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Accurate quantum-chemical calculations: The use of Gaussian-type
geminal functions in the treatment of electron correlation

B. Joakim Persson and Peter R. Taylor
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
and San Diego Supercomputer CerfleP,O. Box 85608, San Diego, California 92186-9784

(Received 9 May 1996; accepted 27 June 1996

We investigate augmenting conventional Gaussian-type one-electron orbital basis sets with
two-electron functions that have a Gaussian dependence on the interelectronic distance. We observe
substantial improvements in calculated correlation energies for helium and neon atoms and for the
water molecule. A feature of our approach is that there is no nonlinear optimization of the
two-electron basis function parameters at all. 1896 American Institute of Physics.
[S0021-960606)02937-9

I. INTRODUCTION mE,, (see, e.g., Ref.)5even the largest basis set here yields
Almost all quantum-chemical calculations performed to-]?nly gbout ?s% of thE COII'I'\i}atIOr? elr:jergy, deshplte ﬁontamlng
day use an expansion in one-electron functions. The converyncuonS ofh type (=5)! We s ou stress that the errors
gence of calculated energies and properties with the size (')rt] the SCF energy are much easier 1o colrrect th"?‘” in the
i L e correlation energy. An atomic natural orbital b&stn-
this one-electron basis is a critical issue. At the Hartree—t red f | imitive basi Id sh ]
Fock self-consistent fiel(BCH level, the convergence of the ractedirom a farge primitive basis wou'ld Show errors ot 1ess
total energy as the basis set is expanded is reasonably rap Ha n 1 ny in the SCF energy for any size of con_trgcted
and so are properties directly related to the energy, such sis, but the correla_tlon energy errors_would be similar to
the equilibrium geometry or harmonic vibrational frequen-th(_)Se of thg qurelgtlon-conSIStent basis sets. AS, we have
cies. Comparison studies such as those performed in a recetftid: the situation is the same for other correlation treat-
review! show that a basis set of double-zeta qualftr the ments: this is a basis set problem, not a limitation of the
valence shell at leasaugmented with a single set of polar- Many-body treatment. The consequence is that even neglect-
ization functions yield structures and frequencies close to th#d correlation of the core electrons it is rarely possible to
“Hartree—Fock limit” (complete basjsresults. Properties calculate total energies to an accuracy of tens of mhartree,
such as the dipole moment or polarizability require some2nd errors of a hundred or more would not be uncommon.
what larger sets, but the convergence behavior is well undedVhat makes quantum chemistry at the level of accuracy of a
stood and is still reasonable. And the same arguments appf¢w kcal/mol possible is that most phenomena of interest
to methods such as multiconfigurational SCF, in which thénvolve energy differences, and there are large cancellations
aim is to account for nondynamical correlation effects suctPf error that improve the accuracy of the energy differences
as near degeneracies. by an order of magnitude or more over the accuracy in the
Unfortunately, the convergence of calculations designedotal energies.
to recover dynamical correlation—the effects that arise from By relying on cancellations of error, therefore, it is pos-
the detailed correlation in the electronic motion from thesible to predict thermochemical quantities to an accuracy of
Coulomb repulsion term in the electronic Hamiltonian—is perhaps 2-5 kcal/mol in binding energies or heats of forma-
much less satisfactory. This is a basis set phenomenon quiten by ab initio calculation alone. Such accuracy requires
independent of whether the dynamical correlation is treatethasis sets with up tg type functions on nonhydrogen atoms
by perturbation theory, coupled-cluster methods, or configuandf functions on hydrogef® To obtain “thermochemical
ration interaction. Indeed, the slow convergence of computeéccuracy” of 1 kcal/mol requires either even larger basis
correlation energies with the size of the orbital basis is one o§ets, or the inclusion of some type of correctioh® possi-
the most frustrating aspects of quantum-chemical calculably empirically derived. Such corrections are valuable, but
tions. A simple quantitative example is provided by the neonthere is always concern about the range of validity of any
atom, using the correlation-consistent basis sets developegrrection treatment. The ability to calculate the energy and

by Dunning and co-workefs* (these are basis sets opti- properties more accurately from first principles would be
mized for treating dynamical correlatipnThe error in the highly desirable.

SCF and MP2 valence-shell correlation energy for Ne for the The reason for the slow convergence of correlation en-
sequence of basis sets dendtet-pVDZ, cc-pVTZ, ¢C-  ergy with basis set is the behavior of the wave function as
pVQZ, and cc-pV5Z is listed in Table I. The slow conver- o electrons approach one another. In a helium atom, for
gence of the correlation energy is obvious. For examplegyample, the known behavior of the exact wave function as
since the MP2 valence-shell limit correlation energy is 320 interelectronic distance;, tends to zero is * ir,, as

may be shown from the cusp analysis by K¥td@his linear

dAuthor to whom correspondence should be addressed. behavior inrj; corresponds to a two-electron cusp that is
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5916 B. J. Persson and P. R. Taylor: Gaussian-type geminal functions

TABLE |. Ne atom energies using correlation-consistent basis(gefg).

wij<1,2>=a§b ba(1) Pp(2)CEP+ CiQrazei(1) #5(2).

