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a b s t r a c t

A simple, yet effective algorithm is developed for evaluating two-electron Slater-type geminal and Yuk-
awa potential integrals over Gaussian-type orbitals (GTOs), which arise in the so-called explicitly corre-
lated methods, on the basis of the recent work of Ten-no [S. Ten-no, Chem. Phys. Lett. 398 (2004) 56; S.
Ten-no, J. Chem. Phys. 126 (2007) 014108]. Gaussian quadrature is used in analogy with the Rys quadra-
ture method for electron repulsion integrals. The quadrature grids are obtained by the two-dimensional
Chebyshev interpolation. This algorithm is especially efficient for integrals over GTOs with high angular
momenta, which are present owing to the use of the resolution-of-the-identity approximation.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The explicitly correlated methods that have originated from the
work of Kutzelnigg [1], referred to as the R12 (or F12) methods,
have proven highly effective in providing near complete basis-set
limits of electron correlation energies using a small basis set and
a Slater-type geminal (STG) [2,3]. See recent publications [4–12]
and references therein. In the so-called approximation C of
Kedžuch et al. [13], the R12 (or F12) methods with a STG involve
two types of two-electron integrals over Gaussian-type orbitals
(GTOs) [5]:

ð/p/qje�nr12 j/r/sÞ; ð1Þ

/p/q
e�nr12

r12

����
����/r/s

� �
; ð2Þ

where n is either the exponent of the STG or twice the exponent.
The chemists’ notation is used (i.e., /p and /q are GTOs of electron
1 and /r and /s electron 2, respectively). Since the R12 (or F12)
methods use auxiliary basis functions with high angular momenta
for the resolution-of-the-identity approximation (RI) [14,15], effi-
cient implementation of Eqs. (1) and (2) for GTOs with high angular
momenta is desirable, especially for low-level electron correlation
treatments such as the explicitly correlated Møller–Plesset pertur-
bation method (MP2-R12 or -F12) [16].

One way to evaluate these integrals is to approximate a STG by
a linear combination of Gaussian-type geminals (GTGs) [17–19].
Although efficient algorithms based on this scheme exist [19,20],
they can be inherently not optimal. Ten-no proposed an alternative
that evaluates STG and related integrals without using the GTG
ll rights reserved.
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expansion [2,3]. In his pioneering work, he formulated them in
terms of the special function called GmðT;UÞ, in analogy with the
Boys function FmðTÞ in the ERI evaluation [21]. This corresponds
to the generalization of a family of ERI evaluation algorithms such
as McMurchie–Davidson [22], Pople–Hehre [23], Obara–Saika [24],
Head-Gordon–Pople [25], PRISM of Gill et al. [26], and others [27–
30] to the STG integrals.

In this Letter, we present an algorithm for STG and Yukawa po-
tential (YP) integrals [Eqs. (1) and (2)] that uses Gaussian quadra-
ture tailored specifically for these integrals on the basis of Ten-no’s
recent work [2,3]. Our approach is analogous to the so-called Rys
quadrature method of Dupuis et al. [31–33] for ERI, later elabo-
rated by Lindh et al. [34], which is known to be advantageous for
integrals over GTOs with high angular momenta among other algo-
rithms. Note that Ten-no has also studied a similar algorithm that
uses twice the number of grid points as that of the Gaussian quad-
rature formula [35,36]. The floating-point operation counts and the
timings are presented to show that the algorithm is efficient espe-
cially for integrals over GTOs with high angular momenta.

2. Slater-type geminal and Yukawa potential integrals

The Cartesian GTOs are defined as

/p ¼ ðx1 � AxÞax ðy1 � AyÞay ðz1 � AzÞaz e�faðr1�AÞ2 ; ð3Þ

/q ¼ ðx1 � BxÞbx ðy1 � ByÞby ðz1 � BzÞbz e�fbðr1�BÞ2 : ð4Þ

Similarly, /r and /s are written with c, d, fc , fd, C, and D. Using the
integral representation of Ten-no [2] (see also Appendix A),

e�nr12

r12
¼ 2ffiffiffiffi

p
p

Z 1

0
e�r2

12u2� n2

4u2 du; ð5Þ

the YP integral over Cartesian GTOs has the form:
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where EAB ¼ e�fafb jA�Bj2=p, ECD ¼ e�fcfd jC�Dj2=q, and

