
Abstract. We present formulas for the evaluation of
molecular integrals over basis functions with an explicit
Gaussian dependence on interelectronic coordinates.
These formulas use expansions in Hermite Gaussian
functions and represent an extension to the work of
McMurchie and Davidson to two-electron basis func-
tions. Integrals that depend on the coordinates of up to
four electrons are discussed explicitly. A key feature of
this approach is that it allows full exploitation of the
shell structure of the orbital part of the basis.

Key words: Molecular integrals ± Gaussian-type gemi-
nal basis functions

1 Introduction

We have recently suggested [1] that Gaussian-type
orbital (GTO) basis sets can usefully be augmented
with Gaussian-type geminal (GTG) correlation factors
exp�ÿcr2ij�, where rij is an interelectronic distance, to
improve the description of electron correlation e�ects. In
test calculations at the MP2 level we showed that GTGs
were very e�ective at reducing the error in the correla-
tion energy due to orbital basis incompleteness, even
when used with rather small basis sets of double zeta
plus polarization quality. The exponents of the correla-
tion factors (typically six are included for each electron
pair correlated) are not varied at all in the molecular
calculation, so there is none of the nonlinear optimiza-
tion required in other applications of GTGs, although
we must emphasize that in these other applications the
desired accuracy in the total electronic energy, compared
to the complete basis result, is much greater than in our
own work. This di�erence has a consequence in the type
of basis functions that are used ± in general GTG
calculations (see, for example, Refs. [2] and [3] and
references therein) the centres and exponents of the

GTGs are varied to optimize the energy. This usually
leads to a basis set in which only a few functions are
centred on the nuclei and in which di�erent angular
components of p sets, say, have di�erent exponents. In
other words, the typical shell structure of GTO basis
sets, where sets of angular functions with the same
exponents (and contraction coe�cients in contracted
basis sets) are usually centred on the nuclei in the
molecule, perhaps with additional functions at bond
midpoints, is completely lost.

The use of GTG basis sets on (essentially) arbitrary
centres and with anisotropic angular sets is well suited
to evaluating the necessary molecular integrals using
formulas such as those derived by Lester and Krauss [4],
in which integrals are evaluated individually. This con-
trasts with GTO programs, in which the shell structure
that is present is heavily exploited to reduce the com-
putational work. Our proposed addition of GTG cor-
relation factors to GTO basis sets makes it desirable to
develop formulas for the necessary integrals that exploit
the shell structure of the GTO basis, and in the following
sections we shall derive formulas for all the necessary
integrals over the usual one- and two-electron operators.
We may note here that several workers independently
developed and implemented shell structure-based GTO
integral programs some 20 to 25 years ago: one of these
workers was Jan AlmloÈ f [5], then a graduate student,
and we dedicate this work to his memory.

We begin our presentation with a review of various
de®nitions and useful formulas for expressions involving
GTOs and GTGs. In the following section we discuss in
detail the derivation of a formula for a three-electron
integral over a two-electron operator involving GTOs
and GTGs as an example. In Sect. 4 and Sect. 5 we then
summarize the formulas for all required integrals over
one- and two-electron operators, respectively. We con-
clude with a very brief discussion of implementation
aspects.

2 De®nitions and essential formulas

Our notation follows closely that of a recent review [6].
We consider GTOs of the Cartesian form
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Gijk�r; a;A� � xi
Ayj

Azk
A exp�ÿar2A� ; �1�

where rA � �xÿ Ax; y ÿ Ay ; zÿ Az� and the GTO is thus
centred on a point A (which need not be a nucleus) and
involves ``angular quantum numbers'' i; j; k. We note
that the use of spherical harmonic angular functions and
the contraction of several GTOs into a single function
can be treated explicitly by the methods reviewed in [6]
without adding any new features here, and in general we
will consider only integrals over the primitive Cartesian
GTOs.

The GTO of Eq. (1) can be factorized into three
Cartesian components

Gijk�r; a;A� � Gi�x; a;Ax�Gj�y; a;Ay�Gk�z; a;Az� �2�
where, e.g., Gi�x; a;Ax� � xi

A exp�ÿax2A�, xA � xÿ Ax. We
shall use the di�erentiation properties of GTOs exten-
sively in our exposition. The derivative of Gi with respect
to either the electron or centre coordinates is given by

@Gi

@Ax
� ÿ @Gi

@x
� 2aGi�1 ÿ iGiÿ1 : �3�

Introducing the notation

Gq
i �

@qGi

@Aq
x
� �ÿ1�q @

qGi

@xq ; �4�

it is straightforward to show that

Gq�1
i � 2aGq

i�1 ÿ iGq
iÿ1 ; �5�

which provides a recursive scheme for the calculation of
derivatives to any order.

GTOs commonly appear in pairs as an overlap dis-
tribution

Xil;jm;kn�r; a; b;A;B� � Gijk�r; a;A�Glmn�r; b;B�
� xi

Ayj
Azk

A exp�ÿar2A�xl
Bym

B zn
B exp�ÿbr2B� :

�6�

The product of the two exponentials may be rewritten as
a single factor using the Gaussian product rule:

exp�ÿar2A� exp�ÿbr2B� � KAB exp�ÿpr2P � ; �7�
where p � a� b, KAB � exp�ÿqQ2�, q � ab=�a� b�,
Q � Aÿ B, and the new GTO centre P is given by

P � �a� b�ÿ1�aA� bB� : �8�
The products xi

Axl
B etc., in Eq. (6) could be rewritten as

a polynomial in xP using the binomial theorem, but
this is not the most e�ective way to proceed. Instead, we
introduce the Hermite Gaussian functions Ktuv de®ned
by

Ktuv�r; p;P� � @

@Px

� �t @

@Py

� �u @

@Pz

� �v
exp�ÿpr2P � ; �9�

which can clearly be factorized in Cartesian directions as

Kt�x; p; Px� � @

@Px

� �t
exp�ÿpx2P � ; �10�

and so forth. The operators for di�erentiation over the
P 's will be used extensively below, and in order to get a
more compact notation we henceforth write these as

@

@Px

� �t
� P̂�t�x �11�

and, in the three dimensional case,

@

@Px

� �t @

@Py

� �u @

@Pz

� �v
� P̂�tuv�

xyz : �12�

The connections between these Hermite Gaussians and
the Hermite functions of harmonic oscillator theory are
discussed in detail in Ref. [6]. The Hermite Gaussians
have the simple di�erentiation property