ASCF Acorr %corr
1
cc-pVDZ 58 136 58% @
cc-pvVTZ 15 56 83% Here ¢,, etc., are virtual MOsQ is a strong orthogonality
ce-pvQZ 35 26 92% projector on the occupied orbital space. The trial functign
ce-pvsz 02 14 96% is used to construct aN-electron wave function
Total —128.54709%,, -320.2
N
Vi =W¥ot+.7 Wijk].;[j ¢k)1 (2

where the antisymmetrizerZ produces amN-electron func-

poorly represented by products of one-electron functionSyg, that is antisymmetric to exchanging any two particles. In
The correlation contribution of high angular momentum oo ice spin-coupled pairs are used but this need not con-
functions (:1an4be shown _by partial-wave expansion studies trn us here. The first term in E€Q) is the conventional

go as (+3) * for functions of angular momenturh for o) contribution to the first-order wave function. The sec-
example. The contribution from a given highewalue is o4 yorm s intended to describe the behavior of the wave
almost exhausted once about six basis functions ofl that function in the region of the correlation cusp. Substituting

. 17 . . . .

included;” but the convergence with itself is evidently o exnansion of Eql) into the Hylleraas functional for the
slow. Hence attempts to obtaifor example mhartree accu-  socond-order energy and minimizing leads to many difficult
racy in correlgtllon energies using one-electron basis sets qﬂtegrals, so Klopper and Kutzelnifiintroduce systematic
not look promising, and other avenues must be explored. Weg o imations that eliminate or simplify difficult integrals.
should perhaps also note here that the nature of the Ongyeqe approximations become more reliable as the orbital

electron orbitals does not strongly affect calculations of theoasis set becomes more complete. Their method has been
correlation energy: Slater-type orbitals do not offer any Sig'used to calculate accurate correlation energias the

nificant advantage over Gaussian-type orbitals, for examplecoupled-cluster as well as the MP2 levéor a variety of

e_Spe_Cia”Y when the latter have been optimized with Correla'systems and undoubtedly represents the most successful gen-

tion in r_mnd. ) , eral use of linear;; terms. The main disadvantage is that
Various alternatives have been suggested instead of Ugipita| pasis sets that are already fairly large, such as cc-

ing one-electron orbl_tl?ls. \INe will not attemptlla clomplletepv-l-z for first-row atoms, are required for the various ap-
dISCUSSIOr:L and we will exclude treatments apl)p icable on%/t roximations to be reliable. It is also not necessarily obvious
atoms. The most obvious extension to orbital-based methogs,, to compute analytical derivatives of the MP2-R12 en-

is to include functions 'that depend on the coordinates of t""%rgy. We may finally note that the original Klopper and Kut-
e_lectroniilrsa_ther than just one. Hylleraas’s work on the hesq|nigq annroach suffered from lack of invariance to unitary
lium atom™ is one of the best-known early explorations of 5 stormations among the occupied orbitals: this has been

this type. Hylleraas used a variational trial function that in- . agied completely by Klopp@rbut need not be discussed
cluded terms linear and quadratic in the interelectronic dishere

tancer ;,, thus allowing for a proper description of the two- "~ 5 completely different set of basis functions that incor-

electron cusp behavior. He obtained extraordinarily good,,iate the interelectronic coordinate explicitly are the
results for He, as we discuss at greater length in Sec. Il. |

aussian-type geminal§GTG9 introduced originally by

would thus seem obvious that one should base a strategy fgoyszzt and by Singef® The most general form of Cartesian
describing correlation on the inclusion of interelectronic CO-GTG is

ordinatesr;; in the wave function, and in particular one

should include linear terms of this type. Unfortunately, theg(a,b,c,d,e,f,a,,v,A,B)

use of linearr;; basis function in many-electron calculations, o abocod. e_f

_ 2 2 2
especially for molecules, leads to insuperable difficulties =X1Y121X2Y5Zp EXH(— al A~ Blog= Y1), )

with various two-electron and even three-electron or highefyhere the electron coordinates are denoted 1 and 2 and the

integrals. Thus linear;; terms have been used mainly in GTG involves two centers andB. The GTG differs from a
benchmark calculations for two-, three-, and four-electronyroduct of two Gaussian-type orbital§TOS

systems.