I�xðax; bx; cx;dx;uÞ ¼
ZZ
ðx1 � AxÞax ðx1 � BxÞbx ðx2 � CxÞcx ðx2 � DxÞdx

� e�pðx1�PxÞ2�qðx2�QxÞ2�u2ðx1�x2Þ2 dx1dx2: ð7Þ

The following quantities are used: p ¼ fa þ fb, q ¼ fc þ fd,
P ¼ ðfaAþ fbBÞ=p, and Q ¼ ðfcCþ fdDÞ=q. Note that the definition
of I�ða; b; c; d;uÞ is identical to that in ERI. Changing the integration
variable in Eq. (6) with

t ¼ u2

u2 þ q
; ð8Þ

we arrive at a simpler expression for the YP integral,
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� Iyðay; by; cy;dy; tÞIzðaz; bz; cz;dz; tÞwðtÞdt;

ð9Þ

in which T ¼ qjP� Q j2 and U ¼ n2=4q with q ¼ pq=ðpþ qÞ, and

wðtÞ ¼ e�TtþUð1�t�1Þ

2t
ffiffi
t
p : ð10Þ

The scaled two-dimensional integrals [such as Ixðax; bx; cx;dx; tÞ] in
Eq. (9) are defined as

Ixðax; bx; cx;dx; tÞ ¼ I�xðax; bx; cx;dx; tÞ=I�xð0;0;0;0; tÞ: ð11Þ

The corresponding expression for the STG integral is derived by
applying the relation,

e�nr12 ¼ � @

@n
e�nr12

r12
; ð12Þ

to the YP integral [2]:
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Since Iða; b; c;d; tÞ is a polynomial of t (see, for instance, Ref. [34]),
the one-dimensional integrals in Eqs. (9) and (13) can be evaluated
by the Gaussian quadrature formula,

Z 1

0
PðtÞwðtÞdt ¼

Xdðnþ1Þ=2e

g¼1

PðtgÞWg ; ð14Þ

where tg and Wg are the position and weight of the grid point,
respectively, and n is the degree of a polynomial PðtÞ.

3. Integral evaluation using tailored Gaussian quadrature

To use the Gaussian quadrature formula, we must calculate the
positions and weights of the grid points. In the ERI evaluation (i.e.,
in the Rys quadrature method [31–34]), the weight function has
only one parameter associated with the exponents of the GTOs;
therefore, they are typically precomputed and stored for represen-
tative values of the parameter in the implementation step and
interpolated for other values at run-time [31,37–39]. Recently, an
elegant approach that evaluates them on the fly by the so-called
modified Chebyshev algorithm [40] has been proposed by Flocke
et al. [41,42]. The weight function for STG and YP integrals, by con-
trast, has two parameters (T and U), which makes the calculation of
quadrature grids less straightforward. In the current work, we cal-
culate the quadrature grids by interpolation based on two-dimen-
sional tables.

3.1. Preparing two-dimensional tables for interpolation

The two-dimensional tables for interpolating the positions and
weights of the grid points are generated at the time of implemen-
tation as follows. Given the weight function [wðtÞ] and the integral
range ½0;1�, there exists a set of monic orthogonal polynomials
which satisfy
Z 1

0
PmðtÞPnðtÞwðtÞdt ¼ 0 if m – n: ð15Þ

These polynomials have a three-term recurrence relation because of
their mutual orthogonality,

PmðtÞ ¼ ðt � am�1ÞPm�1ðtÞ � bm�1Pm�2ðtÞ; ð16Þ

where

am ¼
R 1

0 tPmðtÞ2wðtÞdtR 1
0 PmðtÞ2wðtÞdt

; ð17Þ

bm ¼
R 1

0 PmðtÞ2wðtÞdtR 1
0 Pm�1ðtÞ2wðtÞdt

: ð18Þ

The a’s and b’s are related to the quadrature grid. The Gaussian
quadrature of rank nquad, which is capable of integrating polynomi-
als of degrees up to 2nquad � 1 exactly under the given wðtÞ and
integral range, exploits the roots of Pnquad

ðtÞ as the positions of the
grid points. Since the integrands of Eqs. (9) and (13) divided by
wðtÞ are polynomials of degree Ltotal þ 1 with Ltotal ¼

P
w¼x;y;z

ðaw þ bw þ cw þ dwÞ [note the factors of t and ð1� tÞ in Eqs. (9)
and (13)], we choose

nquad ¼ dLtotal=2e þ 1 ð19Þ

as the rank of the quadrature. For integrals over four f-type GTOs,
for instance, nquad ¼ 7 is chosen.