@Kt

@Px
� ÿ @Kt

@x
� Kt�1 : �13�

We now write the overlap distribution as [6]

Xil;jm;kn �
Xi�l

t�0

Xj�m

u�0

Xk�n

v�0
Eil

t Ejm
u Ekn

v Ktuv ; �14�

since any polynomial in x of order M can be written as a
sum of Hermite polynomials of order 0 to M . The
expansion coe�cients E do not depend on the electronic
coordinates. The overlap distribution can also be written

Xil;jm;kn �
Xi�l

t�0

Xj�m

u�0

Xk�n

v�0
Eil

t Ejm
u Ekn

v P̂�tuv�
xyz exp�ÿpr2P � ; �15�

emphasizing that all desired angular components can be
obtained by di�erentiating the ``spherical'' Gaussian
exp�ÿpr2P �, which of course is K000. We shall use this
property extensively in our derivations. We also note
that the expansion coe�cients can be calculated by
recursion from the basic E00

0 � KAB using the relations

Ei�1;j
t � 1

2p
Eij

tÿ1 ÿ
qQx

a
Eij

t � �t � 1�Eij
t�1 ; �16�

and

Ei;j�1
t � 1

2p
Eij

tÿ1 �
qQx

b
Eij

t � �t � 1�Eij
t�1 : �17�

The centre Q was de®ned after Eq. (7). We note that the
expansion coe�cients depend on Q but not P; the
reverse is true for the Hermite Gaussians K.

The great power of the use of Hermite Gaussians is
that since any overlap distribution can be obtained by
di�erentiation of a spherical function, integrals over
general Hermite Gaussians can be obtained by di�er-
entiating an integral over spherical Gaussians. This is
possible because the higher-order Hermite functions are
obtained from spherical Gaussians by di�erentiation
with respect to the spherical Gaussian centre P, and this
di�erentiation commutes with the integration over the
electronic coordinate r. Once the Hermite Gaussian in-
tegrals are available, integrals over Cartesian Gaussians
can be formed by taking the linear combinations given in
Eq. (14). We can illustrate this with a two-electron
integral between two overlap distributions:ZZ

Xil;jm;kn�r1P �rÿ112 Xi0l0;j0m0;k0n0 �r2P 0 �dr1 dr2 ; �18�

which can be written as
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X
tuv

X
t0u0v0

Eil
t Ejm

u Ekn
v Ei0l0

t0 Ej0m0
u0 Ek0n0

v0ZZ
Ktuv�r1P �Kt0u0v0 �r2P 0 �rÿ112 dr1 dr2 :

�19�

The integral over Hermite Gaussians can then be written
as

P̂�tuv�
xyz P̂

0�t0u0v0�
x0y0z0

ZZ
K000�r1P �K000�r2P 0 �rÿ112 dr1 dr2 : �20�

The elementary integral to be computed isZZ
K000�r1P �K000�r2P 0 �rÿ112 dr1 dr2 ; �21�

which in terms of spherical Gaussians can be written asZZ
exp�ÿpr21P � exp�ÿp0r22P 0 �rÿ112 dr1 dr2 : �22�

This integral was given by Boys [7] as

2p5=2

pp0
������������
p � p0
p F0�aR2

PP 0 � ; �23�

where

a � pp0

p � p0
�24�

and

F0�t� �
Z 1

0

exp�ÿtu2�du �25�

is one case of the general integral

Fn�t� �
Z 1

0

exp�ÿtu2�u2ndu ; �26�

usually referred to as an incomplete gamma function.
We note that Fn�1�t� � ÿdFn=dt, showing that the
Hermite Gaussian integrals must be linear combinations
of Fn�t� for various values of n, since they are obtained
by di�erentiating the elementary integral which is related
to F0�t�. We may also note that since Eq. (23) depends on
P and P 0 only through the distance R2

PP 0 , we can rewrite
the integral over Hermite Gaussians as

P̂�tuv�
xyz P̂

0�t0u0v0�
x0y0z0

ZZ
K000�r1P �K000�r2P 0 �rÿ112 dr1 dr2

� �ÿ1�t0�u0�v0 P̂�t�t0;u�u0;v�v0�
xyzZZ

K000�r1P �K000�r2P 0 �rÿ112 dr1 drr2 :

�27�

As discussed for example in Ref. [6], the latter simpli-
®cation is a very important one, since it reduces
substantially the number of distinct Hermite Gaussian
integrals that must be calculated.

So far our discussion has involved only GTOs ± the
introduction of Gaussian correlation factors makes
things only a little more complicated in the GTG case,
since there is a coupling between two electrons and their
overlap distributions. For example, an integral might
involve factors like

Xil;jm;kn�r1P �Xi0l0;j0m0;k0n0 �r2P 0 � exp�ÿcr212� : �28�
In this form it should be obvious that the correlation
factors do not give rise to any new terms when
expressing overlap distributions in terms of Hermite
Gaussians, since the di�erentiation with respect to P
does not a�ect the correlation factors. The greater
complication when GTGs are included is the dimen-
sionality of the integral. Even with only one- and
two-electron operators in the Hamiltonian, up to four-
electron integrals can appear in MP2 calculations.
However, as Boys pointed out some time ago [8] the
resulting formulas for GTG integrals are not much more
complicated than GTO integrals. The fundamental
mathematical step is a lemma proved by Boys in Ref.
[8] (labelled Theorem 2 in that work) which allows us to
successively eliminate electron coordinates that do not
appear in the operator itself. Namely, if the dependence
of an integral on electron coordinate r1 is completely of
the formZZ

. . . F�r2; r3 . . .�
X

i

exp�ÿcir21@i
�dr1 dr2 . . . ; �29�

where F�r2; r3 . . .� is any function of the coordinates of
all the other electrons in the integral and @ can be a ®xed
centre or another electron coordinate, then the integra-
tion over electron 1 yields the integral

pP
i ci

� �3
2
Z Z

� � � exp ÿ
X
i>j

cicj�@i ÿ @j�2=
X

i

ci

 !
F�r2; r3 . . .�dr2 . . . :