Recently, however, Klopper, Kutzelnigg and ¢(a,b,c,2,A)¢(d,ef,B,B)
co-workerd®-??have introduced a remarkably ingenious ap- _ _a b_c.d. e.f 2 2
proximate method for incorporating linear; terms into =X1Y121X2Y2Z; €XA(— ariz— Brag) (4)
electronic structure calculations, leading to a hybrid ap-by the inclusion of the correlation facter yrZ, in the expo-
proach that employs both one-electron orbitals gpderms  nential. The correlating pair function would then be ex-
to describe correlation. The basic ansatz used in their sganded as
called MP2-R12 calculations, for example, is to write the
palr-correlatlon function for a pair of occupied molecular Wij(1,2)=2 ¢’g,(1,2), (5)
orbitals (MOs) ¢; and ¢; as v
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where we have collapsed all of the possible GTG indexco-workeré®®° sidesteps this problem and requires at most
guantities into one for notational convenience. The main mothree-electron integrals, a very valuable computational sim-
tivation for the use of functions such as those of R).is plification.
that the integrals that arise in molecular calculations can be Our purpose in the present work is to explore the use of
evaluated using extensions of the formulas for integrals ove&TGs in molecular calculations with a more modest aim
GTOs. All of the integrals, even three- and four-electron orthan that of sub-mhartree accuracy. That is not to say we
higher terms, can thus be expressed either in closed form avould not be interested in achieving such accuracy, but it
in a form that involves a one-dimensional numerical integra-appears at this stage that the more modest goal of mhartree
tion or functional approximatioff?® Hence the individual accuracy is the most appropriate step beyond the use of or-
integrals are not significantly more complicated than thoseital basis sets. We are particularly interested in improving
over GTOs, and are enormously simpler than those that arighe correlation energy available at, say, the valence double
in a full implementation of linear;; approaches. And al- zeta plus polarization basis level. A set such as cc-pvVDZ
though the many-electron integrals are very numerous, likgields some 60%Ne) to 75% (C) of the valence-shell cor-
any Gaussian integrals they can be generated in batches thratation energy available with a given correlation treatment,
are completely independent of one another and are thus ideahd as we have discussed a basis set of this size is required
for implementation on scalable parallel computer architecanyway to obtain results close to convergence to the SCF
tures. On the other hand, from the perspective of the twolimit for structures, etc. Going to a larger set such as cc-
electron cusp condition these functions appear less suitablpV/TZ recovers another 23% of the correlation energy in Ne,
since they do not possess cusps. The obvious analogy is bledt the use of basis sets even this large becomes problematic
tween STOs and GTOs: the latter lack the correct nucleain disk-based correlation treatments for large molecules, and
cusp behavior of the former. Nevertheless, experience habe Ne correlation energy is still in error by 17%, which is of
shown that there is a computational advantage to usinthe order of 56 r&,! The question we wish to answer is as
GTOs, even though many GTOs may be required to give afollows: “How can we improvesubstantiallyon the 70%
adequate representation of a STO. The experience witborrelation energy we can recover with a cc-pvVDZ quality
GTGs has been simil&3" these functions have been used basis?” That is, given that increasing the basis set is an
successfully in calculations of correlation energies to highinefficient way to recover even 90% of the correlation en-
accuracy(that is, on the order of 0.1 By,), especially by ergy, what is our most cost-effective alternative? We will
Szalewicz and co-workersee Refs. 30, 34, 36, and 37, for show here that a few GTGs may be used withany non-
example and recently to even higher accuracy in the work oflinear optimization to augment basis sets of cc-pVDZ quality
Cencek and Rychlewski*° on three- and four-electron sys- so that more than 90% of the correlation energy can be re-
tems. GTGs had been the only route to 0.Eraccuracy covered, and that when used with larger basis sets such as
applicable to polyatomic molecules until the advent of thecc-pVTZ it is possible to recover 98%—99%. We will first
Klopper and Kutzelnigg approximate linegj method. consider the helium atom usingnfinite-orde) variational

One of the questions that immediately arises with the usealculations, and show how these results motivate our sug-
of GTGs is that of the values of the nonlinear parameters imgestion of a pair-function ansatz that can be applied to many-
Eq. (3). This can include the choice of exponents for theelectron systems. We will then apply our approach to corre-
“angular” terms, where these are not constrained by symiation in the neon atom and water molecule as test systems.
metry, as well as the Gaussian exponents and, in moleculesjthough most of our effort is directed toward the valence-
the centers\ andB. The most common strategy has been toshell correlation energy, we will also consider the issue of
optimize these nonlinear parameters, whi@s with any core correlation, since accurate total energies cannot be ob-
nonlinear optimizationrequires considerable computational tained without correlating all electrons.
effort. Good starting guesses for the optimization are valu-  All of the calculations we report have been performed
able, and effort has been devoted to bootstrap procedures using an IBM RS6000/model 350 workstation and SP-2
which a succession of calculations that begins with a smaltomputer at the San Diego Supercomputer Center.
set is used to provide starting guesses for larger and larger
calculationg(see also Ref. 40 Another approach to generat- |I. CORRELATION IN THE HELIUM ATOM
ing a starting guess is to fit the term involving linegrfrom

the Klopper and Kutzelnigg ansatz by GTes Considerable effort has been devoted to correlation in

the helium atom ground state and it is well known that rapid
convergence can be obtained using terms;inThe six-term
Hylleraas wave functioff yields a total energy only 0.4 B,
above the estimated nonrelativistic limit. This result may ap-
pear surprising when one considers that the trial function

rlzdw,-w; Co0, - (6)

