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ABSTRACT: The performance of the [2]S and [2]R12 universal
perturbative corrections that account for one- and many-body basis set
errors of single- and multiconfiguration electronic structure methods is
assessed. A new formulation of the [2]R12 methods is used in which
only strongly occupied orbitals are correlated, making the approach
more amenable for larger computations. Three model problems are considered using the aug-cc-pVXZ (X = D,T,Q) basis sets:
the electron affinity of fluorine atom, a conformational analysis of two Si2H4 structures, and a description of the potential energy
surfaces of the X 1Σg

+, a 3Πu, b
3Σg

‑ , and A 1Πu states of C2. In general, the [2]R12 and [2]S corrections enhance energy
convergence for conventional multireference configuration interaction (MRCI) and multireference perturbation theory
(MRMP2) calculations compared to their complete basis set limits. For the electron affinity of the F atom, [2]R12 electron
affinities are within 0.001 eV of the experimental value. The [2]R12 conformer relative energy error for Si2H4 is less than
0.1 kcal/mol compared to the complete basis set limit. The C2 potential energy surfaces show nonparallelity errors that are within
0.7 kcal/mol compared to the complete basis set limit. The perturbative nature of the [2]R12 and [2]S methods facilitates the
development of a straightforward text-based data exchange standard that connects an electronic structure code that can produce a
two-particle density matrix with a code that computes the corrections. This data exchange standard was used to implement the
interface between the GAMESS MRCI and MRMP2 codes and the MPQC [2]R12 and [2]S capabilities.

■ INTRODUCTION

Explicitly correlated R12/F12 methods1−4 are an effective
approach to reduce the basis set incompleteness error (BSIE)
of the conventional (i.e., based on Slater determinants) ab initio
many-body methods. The primary source of the BSIE is the
slow convergence of the atomic basis set within Slater determi-
nant based expansions near the singularities of the interelec-
tronic potential. Although Slater determinants are computa-
tionally convenient because of factorization of n-electron matrix
elements (Slater−Condon rules), they describe an interelec-
tronic potential that is smooth everywhere, whereas the exact
wave functions are known to have cusps wherever the inter-
electronic potential is singular. When electrons approach one
another, the exact wave function is linear in the interparticle
distance (rij) with the coefficient dependent on how the spins
of the electrons are coupled:

γ∂Ψ̂ ∂ = Ψ ==r r( / ) ( 0)ij r ij0ij (1)

where Ψ̂ is the spherically averaged wave function Ψ about the
point of coalescence (rij = 0), and γ = 1/2 for a singlet spin
coupled electron pair. The description of the cusp in terms of
Slater determinants requires the use of high angular momentum
basis functions that causes a steep rise of the computational
expense with an increase in the accuracy. An alternative is to
augment the Slater determinants with basis functions that de-
scribe the cusp directly in terms of the interelectronic distances,
rij, as is done in R12 methods.

All R12 methods involve n-electron (n > 1) basis functions
that depend on the correlation factor, f(rij), a function of the
interelectronic coordinate rij that is used to capture the essential
shape of the wave function at short rij. The three- and four-
electron integrals that appear in R12 methods are handled ap-
proximately by factorization into two-electron integrals only.5,6

Robust R12 methods for the single-configurational ground-state
wave functions, such as the coupled-cluster singles and doubles
(CCSD) approach, have become well-established in the past
decade.7−10 However, R12 methods for multireference (MR)
wave functions have not been as thoroughly tested; although
several such methods have been introduced, as discussed in the
following paragraphs. A better understanding of the strengths
and weaknesses of explicitly correlated MR methods is impor-
tant since MR wave functions are essential for reliable descrip-
tions of chemical species that exhibit near degeneracies which
occur in the vicinity of conical intersections, in bond breaking,
in free radical chemistry, in electronic excited states, and in un-
saturated transition metal compounds.
An early adaptation of single reference R12 methodology to

MR wave functions (MR-R12) resulted in the linear R12 multi-
reference configuration interaction (R12-MRCI)11 method and
the linear multireference averaged coupled-pair functional
(R12-ACPF)12 method. These methods augmented the con-
ventional MRCI and ACPF expansions with many terms that
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are linearly dependent on rij. Because no specialized basis set
was used to approximate many-electron integrals, very large
orbital basis sets were required and, therefore, applications were
limited to atoms and very small molecules. Later Ten-no intro-
duced MRMP2-F12,13 the first generally applicable MR method
to use the modern F12 technology; this method was based on
the multireference MP2 approach of Hirao.14 Ten-no arrived at
a practical method by introducing two key advances: (1) the
use of fixed-form (i.e., containing no variable parameters aside
from the geminal functional form) internally contracted gemi-
nal functions, and (2) some additional approximations that are
designed to avoid the need for the three-body reduced density
matrix (3-RDM). Shiozaki and Werner implemented CASPT2-
F1215 without the additional approximations of Ten-no, there-
by requiring the 3-RDM. Since CASPT2 requires at least the
3-RDM, regardless of the formulation, this is not a substantial
problem. Shiozaki et al. also extended the approach to (partially)
internally contracted MRCI16 (MRCI-F12) by introducing the
internally contracted explicitly correlated terms a priori. Hence,
the amplitudes of the conventional wave function are modified
because of the coupling.
Many recent developments in multireference methods can

be found in the literature. Klopper et al. extended the Mukherjee
variant of second-order multireference perturbation theory
Mk-MR-PT217 to the F12 framework as well.18,19 Notable ad-
vances in the area of MR coupled cluster theory are the explic-
itly correlated internally contracted MR coupled-cluster singles
and double theory (ic-MRCCSD(F12*)20 and the MR Brillouin−
Wigner CCSD-R12 (BW-CCSD-R12) and BW-CCSD-F12
methods.21

The present work assesses the performance of a modifica-
tion of the universal perturbative explicitly correlated approach
[2]R12

22 developed by Kong and Valeev.4 Like MRMP2-F12,
[2]R12 is technically similar to MP2-R12 and only needs a two-
particle density matrix. Yet [2]R12 can also be applied to more
general correlated states than CASSCF without requiring an
increase in theoretical complexity; for example, an entire MRCI
wave function can be used as the reference and, thus, higher-
order basis set incompleteness effects can be treated. Further-
more, methods without an explicit wave function, such as the
determinant-based quantum Monte Carlo (QMC) method,
have also been augmented with [2]R12;