�30�
Thus Boys' lemma allows us to integrate out all of the
electron coordinates except those that appear in the
operator. Eventually this will yield a one- or two-
electron integral, depending on the operator. For
example, in reducing integrals over the two-electron
Coulomb repulsion operator, we obtain the following
integral over spherical Gaussians [8]:ZZ

exp�ÿpr21P � exp�ÿp0r22P 0 � exp�ÿcr212�rÿ112 dr1 dr2

� 2p5=2

�pp0 � pc� p0c� ������������p � p0
p exp

ÿpp0cR2
PP 0

pp0 � pc� p0c

� �
� F0

p2p02R2
PP 0

�pp0 � pc� p0c��p � p0�

 !
:

�31�

This integral is more complicated than the case of
Eq. (23), where there was no Gaussian factor multi-
plying the incomplete gamma function. Since this
Gaussian factor depends on the centres appearing in
the original overlap distributions, it follows that the
di�erentiation of the integral over spherical Gaussians
to give integrals over Hermite Gaussians will involve
more terms than appear in GTO integrals. With this
observation we conclude our presentation of the basic
formulas and discuss in detail an example of a three-
electron integral.
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3 Case study: a three-electron integral

Consider the so-called ``cyclic'' three-electron integral:ZZZ
vl�1�vm�2�vk�3� exp�ÿcvr

2
13�rÿ112 vh�1�vu�2�

� vj�3� exp�ÿcwr223�dr1 dr2 dr3 :
�32�

We ®rst construct three overlap distributions:

vl�1�vh�1� � Xil;jm;kn

�
Xi�l

t�0

Xj�m

u�0

Xk�n

v�0
Eil

t Ejm
u Ekn

v P̂�tuv�
xyz exp�ÿpr21P �

vm�2�vu�2� � Xi0l0;j0m0;k0n0

�
Xi0�l0

t0�0

Xj0�m0

u0�0

Xk0�n0

v0�0
Ei0l0

t0 Ej0m0
u0 Ek0n0

v0 P̂
0�t0u0v0�
xyz exp�ÿp0r22P 0 �

vk�3�vj�3� � Xi00l00;j00m00;k00n00

�
Xi00�l00

t00�0

Xj00�m00

u00�0

Xk00�n00

v00�0
Ei00l00

t00 Ej00m00
u00 Ek00n00

v00 P̂
00�t00u00v00�
xyz

� exp�ÿp00r23P 00 � : �33�
The three-electron integral of Eq. (32) can now be
written asXi�l

t�0

Xj�m

u�0

Xk�n

v�0

Xi0�l0

t0�0

Xj0�m0

u0�0

Xk0�n0

v0�0

Xi00�l00

t00�0

Xj00�m00

u00�0

Xk00�n00

v00�0
Eil

t Ejm
u Ekn

v Ei0l0
t0 Ej0m0

u0 Ek0n0
v0 Ei00l00

t00 Ej00m00
u00 Ek00n00

v00 P̂�tuv�
xyz P̂

0�t0u0v0�
xyz P̂

00�t00u00v00�
xyz

�
ZZZ

rÿ112 exp�ÿpr21P � exp�ÿp0r22P 0 � exp�ÿp00r23P 00 �
� exp�ÿcvr

2
13� exp�ÿcwr223�dr1 dr2 dr3 ; �34�

which gives the desired integral as the derivative of an
integral over spherical Gaussians. We can now integrate
over the coordinates of electron 3 using Boys' Lemma,
leading to

p
p00 � cv � cw

� �3=2ZZ
rÿ112 exp�ÿpr21P � exp�ÿp0r22P 0 ��

exp ÿ p00cvr21P 00

p00 � cv � cw

� �
exp ÿ p00cwr22P 00

p00 � cv � cw

� �
� exp ÿ cvcwr212

p00 � cv � cw

� �
dr1 dr2 : �35�

Using the Gaussian product rule we can write this as

p
p00 � cv � cw

� �3=2
KPP 00KP 0P 00ZZ

rÿ112 exp�ÿsr21S� exp�ÿtr22T �

� exp ÿ cvcwr212
p00 � cv � cw

� �
dr1 dr2 ;

�36�

where

KPP 00 � exp ÿ pp00cvR2
PP 00

pcv � pcw � p00cw � pp00

� �
�37�

RPP 00 � Pÿ P00 �38�

s � p � p00cv

p00 � cv � cw
�39�

S � 1

s
pP� p00cv

p00 � cv � cw
P00

� �
�40�

KP 0P 00 � exp ÿ p0p00cwR2
P 0P 00

p0cv � p0cw � p00cw � p0p00

� �
�41�

RP 0P 00 � P0 ÿ P00 �42�

t � p0 � p00cw

p00 � cv � cw
�43�

T � 1

t
p0P0 � p00cw

p00 � cv � cw
P00

� �
: �44�

According to Boys [8] (see Eq. 31) the integral of Eq. (36)
is

2p4�p00 � cv � cw�ÿ3=2
cvcw�s� t�

p00 � cv � cw
� st

� �ÿ1
� �s� t�ÿ1=2KPP 00KP 0P 00

� exp ÿ stcvcw

p00 � cv � cw

� �
cvcw�s� t�

p00 � cv � cw
� st

� �ÿ1
R2

ST

 !

� F0
cvcw�s� t�

p00 � cv � cw
� st

� �ÿ1 s2t2

s� t
R2

ST

 !
; �45�

where F0 is the zeroth-order incomplete gamma function
of Eq. (25). Using an obvious short-hand notation, we
can write the three-electron integral over spherical
Gaussians as a four-factor product

KPP 00KP 0P 00 exp�ÿaR2
ST �F0�bR2

ST � ; �46�
on which we must operate with P̂�tuv�

xyz P̂
0�t0u0v0�
xyz P̂

00�t00u00v00�
xyz . We

write Eq. (46) as a product of two functions, gf , of P;P0
andP00, where we identify f with F0 and gwith the product
of the other three factors, i.e. we have the expression

P̂�tuv�
xyz P̂

0�t0u0v0�
xyz P̂

00�t00u00v00�
xyz gf : �47�

Using the rule for di�erentiation of a product,

Dn�g � f � �
Xn

k�0

n
k

� �
g�k�f �nÿk� �48�

we can write Eq. (47) as (note that barred indices are
dummy summation indices and not Cartesian coordi-
nates)Xt

�x�0

Xu

�y�0

Xv

�z�0

Xt0

�x0�0

Xu0

�y0�0

Xv0

�z0�0

Xt00

�x00�0

Xu00
�y00�0

Xv00
�z00�0

t

�x

� �
u

�y

� �
v

�z

� �
t0

�x0

� �
u0

�y0

� �
v0

�z0

� �
t00

�x00

� �
u00

�y00

� �
v00

�z00

� �
� P̂��x;�y;�z�xyz P̂

0��x0;�y0;�z0�
xyz P̂

00��x00;�y00;�z00�
xyz g

� P̂�tÿ�x;uÿ�y;vÿ�z�
xyz P̂

0�t0ÿ�x0;u0ÿ�y0;v0ÿ�z0�
xyz P̂

00�t00ÿ�x00;u00ÿ�y00;v00ÿ�z00�
xyz f : �49�
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In order to further shorten the notation we write the
derivatives as strings of superscript indices, i.e.