We shall have more to say about fits of this type in this work, (1,2 =exd —{(ry+r,)][1+cy(ry+ry)+cy(ry+r,)?

as our approach is closely related to this. Finally, we may 2 2 _
note that while a complete implementation of MP2 based on TCa(r=T2)"F Calzt Colpl(af—Ba)  (7)

GTGs requires four-electron integrals, a novel alternative toncludes only a single exponential term: the optimum single-
the Hylleraas functional introduced by Szalewicz andzeta STO SCF energy for He is2.847 66E,, compared to
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TABLE Il. He atom variational energies using GTG fits itg, and opti-

B. J. Persson and P. R. Taylor: Gaussian-type geminal functions

mized GTG expansionsE(,). . r o
Number Highest GTG Fitting . s
of GTGs exponerft range (ao)b Energy N | ya
SCF energy-2.82134 k 15
Hylleraas energy-2.89112
6 81 2 —2.88958 2k
6 27 2 -2.88991
6 9 2 —2.82169 L
6 81 5 —2.88260
6 27 5 -2.89071
6 9 5 —2.89066 I T B e A e w—
6 81 opt —2.88988
6 27 opt -2.89115
6 9 opf —2.89112
9 2187 2 —2.88965 r
9 729 2 —2.89099
9 243 2 —2.89030 . i
9 729 5 —2.89075 I
9 243 5 -2.89110 |
9 81 5 -2.89108 bsl
9 729 10 —2.88897
9 243 10 -2.89102 N I /
9 81 10 —2.89108 N I 2
9 27 10 —2.89099 -
9 729 opt —2.89118 N4
9 243 opt —2.89124 e Ny
9 81 opt —2.89124 - o ° °® t

#Highest exponent of even-tempered sequence with ratio 3.

FIG. 1. Six GTG fit tor ,, over different rangessolid line: fit; dashed line:

bGTG fit (see text to linearr;; from zero to this value. M.
“Variationally optimum energy for wave function of Eq. 8.
dvariationally optimum energy using this set of GTGs.

A first step in avoiding the explicit use of lineau,
would be to fit it using some more tractable functions, such

the Hartree—Fock limit of-2.861 68E,,, and anyway Hylle- as GTGs
raas’s correlation-optimized exponent gives an even worse
SCF energy of—2.821 34E,,. The polynomial part of Eq.

(7) thus plays a substantial role in the SCF description of the
system, as well as in the correlation energy: an aspect dfiote that we arenot fitting the full expressiorr ;,¢3 here,
Hylleraas’s work that tends to be overlooked in some of thaunlike Eq.(6) above, or the work of Ref. 36. The coefficients
literature and which we discuss at more length elsewhereand exponent values in E(Q) are chosen in some way to
We will in fact reduce Eq(7) to the simpler two-term ex- representr;, as accurately as possible. The analogy with

rmgo b,[1—exp(— y,r2)]. 9)

pression fitting STOs as expansions in GTt4? is clear. Various
elaborate methods for accomplishing the latter have been
T=exgd —{(r{+ry)](1+cqrqy), (8) suggested, including integral-based methods. We have cho-

sen a cruder expedient, using an exponentially weighted
partly to reduce the dimensionality of the problem but also(weight factor expf-r;,]) least-squares procedure. The ex-
because this forms a more logical starting point for our ulti-ponentsy, in Eq. (9) are simply taken as an even-tempered
mate goal of building two-electron terms onto existingsequence/3”, wherea is typically a power of three: values
orbital-based methods. As we see from Table I, the besare given in the tables. We have explored several different
result we can obtain with a function of this form is exponent ranges and fitting ranges. Two fits are plotted in
—2.891 12, compared te-2.821 34 at the SCF level using Figs. 1 and 2. The larger fit here, involving 15 GTGs, differs
just the exponential term but with the correlation-optimizedimperceptibly fromr,, over a range of 1%, except for a
exponent. The exponential here is actually represented usirrggion very close to the origin. Clearly, beyond some value
a 10-term GTO expansion, but this does not affect the resultsf r,, the expansion on the right-hand side of E).will be
above the 1QuE,, level. One immediate observation is that dominated by the behavior of the GTG with the smallest
the r, term contributes significantly to improving the SCF exponent and will approach a constant, which is not at all the
part of the wave function, since it lowers the energy by 70behavior ofr,,. However, electron correlation is a short-
mE,, , which is almost 30 g, larger than the exact correla- range phenomenorthence our use of an exponentially
tion energy. Nevertheless, it will serve to illustrate our gen-weighted fi} and we may assume that the long-range behav-
eral approach here. ior will not matter. The results of Table Il suggest that as

J. Chem. Phys., Vol. 105, No. 14, 8 October 1996
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10 ~ e

15 "o . 3 T s -3 4 3 2 1 0 1 2 3 1 5

L L 1 L L 1 L L L 2 L L L n 1 L 2 n L ]
-1. -0.5 0 0.5 1.

