-orthogonality projectors Q̂S and Q̂P

that project onto the doubly excited configurations with one
or two electrons in the external orbital space, respectively,
that are not contained in the conventional wavefunction.
The projector Q̂P can be written as

Q̂P =
∑

Dp
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xy
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xy
Dp| +

∑

ax

|%ax
Dp⟩⟨%ax

Dp|

+ |%xa
Dp⟩⟨%xa

Dp|
]
, (48)

where |%αβ
Dp⟩ is a complete set of orthonormal internally

contracted doubly external configurations as defined in
Equation (23). This implies

Q̂P F̂ = 1
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αβ
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∑
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∑
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T ijp
αβ Ê
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ijp , (49)

T ij
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∑
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⟨αβ|Q̂12F12|kl⟩t ijkl , (50)

T ijp
αβ = 1
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(
T ij

αβ + pT ji
αβ

)
, (51)

where Q̂12 is the two-electron projector as defined in Equa-
tions (35) and (42). If the FIX ansatz [Equation 44] is used,
the quantities T ijp

αβ simplify to

T ijp
αβ = 1

2
tijp

(
F̄

ij
αβ + pF̄

ji
αβ

)
, (52)

F̄
ij
αβ = ⟨αβ|Q̂12F12|ij ⟩, (53)

where tijp is 1/(2 + 2δij) and 1/4 for p = 1 and p = −1,
respectively.

In 2007, Ten-no has reported the MRMP-F12 method
[48], which used most of the modern F12 techniques men-
tioned in Section 4. In addition, his implementation has in-
troduced internally contracted geminal excitations (though
the underlying MRMP was uncontracted) of the form

|!⟩ = |!conv⟩+ Q̂P F̂ |0⟩. (54)

The FIX ansatz (cf. Equation 44) has been used for the
geminal amplitudes t

ij
kl . Note that semi-internal geminal

excitations arising from the second part of the operator F̂

(cf. Equation 46) are not included in his theory. Besides the
formal ansatz, Ten-no has simplified the formula by the ex-
tended Brillouin condition and the so-called Approximation
A, making the F12 correction additive without the need of
active 3RDMs. The work of Varganov and Martı́nez [120]
is also related to Ten-no’s work, though they omit the con-
ventional excitation from the wavefunction and optimise
orbitals self-consistently.

More recently, Valeev and coworkers have proposed
a unique a posteriori correction to arbitrary wavefunction
models [49, 51]. The theory is based on the extended nor-
mal ordering of Kutzelnigg and Mukherjee [121] to extract
the excitation part of the geminal function with respect to
the correlated wavefunction of the underlying dynamic cor-
relation model. By neglecting high-order cumulants, they
arrive at a formula expressed by contractions of the full
correlated 2RDM and geminal tensors. Therefore, it is ap-
plicable to any method that provides 2RDMs for the full
correlated N-electron wavefunction, even when wavefunc-
tions are not well defined (e.g. determinant-based quantum
Monte Carlo [122, 123]). In their original formulation [49],
this universality has nonetheless demanded multiple n6

bas
operations where nbas is the number of one-electron ba-
sis functions. As will be shown in the following sections,
our MRCI-F12 method does not involve the RDMs in the
full orbital basis but only active-space RDMs, which are
the same as in the underlying MRCI method. It should be
noted, however, that Valeev and coworkers have also stud-
ied an alternative formulation of their perturbative scheme
to reduce the computational cost [51].
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In 2007, Ten-no has reported the MRMP-F12 method
[48], which used most of the modern F12 techniques men-
tioned in Section 4. In addition, his implementation has in-
troduced internally contracted geminal excitations (though
the underlying MRMP was uncontracted) of the form
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The FIX ansatz (cf. Equation 44) has been used for the
geminal amplitudes t

ij
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(cf. Equation 46) are not included in his theory. Besides the
formal ansatz, Ten-no has simplified the formula by the ex-
tended Brillouin condition and the so-called Approximation
A, making the F12 correction additive without the need of
active 3RDMs. The work of Varganov and Martı́nez [120]
is also related to Ten-no’s work, though they omit the con-
ventional excitation from the wavefunction and optimise
orbitals self-consistently.

More recently, Valeev and coworkers have proposed
a unique a posteriori correction to arbitrary wavefunction
models [49, 51]. The theory is based on the extended nor-
mal ordering of Kutzelnigg and Mukherjee [121] to extract
the excitation part of the geminal function with respect to
the correlated wavefunction of the underlying dynamic cor-
relation model. By neglecting high-order cumulants, they
arrive at a formula expressed by contractions of the full
correlated 2RDM and geminal tensors. Therefore, it is ap-
plicable to any method that provides 2RDMs for the full
correlated N-electron wavefunction, even when wavefunc-
tions are not well defined (e.g. determinant-based quantum
Monte Carlo [122, 123]). In their original formulation [49],
this universality has nonetheless demanded multiple n6

bas
operations where nbas is the number of one-electron ba-
sis functions. As will be shown in the following sections,
our MRCI-F12 method does not involve the RDMs in the
full orbital basis but only active-space RDMs, which are
the same as in the underlying MRCI method. It should be
noted, however, that Valeev and coworkers have also stud-
ied an alternative formulation of their perturbative scheme
to reduce the computational cost [51].

6. The MR-F12 wavefunction ansatz

We now turn to the CASPT2-F12 and MRCI-F12 meth-
ods developed by us [33–35]. Since both these meth-
ods have only linear excitations, their wavefunctions are
parametrised in exactly the same way; only the expansion
coefficients are determined differently. The MR-F12 wave-
functions of our studies are based on the WK internal con-
traction and read as follows [33]:

|!⟩ = |!WK⟩+ tF12Q̂F̂ |0⟩, (55)

where F̂ is defined in Equation (46), Q̂ = Q̂S + Q̂P , and
|!WK⟩ constitute the conventional WK contracted wave-
function (cf. Equation 14). An extension to the more
efficient CW contraction scheme (cf. Section 2) is straight-
forward though cumbersome and will be done in the future
using automated techniques. The term Q̂F̂ |0⟩ in Equation
(55) represents the internally contracted F12 double excita-
tions. This ansatz is similar to the one by Ten-no [48] (cf.
Equation 54) but includes in addition the semi-internal part
of the geminal excitations, as in the perturbative correction
of Torheyden and Valeev [49].

The geminal part of the wavefunction can be scaled by
the additional parameter tF12. Using in Equation (47) the
fixed amplitudes (Equation 44), the first-order cusp condi-
tions are fulfilled with

tF12 = 1
c0

, (56)

c0 = ⟨0|!⟩, (57)

i.e. t12 = 1 in intermediate normalisation. In the MRCI case,
it is also possible to optimise t12 variationally (cf. Section
7.2).

The operator Q̂S projects onto the CSFs with one elec-
tron in CABS orbitals x:

Q̂S =
∑

S,x

|Sx⟩⟨Sx |
[

1−
∑

mn

|"x
m⟩(γ−1)mn⟨"x

n|
]

. (58)

The last term projects out internally contracted single ex-
citations |"x

m⟩ = Êx
m|0⟩, as in Ref. [49], in order to assure

that only the two-body part of the geminal excitations is
used in the theory. The inverse of the 1RDM appears in
Equation (58) since the internally contracted single con-
figurations are in general not orthogonal to each other, i.e.
⟨"x

m|"y
n⟩ = δxyγmn (they are only orthonormal if natural

active orbitals are used). Rather than using all excitations
into the full (infinite) CABS space, we approximate the
semi-internal geminal excitations in the finite space of con-
figurations |Sx⟩. The energies based on this approximation
have been proven to converge quickly with the size of the
CABS space, both theoretically and numerically [48, 33].
The singles geminal part can now be written as

Q̂SF̂ |0⟩ =
∑

S,x

|Sx⟩FS
x (59)

with

FS
x =

∑

T

(

δST −
∑

m

DS
mDT

m

)
∑

ijk

⟨T x |Êxk
ij |0⟩F ij

xk,

(60)

DS
m =

∑

n

⟨Sx |Êx
n |0⟩(γ−1/2)mn. (61)

In our earlier implementation [33], we have used ex-
tended normal ordering [121] to extract the two-body part
of the geminal excitations, instead of projecting out singles
contributions as described above. The projection by normal
ordering is weaker in a sense that the normal-ordered, two-
electron excitations have non-zero overlap with the normal-
ordered one-electron excitations as

⟨0|{Êi
a}{Êak

jl }|0⟩ = %ij,kl − γijγkl + 1
2
γilγkj , (62)

which is a two-body cumulant. Moreover, the extended nor-
mal ordering is not well defined for multiple states. Despite
all these downsides, it is straightforwardly extensible to
non-linear wavefunctions such as MRCC, unlike Equation
(58). In this review, we will not further investigate this case.

In summary, using Equations (49) and (59) the geminal
part of the wavefunction, as used in the present work, takes
the form

Q̂F̂ |0⟩ =
∑

ijp

∑

αβ

T ijp
αβ Ê

αβ
ijp|0⟩+

∑

S,x

FS
x |Sx⟩. (63)

7. Working equations

Given the parametrisation of the wavefunction, we now
present the working equations for the various MR-F12
methods [33–35] and discuss the approximations that are
necessary for an efficient implementation.

7.1. The CASPT2-F12 method

The CASPT2-F12 method [33] can be seen as a minimi-
sation of the Hylleraas functional, cf. Equation (16) with
respect to the parameters of the first-order wavefunction
(|!(1)⟩ = |!⟩ − |0⟩) subject to the intermediate normalisa-
tion, ⟨0|!⟩ = 1, which implies tF12 = 1 (cf. Equation 56).
The projected Fock operator,

Ĥ (0) = P̂ f̂ P̂ + (1− P̂ )f̂ (1− P̂ ), (64)

f̂ =
∑

κλ

fκλÊκλ

=
∑

κλ

⎡

⎣hκλ +
∑

ij

γ sa
ij

(
J

ij
κλ − 1

2K
ij
κλ

)
⎤

⎦ Êκλ, (65)
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with P̂ = |0⟩⟨0| is used in this review for the zeroth-order
Hamiltonian. This choice, which is formally arbitrary, de-
fines the perturbation theory. Other choices are possible as
well (e.g. the Dyall Hamiltonian [124] as used in NEV-PT
[19–21]), and of course the definition of H(0) affects the
results.