P̂�tÿ�x;uÿ�y;vÿ�z�
xyz P̂

0�t0ÿ�x0;u0ÿ�y0;v0ÿ�z0�
xyz P̂

00�t00ÿ�x00;u00ÿ�y00;v00ÿ�z00�
xyz f

� f �tÿ�x;uÿ�y;vÿ�z;t0ÿ�x0;u0ÿ�y0;v0ÿ�z0;t00ÿ�x00;u00ÿ�y00;v00ÿ�z00� �50�
and

P̂��x;�y;�z�xyz P̂
0��x0;�y0;�z0�
xyz P̂

00��x00;�y00;�z00�
xyz g � g��x;�y;�z;�x

0;�y0;�z0;�x00;�y00;�z00� �51�
The derivatives of f with respect to P, P0 and P00 are

not independent, they di�er from each other only by some
numerical factor. For instance, in the x-direction we have:

P̂xf � b
@F0�bR2

ST �
@R2

ST
� P̂xR2

ST

P̂0xf � b
@F0�bR2

ST �
@R2

ST
� P̂0xR2

ST

P̂00x f � b
@F0�bR2

ST �
@R2

ST
� P̂00x R2

ST ;

�52�

where the only di�erence is in the derivatives of R2
ST .

From Eq. (44) we can express RST directly in terms of P,
P0, and P00:

RST � �Sÿ T� � aP� bP0 � cP00 ; �53�
where we have de®ned

a � p
s

b � ÿ p0

t

c � p00cv

�p00 � cv � cw�s
ÿ p00cw

�p00 � cv � cw�t
:

�54�

The derivatives of R2
ST are then

P̂xR2
ST � 2aXST ;

P̂0xR2
ST � 2bXST ;

P̂00x R2
ST � 2cXST

�55�

and the relations between the derivatives of f are:

P̂0xf � b
a

� �
P̂xf ;

P̂00x f � c
a

� �
P̂xf : �56�

Thus, the di�erentiation of f with respect to P0 and P00
can be replaced by di�erentiation with respect to P and
the appropriate numerical factors, which we write as a
``shift'' in the di�erentiation indices

f �tÿ�x;uÿ�y;vÿ�z;t0ÿ�x0;u0ÿ�y0;v0ÿ�z0;t00ÿ�x00;u00ÿ�y00;v00ÿ�z00�

� b
a

� �t0�u0�v0ÿ�x0ÿ�y0ÿ�z0 c
a

� �t00�u00�v00ÿ�x00ÿ�y00ÿ�z00

� f �t�t0�t00ÿ�xÿ�x0ÿ�x00;u�u0�u00ÿ�yÿ�y0ÿ�y00;v�v0�v00ÿ�zÿ�z0ÿ�z00;0;0;0;0;0;0� :

�57�
This is the three-electron analogue of the di�erentiation
index shift for the two-electron GTO integral employed
in Eq. (27). We may note that the calculation of these

derivatives of the incomplete gamma function is already
required for the evaluation of GTO integrals, as discus-
sed in Ref. [6] where these quantities are denoted Rtuv.
Recursive methods for their calculation are already avail-
able from the work of McMurchie and Davidson [9], for
example, and it is unnecessary to discuss this further here.

As de®ned in Eq. (46), g is the product of three
functions,

g � KPP 00KP 0P 00 exp�ÿaR2
ST � : �58�

Di�erentiation of these functions is most conveniently
carried out by developing recursion relations, using the
recursion for di�erentiating a single Gaussian (Eq. 13)
as a basis. These relations are straightforward to derive
and we omit details of the derivation here. The ®nal
recursion relations are

P̂�q�1�x Ki
PxP 00x

Kj
P 0xP 00x

Kk
PxP 0xP 00x

� iP̂�q�x Kiÿ1
PxP 00x

Kj
P 0xP 00x

Kk
PxP 0xP 00x

ÿ 2�P̂�q�x Ki�1
PxP 00x

Kj
P 0xP 00x

Kk
PxP 0xP 00x

� akP̂�q�x Ki
PxP 00x

Kj
P 0xP 00x

Kkÿ1
PxP 0xP 00x

ÿ 2aaP̂�q�x Ki
PxP 00x

Kj
P 0xP 00x

Kk�1
PxP 0xP 00x

;

�59�
P̂
0�q�1�
x Ki

PxP 00x
Kj

P 0xP 00x
Kk

PxP 0xP 00x

� jP̂
0�q�
x Ki

PxP 00x
Kjÿ1

P 0xP 00x
Kk

PxP 0xP 00x
ÿ 2fP̂

0�q�
x Ki

PxP 00x
Kj�1

P 0xP 00x
Kk

PxP 0xP 00x

� bkP̂
0�q�
x Ki

PxP 00x
Kj

P 0xP 00x
Kkÿ1

PxP 0xP 00x
ÿ 2baP̂

0�q�
x Ki

PxP 00x
Kj

P 0xP 00x
Kk�1

PxP 0xP 00x
;

�60�
P̂
00�q�1�
x Ki

PxP 00x
Kj

P 0xP 00x
Kk

PxP 0xP 00x
�

ÿ iP̂
00�q�
x Kiÿ1

PxP 00x
Kj

P 0xP 00x
Kk

PxP 0xP 00x
� 2�P̂

00�q�
x Ki�1

PxP 00x
Kj

P 0xP 00x
Kk

PxP 0xP 00x

ÿ jP̂
00�q�
x Ki

PxP 00x
Kjÿ1

P 0xP 00x
Kk

PxP 0xP 00x
� 2fP̂

00�q�
x Ki

PxP 00x
Kj�1

P 0xP 00x
Kk

PxP 0xP 00x

� ckP̂
00�q�
x Ki

PxP 00x
Kj

P 0xP 00x
Kkÿ1

PxP 0xP 00x
ÿ 2caP̂

00�q�
x Ki

PxP 00x
Kj

P 0xP 00x
Kk�1

PxP 0xP 00x
;