23 emerging Density Matrix
Renormalization Group (DMRG)24 applications could similarly
be improved using the [2]R12 correction. Because [2]R12 is an a
posteriori correction, it may be reasonable to assume that when
basis set effects are significant, the [2]R12 approach may not
perform as well as a priori schemes like the MRCI-F12 scheme
of Shiozaki and Werner. Hence it is mandatory to document
the performance of the [2]R12 approach as rigorously as pos-
sible. This is also timely in the light of a related development
by Yanai and Shiozaki of a canonical transformation of the
Hamiltonian using explicitly correlated geminals25 whose com-
putational cost is comparable to that of [2]R12. Note that the
Hamiltonian transformation in their approach is state-specific
(depends on a reference density), thus it can be viewed as an
a priori counterpart to the state-specific a posteriori [2]R12
approach.
This paper evaluates the performance of the modified formu-

lation of the explicitly correlated [2]R12 correction (and its sister
[2]S basis set correction, see below).
This formulation gains an advantage over the most recent

presentation of [2]R12 by Kong and Valeev by making a cogent
distinction between those orbitals that are correlated using

geminals and those orbitals in terms of which the RDMs are
expressed. The new approach allows the use of MRCI as the
reference while correlating only the strongly occupied orbitals,
for example, the active space subset. The present work tests the
[2]R12 method on a set of prototypical problems that include
ground and excited states, and changing numbers of electrons.
MRCI- and MRMP2-based methods14 were used to compute
(1) the electron affinity (EA) of fluorine atom and (2) con-
formational energies of Si2H4. An explicitly correlated MRCI
approach is also used to compute (3) the potential energy
surfaces (PES) for the ground and three lowest-energy excited
states of C2. These test cases provide a critical test of the reli-
ability of the [2]R12 and [2]S BSIE corrections for different
applications: the EA of F deals with different electron densities
(anion vs neutral species), Si2H4 provides a conformational
analysis, and C2 is used to study the dissociation of a chemical
bond and relative energies of multiple excited states. [2]R12 and
[2]S BSIE corrections are calculated for each of these chemical
systems and, where possible, the results are compared to the
available experimental data. Timing information for the pilot
code is given for a C2 calculation to provide an idea of the ex-
pense of the different parts of the computation.
The newly developed data exchange standard that facilitates

the implementation of these corrections for MRCI and MRMP2
via a link between the GAMESS26 and MPQC27 programs is de-
scribed. GAMESS was used to compute the reference CASSCF
or MRCI wave functions, and the corresponding MRMP2
correlation energies. GAMESS was also used to generate the
MRCI or CASSCF second-order density matrices that were
used by MPQC to evaluate the [2]R12 and [2]S BSIE correc-
tions. A similar interface has also been recently developed
between the MPQC and MOLCAS28 programs.

■ METHOD

The [2]R12 method used in this work is similar to the spin-free
formulation described in ref 4. However, simple changes have
been made for the MRCI reference wave function. These
changes reduce the cost of correcting for the higher-order BSIE
that occurs because of the coupling of the conventional
dynamic correlation effects in the MRCI method with the R12
geminal correlation. Within the [2]R12 framework, one has the
ability to decide which orbitals are correlated by R12 geminals.
These orbitals, referred to herein as geminal orbitals, should
be chemically significant (i.e., valence orbitals, orbitals from a
MCSCF active space). By only correlating a subset of the
finite orbital basis set (OBS), a high degree of accuracy is still
achievable at a reduced computational expense. For context,
the essential details of the spin-free [2]R12 method are briefly
described.
For a given reference wave function |0⟩ (e.g., CASSCF, CI,

QMC), the [2]R12 correction describes the dynamic correlation
effects that cannot be described in the determinant space that is
generated by the finite OBS. Therefore, the correction is
identified with the two-electron basis set incompleteness. Here,
“two-electron” is defined with respect to the reference wave
function and, thus, can take on n-electron (n > 2) meaning with
respect to a given determinant. The [2]R12 energy correction is
evaluated by the second-order Hylleraas functional:

ψ ψ ψ= ⟨ | | ⟩ + ⟨ | − | ⟩H H E2 0 (1) (1) (1) (0) (0) (1)
(2)

where the first-order wave function |ψ(1)⟩ is defined as in ref 4.,
using the Einstein summation notation:
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ψ| ⟩ = + − Γ Γ | ⟩α β
α β

α
α

α
α

′ ′
′ ′

′
′

′
− ′t r E r E r E1

2
( 2 2 ( ) ) 0rs

pq rs
pq x

rs
pq

x
k

rs
j
i

pq
jk

i
(1) ( 1)

(3)

In this paper, following the same notation as in ref 4, p/q/r/s/t/
u/v/w/o refer to the orbitals correlated by R12 geminals (this
will usually include only strongly occupied orbitals), i/j/k refer
to the occupied orbitals (all orbitals corresponding to nonzero
elements of the reference RDMs), x/y refer to the orbitals in
the OBS, α′/β′ refer to a subset of orbitals from the formal
complete basis set (CBS) that are orthogonal to the conven-
tional OBS, and κ/λ/μ are the orbitals in the CBS (the union of
{α′} and the OBS). Ei

α′and Ei
α′β′ denote spin-free substitution

operators, eq 4, in which ap
† and aq are the standard creation

and annihilation operators:

∑

∑

=

=

σ α β

σ τ α β

=

†

=

† †

σ σ

σ τ τ σ

E a a

E a a a a

p
q

p q

rs
pq

p q s r

{ , }

, { , } (4)

rκλ
rs is the spin-free matrix element of the correlation factor
( f(r12))

∬ ϕ ϕ ϕ ϕ=κλ κ λr r r f r r r r r( ) ( ) ( ) ( ) ( ) d drs
r s1 2 12 1 2 1 2 (5)

trs
pq are the geminal coefficients that are fixed according to the
rational generator method of Ten-no to satisfy the first-order
cusp condition:6

δ δ δ δ= +t
3
8

1
8rs

pq
r
p

s
q

s
p

r
q

(6)

Γ denotes the 1-electron and 2-electron spin-free RDMs of the
reference wave function

Γ = ⟨ | | ⟩

Γ = ⟨ | | ⟩

E

E

0 0 ,

0 0 .

j
i

j
i

kl
ij

kl
ij

(7)