While it is formally possible to use the Chebyshev algorithm
[43] for calculating a’s and b’s from the zeroth- through
ð2nquad � 1Þth-order moments introduced by Ten-no [2],

GmðT;UÞ ¼
Z 1

0
tmþ1wðtÞdt; �1 6 m 6 2nquad � 2; ð20Þ

the mapping from moments to a’s and b’s is known to be ill-condi-
tioned and hence numerically unstable [40]. In order to circumvent
this problem, we resort to multiple precision arithmetic [44]. The
moments are calculated by the recurrence formula of Ten-no [2],

Gm ¼
1

2T
ð2m� 1ÞGm�1 þ 2UGm�2 � e�T
� 	

; ð21Þ
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with j ¼ �
ffiffiffi
T
p
þ

ffiffiffiffi
U
p

and k ¼
ffiffiffi
T
p
þ

ffiffiffiffi
U
p

. Subsequently, a’s and b’s are
computed by the Chebyshev algorithm [43,40]:

rk;l ¼ rk�1;lþ1 � ak�1rk�1;l � bk�1rk�2;l;

l ¼ k; kþ 1; . . . ;2nquad � k� 1; ð24Þ
ak ¼ ðrk;kþ1=rk;kÞ � ðrk�1;k=rk�1;k�1Þ; ð25Þ
bk ¼ rk;k=rk�1;k�1; ð26Þ

with
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a0 ¼ G0ðT;UÞ=G�1ðT;UÞ; ð27Þ
b0 ¼ G�1ðT;UÞ; ð28Þ
Table 1
The maximum deviations from the reference values of GmðT;UÞ ð�1 6 m 6 12Þ
computed by Gaussian quadrature (nquad ¼ 7). The reference values are calculated by
multiple precision arithmetic. The maximum deviation is usually seen at m ¼ �1.
r�1;l ¼ 0; l ¼ 1;2; . . . ;2nquad � 2;
r0;l ¼ Gl�1ðT;UÞ; l ¼ 0;1; . . . ;2nquad � 1:

ð29Þ

The position of the grid point is obtained as the eigenvalue of
the tridiagonal matrix [40],

a0
ffiffiffiffiffi
b1

p
ffiffiffiffiffi
b1

p
a1

ffiffiffiffiffi
b2

p
. .

. . .
. . .

.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bnquad�2

q
anquad�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bnquad�1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bnquad�1

q
anquad�1

0
BBBBBBBBB@

1
CCCCCCCCCA
; ð30Þ

and the weight is calculated using the first element of the associ-
ated eigenvector (xj;0) as

Wj ¼ x2
j;0G�1ðT;UÞ: ð31Þ

The positions of the grid points as functions of T and U are depicted
in Fig. 1 for the case of nquad ¼ 2. They move along with the pole of
wðtÞ located around

ffiffiffiffiffiffiffiffiffi
U=T

p
.

Finally, we store the Chebyshev expansion coefficients [43] of
the positions and weights of the grid points using 100 boxes
in the ranges of T 2 ½0;210� and U 2 ½10�7;103�—U 2 ½10k;10kþ1�
ðk ¼ �7;�6; . . . ;2Þ and T 2 ½0;2� and ½2k;2kþ1� ðk ¼ 1;2; . . . ;9Þ—
inside which T and U are mapped onto �T , �U 2 ½�1;1�. Note that
the weights are scaled by

ffiffiffiffi
U
p

to avoid singular behavior at
U ! 0. The asymptotic forms are used for T > 210.

3.2. Two-dimensional interpolation

At run-time, the positions and weights of the grid points of gi-
ven T target and Utarget are obtained by the successive application of
the Chebyshev interpolation (which should not be confused with
the Chebyshev algorithm described above). The computational
procedure starts with one-dimensional interpolation of rank 14
to obtain ff ðTk;UtargetÞg ð0 6 k 6 13Þ, where f is a function of T
and U for either the position or the (scaled) weight of the grid
point. Clenshaw’s recurrence formula [43] is used:

dk;15 ¼ dk;14 ¼ 0; ð32Þ
dk;j ¼ 2Utargetdk;jþ1 � dk;jþ2 þ ck;j;

ðj ¼ 13;12; . . . ;1Þ; ð33Þ

f ðTk;UtargetÞ ¼ Utargetdk;1 � dk;2 þ
1
2

ck;0; ð34Þ
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Fig. 1. The positions of the grid points for nquad ¼ 2 as functions of T and U. The
weight function of the quadrature is e�TtþUð1�t�1 Þ=2t

ffiffi
t
p

.

in which all the Chebyshev expansion coefficients (ck;j) are known a
priori. Successively, we compute the Chebyshev expansion coeffi-
cients of these 14 points (�cj) as

�cj ¼
1
7

X13

k¼0

f ðTk;UtargetÞ cos
pjð2kþ 1Þ

28

� �
; ðj ¼ 0;1; . . . ;13Þ; ð35Þ

from which f ðT target;UtargetÞ is calculated using Clenshaw’s formula.
Note that cosines are to be precomputed and stored in computer
codes at the time of implementation.