�61�
where

Ki
PxP 00x
� �Px ÿ P

00
x �i exp ÿ��Px ÿ P

00
x �2

� �
; �62�

Kj
P 0x P 00x
� �P 0x ÿ P

00
x �j exp ÿf�P 0x ÿ P

00
x �2

� �
; �63�

Kk
P 0x P 0x P 00x

� �aPx � bP
0
x � cP

00
x�k

exp ÿa�aP x � bP
0
x � cP

00
x�2

� �
; �64�

KPP 00 � K0
PP 00 etc., the constants a, b and c are those given

in Eq. (54), and we have collapsed the constants in the
exponentials of Eqs. (37) and (41) into � and f. Note that
since the Cartesian directions are separable, the
recursion relations for the y and z directions will be
identical to those for the x direction. Further, the
derivatives for one particular direction are not indepen-
dent either, since for instance,

P̂xKi
PP 00 � ÿP̂

00
xKi

PP 00 ;

P̂
0
xKj

P 0P 00 � ÿP̂
00
xKi

P 0P 00 ;

P̂xKk
PP 0P 00 �

a
c

� �
P̂
00
xKk

PP 0P 00 ;

P̂
0
xKk

PP 0P 00 �
b
c

� �
P̂
00
xKk

PP 0P 00 : �65�
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The derivatives with respect to P and P0 can thus in
principle be expressed in terms of derivatives with
respect to P00, etc. However, a simpler technique to
obtain the derivatives with respect to all three coordi-
nates Px; P 0x and P 00x may be to apply the recursions of
Eqs. (59±61) successively, as in

P̂
0�q�1�
x P̂

00�r�
x Ki

PxP 00x
Kj

P 0x P 00x
Kk

PxP 0x P 00x

� jP̂
0�q�
x P̂

00�r�
x Ki

PxP 00x
Kjÿ1

P 0x P 00x
Kk

PxP 0x P 00x

ÿ 2fP̂
0�q�
x P̂

00�r�
x Ki

PxP 00x
Kj�1

P 0x P 00x
Kk

PxP 0x P 00x

� bkP̂
0�q�
x P̂

00�r�
x Ki

PxP 00x
Kj

P 0x P 00x
Kkÿ1

PxP 0x P 00x

ÿ 2baP̂
0�q�
x P̂

00�r�
x Ki

PxP 00x
Kj

P 0x P 00x
Kk�1

PxP 0x P 00x
�66�

and so forth. This allows us to recursively calculate all
the required derivatives of g. These can then be
combined with the derivatives of f in the binomial
expansion of Eq. (48) to obtain the integrals over
Hermite Gaussians. Finally, the Hermite Gaussian
integrals can then be combined with expansion coe�-
cients to obtain the three-electron integral over Carte-
sian or spherical harmonic GTOs, as in Eq. (34).

In what follows we shall present the formulas neces-
sary for the evaluation of various two-, three- and four-
electron integrals over GTGs. For brevity, we have
eliminated most of the derivation (the detailed case study
given in Sect. 3 covered a more complicated case than
any required for the integrals that follow, so deriving the
formulas given should not be di�cult) and discuss pri-
marily the key integrals over spherical Gaussians. The
di�erentiation of these integrals to give integrals over
Hermite functions is again given by the procedures de-
veloped in our case study. In fact, all of the integrals we
now discuss are simpler than the cyclic three-electron
integral in that the spherical Gaussian integrals consist
of no more than two Gaussian factors multiplying the
incomplete gamma function. This makes our function g
simpler, and for completeness we give here the recursion
relations for derivatives of g when it comprises only two
terms, rather than the three of Eq. (58):

P̂�q�1�x Ki
PxP 00x

Kk
PxP 0x P 00x

� iP̂�q�x Kiÿ1
PxP 00x

Kk
PxP 0x P 00x

ÿ 2�P̂�q�x Ki�1
PxP 00x

Kk
PxP 0x P 00x

� akP̂�q�x Ki
PxP 00x

Kkÿ1
PxP 0x P 00x

ÿ 2aaP̂�q�x Ki
PxP 00x

Kk�1
PxP 0x P 00x

;

P̂
0�q�1�
x Ki

PxP 00x
Kk

PxP 0x P 00x
� bkP̂

0�q�
x Ki

PxP 00x
Kkÿ1

PxP 0x P 00x

ÿ 2baP̂
0�q�
x Ki

PxP 00x
Kk�1

PxP 0x P 00x
;

P̂
00�q�1�
x Ki

PxP 00x
Kk

PxP 0x P 00x
� iP̂

00�q�
x Kiÿ1

PxP 00x
Kk

PxP 0x P 00x

ÿ 2�P̂
00�q�
x Ki�1

PxP 00x
Kk

PxP 0x P 00x

� ckP̂
00�q�
x Ki

PxP 00x
Kkÿ1

PxP 0x P 00x

ÿ 2caP̂
00�q�
x Ki

PxP 00x
Kk�1

PxP 0x P 00x
: �67�

The case of a single-term g reduces to the Gaussian
di�erentiation formula of Eq. (5).

We may also note here that some of the ``many-
electron'' integrals that arise in calculations using GTGs
(or other two-electron basis functions) can be written as
simple products of lower-order integrals. It is not
necessary to consider such products explicitly and we
ignore all such possibilities here.

4 One-electron operator matrix elements

There are no GTG one-electron integrals over one-
electron operators, except for the degenerate case of zero
exponents for the correlation factors, i.e. GTO integrals.
The simplest GTG integrals over one-electron operators
are two-electron integrals.

4.1 Two-electron integrals

The simplest integral involving GTGs is the overlap
integralZ Z

vl�1�vm�2�vh�1�vu�2� exp�ÿcvr
2
12�dr1 dr2 ; �68�

which requires the following integral over spherical
Gaussians:Z Z

exp�ÿpr21P � exp�ÿp0r22P 0 � exp�ÿcvr212�dr1 dr2 : �69�

This integral was shown by Boys [8] to be

p2

pp0 � pcv � p0cv

� �3
2

KPP 0 ; �70�

where

KPP 0 � exp�ÿqR2
PP 0 � �71�

and q � pp0cv=�pp0 � pcv � p0cv�. Di�erentiation of
Eq. (70), which is given directly by Eq. (5), then gives
the ®nal overlap integrals. Formulas for integrals over
the multipole-moment operators can be obtained
trivially as overlap integrals that involve overlap
distributions with modi®ed angular quantum numbers,
just as is done for GTOs.