The α′/β′ orbitals are approximated by the complementary
auxiliary basis set (CABS) orbitals that are constructed by the
CABS+ procedure;5 the κ/λ/μ orbitals are approximated using
the union of CABS and OBS orbitals.
In the original applications of the [2]R12 method4,22 every

occupied orbital was geminal-correlated (i.e., {p} = {i} using
the orbital notation given after eq 3). An occupied orbital, i,
means any orbital in the orbital basis set with nonzero occu-
pancy in the reference wave function (i.e., there is at least one
nonzero matrix element of the 1-RDM involving this orbital).
For reference wave functions with a significant degree of dy-
namic electron correlation, many orbitals in the orbital basis
are occupied, but only weakly. Because the computational
complexity of the [2]R12 energy is at least quartic with respect
to the number of correlated orbitals, it makes sense to avoid
the excessive computational cost of the [2]R12 correction by
correlating only important (i.e., strongly occupied) orbitals.4

There are several ways to determine the strongly occupied
orbitals, for example, use natural orbitals that have well-defined
occupancies. Because only CASSCF-based reference wave
functions (MRPT and MRCI) are utilized, the active space is
used to define which orbitals are important. Hence, {p} equals
the inactive and active orbitals of the CASSCF. Unlike the
previous application of [2]R12 to MRCI,4 the MRCI [2]R12
correction is calculated using the MRCI (not the CASSCF)

density. Therefore, it is important to carefully distinguish the
geminal-correlated ({p}), occupied ({i}), and orbital ({x}) in-
dices. For completeness, the full expressions (using Einstein
summation notation) for the [2]R12 correction are presented
here:

= + + + Δ2 ( )(2)
0 (8)
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where r2, gr, and rTr refer to the two-electron integrals of
(f(r12))

2, f(r12)/r12, and [f(r12), [T1, f(r12)]], respectively, and
hJ, T, and K refer to the one-electron integrals of the core
Hamiltonian plus Coulomb, kinetic energy, and exchange oper-
ators, respectively.
The matrix elements in the [2]R12 Hylleraas functional were

evaluated using the CABS+ approximation5 and an exponential
correlation factor,29 f(rij) = −γ−1 exp(−γrij) (where γ is set
to the recommended value for the particular orbital basis set),
is fitted to a linear combination of six Gaussian geminals. All
explicitly correlated MRCI results are computed with the MRCI
second-order density, while the CASSCF second-order density is
used for explicitly correlated MRMP2 computations.
Since [2]R12 corrects the two-electron basis set incom-

pleteness (correlation energy), the dominant source of residual
error becomes the one-electron basis set incompleteness (reference
energy). This deficiency is addressed by the perturbative [2]S
correction of Kong and Valeev that accounts for the one-
electron BSIE of the reference (CASSCF) energy.30 In this
work the [2]S corrections were evaluated with the Dyall zeroth-
order Hamiltonian.31

As an alternative to the [2]S correction, the one-electron
BSIE was estimated as the difference between the CASSCF
energy in the basis set being used and the CASSCF/aug-cc-
pVQZ32 energy. This alternative method provides an indepen-
dent, variational method for obtaining the one-electron BSIE
for comparison with the [2]S correction. The variationally cor-
rected BSIE is then combined with either the aug-cc-pVDZ or
the aug-cc-pVTZ MRCI and MRMP2 dynamic correlation
energies, defined as Emrx − Ecasscf (x = CI or MP2) to obtain the
total energy. Results using this large basis set reference energy
are indicated by a “*” (e.g., MRCI*).
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The CBS limit of the correlation energy was estimated via
the inverse power expansion33 of the correlation energy based
on the aug-cc-pVTZ and aug-cc-pVQZ basis sets as

= + −E X E AX( ) (CBS)corr corr
3

(13)

whereas the CBS limit of the CASSCF reference energy was
obtained by an exponential extrapolation:34,35

= + −E X E A( ) (CBS) e bX
REF REF (14)

All computations in this work were performed using the new
interface between the GAMESS and MPQC packages.
GAMESS was used to compute the reference/correlation en-
ergies, molecular orbitals, and second-order reduced density
matrices. MPQC subsequently was used to compute the [2]R12
and [2]s BSIE corrections. Since GAMESS is mostly written in
the Fortran 77 programing language and MPQC is primarily
written in C++, the data between GAMESS and MPQC is
exchanged via human-readable text files containing the two
particle reduced density matrix (2-RDM) and the associated
metadata (molecular geometry, atomic orbital basis set, and
molecular orbitals). The expansion coefficients for each mo-
lecular orbital are passed to a disk file in which the atomic and
molecular orbital indices are explicitly given. The coordinates
are passed in the usual xyz format and are labeled with the
appropriate atomic number. To take advantage of the sparsity
of the second-order density matrix, only density matrix
elements that are above a defined threshold (i.e., 10−12) are
printed to disk with each element explicitly labeled with its four
orbital indices. All atomic orbital basis set information is sent to
disk, which allows MPQC to compute the BSIE corrections
independently of GAMESS. A descriptive explanation of the
format used for the disk files is presented in the Supporting
Information. Alternatively, GAMESS is fully interfaced to
MPQC with the MPQC control options passed from GAMESS
through the standard argv/argc command line arguments. This
allows the two software programs to be run as one application.
An example input can be found in the Supporting Information,
Figure 1.
Currently, the GAMESS/MPQC interface is limited by the

amount of memory that is required to store the 2-RDM. This
storage requirement (∼g2n2/4 where n is the number of molec-
ular orbitals and g is the number of geminal-correlated orbitals)
limits both the GAMESS and MPQC programs. During parallel
execution GAMESS is much less impacted by this restriction
because it places the 2-RDM into distributed memory, which is
memory shared between compute nodes. One final note: the
diagonalization of the CI Hamiltonian and the generation of the
second-order density matrix in GAMESS are computed in
parallel across multiple nodes while the MPQC [2]R12 and [2]S
BSIE corrections are currently limited to parallel execution
among the cores within a single node.