The projection operators ensure that the reference func-
tion is an eigenfunction of Ĥ (0), i.e.

Ĥ (0)|0⟩ = E(0)|0⟩. (66)

The amplitude equations for the amplitudes of the con-
ventional configurations are obtained by taking the deriva-
tives with respect to the parameters tI, tSa and t

ij
ab. In analogy

to Equations (18)–(20), they can be written as

R
Dp
ab = ⟨!ab

Dp|Ĥ |0⟩+ ⟨!ab
Dp|Ĥ (0) − E(0)|"conv⟩

+C
Dp
ab = 0, (67)

rS
a = ⟨Sa|Ĥ |0⟩+ ⟨Sa|Ĥ (0) − E(0)|"conv⟩+ CS

a = 0,

(68)

rI = ⟨I |Ĥ |0⟩+ ⟨I |Ĥ (0) − E(0)|"conv⟩+ CI = 0,

(69)

where the indices Dp refer to orthogonalised configura-
tions as defined in Equation (23), and in the last equation
I excludes the reference CSFs. This means that the projec-
tion to the internal CSFs (Equation 69) is entirely omitted
when a CASSCF reference function is used and there are
no closed-shell (inactive) correlated orbitals. The equations
are solved iteratively as outlined in Section 2.

The difference between the conventional and explicitly
correlated CASPT2 equations is the C tensors arising from
the coupling between the conventional and geminal excita-
tions through the zeroth-order Hamiltonian. Their explicit
expressions are as follows:

C
Dp
ab = ⟨!ab

Dp|Ĥ (0)Q̂F̂ |0⟩ =
∑

x

(
faxFDp

xb + FDp
ax fxb

)
,

(70)

CS
a = ⟨Sa|Ĥ (0)Q̂F̂ |0⟩

=
∑

x

faxFS
x + 2

∑

x

∑

ijp,k

F ijp
ax fxkσk(ijp, S) (71)

CI = ⟨I |Ĥ (0)Q̂F̂ |0⟩ =
∑

x,k

∑

S

fkxFS
x σk(S, I ). (72)

The integrals arising in these and the following equations
are defined in Table 2, and the coupling coefficients such as
σ k are summarised in Table 3. Due to the different defini-
tions of the semi-internal geminal excitations, the explicit

Table 2. Definition of the integrals used in the F12 formalism.

J kl
κλ = ⟨κk|r−1

12 |λl⟩
Kkl

κλ = ⟨κλ|r−1
12 |kl⟩

F kl
κλ = ⟨κλ|F12|kl⟩

Wkl
κλ = ⟨κλ|r−1

12 F12|kl⟩
F 2

ij,kl = ⟨ij |F 2
12|kl⟩

V
ij
κλ = ⟨κλ|r−1

12 Q̂12F12|ij⟩ = W
ij
κλ −Krs

κλF
ij
rs −Kox

κλF
ij
ox −Kxo

κλF
ij
xo

Xij,kl = ⟨ij |F12Q̂12F12|kl⟩ = F 2
ij,kl − F ij

rs F
kl
rs − F ij

oxF
kl
ox − F ij

xoF
kl
xo

Bij,kl = ⟨ij |F12Q̂12(f̂1 + f̂2)Q̂12F12|kl⟩
F ijp

κλ = 1
2 tijp

(
F

ij
κλ + pF

ji
κλ

)

V ijp
κλ = 1

2 tijp

(
V

ij
κλ + pV

ji
κλ

)

Xijp,klq = 1
2 δpq tijptklq

(
Xij,kl + pXji,kl

)

Bijp,klq = 1
2 δpq tijptklq

(
Bij,kl + pBji,kl

)

Table 3. Definition of the coupling coefficients used in this
review. All quantities are independent of the external indices a, b.
The coupling coefficients are the same as used in the conventional
MR methods.

Pair–pair: γ (ijp, klq) = δpqfmn⟨0|Êijm
kln + pÊ

jim
kln |0⟩

Single–single: γ (S, T ) = fmn⟨Sa|Êm
n |T a⟩

Pair–single: σk(ijp, S) = ⟨!ab
ijp|Êb

k |Sa⟩
Pair–internal: σmn(ijp, I ) = 1

2 ⟨0|Êij
mn + pÊij

nm|I ⟩
Single–internal: σk(S, I ) = ⟨Sa|Êa

k |I ⟩
αkmn(S, I ) = ⟨Sa|Êam

kn |I ⟩
Pair–ref.: σmn(ijp, 0) = 1

2 ⟨0|Êij
mn + pÊij

nm|0⟩

expressions for the matrix elements given here are different
from those in the original publication [33].

The CASPT2 energy expression is also augmented by
the F12 contributions

ECASPT2−F12 = ECASPT2 + EF12 (73)

where the F12 contributions EF12 can be decomposed as

EF12 = 2⟨"conv|Ĥ (0)Q̂F̂ |0⟩+ ⟨0|F̂ †Q̂Ĥ (0)Q̂F̂ |0⟩
−E0⟨0|F̂ †Q̂F̂ |0⟩+ 2⟨0|F̂ †Q̂Ĥ |0⟩. (74)

Note that ECASPT2 differs from the conventional CASPT2
energy, since the amplitudes are different due to the cou-
pling terms in the amplitude equations. This is very similar
to the single-reference MP2-F12 theory. The explicit for-
mulae are the following:

⟨"conv|Ĥ (0)Q̂F̂ |0⟩ =
∑

Dp,ab

t
Dp
ab C

Dp
ab +

∑

S,a

tSa CS
a

+
∑

I

tICI , (75)



 Molecular Physics 617

with P̂ = |0⟩⟨0| is used in this review for the zeroth-order
Hamiltonian. This choice, which is formally arbitrary, de-
fines the perturbation theory. Other choices are possible as
well (e.g. the Dyall Hamiltonian [124] as used in NEV-PT
[19–21]), and of course the definition of H(0) affects the
results.

The projection operators ensure that the reference func-
tion is an eigenfunction of Ĥ (0), i.e.
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EF12 = 2⟨"conv|Ĥ (0)Q̂F̂ |0⟩+ ⟨0|F̂ †Q̂Ĥ (0)Q̂F̂ |0⟩
−E0⟨0|F̂ †Q̂F̂ |0⟩+ 2⟨0|F̂ †Q̂Ĥ |0⟩. (74)

Note that ECASPT2 differs from the conventional CASPT2
energy, since the amplitudes are different due to the cou-
pling terms in the amplitude equations. This is very similar
to the single-reference MP2-F12 theory. The explicit for-
mulae are the following:

⟨"conv|Ĥ (0)Q̂F̂ |0⟩ =
∑

Dp,ab

t
Dp
ab C

Dp
ab +

∑

S,a

tSa CS
a

+
∑

I

tICI , (75)

⟨0|F̂ †Q̂Ĥ (0)Q̂F̂ |0⟩
=

∑

ijp,klp

[
Bijp,klqSijp,klq + Xijp,klqγ (ijp, klq)

]

+ 4
∑

ijp,k

∑

ax

∑

S

FS
x

[
fakF ijp

xa + fykF ijp
xy

]
σk(ijp, S)

+
∑

xy

∑

S

FS
x fxyFS

y +
∑

x

∑

ST

FS
x FT

x γ (S, T ), (76)

⟨0|F̂ †Q̂F̂ |0⟩ =
∑

ijp,klq

Xijp,klqSijp,klq , (77)

⟨0|F̂ †Q̂Ĥ |0⟩ =
∑

ijp,kl

V ijp
kl σkl(ijp, 0) +

∑

x

∑

S

FS
x pS

x , (78)

where we have introduced pS
x = ⟨Sx |Ĥ |0⟩.

In summary, the following should be pointed out: (i)
All expressions given above involve only the same coupling
coefficients and density matrices as needed in conventional
CASPT2, and therefore the evaluation of the C tensors and
of the F12 energy contributions takes little extra effort, once
all required F12 integrals and intermediates are available.
(ii) The matrices V

ij
kl , Bij,kl and Xij,kl are exactly the same as

in the closed-shell single-reference MP2-F12 theory, except
that they are needed here for all k, l, while in MP2-F12
only kl = ij and kl = ji are required (in the diagonal or
FIX approximations [81]). However, exactly the same basic
integrals such as F kl

κλ, Wkl
κλ, F 2

ij,kl have to be computed in
both cases, and this dominates the computational effort.
Bij,kl is evaluated using the so-called approximation C [85,
81]. The working equations can be found in Ref. [81].

In total, the extra computational effort for the F12 treat-
ment in CASPT2 is comparable to MP2-F12. In MP2-F12,
the F12 part is typically one order of magnitude more ex-
pensive than standard MP2, while in CASPT2-F12 the rel-
ative effort decreases with increasing active space and the
number of reference CSFs. The CPU-time for MP2-F12 or
CASPT2-F12 is usually still less than that for a conven-
tional calculation with a basis set that yields comparable
accuracy. It should be noted, however, that often in MP2 or
CASPT2 the basis-set incompleteness errors do not domi-
nate the total errors, and therefore the F12 treatment does
not necessarily improve the overall accuracy. This is entirely
different in higher level methods such as CCSD(T)-F12 or
MRCI-F12 which have much smaller intrinsic errors, and
therefore their overall accuracy is strongly dependent on
the quality of the basis set.

7.2. The MRCI-F12 method

In the MRCI-F12 method [34, 35] the energy expectation
value

EMRCI = ⟨%|Ĥ |%⟩
⟨%|%⟩

= ⟨%conv|Ĥ |%conv⟩+ 2AtF12 + Bt2
F12

⟨%conv|%conv⟩+ Xt2
F12

(79)

is minimised with respect to all wavefunction parameters.
Here we have introduced the following quantities:

A = ⟨%conv|Ĥ Q̂F̂ |0⟩, (80)

B = ⟨0|F̂ †Q̂Ĥ Q̂F̂ |0⟩, (81)

X = ⟨0|F̂ †Q̂F̂ |0⟩. (82)

Also the parameter tF12 is optimised variationally. Since ef-
fectively the fixed amplitudes in Equation (44) are scaled
by tF12, we denote this as the scaled fixed amplitude ansatz
(SFIX). It yields the best possible variational energy for
the chosen wavefunction ansatz, despite the fact that the
first-order cusp conditions may not be exactly fulfilled. Fur-
thermore, this method can be straightforwardly extended to
MS treatments, as described in Section 7.3. It should be
noted, however, that the F12 energy correction is not size-
consistent, but since the variational MRCI energy is not
size-consistent anyway, this does not introduce a serious
additional problem.