The computational cost of the interpolation procedure is
dominated by the contributions from Eqs. (33)–(35). The number
of total floating-point operations in the interpolation proce-
dure is, therefore, roughly 10� 2nquad � 142 � n4

prim � 4000nquadn4
prim.

Though the prefactor is large, it scales linearly with respect to
nquad or, equivalently, to Ltotal, which is in contrast to the quadratic
scaling of the operation counts of the Rys quadrature method. For a
batch of integrals over four f-type GTOs (nquad ¼ 7), the operation
count for evaluating the quadrature grid is about 28000n4

prim,
which is 3–10 times smaller than the 77000n4

prim þ 135000n4
cont

operation counts [34] of the Rys quadrature scheme (nprim and
ncont are the numbers of primitive and contracted GTO quartets,
respectively). In addition, the interpolation procedure does not
require any loops of variable lengths, and therefore, can be effec-
tively implemented. When Ltotal is small, the interpolation proce-
dure can nonetheless be a large overhead.

The accuracy of the interpolation procedure is shown in Table 1
for nquad ¼ 7 by comparing the computed moments [i.e., GmðT;UÞ
ð�1 6 m 6 12Þ] and their exact values. The largest error is found
to be below 10�11, which is sufficient since STG and YP integrals ac-
count for the small basis-set truncation errors of correlation ener-
gies in the R12 (or F12) methods. One might instead pursue higher
accuracy by increasing the order of Chebyshev expansions or the
number of boxes.
3.3. Recurrence relations

The partial differentiation of Eq. (7) with respect to x1 and x2

and the rearrangement of terms lead to the so-called vertical and
horizontal recurrence relations (denoted as VRR and HRR) for
Iðax; bx; cx; dx; tÞ [34]. Since the definition of Iðax; bx; cx; dx; tÞ is iden-
tical to that in the ERI evaluation as mentioned above, both VRR
T U G�1ðT;UÞ maxfDGmðT;UÞg

0.125 0.002 1.9E+01 4.7E�12
0.125 0.2 1.2E+00 4.5E�12
0.125 20 2.2E�02 1.0E�12
0.5 0.002 1.8E+01 9.0E�12
0.5 0.2 1.1E+00 8.6E�12
0.5 20 1.5E�02 1.9E�12
2.5 0.002 1.7E+01 7.6E�15
2.5 0.2 5.8E�01 3.8E�13
2.5 20 2.3E�03 3.8E�15
10 0.002 1.5E+01 1.5E�14
10 0.2 1.4E�01 2.3E�12
10 20 1.9E�06 2.7E�15
40 0.002 1.1E+01 3.6E�13
40 0.2 8.5E�03 3.6E�12
40 20 2.6E�17 1.3E�18
160 0.002 6.4E+00 3.7E�12
160 0.2 3.0E�05 5.7E�12
160 20 – –a

a All the moments are negligibly small.
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and HRR formulas remain the same as those in the ERI evaluation.
The explicit formulas have been given elsewhere [34,41].
4. Implementation and timings

The computer code that implements the aforementioned inte-
gral evaluation method has been a part of an in-house electronic
structure program for molecules and solids [45]. Most of the codes
for STG and/or YP integrals (as well as those for ERI) have been
generated by simple code generators, while the subroutines
accounting for integrals with small Ltotal have been optimized by
hand. The quadrature grid evaluation and the VRR are common
for STG and YP integrals when they are computed simultaneously,
whereas the assembly step [i.e., numerical integration of Eqs. (9)
and (13) using the Gaussian quadrature formula], basis-set con-
tractions, Cartesian-to-spherical transformations, and the HRR
have been performed separately.

The YP integrals have been verified by comparison with the val-
ues computed with the finite-difference method developed by us
[46] and modified to solve the screened Poisson equation [see also
Eq. (39)],

/p/q
e�nr12

r12

����
����/r/s

� �
¼
Z

VYðrÞ/pðrÞ/qðrÞdr; ð36Þ

r2 � n2

 �

VYðrÞ ¼ �4p/rðrÞ/sðrÞ: ð37Þ

This is in analogy with the computation of ERI using the Poisson
equation [47]. The STG integrals have been checked by numerical
derivatives of the YP integrals with respect to n.