FIG. 3. Six optimized GTGs compared to variational contribution figm
FIG. 2. Fifteen GTG fit tar 1, over different range¢solid line: fit; dashed  in He (see the tejtover different rangegsolid line: calculated; dashed
line: ryy). lines:rqy).

mized coefficients. The trial wave function for He could thus
long as the fitting range is more tharag this is indeed the be written as

case. The length of the fitting expansion does not appear to
be very critical: even a six-term fit introduces errors of only
0.5 mE,, in the energy, while ten terms reduce the error to 20
ME; . The exponent range required in these fits is something . o o o
of a surprise. Despite naive expectations that the most imwhere the'llnea.r cogfflments are varlatlonal!y optimized. Re-
portant issue would be describing the cusp., short-range sultg.obtalned. in this way are also shown in Table Il. Such
behavior which would require very high exponenthere additional er_X|b|I|ty produces results that are somewh_at bet-
seems little need for high exponents. The best six-term fiter tha_n the fitted result alqne for the best f_|ts, and noticeably
covers an exponent range in E@) of 27-0.111 111, the better |_n cases where thg fits were less satlsfactory._The GTG
best nine-term fit is from 243 to 0.037 037, but the difference®™MS in the wave function are plotted together watit ,,

in energy between these results is only 0. mWe have f_rom Eq.(8) in Elg..3—th|s shows some deV|a_t|on from the
experimented with denser coverage of the exponent rangi1€a I'1> behavior in the cusp region, interestingly enough.
(that is, the use of a smaller even-tempered Jatiot the We now consider a more.elgbora'te tna] wave function,
results show little significant improvement. We may con-Where we will see that the variational inclusion of the GTGs

clude from these experiments that it is certainly possible t@VeS significantly better results than the use of a GTG fit to

represent linear,, to any desired accuracy by an expansion inearr;; . We first rec_all the general remarks made in Sec. |

in GTGs like Eq.(9), which may have its uses in facilitating that the use of a basis set of valence double zeta plus polar-

the evaluation of many-electron integrals involving linegr ~ 12ation quality was necessary to obtain molecular Hartree—

terms, just as GTO expansion methods can be used to evalfiock level results that are qualitatively converged. Such a

ate integrals over STGE. basis set is found to yield about 60%—75% of the valence-
The most obvious way to improve the energy obtained irshell correlation energy: we would like to find an effiqient

a calculation with GTO fits to STOs is to optimize the coef- WY 0 recover the remaining 25%-40%. The suggestion of

ficients of the Gaussians, by the variation principle, say/<loPper and Kutzelnigf can be viewed here as an attempt

rather than constraining them by the fit. Pushing the analoglf @ugment a wave function for He like

between GTQ fits to STOs and GTG fits to Ilnee;:}rfurther3 W=cy1s?+c, 1525+ 02232+c3(2p§+2p§+ 2p§) (11)

then, the obvious step is to use the GTGs that appear in Eq.

(9) as basis functions in themselves, with variationally opti-with a linear term to give

W=exg —{(r1+r2)]| co+ > ¢, exp— v, |, (10

J. Chem. Phys., Vol. 105, No. 14, 8 October 1996
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TABLE Ill. He atom variational energies using GTO and GTG that approach would not appear to be very fruitful, unless
basis setsky). perhaps reoptimizing basis sets explicitly for use with linear
Number Highest GTG Fitting r1, changes our observations h_ere. _
of GTGs exponerft range @,)° Energy Much better results are obtained by augmenting the GTO

basis with GTGs and optimizing their coefficients, as in Eq.

SCF energy-2.86166 (13). Results are shown in Table IIl. Correlation energies of

Cl energy—2.89748

6 27 5 — 289853 more than—40 mE,, are obtained, or more than 96% of the
6 27 opt -2.90198 exact result. The number of GTG correlation factors and the
9 243 5 —2.89851 exponent range does not seem to be at all critical: the differ-
12 19%‘:333 Ofg :;-Zgggi ence between the six-term canonical set with expongnts
15 19683 opt 590201 27,9, 3,1, 0.333333, and 0.111 111, and a fifteen-term set
extrapolated with six larger exponents and three smaller ex-
@Highest exponent of even-tempered sequence with ratio 3. ponents(all even-tempered with ratio threés around 10
"GTG fit (see textto linearr; from zero to this value. wE;,. The correlation energies we obtain in this way are
SCF energy with ANO basitee text .
4C| energy with ANO basigsee text and Eq. 11 accurate to almost 1 By, an accuracy that would require
evariationally optimum energyEq. 13 using this set of GTGs. multiple d and f functions to achieve with a GTO basis. In

any event, our He results thus suggest that a profitable way
to improve GTO basis set results may be to add a few GTGs
) 5 (our canonical set of six, sayather than to include more
¥=cpls"+cy1s2s+Cy2s shells of GTOs with higher angular momentum. In Sec. IlI
4 Ca( 202+ 202+ 2D2) + C T 1152, 12 we outline a pair function _approach along these lines that can
3(2Px+ 2Py +2P2) F Cal 12 (12 be used for MP2 calculations on many-electron systems.