Calculation of kinetic energy matrix elements follows
directly from the calculation of overlap integrals. The
only modi®cation is that the kinetic-energy operator
produces di�erentiated GTGs in the original integral,
which in turn leads to di�erent terms appearing in the
spherical Gaussian integrals. We illustrate this for the
contribution to the kinetic energy from the operator
@2=@x2 operating on the x part of a GTG (not on an
overlap distribution!):

@2

@x2
xl
1Axm

2B exp�ÿax21A� exp�ÿbx22B� exp�ÿcvx212�

� l�lÿ 1�xlÿ2
1A ÿ �2aÿ 2b�xl

1A � 4a2xl�2
1A

�
ÿ4blx12xlÿ1

1A � 6abx12xl�1
1A � 4b2x212x

l
1A

	
� xm

2B exp�ÿax21A� exp�ÿbx22B� exp�ÿcvx212�
� �

: �72�
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The ®rst three terms in braces in Eq. (72) are similar to
the shifted angular quantum number terms that appear
in GTO kinetic-energy integrals. They can be handled
either by considering them as modi®ed overlap integrals,
or by deriving new expansion coe�cients for expressing
di�erentiated overlap distributions as combinations of
Hermite functions. It is the last three terms in braces that
give new contributions, because of the appearance of the
factors in x12. Our approach is to rewrite x12 using the
identity

x12 � x1 ÿ x2 ÿ Ax � Bx � �Ax ÿ Bx�
� x1A ÿ x2B � XAB ; �73�

where we have again used XAB to denote �Ax ÿ Bx�. Using
this identity we can rewrite the last three terms in the
braces in Eq. (72) as

ÿ 4blx12xlÿ1
1A xm

2B � 6abx12xl�1
1A xm

2B ÿ 4b2x212x
l
1Axm

2B

� ÿ4blxl
1A � 4blxlÿ1

1A x2B ÿ 4blXABxlÿ1
1A

� �6ab� 2b2�xl�2
1A ÿ �6ab� 8b2�xl�1

1A x2B

� �6ab� 8b2�XABxl�1
1A

� 4b2xl
1Ax22B ÿ 8b2XABxlÿ1

1A x2B � 4b2X 2
ABxl

1A : �74�
We may thus write the di�erentiated GTG of Eq. (72) as
a linear combination of undi�erentiated GTGs (with
modi®ed angular quantum numbers). The kinetic-energy
integrals then become a linear combination of overlap
integrals and can be evaluated using that formula. We
note in passing that in practice it may be more
convenient to evaluate the integrals over the operators
r2

1 and r2
2 together.

The remaining one-electron operator we consider is
the nuclear attraction. Multicentre integrals over this
operator involve the incomplete gamma function and are
thus more complicated than overlap, multipole, or ki-
netic-energy integrals. A typical two-electron integral
over the nuclear-attraction operator isX

C

ZC

Z Z
vl�1�vm�2� exp�ÿcvr

2
12�rÿ11C vh�1�vu�2� dr1 dr2 ;

�75�
where the sum runs over nuclei C with respective charges
ZC. The necessary integral over spherical Gaussians isZ Z

rÿ11C exp�ÿpr21P � exp�ÿp0r22P 0 � exp�ÿcvr212� dr1 dr2 ;

�76�
which after applying Boys' Lemma to electron 2
becomes

p
p0 � cv

� �3
2
Z

rÿ11C exp�ÿpr21P � exp ÿ
p0cv

p0 � cv
r21P 0

� �
dr1 :

�77�
We use the Gaussian product rule as usual to rewrite the
integral as

p
p0 � cv

� �3
2

KPP 0

Z
rÿ11C exp�ÿsr21S� dr1 ; �78�

which can be written in terms of the incomplete gamma
function as

p
p0 � cv

� �3
2 2p

s

� �
KPP 0F0�sR2

CS� : �79�

Here again

KPP 0 � exp�ÿqR2
PP 0 � ; �80�

q � pp0cv=�pp0 � pcv � p0cv� ; �81�
and now

S � �pp0 � pcv�P� p0cvP
0

pp0 � pcv � p0cv
; �82�

s � �pp0 � pcv � p0cv�=�p0 � cv� : �83�
Di�erentiation of the ®nal integral (Eq. 79) over
spherical Gaussians yields the desired two-electron
integrals over Hermite functions.

4.2 Three-electron integrals

A typical three-electron integral over a one-electron
operator would beZ Z Z

vl�1�vm�2�vk�3� exp�ÿcvr212�
� O�r1�vh�1�vu�2�vj�3� exp�ÿcwr213� dr1 dr2 dr3 :

�84�
In the case of the overlap integral (which includes
kinetic-energy and multipole integrals as special cases,
just as discussed above for two-electron integrals) we
need to evaluate the following integral over spherical
Gaussians:Z Z Z

exp�ÿpr21P � exp�ÿp0r22P 0 � exp�ÿp00r23P 00 �
� exp�ÿcvr

2
12� exp�ÿcwr213� dr1 dr2 dr3 :

�85�

Applying Boys' Lemma to electron 3 gives

p
p00 � cw

� �3
2

KPP 00

Z
exp�ÿsr21S� exp�ÿp0r2P 0 �

� exp�ÿcvr
2
12� dr1 dr2 ;

�86�

where

KPP 00 � exp�ÿqR2
PP 00 � ; �87�

q � pp00cw=�pp00 � pcw � p00cw� ; �88�

S � �pp00 � pcw�P� p0cwP
00

pp00 � pcw � p00cw
; �89�

s � �pp00 � pcw � p00cw�=�p00 � cw� : �90�
The remaining two-electron overlap integral in Eq. (86)
is then given by Eq. (70), so the ®nal three-electron
overlap integral becomes
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p
p00 � cw

� �3
2 p2

sp0 � scv � p0cv

� �3
2

KPP 00 KP 0S : �91�

Hence all the required three-electron overlap and
overlap-related integrals over Hermite functions can be
obtained by di�erentiating this key integral, or a linear
combination of such integrals. This di�erentiation can
be accomplished using the recursion relation in Eq. (67).