Alternatively, one can ensure that the first-order cusp
conditions are exactly fulfilled. In this case, the factor tF12 is
fixed to unity, and the intermediate normalisation condition
is imposed by minimising the Lagrangian functional

L = EMRCI + λ(⟨%|0⟩ − 1). (83)

This yields an F12 energy contribution that satisfies exactly
the first-order cusp conditions, and it is denoted as the fixed
amplitude ansatz (FIX).

The residual equations for the conventional amplitudes
are in case of the SFIX ansatz

R
Dp
ab = ⟨&ab

Dp|Ĥ |%conv⟩+ A
Dp
ab tF12 − Et

Dp
ab = 0, (84)

rS
a = ⟨Sa|Ĥ |%conv⟩+ AS

a tF12 − EtSa = 0, (85)

rI = ⟨I |Ĥ |%conv⟩+ AI tF12 − EtI = 0. (86)

The coefficient tF12 is given directly by

tF12 = −A

(B − EX)
. (87)

In the FIX case, one has by definition tF12 = 1, and the
residuals rR for the reference configurations (R ∈ I) are
augmented by a term −λt

(0)
R , where t

(0)
R are the coefficients

of the reference configurations in the fixed reference func-
tion. The A tensors are defined formally as

A
Dp
ab = ⟨&ab

Dp|Ĥ Q̂F̂ |0⟩, (88)

AS
a = ⟨Sa|Ĥ Q̂F̂ |0⟩, (89)

AI = ⟨I |Ĥ Q̂F̂ |0⟩, (90)
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and from these the scalar quantity A (cf. Equation 80) is
obtained by taking the scalar product with the amplitudes:

A =
∑

I

tIAI +
∑

a

∑

S

tSa AS
a +

∑

ab

∑

Dp

t
Dp
ab A

Dp
ab . (91)

In order to arrive at computationally efficient equations,
it is necessary to introduce approximations for the quanti-
ties AS

a , A
Dp
ab and B. These are very similar to those in ap-

proximate CCSD-F12 theories. We have used the so-called
approximation F12x [86, 125] to evaluate the A

Dp
ab and AS

a

tensors. This yields

A
Dp
ab ≈ V̄Dp

ab + C
Dp
ab , (92)

AS
a ≈ 2

∑

ijp,k

V̄ ijp
ak σk(ijp, S) + CS

a , (93)

where C
Dp
ab and CS

a have been defined in Equations (70) and
(71). The V ijp intermediates are approximated by

V̄ ijp
rs = 1

2
tijp

(
V̄ ij

rs + pV̄ ji
rs

)
, (94)

V̄
ij
rs = W

ij
rs −

∑

tu

Ktu
rs F

ij
tu . (95)

The approximation in Equation (95) is that contributions
of integrals ⟨xo|r−1

12 |rs⟩ and ⟨ox|r−1
12 |rs⟩, which contain up

to two virtual orbitals and one CA orbital, are neglected.
These terms arise from the last two terms in the projector
in Equation (42). It has been found for CCSD-F12 that
these contributions are very small and normally negligible
as compared to other errors [125]. The advantage is that the
remaining terms, which involve integrals with up to four
external orbitals, can be evaluated together with similar
contractions

∑
ab Kab

tu T
ij
ab, which arise in standard MRCI,

with negligible additional computational effort. In order to
avoid the transformation of the four-index integrals into
the molecular orbital (MO) basis, these terms are evaluated
directly from the integrals in the atomic orbital (AO) basis
as

∑

ab

Kab
rs T

ij
ab −

∑

tu

Ktu
rs F

ij
tu

=
∑

µν

CµrCνs

∑

ρσ

⟨µν|r−1
12 |ρσ ⟩

[
T ij

ρσ − F ij
ρσ

]
, (96)

T ij
ρσ =

∑

ab

CρaT
ij
abCσb, (97)

F ij
ρσ =

∑

tu

CρtF
ij
tuCσu. (98)

The quantities AI are evaluated without approxima-
tions, since ⟨0|Ĥ Q̂F̂ |0⟩ =

∑
R cRAR contributes directly

to the energy. The explicit expression involves integrals

Jmn
kx = ⟨mk|r−1

12 |nx⟩ and reads

AI =
∑

x

∑

S

[
∑

k

hkxσk(S, I ) +
∑

kmn

Jmn
kx αkmn(S, I )

]

FS
x

+
∑

ijp,mn

V ijp
mn σmn(ijp, I ). (99)

We also approximate the energy expression in a manner
that is consistent with F12b. The scalar B is computed by
replacing the normal-ordered Hamiltonian with the normal-
ordered Fock operator, i.e.

B ≈ (Eref − E(0))X + ⟨0|F̂ †Q̂f̂ Q̂F̂ |0⟩, (100)

where E(0) is the zeroth-order energy as in CASPT2. The
last term is evaluated as shown in Equation (76), and X as
in Equation (77).

7.3. Multistate extension of the MRCI-F12
method

In the presence of strong state mixings, e.g. around conical
intersections and avoided crossings, the reference functions
are strongly mixed in the correlated wavefunctions. There-
fore, it is important to parametrise the wavefunction in an
invariant way with respect to rotations among the reference
functions. As already outlined in Section 3, this can be
achieved by generating the internally contracted configura-
tions from all the reference functions |0M⟩, and using the
union of these to expand the wavefunction [54]:

|%N ⟩ =
∑

I

tNI |I ⟩+
∑

S,a

tS,N
a |Sa⟩

+
ref∑

M

∑

ijp,ab

t
ijp,NM
ab |&ab

ijp,M⟩+
ref∑

M

tNM
F12 Q̂F̂ |0M⟩,

(101)

where the internally contracted basis is

|&ab
ijp,M⟩ = Êab

ijp|0M⟩. (102)

All the formulae stay the same except that one needs to
evaluate transition density matrices of the type

γ MN
ij = ⟨0M |Êi

j |0N ⟩, (103)

(MN
ij,kl = ⟨0M |Êik

j l |0N ⟩, (104)

and so on. The metric in the projector in Equation (58) is
replaced by all the blocks of the transition density matrices
as well.
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it is necessary to introduce approximations for the quanti-
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ab and B. These are very similar to those in ap-

proximate CCSD-F12 theories. We have used the so-called
approximation F12x [86, 125] to evaluate the A
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tensors. This yields
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ab , (92)
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where C
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a have been defined in Equations (70) and
(71). The V ijp intermediates are approximated by

V̄ ijp
rs = 1

2
tijp

(
V̄ ij

rs + pV̄ ji
rs

)
, (94)
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The approximation in Equation (95) is that contributions
of integrals ⟨xo|r−1

12 |rs⟩ and ⟨ox|r−1
12 |rs⟩, which contain up

to two virtual orbitals and one CA orbital, are neglected.
These terms arise from the last two terms in the projector
in Equation (42). It has been found for CCSD-F12 that
these contributions are very small and normally negligible
as compared to other errors [125]. The advantage is that the
remaining terms, which involve integrals with up to four
external orbitals, can be evaluated together with similar
contractions

∑
ab Kab

tu T
ij
ab, which arise in standard MRCI,

with negligible additional computational effort. In order to
avoid the transformation of the four-index integrals into
the molecular orbital (MO) basis, these terms are evaluated
directly from the integrals in the atomic orbital (AO) basis
as
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12 |ρσ ⟩

[
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T ij
ρσ =
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CρaT
ij
abCσb, (97)

F ij
ρσ =
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tu

CρtF
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tuCσu. (98)

The quantities AI are evaluated without approxima-
tions, since ⟨0|Ĥ Q̂F̂ |0⟩ =

∑
R cRAR contributes directly

to the energy. The explicit expression involves integrals

Jmn
kx = ⟨mk|r−1

12 |nx⟩ and reads

AI =
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x

∑

S

[
∑

k

hkxσk(S, I ) +
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kmn

Jmn
kx αkmn(S, I )

]

FS
x

+
∑

ijp,mn

V ijp
mn σmn(ijp, I ). (99)

We also approximate the energy expression in a manner
that is consistent with F12b. The scalar B is computed by
replacing the normal-ordered Hamiltonian with the normal-
ordered Fock operator, i.e.

B ≈ (Eref − E(0))X + ⟨0|F̂ †Q̂f̂ Q̂F̂ |0⟩, (100)

where E(0) is the zeroth-order energy as in CASPT2. The
last term is evaluated as shown in Equation (76), and X as
in Equation (77).

7.3. Multistate extension of the MRCI-F12
method

In the presence of strong state mixings, e.g. around conical
intersections and avoided crossings, the reference functions
are strongly mixed in the correlated wavefunctions. There-
fore, it is important to parametrise the wavefunction in an
invariant way with respect to rotations among the reference
functions. As already outlined in Section 3, this can be
achieved by generating the internally contracted configura-
tions from all the reference functions |0M⟩, and using the
union of these to expand the wavefunction [54]:

|%N ⟩ =
∑

I

tNI |I ⟩+
∑

S,a

tS,N
a |Sa⟩

+
ref∑

M

∑

ijp,ab

t
ijp,NM
ab |&ab

ijp,M⟩+
ref∑

M

tNM
F12 Q̂F̂ |0M⟩,

(101)

where the internally contracted basis is

|&ab
ijp,M⟩ = Êab

ijp|0M⟩. (102)

All the formulae stay the same except that one needs to
evaluate transition density matrices of the type

γ MN
ij = ⟨0M |Êi

j |0N ⟩, (103)

(MN
ij,kl = ⟨0M |Êik

j l |0N ⟩, (104)

and so on. The metric in the projector in Equation (58) is
replaced by all the blocks of the transition density matrices
as well.