In the present work, we can either replace the linear term
with a GTG fit as in Eq(9), or we could increase the varia-
tional flexibility and use a form like [ll. PAIR FUNCTION ANSATZ FOR MP2

As we have noted, our helium results strongly suggest
that even though we can fit lineay; using an expansion in
2\a GTGs, much better results are obtainetien augmenting
+ ; di exp(— v 1p)1s%, (13 small GTO setsy allowing the weights of these geminals to
be optimized. This immediately suggests adding terms such

where thed, andc; are all optimized variationally. These @S €XPt=7,I1,)¢;i¢; to the pair correlation functions to be
alternatives have been tested using a large primitive GT@ised for many-electron systems, just like the addition of
basis contracted to L p] using atomic natural orbitals, and '12¢i¢; in the approach of Klopper and Kutzelnigfg. (1)].

the results are shown in Table lll. The SCF energy in thisHowever, it is not clear that the product of occupied MOs
basis is essentially at the Hartree—Fock limit, so that all en¢i¢; is necessarily the optimum factor to include when aug-
ergy |0wering due to other wave function terms represenfnenting modest GTO basis sets that do not even describe the
contributions to the correlation energy. The GTO basis alon&vave function well away from the correlation cusp, nor is it
yields —35.8 nE,, for the correlation energy out of an exact clear that this is the optimum choice from the perspective of
correlation energy 0f42.0 n‘Eh , or 85%. This iS, of course, Computational cost. We therefore SuggeSt a modified form of
a considerably larger fraction of the correlation energy tharPair function ansatz

would be obtained for larger systems with a basis of this .

quality, so in one sense He represents a better situation for Wij= >, ¢ad,ci+ > cQ expl— vy I did;. (14)
GTOs alone than would larger systems. The addition of the azb _ v

linearrq, term as a fit by GTGs doesot result in a very The functions¢; could be taken identical to the occupied
significant energy lowering here: the correlation energy in-MOs ¢;, but we do not require this: the tilde is used to
creases in magnitude by only 1Ep, giving 88% of the indicate that these may differ from the corresponding occu-
exact result. Using more elaborate fits, over a greater ranggied MOs. This allows us the possibility of using different
of r,, and with more exponents, does not help and actuall\GTO basis sets to represent the M@s and ¢;, for ex-
very slightly degrades the results, further emphasizing thaample. The use of Gaussian correlation factors in #4)

the deficiencies in the original GTO-based Cl wave functionpermits the evaluation of all many-electron integrals that
are more than just the failure to describe the cusp behavioarise without requiring approximations. Of course, it is also
We may thus speculate that adding a linear term to a relgpossible to exploit approximations where this is desired, as
tively small basis would not necessarily yield great improve-in the use of the various weak orthogonality functionals and
ments in the correlation energy, at least not for the typicabtrong orthogonality forcing techniques by Szalewicz and
small basis sets used in quantum chemistry. Further, attempt®-workers?®*® as well as to go beyond the MP2
to refine the approximations used by Klopper andapproximatiort>3*but the latter is beyond the scope of the
Kutzelnigg®?? so that smaller basis sets could be used irpresent work.

W =Cols?+ 1825+ €287+ C3(2p5+ 2p3 +2p?2)
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The use of Eq(14) as a pair-function expansion in prac- TABLE IV. Ne atom MP2 pair-correlation energiésiE,): cc-pVDZ basis.
tical MP2 calculations requires the development of consider=
able computer codes to evaluate and manipulate the neces-
sary integrals. Although there are no particular Valence:

Pair GTO basis +6 GTGS +6 GTGS %° Limit?