■ RESULTS
Electron Affinity of Atomic Fluorine. The determination

of EAs can be a difficult test for electronic structure methods
because of the lack of cancellation of errors between the
electron correlation and relaxation effects upon the attachment
of an electron. Therefore the electronic structures of the neutral
and ionic species must both be described accurately.36−38 The
purpose of this subsection is to examine the performance of the
[2]R12 BSIE and [2]S corrections when applied to the electronic
structures of fluorine atom and its anion. Three different

CASSCF reference wave functions are used to perform MRCI
and MRMP2 computations. The smallest reference active space
(ACT-1) is constructed from 9 active orbitals: 1s, 2s, all three
2p, 3s, and all three 3p. For the neutral (anionic) species, the
active space included 9 (10) electrons. The second active space
(ACT-2) is constructed from the 2s, all three 2p, 3s, all three
3p, and all five 3d orbitals, while the 1s orbital is constrained to
be doubly occupied in both the CASSCF and MRCI
computations. For ACT-2, there are 7 (8) electrons distributed
among the 13 active orbitals for the neutral (anionic) species.
The last active space (ACT-3) includes the 1s, 2s, all three
2p, 3s, all three 3p, and all five 3d orbitals (14 orbitals) and
contains 9 (10) electrons for the neutral (anionic) species. Both
conventional and explicitly correlated MRCI and MRMP2
results are presented. For the ACT-3 reference space, MRCI
was only performed with the aug-cc-pVDZ and aug-cc-pVTZ
basis sets since the memory requirement for the conventional
(uncontracted) MRCI computation is not practical for the aug-
cc-pVQZ basis set.
Previously, the EA of F atom was computed with the approx-

imately size extensive R12 MR averaged coupled-pair functional
(R12-MRACPF)39 with a composite basis set (see Table 2 in
ref 40) including a relativistic correction and found to be 3.385
eV.40 Without the relativistic correction the R12-MRACPF EA
was found to be 3.398 eV. These EAs are comparable to the
CCSD + F12 + “high level correction” value (3.4276 eV)41 and
the experimental value (3.401 eV).42

Table 1 displays the MRCI EA values of F atom predicted by
the ACT-1, ACT-2 and ACT-3 active spaces (see Supporting

Information, Tables 1−3 for total energy values). As expected,
the conventional MRCI EA values approach the ACT-1 and
ACT-2 CBS limits (3.392 and 3.427 eV, respectively) as the
size of the AO basis is increased. Compared to conventional
MRCI values, the MRCI + [2]R12 EAs are improved at each
respective basis set level. Once the [2]S correction is included
(MRCI+[2]R12+[2]S), the reported EAs for each basis set using
ACT-1 lie within ∼0.02 eV of each other, while the EAs com-
puted with ACT-2 for each basis set lie within ∼0.01 eV of
each other. For the aug-cc-pVTZ basis set, the MRCI*+[2]R12
errors (compared to CBS) are slightly smaller than those
computed by MRCI+[2]R12+[2]S. However, the aug-cc-pVDZ
MRCI*+[2]R12 errors are larger (ACT-1 error: 0.161 eV, ACT-2

Table 1. MRCI Electron Affinities of F Atom (eV)
Computed As the Energy Difference between F Atom and F−

Aniona

method
active
space

basis
set MRCI

MRCI +
[2]R12

MRCI +
[2]R12 + [2]S

MRCI*b +
[2]R12

MRCI ACT-1 aDZ 3.224 3.384 3.366 3.231
aTZ 3.277 3.355 3.322 3.346
aQZ 3.334 3.350 3.344 3.350
CBS 3.392

ACT-2 aDZ 3.235 3.421 3.390 3.264
aTZ 3.302 3.392 3.360 3.375
aQZ 3.364 3.400 3.393 3.400
CBS 3.427

ACT-3 aDZ 3.238 3.403 3.373 3.226
aTZ 3.306 3.368 3.327 3.355

a“aXZ” refers to the aug-cc-pVXZ basis set. The CCSD + F12 + “high
level correction” is 3.427 eV.41 bComputed as ECASSCF(aQZ) plus
(EMRCI-ECASSCF) in the given basis set.
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error: 0.163 eV) than the MRCI+[2]R12+[2]S values (ACT-1
error: 0.026 eV, ACT-2 error: 0.037 eV).
Table 2 displays MRMP2 EAs of F atom for the ACT-1,

ACT-2, and ACT-3 active spaces (see Supporting Information,
Tables 4−6 for the total energy values). As the basis set size is
increased the MRMP2 EAs approach the CBS limits for each
active space (3.306 eV, 3.257 eV, and 3.259 eV, respectively).
Compared to conventional MRMP2, the MRMP2+[2]R12 and
MRMP2+[2]R12+[2]S predicted EAs lie much closer to the CBS
estimates. The MRMP2+[2]R12 and MRMP2+[2]R12+[2]S EAs
are overestimated when treated with the aug-cc-pVDZ basis
set, but the EAs do converge to the CBS limit as the size of the
AO basis is increased. For the MRMP2+[2]R12+[2]S method,
there is an oscillation in the sign of the EA error as the CBS
limit is approached. The MRMP2*+[2]R12 predicted EAs be-
have similarly to those predicted by MRCI*+[2]R12the aug-
cc-pVDZ error is larger, while the aug-cc-pVTZ and aug-cc-
pVQZ results are nearly converged to the extrapolated CBS
estimates.
MRMP2 EAs do not show the same agreement with exper-

iment as do the MRCI EAs (exp. 3.401 eV). However the
convergence of the predicted EAs compared to the CBS limits
is faster when the [2]R12 and [2]S corrections are considered.
The [2]S BSIE correction adds little improvement to the EAs
compared to MRMP2 + [2]R12. There does not appear to be a
significant difference in the predicted EA values obtained from
the various active spaces used.
Conformations of Si2H4. As a result of the relative weak-

ness of silicon π-bonds, unsaturated silicon hydrides have many
physical dissimilarities compared to analogous hydrocarbons.43

The Si2H4 ground state aug-cc-pVDZ MRMP2 optimized struc-
ture has Cs symmetry while the transition state connected to
the minimum energy structure has C2v symmetry (Figure 1).
A (2,2) active space (π and π* orbitals) is used for the

CASSCF wave function. All conformer energies are computed
at the aug-cc-pVDZ MRMP2 optimized geometries. In the
minimum energy structure, the π and π* orbitals have natural
orbital occupation numbers of approximately 1.82 and 0.18
(respectively), suggesting significant multireference character.44