Special care must be taken for the geminal–geminal
block of the Hamiltonian matrix. We compute it by means
of the following formula:

BMN ≈
1
2

(
Eref

M + Eref
N − E

(0)
M − E

(0)
N

)
⟨0M |F̂ †Q̂F̂ |0N ⟩

+⟨0M |F̂ †Q̂f̂ Q̂F̂ |0N ⟩, (105)

which is analogous to the MS-CASPT2 formula [5, 15].
Unfortunately, this approximation breaks the invariance of
the internally contracted MRCI theory with respect to the
rotation of reference functions, which implies that we need
to choose a most suitable set of reference functions. In a
recent study [35, 55], we have realised that the naive choice
of the CASSCF reference functions may lead to humps
on the PESs around the points where the CASSCF sur-
faces cross each other. This is due to the fact that although
the potentials Eref

N are smooth, E
(0)
N (the expectation val-

ues of the Fock operator) change dramatically around the
CASSCF crossing points. We have therefore chosen to use a
set of reference functions that diagonalise the zeroth-order
Hamiltonian within the reference space:

|0M⟩ =
∑

N

|0CASSCF
N ⟩UNM, (106)

[U†H(0)U]MN = δMNE
(0)
M . (107)

This procedure is related to the recently proposed ‘ex-
tended’ MCQDPT2 method of Granovsky [38] and its
XMS-CASPT2 counterpart developed by us [36, 37]. For
further details, see Refs. [35, 55].

8. Size-consistency corrections

8.1. Davidson corrections

A severe problem of the MRCI-F12 method is its lack of size
consistency. Various schemes have been proposed in the lit-
erature that reduce the size-consistency errors, without sub-
stantially increasing the computational effort. The simplest
possibility is to apply a posteriori the multireference David-
son correction [126], which accounts for contributions of
higher order excitations. This has been implemented for
MRCI-F12 in the same way as in the conventional MRCI
method [127]. The correction is defined as

"E
+Q
N = (EN − Eref

N )/(cN )2, (108)

where cN is the coefficient of the reference function in the
(normalised) MRCI-F12 wavefunction for state N. One can
either use the fixed reference function, yielding

cN = 1√
N
⟨0N |#N ⟩ =

1√
N

∑

I∈{R}
t

(0)
I tI , (109)

in which N = ⟨#N|#N⟩ (Q1 correction in Ref. [127]). This
may fail in the vicinity of conical intersections, since then
states may strongly mix and cN may get small, leading to
a strong overestimation of the correction. This problem
can be avoided by using instead of the coefficients t

(0)
I the

relaxed reference coefficients tI. Renormalisation of the
relaxed reference function then yields

(cN )2 = 1
N

∑

I∈{R}
(tNI )

2
(110)

(Q0 correction in Ref. [127]). This correction is used by
default, unless otherwise stated.

Furthermore, in cases of strong state mixings the refer-
ence energy Eref

N should be replaced by ẼM
ref = ⟨M̃|Ĥ |M̃⟩

, where the rotated reference states |M̃⟩ are obtained by a
unitary transformation of the original reference functions
that maximises the overlap with the final MRCI-F12 wave-
functions:

|M̃⟩ =
∑

N

|0N ⟩
[
T(T†T)−1/2]

NM
, (111)

TNM = ⟨0N |#M⟩. (112)

This takes care of the fact that the order of the states may
be different for the MRCI-F12 and CASSCF reference
wavefunctions. Nevertheless, it can still happen that the
Davidson-corrected energies show an unphysical behaviour
near narrow avoided crossings or conical intersections; they
may even cross for states of the same symmetry. See Ref.
[127] for more details.

8.2. MRACPF-F12 and related schemes

While the Davidson correction is computed using the
converged MRCI-F12 wavefunction, other schemes have
been proposed in which a modified, approximately
size-consistent, energy functional is minimised. In the
MRACPF-F12 method, proposed by Gdanitz and Ahlrichs
[128], one uses

E = Eref

+ ⟨#|H − Eref |#⟩
⟨0|0⟩+ ga⟨#int|#int⟩+ ge⟨#ext|#ext⟩

+ λ(⟨#|0⟩ − 1), (113)
where

|#int⟩ = (1− P̂0)
∑

I

tI |I ⟩, (114)

|#ext⟩ =
∑

S,a

tSa |Sa⟩+
∑

ijp,ab

t
ijp
ab |%ab

ijp⟩

+ tF12Q̂F̂ |0⟩. (115)
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We use the FIX ansatz, i.e. tF12 = 1 with intermediate
normalisation. Taking the derivatives with respect to the t
amplitudes leads to the amplitude equations, which differ
from those for the corresponding MRCI-F12 only in the
terms that contain the energy:

⟨!ab
Dp|Ĥ |"conv⟩+ A

Dp
ab tF12 − ϵet

Dp
ab = 0, (116)

⟨Sa|Ĥ |"conv⟩+ AS
a tF12 − ϵet

S
a = 0, (117)

⟨I |Ĥ |"conv⟩+ AI tF12 − λt
(0)
I − ϵatI = 0, (118)

where ϵe and ϵa are defined as

ϵa = Eref + ga(E − Eref ), (119)

ϵe = Eref + ge(E − Eref ). (120)

In the MRACPF model, the factors ge and ga are (n is the
number of electrons)

ga = 1, (121)

ge = 2
n
, (122)

while the MRAQCC model [129] uses the factors

ga = 1, (123)

ge = 1− (n− 2)(n− 3)
n(n− 1)

. (124)

All the matrix elements are evaluated in exactly the same
way as in MRCI-F12. So far, we have only implemented
these methods for SS calculations.

9. CABS singles corrections

In most cases, the difference between the MRCI-F12 energy
obtained with medium-size basis sets and the corresponding
CBS limit is dominated by the basis-set truncation error in
the CASSCF reference energy rather than in the MRCI-
F12 correlation energy. It is therefore important to apply a
basis-set correction also to the reference energies. This is
analogous to single-reference CC-F12 methods in which a
perturbative correction can be added to the HF energy (the
so-called CABS singles correction [86, 87]).

In the multireference case, the calculation of such basis-
set corrections is less straightforward than in the single-
reference case since the first derivatives of the energy with
respect to unitary orbital transformations cannot be ex-
pressed by a single Fock operator. The first such correc-
tion on top of CASSCF has been proposed by Kong and
Valeev, who have used a perturbative approach [89]. We

have investigated various other possibilities, two of which
are presented here for the first time.

Our preferred correction is computed for each state
separately through a singles CI, as was first described in
Ref. [33]. The singles CI wavefunction is expanded by the
reference and internally contracted singles functions

|!̃x
i,N ⟩ = Êx

i |Ñ⟩ . (125)

In multistate calculations, we generate the singles from all
the references, so that this basis is invariant with respect
to unitary transformations among the reference functions.
These internally contracted CABS singles configurations
are orthogonal to the space considered in MRCI-F12, since
they are projected out from the singles geminal functions
[cf. Equation (58)].

The CABS singles wavefunction for state M is defined
as

|"M
S ⟩ = |M̃⟩+

∑

i,x

∑

N

ti,MN
x |!̃x

i,N ⟩. (126)

Note that the first term is state-specific and uses the ro-
tated reference wavefunction |M̃⟩ that has largest overlap
with the MRCI-F12 wavefunction for state M (cf. Equation
111). Note that these rotated reference functions are also
used in the definition of the singles configurations, which
is convenient in the following expressions.

The amplitudes in Equation (126) are optimised
by minimising the energy expectation value EM

S =
⟨"M

S |Ĥ |"M
S ⟩/⟨"M

S |"M
S ⟩, i.e. by solving the eigenvalue

equation

⟨!̃x
i,N |Ĥ − EM

S |"M
S ⟩ = 0, (127)

The necessary matrix elements are

⟨M̃|Ĥ |!̃x
i,N ⟩ =

∑

j

γ̃ MN
ji hxj +

∑

jkl

&̃MN
ji,klJ

kl
xj , (128)

⟨!̃x
i,N |Ĥ |!̃y

j,L⟩ = hxy γ̃
NL
ij +

∑

kl

(
&̃NL

ij,klJ
kl
xy + &̃NL

kj,ilK
kl
xy

)

+ δxy

∑

kl

&̃NL
ij,klhkl + 1

2
δxy

∑

klmn

&̃NL
ij,kl,mnJ

kl
mn. (129)

The transition density matrices γ̃ MN
ij , &̃MN

ij,kl and &̃MN
ijk,lmn are

computed using the rotated reference functions

γ̃ MN
ij = ⟨M̃|Êi

j |Ñ⟩, (130)

&̃MN
ij,kl = ⟨M̃|Êik

j l |Ñ⟩, (131)

&̃MN
ij,kl,mn = ⟨M̃|Êikm

jln |Ñ⟩. (132)
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where ϵe and ϵa are defined as

ϵa = Eref + ga(E − Eref ), (119)

ϵe = Eref + ge(E − Eref ). (120)

In the MRACPF model, the factors ge and ga are (n is the
number of electrons)

ga = 1, (121)

ge = 2
n
, (122)

while the MRAQCC model [129] uses the factors

ga = 1, (123)

ge = 1− (n− 2)(n− 3)
n(n− 1)

. (124)

All the matrix elements are evaluated in exactly the same
way as in MRCI-F12. So far, we have only implemented
these methods for SS calculations.

9. CABS singles corrections

In most cases, the difference between the MRCI-F12 energy
obtained with medium-size basis sets and the corresponding
CBS limit is dominated by the basis-set truncation error in
the CASSCF reference energy rather than in the MRCI-
F12 correlation energy. It is therefore important to apply a
basis-set correction also to the reference energies. This is
analogous to single-reference CC-F12 methods in which a
perturbative correction can be added to the HF energy (the
so-called CABS singles correction [86, 87]).

In the multireference case, the calculation of such basis-
set corrections is less straightforward than in the single-
reference case since the first derivatives of the energy with
respect to unitary orbital transformations cannot be ex-
pressed by a single Fock operator. The first such correc-
tion on top of CASSCF has been proposed by Kong and
Valeev, who have used a perturbative approach [89]. We

have investigated various other possibilities, two of which
are presented here for the first time.