. . .. . 1 — — _ —
complications, this is not work to undertake lightly based (2529) 8.5 1.7 118 983 -120
: (2s2p) -10.2 -18.7 -19.2 954 -20.1
only on He atom calculations as a proof of concept. We are 3(252p) 68 80 81 913 -89
fortunate to have access to tbeMINAL9L program of Sza- Y(2p,2p,) ~18.1 —22.2 —234 87.0 —269
lewicz and collaborator which provides us with a more Y(2p,2p,) —-11.4 -14.1 -148 839 -17.6
immediate way to verify the utility of our approach. We must *(2p,2p,) —-225 —25.6 -272 935 -291
stress thaGEMINAL91 is designed for GTG calculations with ~ T0®@! —2155  —2rr2z —2900  90.6 —320.2

— . . ore:

full opt|.m|zat'|on qf nonl|r!ear. parameters. Whgt We propose ;¢ 277 _390 969 —402
to use it for is quite outside its d_eS|gn, and this W|_II impose 1(152g) 26 —36 901 -40
some constraints on our calculations. One constraint is that it3(1s2s) -1.2 -16 984 -16
is not possible to use contracted GTOs or GTGs—only ;(132p) -0.5 -24 865 27
primitive (i.e., uncontractedfunctions may be used. Second, _(152P) —2.8 —45 964 46
Total —256.8 —-3546 914 —387.8

the pair functions must all be represented as GTGs. Thus, far

example, the virtual orbital product term on the right-handssingle GTO used to represent occupied MOs in Eq. 18.

side of Eq.(14) is represented by &éstrong-orthogonality —°Multiple GTOs used to represent occupied MOs in Eq. 18.

prOJected “GTG basis” that comprises all symmetry- Percentage of M_P2 limit recqvered_by 6 GTG calculation with multiple
. .. . GTO representation of occupied orbitals.

allowed products of GTOg,, in the original basis dReferences 5, 54.

D b= 2 2 R ClaCubXpuXo= 2 S XX . -
&b T A ow w O note that the use of Eq18) with fully optimized values of

(19  the coefficients,, may give a more flexible wave function,
where in essence including also MO terms like exp,r2,) ¢adby,
and thus may vyield a lower MP2 energy than the original
ansatz of Eq(14). It is not straightforward to quantify this
here, but as we show below there is reason to believe this
extra flexibility contributes very little to the energy.

ch’= a§>}b c3°C,,aCop (16)

and C is the matrix of SCF orbital coefficients. Hence the
orbital MP2 contribution can be expressed in terms of GTOI
products x,x,, that is, GTGs with no explicit,, depen-
dence. A. Ne atom

The representation of the second term on the right-hand The neon atom provides a good initial test case for our

side of Eq.(14) is more complicated. Since contracted GTGSonqsed method. There are several very accurate estimates
are not implemented iBEMINALOL, we must replace of the valence-shell and total MP2 correlation energies
—— which provide solid benchmarksee Ref. 5 and references
E ciiQ qu_'yvriz)(ﬁi(ﬁj therein, and the symmetry reduces the number of distinct
° pairs that must be considered, as well as speeding up the
== 5~ ~ calculation because all integrals are one center. Results for
=22 CijCuiCrjQ eXpl— ¥l 1) XuXo (17 Ne valence-shell pair correlation energies are given in Tables
voouv . .. . .
_ - IV and V. In Table IV we list the distinct pair energies ob-
wherey, is the expansion basis used for the M@s with  tained with the Dunning cc-pVDZ basis $&run uncon-

V. RESULTS USING GTGs

I v 2
; % ClurQ EXP(= Yol 1) XpuX v - (18) TABLE V. Ne atom 22 MP2 pair-correlation energgme,,).

Note that the constraint that the GTOs appear multiplied by Pair
their SCF coefficients has been lifted. The prime on the sum- Basis energy
mation in Eq.(18) indicates that the range of the summation ¢cpvpz ~181
is not required to be over all GTOs of the correct symmetry: cc-pvVDZ+6 GTGS/1 GTO per occupied MO —-22.2
the terms to be included are at our discretion. This is a con-cc-pPVDZ+6 GTGS/2 GTO per occupied MO —23.4
venient notation since in all of our calculations the GTOs ¢¢-PVDZ+8 GTGS/L GTO per occupied MO —223

~ cc-pVDZ+10 GTGE/1 GTO per occupied MO -223
used to expand the; have been a subset of the full GTO |, .. 6@

basis. Including all GTOs would anyway greatly increase the
size of the geminal basis sets to be employed, and we ha\thsed Unclontracted in all calculations here.

; ; ; Canonical set: exponents 27, 9, 3, 1, 0.333333, 0.111111.
restricted the sums over GTOS in .qu) to_mclude gnly the “Exponents 81, 27, 9, 3, 1, 0.333333, 0.111111, 0.037037.
GTOs that have the largest coefficients in the original MOSigyponents 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.0625.