Table 3 displays the energy differences between the C2v and
Cs conformers at the conventional and explicitly correlated
MRMP2 and MRCI levels of theory (see Supporting Information,
Tables 7−10 for total energy values). The MRMP2 energies
were computed with the aug-cc-pVDZ, aug-cc-pVTZ, and aug-
cc-pVQZ basis sets. Because of the physical memory requirements

for the pilot-quality [2]R12 and [2]S implementations in MPQC,
the MRCI [2]R12 and [2]S corrections are computed with the
aug-cc-pVDZ basis only. The number of orbitals that are
explicitly correlated (Ncorr − geminal orbitals) is set to either 2
(active orbitals only) or 12 (all valence orbitals); Ncorr is
indicated in Table 3.
For the basis sets used, the conventional MRMP2 and MRCI

methods overestimate the energy difference between con-
formers (error range ∼0.47−0.09 kcal/mol) compared to the
CBS limit. MRMP2+[2]R12 reduces the error range to 0.22−
0.09 kcal/mol (0.35−0.07 kcal/mol) when 7 (2) strongly oc-
cupied valence orbitals are explicitly correlated. The conformer
energy differences relative to the CBS limit are underestimated
(overestimated) when 7 (2) orbitals are explicitly correlated.
MRCI + [2]R12 overestimates (underestimates) the conformer
energy difference by 0.33 kcal/mol (0.15 kcal/mol) when 2 (7)
orbitals are explicitly correlated. MRCI predicts a larger C2v − Cs
energy difference than that predicted by MRMP2 (∼2 kcal/mol
larger). However, it is important to note that all of the energy
differences are rather small and that the [2]R12 method always
corrects the energy so that the error with respect to the CBS
limit is smaller.

C2 Potential Energy Surfaces. Accurate calculations of
excited electronic states can be difficult in ab initio electronic
structure methods since the excited states, unlike most ground
states, are frequently dominated by more than one config-
uration. This is especially true for bond dissociations, for which
several configurations and/or states can mix at different points
along the PES. The C2 molecule is a notoriously challenging
benchmark test for multireference methods, because even
ground state C2 is strongly multireference. The ground state C2
wave function can be qualitatively characterized as having two
π bonding orbitals and minimal σ bonding character. Notable
reference studies of C2 include a full CI determination of the
PES with the 6-31G (d) basis set45 and an MRCI analysis of the
PES with the correlation consistent cc-pVXZ basis sets (up to
X = 5).46 The purpose of this subsection is to examine the
performance of the [2]R12 and [2]S BSIE corrections along the
dissociation PES for the ground and the three lowest excited
states of C2 (two singlets and two triplets).
The CASSCF reference wave function for C2 is constructed

with eight electrons and the eight valence (1σ, 1σ*,1π,1π*2σ,2σ*)
molecular orbitals (Figure 2). The two carbon 1s orbitals are
constrained to be doubly occupied in the CASSCF and MRCI
computations. MRCI is used to construct the PESs for the four

Table 2. MRMP2 Electron Affinities of F Atom (eV) Computed by the Energy Difference between F Atom and F− Aniona

method active space basis set MRMP2 MRMP2 + [2]R12 MRMP2 + [2]R12 + [2]S MRMP2*b + [2]R12

MRMP2 ACT-1 aDZ 3.167 3.353 3.334 3.200
aTZ 3.199 3.306 3.273 3.296
aQZ 3.251 3.302 3.296 3.302
CBS 3.306

ACT-2 aDZ 3.122 3.350 3.319 3.193
aTZ 3.151 3.274 3.242 3.257
aQZ 3.202 3.262 3.255 3.262
CBS 3.257

ACT-3 aDZ 3.123 3.329 3.299 3.153
aTZ 3.157 3.269 3.230 3.256
aQZ 3.205 3.259 3.252 3.259
CBS 3.259

a“aXZ” refers to the aug-cc-pVXZ basis set. The CCSD+F12+”high level correction” is 3.427 eV.39. bComputed as ECASSCF(aQZ) plus
(EMRMP2-ECASSCF) in the given basis set.
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lowest energy states (X 1Σg
+, a 3Πu, b

3Σg
‑ , and A 1Πu) of C2 for

which comprehensive spectroscopic data is available.47,48 The
D2h point group is used for all computations (see Tables 11−14
in Supporting Information for total energy values) and density
fitting is used for integral evaluation in the MPQC program for
the [2]R12 and [2]S aug-cc-pVQZ results.
The PESs were computed by varying the internuclear dis-

tance from 0.8 to 6.0 Å. Three grids (coarse, medium, fine)
were used to determine the PES for each state. A course grid
was obtained in intervals of 0.125 Å to establish the general
features of the surface. A medium grid was obtained in intervals

of 0.01 Å around the equilibrium bond distance. A fine grid,
steps of 0.001 Å, was used to refine the equilibrium distance.
Table 4 displays the electronic dissociation energies De

(kcal/mol), the adiabatic electronic excitation energies (differ-
ences between the ground and excited state minima) Te (cm

−1),
and the equilibrium bond lengths Re (Å) for the X1Σg

+, a3Πu,
b3Σg

‑ , and A1Πu states. Table 4 includes results that were ob-
tained using both conventional and explicitly correlated MRCI
computations. The explicitly correlated results include the
[2]R12 and [2]S BSIE corrections.
As the cardinal number of the basis set is increased, the

conventional MRCI predictions (in general) for the X1Σg
+, a3Πu,

and b3Σg
‑ states change monotonically, and converge toward the

experimental values. For the A1Πu state, as the cardinal number
of the basis set is increased the conventional MRCI De energies
and equilibrium bond lengths converge toward the exper-
imental values, however the excitation energy overshoots the
experimental value. Similar behavior was seen for the non-
augmented correlation consistent basis sets when the con-
tracted MRCI (CMRCI) method was used to examine the a3Πu
state.46 Unlike the CMRCI study,46 the conventional MRCI
(aug-cc-pVXZ, X = D,T,Q) Te values computed here approach
the experimental measurements for the a3Πu state as the
cardinal number of the basis set is increased. In all cases, the
equilibrium distances shorten and the De values increase with
the cardinal number of the basis set. The adiabatic excitation
energies tend to increase with increasing basis set size except
for the MRCI*, MRCI*+[2]R12, and MRCI+[2]R12+[2]S values
for the A1Πu state. There is a slight oscillation with the MRCI
+[2]R12+[2]S Te values for the a3Πu state.
In comparison to conventional MRCI, the MRCI+[2]R12 and

MRCI+[2]R12+[2]S predicted dissociation energies and exci-
tation energies improve relative to experiment as the basis set is
increased. Only the MRCI/aug-cc-pVTZ Te for the A

1Πu state is

Figure 1. Si2H4 aug-cc-pVDZ MRMP2 optimized geometry of (a) the ground state (Cs) and (b) the transition state (C2v).