Our preferred correction is computed for each state
separately through a singles CI, as was first described in
Ref. [33]. The singles CI wavefunction is expanded by the
reference and internally contracted singles functions

|!̃x
i,N ⟩ = Êx

i |Ñ⟩ . (125)

In multistate calculations, we generate the singles from all
the references, so that this basis is invariant with respect
to unitary transformations among the reference functions.
These internally contracted CABS singles configurations
are orthogonal to the space considered in MRCI-F12, since
they are projected out from the singles geminal functions
[cf. Equation (58)].

The CABS singles wavefunction for state M is defined
as

|"M
S ⟩ = |M̃⟩+

∑

i,x

∑

N

ti,MN
x |!̃x

i,N ⟩. (126)

Note that the first term is state-specific and uses the ro-
tated reference wavefunction |M̃⟩ that has largest overlap
with the MRCI-F12 wavefunction for state M (cf. Equation
111). Note that these rotated reference functions are also
used in the definition of the singles configurations, which
is convenient in the following expressions.

The amplitudes in Equation (126) are optimised
by minimising the energy expectation value EM

S =
⟨"M

S |Ĥ |"M
S ⟩/⟨"M

S |"M
S ⟩, i.e. by solving the eigenvalue

equation

⟨!̃x
i,N |Ĥ − EM

S |"M
S ⟩ = 0, (127)

The necessary matrix elements are

⟨M̃|Ĥ |!̃x
i,N ⟩ =

∑

j

γ̃ MN
ji hxj +

∑

jkl

&̃MN
ji,klJ

kl
xj , (128)

⟨!̃x
i,N |Ĥ |!̃y

j,L⟩ = hxy γ̃
NL
ij +

∑

kl

(
&̃NL

ij,klJ
kl
xy + &̃NL

kj,ilK
kl
xy

)

+ δxy

∑

kl

&̃NL
ij,klhkl + 1

2
δxy

∑

klmn

&̃NL
ij,kl,mnJ

kl
mn. (129)

The transition density matrices γ̃ MN
ij , &̃MN

ij,kl and &̃MN
ijk,lmn are

computed using the rotated reference functions

γ̃ MN
ij = ⟨M̃|Êi

j |Ñ⟩, (130)

&̃MN
ij,kl = ⟨M̃|Êik

j l |Ñ⟩, (131)

&̃MN
ij,kl,mn = ⟨M̃|Êikm

jln |Ñ⟩. (132)

The singles correction is then defined as

!EM
S = EM

S − ⟨M̃|Ĥ |M̃⟩. (133)

Alternatively, one can perform perturbative corrections
similar to those by Kong and Valeev [89], generalised here
for MS cases, using the zeroth-order Hamiltonian

Ĥ (0) =
∑

rs

frsÊrs +
∑

xy

fxyÊxy. (134)

The working equation of this approach is

⟨"̃x
i,N |Ĥ (0) − Ẽ

(0)
M |#M

S ⟩+ ⟨"̃x
i,N |Ĥ |M̃⟩ = 0, (135)

!EM
S ≡ E

(2)
M = ⟨M̃|Ĥ |#M

S ⟩. (136)

One can also include
∑

xa fxa(Êxa + Êax) in the zeroth-
order Hamiltonian as in the formula of Kong and Valeev,
or, in turn, as in the original CABS singles formula in the
single reference framework [86, 125], but we observe only a
marginal difference in the performance for relative energies.
The matrix elements are obtained from those for the singles
CI by replacing hκλ by fκλ and omitting all contributions of
two-electron integrals.

The perturbative approach has the advantage that the
computation of the Jkl and Kkl integrals with two CABS in-
dices can be avoided. However, the introduction of the Fock
operator in the singles correction may amplify the breaking
of degeneracies of states with different spatial symmetries,
because the Fock operator is not totally symmetric within
the degeneracy manifold, unless the density matrix used to
construct the Fock operator is totally symmetric. Note that
often the states within one irreducible representation do not
give totally symmetric density matrices.

Finally, we have implemented a variant of MRCI-
F12 that includes the singles |"x

i,N ⟩ directly in the wave-

function ansatz and in which the singles amplitudes
are determined in the iterative MRCI-F12 diagonalisa-
tion (‘iterative’ scheme). In order to avoid an unneces-
sary computational demand, we neglect interactions be-
tween the external configurations and the CABS singles
configurations.

As an example, these three corrections have been
used to compute the LiF avoided crossing at a long
distance (cf. Figure 1). Using a double-ζ basis set
(cc-pVDZ for Li and aug-cc-pVDZ for F) with the
corresponding CABS basis sets [130], all CABS singles
corrections give rise to problems: (i) both the CI and PT
corrections have wiggles due to the uncoupled nature of
these corrections; (ii) the curves from the iterative cor-
rection are smooth, but seem to suffer severely from the
size-consistency error, resulting in a crossing at a much
shorter bond length. Note that the absolute size of the sin-
gles correction with this small basis is about 30 mH, which
is very large on the scale of the figure. With the corre-
sponding triple-ζ basis sets, the singles corrections are so
small that all three corrections essentially give the same
curves.

It should be noted that in the MS case the CABS
singles correction does not represent a correction for the
basis-set incompleteness errors of the CASSCF energies
obtained with state-averaged orbitals. This is because our
current methods are state-specific, and the singles correc-
tion may also account for part of the error caused by the
state-averaging. It should be possible to devise alternative
correction schemes in which a CABS correction is com-
puted for the state-averaged orbitals, and the corrected or-
bitals are then used to compute the individual energies.
One could also include the relaxation of the CASSCF con-
figuration coefficients. This would basically correspond
to performing one CASSCF iteration in the OBS+CABS
basis. We plan to investigate such schemes in future
work.

Figure 1. Comparison of three CABS singles corrections using double-ζ (left-hand panel) and triple-ζ (right-hand panel) basis sets.
CI (red lines) denotes the singles-CI correction, PT (blue lines), the perturbative correction, and ‘iterative’ (black lines), the iterative
correction (see text).
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Table 4. Vertical excitation energies (in eV) for low-lying A1 and B2 states of pyrrole with six electrons in four b1 and three a2 active
orbitals. The CASPT2 and CASPT2-F12 results were taken from Ref. [33].

A1 A1 B2 B2 B2
OBS 1a2→ 3px 2b1→ 3px 1a2→ 3px 2b1→ 3px π → π∗

CASSCF
VDZ-F12+ 5.57 5.68 4.87 6.34 8.00
VTZ-F12+ 5.59 5.70 4.88 6.37 8.00
VQZ-F12+ 5.58 5.70 4.88 6.36 7.99

CASPT2
VDZ-F12+ 6.69 6.81 6.00 7.61 6.03
VTZ-F12+ 6.86 6.98 6.16 7.79 5.98
VQZ-F12+ 6.92 7.04 6.21 7.85 5.97

CASPT2-F12
VDZ-F12+ 6.96 7.09 6.26 7.90 5.99
VTZ-F12+ 6.98 7.11 6.27 7.92 5.98
VQZ-F12+ 6.98 7.10 6.27 7.92 5.97

MRCI+Qa

VDZ-F12+ 6.70 6.82 5.95 7.52 7.04
VTZ-F12+ 6.79 6.92 6.03 7.59 7.13
VQZ-F12+ 6.81 6.94 6.05 7.59 7.16

MRCI-F12+Qa

VDZ-F12+ 6.78 6.91 6.02 7.59 7.14
VTZ-F12+ 6.82 6.96 6.06 7.57 7.22
VQZ-F12+ 6.82 6.96 6.07 7.57 7.21

aThe CABS singles corrections (CI) are included.

10. Representative numerical examples

In this section, we summarise some calculations presented
in our earlier papers [33–35]. Fore more details and addi-
tional results, we refer to these papers. Since in Refs. [33,
34] the CABS singles correction was not yet available, the
corresponding calculations have been repeated. Additional
new calculations are presented for the potential curves of
Cr2 as well as for barrier heights and reaction energies of
the F + H2→HF + H and OH + CO→ CO2 + H reactions.

10.1. Pyrrole excited states

The vertical excitation energies for low-lying states in the
A1 and B2 symmetries of pyrrole (C2ν symmetry) have
been computed by the SS CASPT2-F12 and MS MRCI-
F12 methods with an active space of six electrons in four b1

and three a2 orbitals. The considered states have a Rydberg
character except for the π→π∗ valence state in the B2 sym-
metry [39, 131]. Another valence state in the A1 symmetry
[39, 131] does not appear with this relatively small CAS. In
order to describe the Rydberg states properly, the cc-pVXZ-
F12 basis sets [132, 133] of C and N have been augmented
by one even-tempered diffuse p function (see Ref. [33]
for details). They are denoted by VXZ-F12+ in Table 4.
Due to the more compact electronic structure of the ground
state, dynamical electron correlation increases the excita-
tion energies of the Rydberg states, and to recover this effect
with conventional CASPT2 large basis sets are needed. At
the double-ζ level, the standard CASPT2 method under-

estimates the excitation energies of the Rydberg states by
0.2–0.3 eV. In contrast, the CASPT-F12 method captures
almost all of the basis-set error in the Rydberg excitation
energies already with the double-ζ basis set, yielding a re-
markably good accuracy of 0.03 eV (as compared to the
CBS limit) for all states considered here. For the Rydberg
excitations, the CASPT2 and MRCI+Q values are in rather
good agreement, in most cases within 0.1–0.2 eV.

The basis-set convergence of the valence excitation en-
ergy in the B2 symmetry is already good with the CASPT2
method and the F12 correction plays only a minor role.
The accuracy of MRCI-F12+Q with double-ζ basis sets is
0.05 eV compared to the basis-set limit, while the basis-
set truncation errors of the underlying MRCI+Q method is
somewhat smaller than that of CASPT2. The CASPT2-F12
excitation energies for the B2 valence excited state have a
very large error of −1.24 eV relative to the correspond-
ing MRCI-F12 values. As discussed previously [39], the
CASPT2 valence excitation energies are often significantly
underestimated, unless much larger active spaces are used.
This observation is also confirmed by comparison with ex-
perimental excitation energies, although often basis-set and
N-electron errors partly cancel.