The timings in CPU seconds for evaluating the symmetry dis-
tinct [48] ERI, STG, and YP integrals of D2h C2H4 without screening
are listed in Table 2. The subsets of the aug-cc-pVQZ basis set [49]
are used. All the timings are measured on a single core of Core 2
Duo 2.0 GHz CPU (i.e., the other core is idle). The difference be-
tween the computational cost for STG integrals and that for ERI
stems from two reasons: (i) the quadrature grid evaluation is more
expensive for STG integrals than for ERI; and (ii) the rank of Gauss-
ian quadrature for STG integrals is higher by one than that for ERI
when Ltotal is odd, owing to the factor of t and ð1� tÞ in Eqs. (9) and
(13).

For the subset consisting of d, f, and g shells, the algorithm
presented here works remarkably well, resulting in a similar
CPU timing to (only 1.08 times larger than) that of ERI as ex-
pected from the floating-point operation counts. When integrals
with small Ltotal are included, the ratio deteriorates (1.61 for the
entire aug-cc-PVQZ basis set), since the two-dimensional interpo-
lation procedure is more expensive than the other operations for
small Ltotal. The simultaneous calculation of STG and YP integrals
halves this overhead, taking advantage of the fact that they can
be computed with the same quadrature grid. The computational
timing (divided by 2) is 1.28 times as great as that for ERI using
Table 2
Timings (in CPU seconds) for evaluating STG and/or YP integrals as well as ERI. The
subsets of the aug-cc-pVQZ basis set [49] are used for symmetry distinct integrals of
D2h C2H4.

Shells STG STG + YP ERIa STG/ERI STG + YP/ERI

fg 4.12 8.34 3.98 1.04 1.05
dfg 21.6 44.5 20.1 1.08 1.11
pdfg 59.3 112.3 48.8 1.22 1.15
spdfg 133.3 213.1 82.7 1.61 1.28

a Evaluated by the Rys quadrature method. The quadrature grid is obtained by
the one-dimensional interpolation.
the aug-cc-pVQZ basis set when STG and YP integrals are com-
puted simultaneously.
5. Conclusions

We have presented an efficient way of computing STG and YP
integrals using tailored Gaussian quadrature. The positions and
weights of the grid points have been evaluated by the two-dimen-
sional interpolation. Both the theoretical operation counts and the
actual timings have proven that, for integrals with large Ltotal, the
computational cost of the current scheme is similar to that of the
Rys quadrature method for ERI. Since one needs to include basis
functions with high angular momenta in the R12 (or F12) methods
owing to the introduction of auxiliary basis functions for the RI,
this algorithm is useful for the efficient implementation of the
R12 (or F12) methods. It is worth noting that this algorithm can
be used for integrals over GTOs with arbitrarily high angular
momenta.

The application of this algorithm to integrals with small Ltotal

has been, however, less effective, since two-dimensional interpola-
tion procedures constitute a large overhead, though the overhead
can be halved by simultaneous calculations of STG and YP inte-
grals. We expect that, to attain the best performance, the other
algorithms such as the one proposed by Ten-no [2,3] must be com-
bined for integrals with small Ltotal (say, for Ltotal 6 5). Together
with the present scheme, these STG and YP integral evaluation
methods serve to increase the performance of the R12 (or F12)
methods. The on-the-fly evaluation of quadrature grids, proposed
for ERI by Flocke et al. [41,42] and for STG and YP integrals by
Ten-no [36], can further increase the efficiency of the current algo-
rithm even for small Ltotal.
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Appendix A. Integral representation of the Yukawa potential

The Fourier transform of the YP is

e�nr12

r12
¼ 1

2p2

Z
eik�r12

k2 þ n2
dk; ð38Þ

which implies that it is Green’s function of the screened Poisson
equation, i.e.,

r2
1 � n2


 � e�nr12

r12
¼ �4pdðr12Þ; ð39Þ

in analogy with the Coulomb potential which is of the usual Poisson
equation. Using the following Laplace transformation,

1
s
¼
Z 1

0
e�su0 du0; ð40Þ

Eq. (38) becomes
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1
2p2

Z 1

0
e�n2u0

Z
e�k2u0þik�r12 dkdu0

¼ 1
2
ffiffiffiffi
p
p

Z 1

0

1
u0

ffiffiffiffi
u0
p e�n2u0�

r2
12

4u0 du0: ð41Þ

We arrive at Eq. (5) by changing the integration variable to
u ¼ 1=ð2

ffiffiffiffi
u0
p
Þ.
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