Table 3. Conventional and Explicitly Correlated MRCI and MRMP2 Energy Differences (kcal/mol) between the Minimum and
Transition State Structures of Si2H4

a

Ncorr basis set MRMP2 MRMP2 + [2]R12 MRMP2 + [2]R12 + [2]S MRMP2*b + [2]R12 MRCI MRCI + [2]R12 MRCI [2]R12 + [2]S MRCI*b + [2]R12

2 aDZ 1.49 1.22 1.04 1.21 3.43 3.29 3.12 3.29
aTZ 1.25 1.08 1.06 1.05 3.17
aQZ 1.03 0.94 0.94 0.94 3.06
CBS 0.87 2.96

12 aDZ 1.49 0.65 0.47 0.64 3.43 2.81 2.63 2.81
aTZ 1.25 0.77 0.75 0.74 3.17
aQZ 1.03 0.78 0.78 0.78 3.06
CBS 0.87 2.96

aNcorr is the number of molecular orbitals (geminal orbitals) explicitly correlated in the [2]R12 computation. “aXZ” refers to the aug-cc-pVXZ basis
set. bComputed as ECASSCF(aQZ) plus (EMRMP2 − ECASSCF) or (EMRCI − ECASSCF) in the given basis set.

Figure 2. Molecular orbitals of C2 that are used to construct the
MCSCF active space. The MCSCF natural orbital occupation
numbers are shown below the orbital designations.
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in closer agreement with experiment (absolute error ∼8 cm−1)
than are the explicitly correlated results (absolute error ∼21−

304 cm−1). The negative MRCI/aug-cc-pVDZ Te excitation en-
ergy for the a3Πu state (−24.3 cm−1) indicates that the ground

Table 4. Dissociation Energies (De, kcal/mol), Adiabatic Excitation Energies (Te, cm
−1), and Equilibrium Bond Distances

(Re, Å) for C2

State Method
Basis
set

De
(kcal/mol)

Te
(cm−1) Re (Å)

X1Σg
+

MRCI aDZ 129.9 0 1.274
aTZ 140.6 0 1.253
aQZ 143.9 0 1.248

MRCI* aDZ 133.9 0 1.261
aTZ 141.3 0 1.251

MRCI + [2]R12 aDZ 138.6 0 1.262
aTZ 144.2 0 1.249
aQZ 145.6 0 1.247

MRCI* + [2]R12 aDZ 143.0 0 1.248
aTZ 144.9 0 1.247

MRCI + [2]R12 + [2]S aDZ 142.8 0 1.251
aTZ 144.7 0 1.247
aQZ 145.6 0 1.246

Expt.† 147.8 ± 0.5 0 1.243
a 3Πu

MRCI aDZ 130.1 −25.3 1.344
aTZ 139.4 464.1 1.323
aQZ 142.2 654.2 1.318

MRCI* aDZ 133.4 392.4 1.330
aTZ 140.0 534.8 1.321

MRCI + [2]R12 aDZ 137.7 269.1 1.331
aTZ 142.4 644.3 1.318
aQZ 143.6 741.0 1.316

MRCI* + [2]R12 aDZ 141.2 709.1 1.318
aTZ 143.0 715.2 1.318

MRCI + [2]R12 + [2]S aDZ 140.4 711.0 1.321
aTZ 142.9 699.3 1.317
aQZ 143.7 746.2 1.316

Expt.† 145.8 ± 0.5 716.2 1.312

State Method
Basis
set

De
(kcal/mol)

Te
(cm−1) Re (Å)

b3Σg
‑

MRCI aDZ 115.1 5198.7 1.399
aTZ 123.5 6032.8 1.380
aQZ 126.1 6300.9 1.375

MRCI* aDZ 117.7 5888.4 1.385
aTZ 124.0 6151.8 1.378

MRCI + [2]R12 aDZ 122.4 5609.7 1.388
aTZ 126.4 6236.7 1.376
aQZ 127.4 6396.9 1.375

MRCI* + [2]R12 aDZ 125.2 6340.7 1.374
aDZ 127.0 6356.1 1.374

MRCI + [2]R12 + [2]S aDZ 124.5 6299.8 1.377
aTZ 126.9 6310.1 1.374
aQZ 127.5 6397.2 1.375

Expt.† 129.4 ± 0.5 6434.2 1.369
A 1Πu

MRCI aDZ 106.7 8153.5 1.351
aTZ 116.7 8399.2 1.329
aQZ 119.8 8500.4 1.325

MRCI* aDZ 109.9 8615.2 1.337
aTZ 117.3 8477.5 1.327

MRCI + [2]R12 aDZ 115.3 8086.7 1.339
aTZ 120.2 8427.5 1.325
aQZ 121.3 8522.0 1.323

MRCI* + [2]R12 aDZ 118.8 8570.9 1.325
aTZ 120.8 8506.0 1.323

MRCI + [2]R12 + [2]S aDZ 118.0 8574.2 1.329
aTZ 120.7 8483.8 1.323
aQz 121.4 8528.6 1.323

Expt.† 123.8 ± 0.5 8391.0 1.318
*Computed as ECASSCF(aQZ) plus (EMRCI-ECASSCF) in the given basis set. †Experimental dissociation energy (De) taken from ref 47., Te, and Re
taken from ref 48.