10.2. CH2 singlet–triplet separation

The singlet–triplet splitting in methylene is a long-standing
problem in quantum chemistry since it strongly depends
on basis-set and correlation effects. Table 5 demonstrates
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orbitals. The CASPT2 and CASPT2-F12 results were taken from Ref. [33].

A1 A1 B2 B2 B2
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10. Representative numerical examples

In this section, we summarise some calculations presented
in our earlier papers [33–35]. Fore more details and addi-
tional results, we refer to these papers. Since in Refs. [33,
34] the CABS singles correction was not yet available, the
corresponding calculations have been repeated. Additional
new calculations are presented for the potential curves of
Cr2 as well as for barrier heights and reaction energies of
the F + H2→HF + H and OH + CO→ CO2 + H reactions.

10.1. Pyrrole excited states

The vertical excitation energies for low-lying states in the
A1 and B2 symmetries of pyrrole (C2ν symmetry) have
been computed by the SS CASPT2-F12 and MS MRCI-
F12 methods with an active space of six electrons in four b1

and three a2 orbitals. The considered states have a Rydberg
character except for the π→π∗ valence state in the B2 sym-
metry [39, 131]. Another valence state in the A1 symmetry
[39, 131] does not appear with this relatively small CAS. In
order to describe the Rydberg states properly, the cc-pVXZ-
F12 basis sets [132, 133] of C and N have been augmented
by one even-tempered diffuse p function (see Ref. [33]
for details). They are denoted by VXZ-F12+ in Table 4.
Due to the more compact electronic structure of the ground
state, dynamical electron correlation increases the excita-
tion energies of the Rydberg states, and to recover this effect
with conventional CASPT2 large basis sets are needed. At
the double-ζ level, the standard CASPT2 method under-

estimates the excitation energies of the Rydberg states by
0.2–0.3 eV. In contrast, the CASPT-F12 method captures
almost all of the basis-set error in the Rydberg excitation
energies already with the double-ζ basis set, yielding a re-
markably good accuracy of 0.03 eV (as compared to the
CBS limit) for all states considered here. For the Rydberg
excitations, the CASPT2 and MRCI+Q values are in rather
good agreement, in most cases within 0.1–0.2 eV.

The basis-set convergence of the valence excitation en-
ergy in the B2 symmetry is already good with the CASPT2
method and the F12 correction plays only a minor role.
The accuracy of MRCI-F12+Q with double-ζ basis sets is
0.05 eV compared to the basis-set limit, while the basis-
set truncation errors of the underlying MRCI+Q method is
somewhat smaller than that of CASPT2. The CASPT2-F12
excitation energies for the B2 valence excited state have a
very large error of −1.24 eV relative to the correspond-
ing MRCI-F12 values. As discussed previously [39], the
CASPT2 valence excitation energies are often significantly
underestimated, unless much larger active spaces are used.
This observation is also confirmed by comparison with ex-
perimental excitation energies, although often basis-set and
N-electron errors partly cancel.

10.2. CH2 singlet–triplet separation

The singlet–triplet splitting in methylene is a long-standing
problem in quantum chemistry since it strongly depends
on basis-set and correlation effects. Table 5 demonstrates

Table 5. The singlet–triplet separation of CH2 in kcal/mol. !ES denotes the singles corrections to the energy differences. The geometries
have been optimised for each method and basis set. Taken from Ref. [35].

OBS CASSCF CASPT2 CASPT2-F12 MRCI MRCI-F12 MRCI-F12+!ES

CH2 singlet–triplet splitting (full valence)
VDZ-F12 10.58 14.19 13.02 10.12 9.29 8.78
VTZ-F12 10.12 13.44 12.73 9.01 8.57 8.53
VQZ-F12 10.11 13.16 12.75 8.73 8.51 8.50
CBS [56] 12.79 8.49

CH2 singlet–triplet splitting [(7,4,3,1) orbitals]
VDZ-F12 11.21 11.01 9.96 10.35 9.35 9.01
VTZ-F12 10.61 10.23 9.76 9.33 8.93 8.86
VQZ-F12 10.54 10.00 9.71 9.07 8.85 8.84
CBS [56] 9.72 8.83

the effect of the F12 and singles corrections for the singlet–
triplet splitting of CH2 computed with SS CASPT2-F12 and
MRCI-F12. Peterson’s F12 orbital [132] and fitting [133]
basis sets were used. Both the CASPT2-F12 and the MRCI-
F12 methods capture most of the basis-set truncation errors
in the correlation energy contributions already with small
basis sets. The MRCI-F12 method combined with the sin-
gles correction reproduces the basis-set limit of the singlet–
triplet splitting within 0.3 kcal/mol and 0.05 kcal/mol using
the VDZ-F12 and VTZ-F12 basis sets, respectively. This is
in contrast with the conventional MRCI, which was off by
more than 1.5 kcal/mol with VDZ-F12. The singles cor-
rections closely reproduce the basis-set truncation errors of
CASSCF for both systems. Moreover, when the extended
active space consisting of the full-valence + C(3s, 3p, 3d)
orbitals is used, where the basis errors of CASSCF and
the correlation energies of MRCI-F12 do not seem addi-
tive, the CABS singles corrected energies provide similar
accuracy to that in the full-valence cases. The MRCI+F12
results obtained with this active space agree well with the
experimental value of 9.1 ± 0.2 kcal/mol [134]. The latter
value is corrected for the zero-point vibration energy and
relativistic effects.

10.3. Cr dimer

The Cr dimer has been one of the most challenging sys-
tems for multireference electronic structure theories, and
therefore there have been extensive studies in the past [18,
135–138]. One of the difficulties one encounters is that
the binding energy is strongly dependent on the basis size
[136], especially around the 3d bonding region. This is be-
cause d electrons already carry an angular momentum 2
and high-angular momentum basis functions are needed to
describe the dynamical correlation effects.

In the current study, we have used the def2-QZVPP
[139] orbital basis and the corresponding fitting basis sets
[140] for the MRCI+Q and MRCI-F12+Q methods. The
def2-QZVPP-jkfit fitting basis set contains up to i functions,

and is able to fit products of three occupied d orbitals. This
basis was also used for the CABS, which requires functions
up to an angular momentum 3locc, i.e. in the current case up
to l = 6 (i functions). In addition, a large orbital basis was
used as a reference which consists of s,p,d shells of def2-
QZVPP and even-tempered functions [(0.9, 2.2, 5), (0.9,
2.2, 5), (1.0, 2.2, 3), (1.1, 2.2, 2) for f, g, h, i shells, where
these numbers stand for the centre and ratio of exponents
and the number of even-tempered functions]. An active
space with 12 electrons in 12 orbitals is used (correlating
with the 3d and 4s atomic orbitals), which is a minimum
choice for this system. All orbitals are optimised in the
CASSCF step, while only 4s and 3d electrons are correlated
in the MRCI; in other words, 3s and 3p electrons are treated
as frozen cores in MRCI. Since they contribute significantly
to the 3d bonding [136], we do not intend to compare our
results with the experimental curve. Rather, we only intend
to demonstrate the effect of the F12 terms on the potential
energy curve.

As can be clearly seen from Figure 2, the 3d bonding
is underestimated by around 0.2 eV when computed by
the conventional MRCI+Q and def2-QZVPP basis sets. In
contrast, the potential energy curve computed by the MRCI-
F12+Q theory is even lower than the MRCI+Q one obtained
with the large reference basis set. Likely, it is converged
close to the basis-set limit. In order to achieve quantitative
agreements with experiment, we plan to extend the F12
theory to the new MRCI with the Celani–Werner internal
contraction recently studied by Shamasundar et al. [26],
which is capable of correlating 3s and 3p electrons much
more efficiently than our current program.

10.4. Excited states of ozone

The excited-state dynamics of ozone after photoexcitations
of 1–6 eV are known to go through multiple conical in-
tersections (see, for instance, Ref. [141], and references
therein). Here we present the regions of the PESs around
the conical intersections by MRCI+Q and MRCI-F12+Q
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Figure 2. Cr dimer computed by MRCI+Q and MRCI-F12+Q.
def2-QZVPP and extended basis functions were used for
MRCI+Q, while MRCI-F12+Q was computed by def2-QZVPP.
Note that 3s and 3p electrons were not correlated in this study.

calculations with various basis sets. We used the full-
valence active space with frozen-core approximation. VXZ-
F12 basis sets were used for the OBS and Weigend’s auxil-
iary basis sets for DF and RI [142, 143]. The calculations
were carried out in Cs symmetry, and five A′ and six A′′

states were averaged in the CASSCF, but only the five A′

states have been calculated by MRCI and MRCI-F12. Fig-
ure 3 shows one-dimensional cuts of PESs as a function
of the distance R2, keeping R1 = 2.4 bohr and ∠OOO =
116.8◦ fixed. In addition, we show a two-dimensional cut
with ∠OOO = 116.8◦.

Although the vertical excitation energies from the equi-
librium geometry of the ground state are quickly conver-
gent to their complete basis-set limits with MRCI+Q, this is
partly due to error cancellations between the basis-set trun-
cation errors of the ground and excited states. However,
the dissociation energies and the positions of the avoided
crossings (associated with the conical intersections at C2ν

geometries) are very sensitive to the size of the basis set.
To achieve quantitative agreements with the conventional
methods, one needs to use larger than the quadruple-ζ basis
sets. MRCI-F12+Q remedies this problem to a large extent,
and even the PESs computed with the double-ζ basis set
are hardly distinguishable on the scale of the figure from
those calculated with the quadruple-ζ basis set.

10.5. The F + H2 reaction barrier height

MRCI methods are in most cases necessary to compute
global PESs for chemical reactions. Prominent examples
that have been studied extensively in the past are the F +
H2→ HF + H [144–147], Cl + H2→ HCl + H [148–151]
and OH + CO → CO2 + H [152–156] reactions. Since
at the transition states more electrons correlate with each
other than in the reactants, the dynamical correlation effects

Figure 3. PESs of low-lying singlet A′ states of ozone computed by MRCI+Q (left) and MRCI-F12b+Q (centre). One-dimensional cuts
are made at one R1 = 2.4 and ∠OOO = 116.8. A two-dimensional cut with 2.2≤ R1 ≤ 2.6, 3.1≤ R2 ≤ 3.5 and ∠OOO = 116.8 is also shown
(MRCI-F12+Q and VDZ-F12), from which the fourth excited state was omitted for simplicity.
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on the barrier heights are usually negative and very large.
Furthermore, basis-set incompleteness effects can be large,
and the resulting errors of the PESs may have a significant
effect on the reaction dynamics.