Evaluation of the three-electron nuclear attraction
integral, where O�r1� � rÿ11C , follows the same procedure,
yielding for the integral over spherical GaussiansZ Z Z

rÿ11C exp�ÿpr21P � exp�ÿp0r22P 0 � exp�ÿp00r23P 00 �
� exp�ÿcvr

2
12� exp�ÿcwr213� dr1 dr2 dr3

� p
p00 � cw

� �3
2 p

p0 � cv

� �3
2

KPP 00KP 0S

� 2p
t

� �
F0�tR2

CT � ; �92�

where we have used the same de®nitions as in the three-
electron overlap integral, and additionally introduced

T � �sp0 � scv�P� p0cvP
0

sp0 � scv � p0cv
; �93�

t � �sp0 � scv � p0cv�=�p0 � cv� : �94�

5 Two-electron operator matrix elements

5.1 Two-electron integrals

The only new integral involving the coordinates of two
electrons introduced by the GTG correlation factors isZ Z

vl�1�vm�2� exp�ÿcvr212�rÿ112 vh�1�vu�2� dr1 dr2 : �95�

This involves the following integral over spherical
Gaussians:Z Z

rÿ112 exp�ÿpr21P � exp�ÿp0r22P 0 � exp�ÿcvr
2
12� dr1 dr2 ;

�96�
which is the same as the form treated by Boys and is given
by Eq. (31). Di�erentiation of the integral over spherical
Gaussians is straightforward, since only one Gaussian
factor multiplies the incomplete gamma function.

5.2 Three-electron integrals

We have already discussed the ``cyclic'' three-electron
integralZ Z Z

vl�1�vm�2�vk�3�
� exp�ÿcvr213�rÿ112 vh�1�vu�2�vj�3�
� exp�ÿcwr223� dr1 dr2 dr3

�97�

in our case study in Sect. 3. There are two other three-
electron integrals over the interelectronic repulsion we
need to consider. The ®rst isZ Z Z

vl�1�vm�2�vk�3�
� exp�ÿcvr212�rÿ112 vh�1�vu�2�vj�3�
� exp�ÿcwr213� dr1 dr2 dr3 ;

�98�

which requires the following integral over spherical
Gaussians:Z Z Z

rÿ112 exp�ÿpr21P �
� exp�ÿp0r22P 0 � exp�ÿp00r23P 00 � exp�ÿcvr

2
12�

� exp�ÿcwr213�dr1 dr2 dr3 :

�99�

This integral can be written as

p
p00 � cw

� �3
2 2p5=2

�sp0 � scv � p0cv�
������������
s� p0
p KPP 00

� exp
ÿsp0cvR2

P 0S

sp0 � scv � p0cv

� �
F0

s2p02R2
P 0S

�sp0 � scv � p0cv��s� p0�
� �

;

�100�
where

KPP 00 � exp�ÿqR2
PP 00 � ; �101�

q � pp00cw=�pp00 � pcw � p00cw� ; �102�

S � �pp00 � pcw�P� p0cwP
00

pp00 � pcw � p00cw
; �103�

s � �pp00 � pcw � p00cw�=�p00 � cw� : �104�
Here the incomplete gamma function is multiplied by
only two Gaussian factors. Hence, the recursion formula
for the di�erentiation of the exponential factors in
generating integrals over Hermite Gaussians is the
simpler two-term formula of Eq. (67).

The ®nal three-electron integral isZ Z Z
vl�1�vm�2�vk�3�
� exp�ÿcvr213�rÿ112 vh�1�vu�2�vj�3� dr1 dr2 dr3 ;

�105�
which requires the following integral over spherical
Gaussians:Z Z Z

rÿ112 exp�ÿpr21P � exp�ÿp0r22P 0 �
� exp�ÿp00r23p00 � exp�ÿcvr213�dr1 dr2 dr3 :

�106�

This integral can be written as

p
p00 � cv

� �3
2 2p5=2

�sp0� ������������s� p0
p KPP 00F0

sp0R2
P 0S

s� p0

� �
; �107�

where

KPP 00 � exp�ÿqR2
PP 00 � ; �108�
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q � pp00cv=�pp00 � pcv � p00cv� ; �109�

S � �pp00 � pcv�P� p0cvP
00

pp00 � pcv � p00cv
; �110�

s � �pp00 � pcv � p00cv�=�p00 � cv� : �111�
This is the simplest of the three-electron integral cases,
since the incomplete gamma function is multiplied by
only a single Gaussian factor. The di�erentiation of this
single factor is the usual rule for di�erentiation of a
Gaussian, Eq. (5).

5.3 Four-electron integrals

There are three four-electron integrals over the two-
electron operator. The ®rst yields the following integral
over spherical Gaussians:Z Z Z Z

rÿ112 exp�ÿpr21P � exp�ÿp0r22P 0 � exp�ÿp00r23P 00 �
exp�ÿp000r24P 000 � � exp�ÿcvr213� exp�ÿcwr224�dr1dr2dr3dr4 :

�112�
The course of action here is obvious: we apply Boys'
Lemma twice, ®rst to electron four to obtain

p
p000 � cw

� �3
2
Z Z Z

rÿ112 exp�ÿpr21P � exp�ÿp0r22P 0 �

� exp�ÿp00r23P 00 � exp�ÿcvr213�

� exp ÿ p000cw

p000 � cw
r22P 000

� �
dr1 dr2 dr3 ;

�113�
and then to electron 3, yielding

p
p000 � cw

� �3
2 p

p00 � cv

� �3
2

�
Z Z

rÿ112 exp�ÿpr21P � exp�ÿp0r22P 0 �

� exp ÿ p00cv

p0 � cv
r21P 00

� �
exp ÿ p000cw

p000 � cw
r22P 000

� �
dr1 dr2 :