Figure 3. Nonparallelity errors (NPE) in the correlation energy for the X 1Σg
+, a3Πu, b

3Σg
‑ , and A1Πu states of C2 (0.9−6.0 Å). MRCI and

MRCI+[2]R12 NPE errors are presented for aug-cc-pVXZ (X = D,T,Q) basis sets.
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state (X1Σg
+) is predicted to be higher in energy at this level

of theory. The correct order of the a3Πu and X1Σg
+ states is

predicted once explicit correlation is used. However, the BSIE
error for this case is largely caused by the one-electron incom-
pleteness since the error in the MRCI*/aug-cc-pVDZ Te is
smaller than the MRCI+[2]R12 error. On average, the explicitly

correlated MRCI/aug-cc-pVXZ results are in better agreement with
experiment than are the conventional MRCI/aug-cc-pV(X+1)Z
predictions, where X = D,T.
The nonparallelity errors (NPE) along the state-specific PESs

(0.9−6.0 Å) for the X1Σg
+, a3Πu, b

3Σg
‑ , and A1Πu states are

shown in Figures 3 and 4 (see Table 9 in Supporting

Figure 4. Nonparallelity errors (NPE) in the total energy for the X1Σg
+, a3Πu, b

3Σg
‑ , and A1Πu states of C2 (0.9−6.0 Å). MRCI and MRCI+[2]R12

NPE errors are presented for aug-cc-pVXZ (X = T,Q) basis sets.

Figure 5. Errors (cm−1) in the vibration energy level differences computed for (a) the X 1Σg
+ C2 ground state, (b) the a3Πu C2 excited state, (c) the

b3Σg
‑ C2 excited state, and (d) the A1Πu C2 excited state. “aXZ” refers to the aug-cc-pVXZ basis set (X = D,T,Q). Errors are relative to experimental

values taken from ref 48.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4006773 | J. Chem. Theory Comput. 2014, 10, 90−10197



Information for numerical values for the NPEs). The NPE is
defined as the difference between the maximum and the
minimum errors in the energy with respect to the extrapolated
CBS PES. Ideally, the NPE should be zero. The NPE in the
correlation energy is examined to isolate the effects of the
[2]R12 correction. For MRCI+[2]R12, a correlation energy NPE
of 6.0−4.7 kcal/mol is seen among the states when the aug-cc-
pVDZ basis set is used. The MRCI+[2]R12 NPE is reduced to
2.5−2.0 kcal/mol when the aug-cc-pVTZ basis set us used.
MRCI+[2]R12 NPEs computed with the aug-cc-pVQZ basis set
have a correlation energy NPE ≤ 1.0 kcal/mol. The NPEs in
the total energy for the aug-cc-pVXZ (X = T,Q) are
represented by Figure 4. The NPE error in the total energy
for the aug-cc-pVTZ basis set is larger than the NPE in the cor-
relation energy. These errors likely originate from the BSIE in
the reference energy, since the NPE in the total energy decreases
when the [2]S correction is included. The MRCI+[2]R12+[2]S
NPEs in the total energy range from 2.3 to 2.6 kcal/mol and
0.4−0.7 kcal/mol for the aug-cc-pVTZ and aug-cc-pVQZ basis
sets, respectively.
A recent explicitly correlated full configuration interaction

quantum Monte Carlo +[2]S +[2]R12 (FCIQMC-F12) study ex-
amined the PES of the X1Σg

+ C2 ground state from R = 0.9−
1.6 Å.23 An additional study used the phaseless auxiliary-field
quantum Monte Carlo (AFQMC) method to also examine
the X1Σg

+ C2 ground state PES (0.9−3.0 Å).49 The FCIQMC-
F12 method used the cc-pVDZ basis set, while AFQMC used
the 6-31G(d) basis set with a CASSCF trial wave function.
Although these basis sets are different than those used in this
study, they are still of double-ζ quality and provide a
reasonable comparison for the aug-cc-pVDZ results in this
work. The FCIQMC-F12 results show a NPE of 12.3 mh (in
the range R = 0.9−1.6 Å) while MRCI+[2]R12+[2]S shows an

NPE of 13.9 mh (in the range R = 0.9−1.625 Å). The
AFQMC study has an NPE of 7 mh (in the range R = 0.9−
3.0 Å), while MRCI+[2]R12+[2]S has a NPE of 14.8 mh over
the same range.
The C2 vibrational energy levels are obtained from solutions

to the nuclear Schrödinger equation. These solutions are found
by a discrete variable representation procedure50 in which the
potential energy curves are fitted to even-tempered Gaussians.51

Details of the implementation are described elsewhere.52 The
first four experimental vibrational energy level differences
(G(ν)=Gν-G0, ν = 1,4) for the X1Σg

+, a3Πu, b
3Σg

‑ , and A1Πu states
are shown in Figure 5 (see Table 11 in Supporting Information
for numerical values). Relative to the experimental vibrational
energy level differences,47 the errors in the vibrational energy
level differences computed by MRCI, MRCI+[2]R12, and
MRCI + [2]R12+[2]S are of interest. Relative to experiment,
the MRCI+[2]R12 errors in vibrational energy differences for
the X1Σg

+, a3Πu, b
3Σg

‑ , and A1Πu states are generally smaller
compared to the MRCI errors. For the a3Πu, b

3Σg
‑ , and A1Πu

states aug-cc-pVTZ MRCI+[2]R12+[2]S results show improve-
ment over the MRCI+[2]R12 results, however when the aug-cc-
pVDZ basis set is used the opposite trend is seen. The lower
vibrational energy level differences tend to be well represented
in both the ground and excited states. The MRCI+[2]R12 errors
in the vibrational energy level differences do not asymptotically
decrease with basis set size for the X1Σg

+ as is seen (in general)
for the excited states. Lastly the MRCI+[2]R12 errors increase as
v increases because the fundamentals are off by some amount,
hence for each higher level the deviation from the exact value
will increase with v.
The errors in the zero-point energies (ZPEs) for the X1Σg

+,
a3Πu, b

3Σg
‑ , and A1Πu states computed with aug-cc-pVXZ (X =

D,T,Q) relative to the experimental ZPEs47 are presented in

Figure 6. Error in C2 zero-point energies (ZPE, cm
−1) determined from potential energies surfaces computed by MRCI, MRCI + [2]R12, and

MRCI + [2]R12 + [2]S. “aXZ” refers to the aug-cc-pVXZ basis set (X = D,T,Q). Errors are relative to experimental values taken from ref 47.
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Figure 6 (see Table 11 in Supporting Information for numerical
values). Overall, the aug-cc-pVXZ (X = D,T,Q) MRCI
+[2]R12 predicted ZPE agrees better with experiment than
MRCI alone. The only exception to this trend is the aug-cc-
pVQZ MRCI+[2]R12 value for the X