A thorough study of basis-set and higher order corre-
lation effects on the barrier and reaction energy of the F +
H2 reaction can be found in Ref. [127], and accurate global
coupled MRCI+Q PESs for the three states that correlate
with the F(2P)+H2 asymptote were presented in Ref. [144].
These results have been compared with MRCI-F12+Q cal-
culations in Ref. [35]. Some results of this study for the bent
transition state are shown in Table 6, along with additional
calculations that include the CABS singles correction and
the two coupled 2A′ states. The geometries are the same
as in Refs. [35, 127]. For fluorine the aug-cc-pVXZ bases
were used, while for the hydrogen atoms the non-augmented
basis sets were used [this reduces basis-set superposition ef-
fects (BSSEs)]. This mixed basis will in the following be
denoted by aVXZ.

MRCI-F12+Q with the aVQZ basis set is already con-
verged to 0.01–0.02 kcal/mol as compared to the CBS limit.
In contrast, the conventional MRCI+Q method requires the
aug-cc-pV6Z basis set (or more) to achieve the same accu-
racy. In fact, the barriers obtained with MRCI+Q/aV6Z are
still higher than those obtained with MRCI-F12+Q/aVQZ.
One can observe that the CASSCF and correlation con-
tributions have errors of different signs and partly cancel
each other, unless the CABS singles correction is included.
Most likely, the positive basis-set effect on the CASSCF
barrier heights is due to BSSEs, which artificially lowers
the CASSCF barrier if small basis sets are used; this ef-
fect decreases with increasing basis-set size. On the other
hand, the negative effect of the dynamical correlation on
the barrier heights strongly increases with increasing basis
set size. Due to these compensating effects, the basis-set
convergence of the MRCI-F12+Q method is somewhat de-
teriorated by the singles correction, since this eliminates
the error compensation.

All MRCI and MRCI-F12 calculations in Table 6 in-
clude the Davidson correction, which has a large negative
effect on the barrier height. As has been demonstrated and
discussed in more detail in Ref. [127], it strongly matters
how the Davidson correction is computed. It was found that
best agreement with full-CI or coupled cluster with up to
quadruple excitations (CCSDTQ) values is obtained by us-
ing the so-called Q1 version, in which the coefficient of the
unrelaxed reference function in the final MRCI wavefunc-
tion is used to compute the correction (cf. Section 8.1).

In the MS calculations, the orbitals were optimised by
state-averaged CASSCF including the three states (two 2A′,
one 2A′′) that are degenerate at the F(2P) + H2 asymp-
tote. In the MS-MRCI calculations, the two 2A′ states were
included. The Davidson correction was computed analo-
gously to the Q1 correction, but using the rotated refer-
ence functions |M̃⟩ that have best overlap with the final

MRCI wavefunctions (cf. Equation 111). The two-state
calculations yield a barrier height that is about 0.03
kcal/mol lower than obtained in the SS calculations. The
final MS-MRCI-F12+Q value of 1.29 kcal/mol is still
slightly higher than the CCSDTQ/CBS estimate of 1.20
kcal/mol [127]. Errors of this magnitude are within the un-
certainty caused by the Davidson correction. For example,
if the non-rotated reference function is used to compute
the Davidson correction in the MS-MRCI case, the barrier
is further reduced by ≈0.1 kcal/mol. In order to compare
with experimental data, also core correlation, relativistic,
non-Born–Oppenheimer and spin–orbit contributions must
be included, which increase the barrier height by 0.442
kcal/mol [127].

10.6. The OH + CO reaction

As a final example we present some results for the OH + CO
→ CO2 + H reaction, which involves a number of transi-
tion states and intermediates. Due to its importance in com-
bustion processes, this reaction has been very extensively
studied in the past, and various global PESs have been com-
puted. For a review of earlier work, see Ref. [153]. Very re-
cently, a new PES has been computed using CCSD(T)-F12b
with the aug-cc-pVTZ basis set [154, 155, 156], and vari-
ous quasi-classical dynamics studies have been reported in
these and other papers [157, 158]. These and most older cal-
culations of the PES used single-reference methods, which
seem to work rather well even in the transition-state re-
gions. However, the single-state treatments break down in
some other regions of the PES, and therefore it is of inter-
est to compare the single-reference CCSD(T)-F12b results
with MRCI-F12 ones. To our knowledge, only one previ-
ous study used internally contracted MRCI wavefunctions
[152].

We computed the relative energies of the transition
states and intermediates in Cs symmetry with the CCSD(T)-
F12b and MRCI-F12+Q methods, using the structures given
in table 1 of Ref. [155]. For simplicity, we will omit in the
following the +Q specification, with the understanding that
Davidson’s correction is always included. In contrast to the
F + H2 case, the various variants of the Davidson correc-
tions give very similar results, and therefore the default Q0
method was used, in which the correction is computed using
the coefficient of the relaxed reference function.

In the current study, the VXZ-F12 basis sets (X = D,T,Q)
were employed, while Li et al. used the aug-cc-pVTZ ba-
sis. We also repeated the CCSD(T)-F12b calculations us-
ing the corresponding aug-cc-pVXZ basis sets (not shown
here), and exactly reproduced the aug-cc-pVTZ results of
Ref. [155]. Overall, both basis-set families yield results of
comparable accuracy, although the convergence behaviour
is somewhat different (for some structures, VXZ-F12 is
slightly better, while for others, worse), which may be re-
lated to the more diffuse nature of the aug-cc-pVTZ basis,
in particular for hydrogen.
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Table 6. The bent reaction barrier of the F + H2 reaction in kcal/mol. All MRCI and MRCI-F12 values have been corrected by Davidson’s
correction (see text).

OBS CASSCF SA-CASSCF MRCI MS-MRCI MRCI MS-MRCI MRCI MS-MRCI
-F12 -F12 -F12+!ES -F12+!ES

aVTZ 7.304 7.589 1.795 1.766 1.333 1.350 1.451 1.354
aVQZ 7.427 7.712 1.433 1.401 1.294 1.280 1.338 1.288
aV5Z 7.475 7.760 1.386 1.353 1.310 1.287 1.316 1.288
aV6Za 7.481 7.767 1.352 1.321
CBS56 7.483 7.768 1.309 1.268

aF12 calculations for the aV6Z basis were not performed since there are no fitting and CABS basis sets.

Table 7. MRCI-F12 calculations for various active spaces for the OH + CO→ CO2 + H reaction. Energies relative to trans-HOCO in
kcal/mol, basis VTZ-F12. All valence orbitals are optimised and correlated; only the number of inactive orbitals has been varied. The
active space is specified as electrons/orbital.

Method OH + CO cis-TS1 trans-TS1 cis-HOCO cis-TS2 trans-TS4 HCOO(C2v) TS3(C2v) CO2 + H

HF 3.860 20.701 12.887 0.040 43.642 52.867 39.326 28.793 −3.433
CASSCF(11/10) 0.119 16.302 8.658 0.331 29.423 46.180 12.607 22.414 1.472
CASSCF(13/11) 5.471 19.200 12.741 0.471 25.818 41.344 15.865 13.262 −14.561
CASSCF(17/13) 6.268 19.527 13.045 0.877 25.175 40.859 16.209 13.758 −13.887

MRCI-F12(11/10) 24.213 32.347 27.009 1.275 31.061 40.052 22.986 19.378 2.205
MRCI-F12(13/11) 25.418 31.483 27.248 1.342 31.091 38.959 16.434 18.967 1.041
MRCI-F12(17/13) 26.105 31.619 27.396 1.586 30.957 38.866 16.573 19.320 1.653

MRCI-F12+Q(11/10) 27.245 32.506 28.146 1.781 31.392 37.415 23.330 18.852 3.332
MRCI-F12+Q(13/11) 28.184 32.479 28.750 1.748 32.217 38.232 16.515 20.445 5.299
MRCI-F12+Q(17/13) 28.707 32.462 28.747 1.905 32.118 38.179 16.505 20.639 5.722

CCSD-F12b 26.123 31.494 27.166 1.622 34.872 41.052 20.884 23.606 7.686
CCSD(T)-F12b 29.202 32.427 28.735 1.803 31.923 38.365 16.710 20.802 6.803

Our results are presented in Tables 7 and 8. As in Ref.
[155] all energies are in kcal/mol relative to the trans-
HOCO intermediate, which is lowest in energy. In Table
7 the CASSCF and MRCI-F12 results for three different
active spaces are compared to CCSD-F12 and CCSD(T)-
F12 calculations, using the VTZ-F12 basis set. In all MRCI
calculations, the full-valence orbital space was included,
but the number of inactive orbitals in the reference func-
tion was three [active space: 11 electrons in 10 orbitals,
denoted by (11/10)], two [active space (13/11)] or 0 [active
space (17/13)]. It is found that the MRCI-F12 results in the
latter two cases agree within a few tenths of a kcal/mol,
while the (11/10) active space yields significantly larger er-
rors. With increasing active space, the MRCI-F12 results
systematically approach the CCSD(T)-F12b ones, and with
the full-valence active space (17/13) the MRCI-F12 and
CCSD(T)-F12b relative energies of all intermediate struc-
tures agree within about 0.2 kcal/mol. In view of the fact
that the correlation effects are in many cases very large, this
agreement is quite remarkable. The effect of the Davidson
corrections on the relative energies typically amounts to
1–2 kcal/mol, and the (T) contributions are even larger.
However, the energies of the asymptotic CO + OH and CO2

+ H energies relative to trans-HOCO show much larger

deviations of 1.5 and 1.1 kcal/mol, respectively, between
MRCI-F12 and CCSD(T)-F12b. Since all these structures
are well described by single-reference wavefunctions, it is
likely that the CCSD(T)-F12b results are most accurate.
The large dynamical correlation effects (about 25 kcal/mol
for OH+CO) are underestimated by the MRCI-F12 cal-
culations. The reaction energies computed with the VTZ-
F12 basis amount to−22.4 kcal/mol [CCSD(T)-F12b] and
−23.0 kcal/mol (MRCI-F12). These values are changed to
−22.6 and 23.2 kcal/mol, respectively, if the larger VQZ-
F12 basis set is used (CCSD(T)-F12b/aug-cc-pV5Z yields
−22.65 kcal/mol). The computed values bracket the ex-
perimental value of −22.8 kcal/mol (this is obtained from
!Hr(0K) = −24.0 kcal/mol and a zero-point correction of
1.20 kcal/mol).