�114�
Note that this integral contains no geminal correlation
factors and must thus be expressible as a GTO two-
electron integral. Using the Gaussian product rule twice
we can rewrite it as

p
p000 � cw

� �3
2 p

p00 � cv

� �3
2

KPP 00KP 0PP 000

�
Z Z

rÿ112 exp ÿsr21S

ÿ �
exp ÿtr22T

ÿ �
dr1 dr2

� p
p000 � cw

� �3
2 p

p00 � cv

� �3
2 2p5=2

st
����������
s� t
p

KPP 00KP 0P 000F0
stR2

ST

s� t

� �
; �115�

where

KPP 00 � exp�ÿqR2
PP 00 � ; �116�

q � pp00cv

pp00 � pcv � p00cv
; �117�

RPP 00 � Pÿ P00 ; �118�

s � pp00 � pcv � p00cv

p00 � cv
; �119�

S � �pp00 � pcv�P� p00cvP
00

pp00 � pcv � p00cv
; �120�

KP 0P 000 � exp�ÿmR2
P 0P 000 � ; �121�

m � p0p000cw

p0p000 � p0cw � p000cw
; �122�

RP 0P 000 � P0 ÿ P000 ; �123�

t � p0p000 � p0cw � p000cw

p000 � cw
; �124�

T � �p
0p000 � p0cw�P� p000cwP

000

p0p000 � p0cw � p000cw
; �125�

The second four-electron integral isZ Z Z Z
rÿ112 exp�ÿpr21P � exp�ÿp0r22P 0 �
� exp�ÿp00r23P 00 � exp�ÿp000r24P 000 �
� exp�ÿcvr

2
13� exp�ÿcwr214� dr1 dr2 dr3 dr4 :

�126�
Again, applying Boys' Lemma twice yields a GTO two-
electron integral:

p
p000 � cw

� �3
2 p

p00 � cv

� �3
2

KP 00SKP 0P 000

�
Z Z

rÿ112 exp�ÿtr21T � exp�ÿp0r22P 0 � dr1 dr2

� p
p000 � cw

� �3
2 p

p00 � cv

� �3
2 2p5=2

p0t
�����������
p0 � t
p

KPP 000KP 00SF0
p0tR2

ST

p0 � t

� �
:

�127�

where

KPP 000 � exp�ÿqR2
PP 000 � ; �128�

q � pp000cw

pp000 � pcw � p000cw
; �129�

RPP 000 � Pÿ P000 ; �130�

s � pp000 � pcw � p000cw

p000 � cw
; �131�

S � �pp000 � pcw�P� p000cwP
000

pp000 � pcw � p000cw
; �132�
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KP 00S � exp�ÿmR2
P 00S� ; �133�

m � sp00cv

sp00 � scv � p00cv
; �134�

RP 00S � P00 ÿ S ; �135�

t � sp00 � scv � p00cv

p00 � cv
; �136�

T � �sp00 � scv�P� p00cvP
00

sp00 � scv � p00cv
: �137�

The ®nal four-electron integral over spherical Gaus-
sians isZ Z Z Z

rÿ112 exp�ÿpr21P � exp�ÿp0r22P 0 �
� exp�ÿp00r23P 00 � exp�ÿp000r24P 000 �
� exp�ÿcvr

2
13� exp�ÿcwr234� dr1 dr2 dr3 dr4 :

�138�

Applying Boys' Lemma twice yields

p
p000 � cw

� �3
2 p

s� cv

� �3
2

KP 00P 000KP 0SZ Z
rÿ112 exp�ÿtr21T � exp�ÿp0r22P 0 � dr1 dr2

� p
p000 � cw

� �3
2 p

s� cv

� �3
2 2p5=2

p0t
�����������
p0 � t
p

KPSKP 00P 000F0
p0tR2

ST

p0 � t

� �
:

�139�

where

KP 00P 000 � exp�ÿqR2
P 00P 000 � ; �140�

q � p00p000cw

p00p000 � p00cw � p000cw
; �141�

RP 00P 000 � P00 ÿ P000 ; �142�

s � p00p000 � p00cw � p000cw

p000 � cw
; �143�

S � �p
00p000 � p00cw�P00 � p000cwP

000

p00p000 � p00cw � p000cw
; �144�

KPS � exp�ÿmR2
PS� ; �145�

m � pscv

ps� pcv � scv
; �146�

RPS � Pÿ S ; �147�

t � ps� pcv � scv

s� cv
; �148�

T � �ps� pcv�P� scvS

ps� pcv � scv
: �149�

We note that in all these four-electron integrals we
have only two Gaussian factors multiplying the in-

complete gamma function. Our calculation of Hermite
integrals by di�erentiation of the spherical Gaussian
integrals therefore involves only the recursion formula of
Eq. (67): the four-electron integrals are simpler than the
cyclic three-electron integral in this respect.

6 Discussion and conclusions

Our presentation here has used exclusively the expansion
of Gaussian overlap distributions in Hermite functions
commonly referred to in the context of GTO integrals as
the McMurchie-Davidson approach [9]. Just as this is
not the only way to compute GTO integrals, there is no
reason to suppose it is the only way to compute GTG
integrals. In very recent work Komornicki and King
(to be published) have developed a scheme for GTG
integrals built on the Rys quadrature approach [10] to
calculating GTO integrals. Their scheme also involves
recursion to obtain the ®nal integrals, but the recursion
relations are quite di�erent from the scheme suggested
here. Like the McMurchie-Davidson approach, Rys
quadrature is also a very e�cient method for computing
GTO integrals, and we may expect that e�cient
evaluation of GTG integrals can also be accomplished
in this way.

We have said little about computational imple-
mentation here, in part because a detailed discussion
would lengthen the paper excessively. Nevertheless, the
gross features of an implementation of the approach we
have developed are clear: the calculation of derivatives
of the incomplete gamma function are already required
for GTO integrals and are thus available for GTG in-
tegrals. The new feature is the recursive calculation of
derivatives of the Gaussian factors that multiply the
incomplete gamma function. Once these are available
the Hermite Gaussian integrals can be computed, and
then combined with the expansion coe�cients to give
®nal Cartesian or spherical harmonic integrals. The
program loop structure that drives this calculation must
be generalized to handle three overlap distributions (for
three-electron integrals) or even four distributions,
compared to the two distributions required for GTO
integrals. This increases the complexity of the program
but does not add materially to the computational e�ort
required, which will be completely dominated by the
calculation of the Hermite Gaussian and then the Car-
tesian or spherical harmonic integrals. We note also that
the many-electron integrals are used immediately in
partial trace operations (see, for example, Ref. [11], to
give matrix elements over Coulomb or exchange opera-
tors, or matrix elements of projection operators. Hence
it is never necessary to store three- or four-electron in-
tegrals on disk. We are currently incorporating the for-
mulas we have derived in this work into the DALTON
program [12] for use in calculations with the GTG-
augmented basis sets suggested in Ref. [1].
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