1Σg
+ state. The unsigned

error (compared to experiment) for the MRCI+[2]R12 value
(1.4 cm−1) is slightly larger than the unsigned error in the conven-
tional MRCI value (1.1 cm−1). Compared to the MRCI+[2]R12
ZPEs, the MRCI+[2]R12+[2]S ZPEs exhibit minor differences
(∼1−3 cm−1).
Sample Timings for the Pilot Code. To provide a

preliminary idea of the expense of the calculations, timing infor-
mation for the pilot code has also been collected in Table 5 for

the C2 molecule for MRCI and MRMP2 single point energies
in D2h symmetry. The size of the OBS and CABS basis sets
are shown along with the amount of time (in minutes) for
each CI iteration or full MRMP2 energy computation,
2-RDM generation, [2]R12 correction, and [2]S correction.
All computations were carried out in serial on an Intel Xeon
E2690 processor.
Since the 2-RDM from the CASSCF is used for the MRMP2

computations, the 2-RDM has already been calculated for the
MRMP2 computation and there is no extra cost associated with
its formation. However, for MRCI, there is an additional cost
associated with the 2-RDM formation. While the cost to form
the 2-RDM is higher than the cost of a CI iteration, it must
be kept in mind that it is often the case that 30 or more CI
iterations are required for convergence. Therefore the cost to
form the 2-RDM is lower than that of the CI calculation. In
addition, the 2-RDM formation has been parallelized across
nodes (both for memory and CPU considerations) and so the
formation time will decrease significantly with the addition of
processes. However, whenever the parallel 2-RDM code is used,
an expensive sort operation is required, so that data can be
efficiently transferred between nodes and processes. For
example, if the aug-cc-pVQZ 2-RDM is computed in serial
with the entries sorted, the CPU time is 48.3 min vs 19.9 min
for the unsorted entries. When the 2-RDM computation with
the sort is run in parallel with 2 cores, the time decreases to
25.3 min (∼1.9× speedup compared to a single core), and with
eight cores there is a ∼7.1× speedup.

■ CONCLUSION
This paper reports an assessment of the explicitly correlated
[2]R12 correction for the BSIE of the electron correlation en-
ergy, and its sister [2]S correction for the BSIE of the reference

energy. The [2]R12 correction was formulated in this work such
that only strongly occupied (inactive + active) orbitals in the
reference MRCI or CASSCF wave function are correlated,
thus the computational cost of this formulation is
comparable to that of MP2-R12. Consequently, this
implementation MRCI-R12 methodology is amenable to larger
molecular systems (e.g., Si2H4) than have previously been
accessible for this method.
All computations in this work utilized the new interface

between the GAMESS and MPQC electronic structure
codes. GAMESS is used to compute the CASSCF or MRCI
wave function and the second-order reduced density matrix.
MPQC then uses the second-order reduced density matrix,
the CASSCF orbitals, the nuclear coordinates, and the basis
set information from GAMESS to compute the [2]R12 and
[2]s BSIE corrections.
For F atom, the MRCI + [2]R12 EAs computed with the aug-

cc-pVDZ basis set are consistent with the conventional MRCI
CBS estimates. The MRMP2 + [2]R12 EAs computed with the
aug-cc-pVDZ basis set are within 0.05 eV of the MRMP2 CBS
estimates. The [2]S correction and the MRCI* + [2]R12 EAs
offer significant improvement of the predicted MRCI and
MRCI + [2]R12 EAs for F atom.
For the two Si2H4 conformers, the conventional MRCI

(MRMP2) CBS limit indicates that the Cs conformer is
3.0 (0.9) kcal/mol lower in energy than the planar C2v structure.
When only two active orbitals are explicitly correlated, MRMP2 +
[2]R12 predicts conformer energy differences with the aug-cc-
pVXZ basis set that are comparable to the energy differences
that are obtained using the aug-cc-pV(X+1)Z basis set with
the conventional MRMP2 computation (X = D,T). For
example, MRMP2 + [2]R12 using the aug-cc-pVDZ basis set
predicts a conformer energy difference of 1.22 kcal/mol,
which is comparable with the conventional MRMP2 value of
1.25 kcal/mol using the aug-cc-pVTZ basis set. When all 7
occupied valence orbitals are explicitly correlated, the energy
differences converge rapidly toward the extrapolated CBS
result. Although the conformer energy difference of 2.81
kcal/mol is larger for MRCI + [2]R12, MRCI + [2]R12 shows
similar behavior of the energy differences compared to the
MRMP2 + [2]R12 method.
The MRCI + [2]R12 results for C2 show significant improve-

ments over conventional MRCI computations. MRCI + [2]R12
is well suited to obtain accurate dissociation energies (De), min-
imum energy differences (Te), and C−C equilibrium bond dis-
tances. The MRCI + [2]R12 method also exhibits smaller NPEs
than conventional MRCI. The [2]R12 and [2]S corrections also
show significant improvements over traditional MRCI for the
vibrational energy level differences. The exception is that with
the aug-cc-pVDZ basis set the [2]S correction results in larger
errors for the excited states.
In summary, as has been seen with other studies, explicitly

correlated MRCI relative energies computed with the aug-cc-
pVXZ basis sets are typically better than results obtained
from conventional MRCI methods computed with the aug-
cc-pV(X+1)Z basis sets, where X = D,T,Q. The R12
corrected energy differences between the aug-cc-pVTZ and
aug-cc-pVQZ basis sets are almost always much smaller than
those without the R12 corrections. On the basis of the
predictions for the systems studied here, the [2]S BSIE
correction tends to speed up convergence of the reference
energy as expected.

Table 5. Timing Comparisons for MRCI and MRMP2 C2
Computationsa

method/basis set
size of
OBS

size of
CABS

energyb

(min)
2-RDM
(min)

[2]R12
(min)

[2]S
(min)

MRCI/aDZ 46 138 0.1 0.2 0.3 0.2
MRCI/aTZ 92 156 2.2 2.5 1.4 0.4
MRCI/aQZ 160 178 9.1 19.9 10.8 1.0
MRMP2/aDZ 46 138 <0.1 <0.1 0.2 0.2
MRMP2/aTZ 92 156 0.1 <0.1 0.4 0.4
MRMP2/aQZ 160 178 0.4 <0.1 1.4 1.0

aTiming results are given for one CI iteration or the MRMP2
computation, 2-RDM computation, [2]R12, and [2]S. All timings were
run in serial on an Intel Xeon E5-2690 processor. bThe full cost of the
MRMP2 computation or one CI iteration.
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