The basis-set dependence of the MRCI and CCSD(T)
results is compared in Table 8. Without the F12 treatment,
the largest basis effects are found for the OH+CO asymptote
and the trans-TS1 transition state, where the difference be-
tween the VDZ-F12 and VQZ-F12 MRCI values amounts to
5.4 and 4.5 kcal/mol, respectively. These effects are reduced
to 0.81 and 0.69 kcal/mol, respectively, by inclusion of the
F12 terms. The VTZ-F12 and VQZ-F12 values differ only
by 0.1–0.2 kcal/mol. The convergence of the CCSD(T)-
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Table 7. MRCI-F12 calculations for various active spaces for the OH + CO→ CO2 + H reaction. Energies relative to trans-HOCO in
kcal/mol, basis VTZ-F12. All valence orbitals are optimised and correlated; only the number of inactive orbitals has been varied. The
active space is specified as electrons/orbital.

Method OH + CO cis-TS1 trans-TS1 cis-HOCO cis-TS2 trans-TS4 HCOO(C2v) TS3(C2v) CO2 + H

HF 3.860 20.701 12.887 0.040 43.642 52.867 39.326 28.793 −3.433
CASSCF(11/10) 0.119 16.302 8.658 0.331 29.423 46.180 12.607 22.414 1.472
CASSCF(13/11) 5.471 19.200 12.741 0.471 25.818 41.344 15.865 13.262 −14.561
CASSCF(17/13) 6.268 19.527 13.045 0.877 25.175 40.859 16.209 13.758 −13.887

MRCI-F12(11/10) 24.213 32.347 27.009 1.275 31.061 40.052 22.986 19.378 2.205
MRCI-F12(13/11) 25.418 31.483 27.248 1.342 31.091 38.959 16.434 18.967 1.041
MRCI-F12(17/13) 26.105 31.619 27.396 1.586 30.957 38.866 16.573 19.320 1.653

MRCI-F12+Q(11/10) 27.245 32.506 28.146 1.781 31.392 37.415 23.330 18.852 3.332
MRCI-F12+Q(13/11) 28.184 32.479 28.750 1.748 32.217 38.232 16.515 20.445 5.299
MRCI-F12+Q(17/13) 28.707 32.462 28.747 1.905 32.118 38.179 16.505 20.639 5.722

CCSD-F12b 26.123 31.494 27.166 1.622 34.872 41.052 20.884 23.606 7.686
CCSD(T)-F12b 29.202 32.427 28.735 1.803 31.923 38.365 16.710 20.802 6.803

Our results are presented in Tables 7 and 8. As in Ref.
[155] all energies are in kcal/mol relative to the trans-
HOCO intermediate, which is lowest in energy. In Table
7 the CASSCF and MRCI-F12 results for three different
active spaces are compared to CCSD-F12 and CCSD(T)-
F12 calculations, using the VTZ-F12 basis set. In all MRCI
calculations, the full-valence orbital space was included,
but the number of inactive orbitals in the reference func-
tion was three [active space: 11 electrons in 10 orbitals,
denoted by (11/10)], two [active space (13/11)] or 0 [active
space (17/13)]. It is found that the MRCI-F12 results in the
latter two cases agree within a few tenths of a kcal/mol,
while the (11/10) active space yields significantly larger er-
rors. With increasing active space, the MRCI-F12 results
systematically approach the CCSD(T)-F12b ones, and with
the full-valence active space (17/13) the MRCI-F12 and
CCSD(T)-F12b relative energies of all intermediate struc-
tures agree within about 0.2 kcal/mol. In view of the fact
that the correlation effects are in many cases very large, this
agreement is quite remarkable. The effect of the Davidson
corrections on the relative energies typically amounts to
1–2 kcal/mol, and the (T) contributions are even larger.
However, the energies of the asymptotic CO + OH and CO2

+ H energies relative to trans-HOCO show much larger

deviations of 1.5 and 1.1 kcal/mol, respectively, between
MRCI-F12 and CCSD(T)-F12b. Since all these structures
are well described by single-reference wavefunctions, it is
likely that the CCSD(T)-F12b results are most accurate.
The large dynamical correlation effects (about 25 kcal/mol
for OH+CO) are underestimated by the MRCI-F12 cal-
culations. The reaction energies computed with the VTZ-
F12 basis amount to−22.4 kcal/mol [CCSD(T)-F12b] and
−23.0 kcal/mol (MRCI-F12). These values are changed to
−22.6 and 23.2 kcal/mol, respectively, if the larger VQZ-
F12 basis set is used (CCSD(T)-F12b/aug-cc-pV5Z yields
−22.65 kcal/mol). The computed values bracket the ex-
perimental value of −22.8 kcal/mol (this is obtained from
!Hr(0K) = −24.0 kcal/mol and a zero-point correction of
1.20 kcal/mol).

The basis-set dependence of the MRCI and CCSD(T)
results is compared in Table 8. Without the F12 treatment,
the largest basis effects are found for the OH+CO asymptote
and the trans-TS1 transition state, where the difference be-
tween the VDZ-F12 and VQZ-F12 MRCI values amounts to
5.4 and 4.5 kcal/mol, respectively. These effects are reduced
to 0.81 and 0.69 kcal/mol, respectively, by inclusion of the
F12 terms. The VTZ-F12 and VQZ-F12 values differ only
by 0.1–0.2 kcal/mol. The convergence of the CCSD(T)-

Table 8. Basis-set dependence of relative energies for the OH + CO→ CO2 + H reaction. Energies relative to trans-HOCO in kcal/mol,
basis VTZ-F12. All valence orbitals are optimised and correlated, active space (13/11); only the number of inactive orbitals has been
varied. The active space is specified as electrons/orbital.

Method Basis OH + CO cis-TS1 trans-TS1 cis-HOCO cis-TS2 trans-TS4 HCOO(C2v) TS3(C2v) CO2 + H

HF VDZ-F12 2.846 19.802 11.986 −0.013 44.303 53.400 39.398 29.259 −2.745
HF VTZ-F12 3.860 20.701 12.887 0.040 43.642 52.867 39.326 28.793 −3.433
HF VQZ-F12 4.027 20.874 13.060 0.053 43.810 53.020 39.513 29.009 −3.144

CASSCF VDZ-F12 4.261 18.379 11.935 0.407 26.243 41.637 15.792 13.502 −14.048
CASSCF VTZ-F12 5.471 19.200 12.741 0.471 25.818 41.344 15.865 13.262 −14.561
CASSCF VQZ-F12 5.634 19.353 12.894 0.478 25.988 41.489 16.035 13.466 −14.294

MRCI+Q VDZ-F12 22.426 27.811 23.830 1.967 31.988 39.053 16.376 20.734 4.836
MRCI+Q VTZ-F12 26.449 31.036 27.236 1.814 31.682 38.021 16.005 20.057 4.745
MRCI+Q VQZ-F12 27.786 32.111 28.375 1.760 32.091 38.186 16.420 20.391 5.260

MRCI-F12+Q VDZ-F12 27.642 32.066 28.287 1.754 32.349 38.435 16.680 20.683 5.367
MRCI-F12+Q VTZ-F12 28.184 32.479 28.750 1.748 32.217 38.232 16.515 20.445 5.299
MRCI-F12+Q VQZ-F12 28.453 32.688 28.972 1.735 32.266 38.306 16.617 20.492 5.339

CCSD(T)-F12b VDZ-F12 28.468 31.894 28.165 1.841 31.782 38.395 16.670 20.890 6.558
CCSD(T)-F12b VTZ-F12 29.202 32.427 28.735 1.803 31.923 38.365 16.710 20.802 6.803
CCSD(T)-F12b VQZ-F12 29.482 32.599 28.931 1.788 31.975 38.405 16.817 20.848 6.881

F12b and MRCI-F12+Q values with increasing basis set is
very similar.

A more thorough study of multireference and basis-set
effects on the PES of this and other elementary reactions is
in progress and will be presented elsewhere.

11. Conclusions

We have reviewed our recent developments in multirefer-
ence explicitly correlated F12 theories. Their wavefunctions
are transparent generalisations of the conventional WK
internally contracted multireference wavefunctions. The
same parametrisation is used to minimise the Hylleraas
functional, the energy expectation value, and the ACPF
functional to give the CASPT2-F12, MRCI-F12 and
MRACPF-F12 methods. Some representative numerical
results are shown to prove the significant acceleration of the
basis-set convergence with the F12 theories. The additional
cost caused by the F12 treatment is small as compared to the
overall cost of MRCI calculations. Since the applicability
of the MR-F12 methods is exactly the same as that of the
underlying conventional MR methods, we believe that they
can serve as powerful tools to tackle systems with compli-
cated electronic structures in computational chemistry.
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[12] K. Andersson, P.-Å. Malmqvist, B.O. Roos, A.J. Sadlej and
K. Wolinski, J. Phys. Chem. 94, 5483 (1990).
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Cársky, J. Paldus and J. Pittner (Springer, Berlin, 2010).

[58] C. Hättig, W. Klopper, A. Köhn and D.P. Tew, Chem. Rev.
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[127] H.-J. Werner, M. Kállay and J. Gauss, J. Chem. Phys. 128,

034305 (2008).
[128] R.J. Gdanitz and R. Ahlrichs, Chem. Phys. Lett. 143, 413

(1988).
[129] P.G. Szalay and R.J. Bartlett, Chem. Phys. Lett. 214, 481

(1993).
[130] K.E. Yousaf and K.A. Peterson, Chem. Phys. Lett. 476, 303

(2009).
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