¢; and ¢; . Full details are given in Sec. IV. We may also “References 5, 54.
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5922 B. J. Persson and P. R. Taylor: Gaussian-type geminal functions

tractedand with a Cartesiad set—as noted above these are TABLE VI. Ne atom MP2 pair-correlation energiésiEy): cc-pVTZ basis.
requirements IrGEMINAL91). Results are given for the GTO

basis alone and augmented by six GTG correlation factors Pair GTO basis 0 GTGs % Limit®
with exponents of 27, 9, 3, 1, 0.333333, and 0.111 111. 1(2523) —-10.3 —-12.0 99.6 —-12.0
Such results are denotedt‘6 GTGs” in the tables: this is a 382223 i 200 o TR
gonvgment Iqbel although strictly speakmg we are mtroduc- 1(2p,2p,) 907 _263 97.9 269
ing six geminal correlation factors multiplying occupied 1(2p2p ) —14.1 ~17.0 96.8 ~17.6
MOs or approximations thereto. The number of GTGs ex- 3(2p,2p,) -27.2 —-28.6 98.3 -29.1
pressed as products of correlation factors and GTO basisTotal —273.1 —314.0 981  —320.2

functions, as in Eq(18), can be Ia.rger than six. Where GTGS #Percentage of MP2 limit recovered by GTO basis augmented with 6 GTGs.
are used, we have used two different sets of GTOs in EGreferences 5, 54.

(18) to represent the occupied orbitals. The single GTO ap-
proximation involves a compromise exponent that is a crude
fit to the 2s or 2p SCF orbitals; this compromise exponent is even-tempered sequenc®r the use of a denser coverage of
in neither case represented in the original basis. Examinatiothe canonical exponent range lead to significant improve-
of the cc-pVDZ set itself shows that thes2nd 2p orbitals  ment of the pair-correlation energy. Indeed, the improvement
are both dominated by two GTQthe outermost exponents of the occupied orbital product by using more GTOs changes
in both cases and in the second set of GTG calculationsthe pair energy by considerably more than these exponent
shown in Table IV these twe or two p GTOs were included adjustments.
in the expansion of Eq18). Table IV also contains results for pair-correlation ener-

The fraction of the MP2 valence-shell correlation energygies involving the Ne & core orbital. The GTO basis is not
recovered by the cc-pVDZ basis alone here is modest: 67%xpected to perform even as well as it does for the valence-
and this reflects the use of an uncontracted set—in the usuahell pairs here, since no attempt has been made to augment
[3s2p1d] contracted form only 58% is recovered. Adding the basis with the high-exponent functions needed to de-
six GTGs and using a single-term approximation to the ocscribe core correlation. Of course, running the GTO basis
cupied orbitals as in Eq18) we recover 87%, and using a uncontracted helps, since the innermpdgtinctions and vari-
more accurate two-term approximation to the occupied orbitouss functions can contribute to the correlating orbitals. The
als gives 91%. That is, we have reduced the error in theontractedcc-pVDZ basis recovers almost no core correla-
correlation energy by almost a factor of 4. It is of sometion at all in fact: only—2.1 nE,, from all pairs involving the
interest to study the individual pair energies. The® Pair  1s orbital—the 1s? pair itself has a pair-correlation energy
and the 32p interpair singlet and triplet are all rather close of only —0.25 nE, in the contracted basis, compared to
to their limiting values when GTGs are included in the basis,—27.7 nE,, in the uncontracted basis. The same six GTGs
even though the interpairs particularly show significant erthat improve the valence-shell pair energies so dramatically
rors in the GTO basis alone. Tha2p singlet interpair cor-  play a similar role here, giving asf pair-correlation energy
relation energy is substantially improved by the GTGs, sincenly 1 mE,, from the exact result, for example. This is con-
the GTO value is only about half the estimated limit, sistent with the observation of Kloppethat with the linear
whereas the error in the value when GTGs are used is only; method it is less critical to have core-correlating GTOs in
5%. The various B? pairs are not well described by the the basis, although Klopper's best results are obtained, like
cc-pVDZ basis in comparison to pairs involving the @r-  those here, with an uncontracted basis. It is difficult to say
bital. The slower convergence of the? pairs is already more without performing calculations using contracted sets
well known3* Inclusion of six GTGs once again effects a augmented with GTGs, which is not possible here. Finally,
dramatic improvement in the pair energies, although the sinwe note that three GTO&he fifth, sixth, and seventh with
glet pairs are still in error by about 2Ey. For the pairs exponents in descending orgerere used to represent the 1
involving the 2 orbital the difference between the use of orbital in Eq.(18).
single-term and two-term GTO approximations to the occu- Our GTG sets are thus constructed by taking products of
pied orbitals, as in Eq18), is only tenths of a mhartree. For our canonical list of six GTG correlation factors and multi-
the 2p? pairs the difference is larger and exceeds 1E5,1im plying them by selected products of GTOs. The use of a
one case, but we will see later that this is not typical. We carsmaller GTO set in GTG calculations has commonly been
reasonably assert that the main result of adding more GTOdone in the opposite fashion, using a small GTO set to rep-
is to improve the representation of the occupied orbital prodresent the Fock operator for use with a large set of G¥Gs.
uct, rather than describing terms such as exp(r2,) ¢,y . Our approach has more in common with the first pHase

In Table V we show the convergence of thp22intra-  of a GTG fit to the produdt;,¢; ¢; as in Eq.(6)] of the work
pair correlation energy with different GTG basis sets. In ad-of Bukowski and co-worker® where a smaller GTO set is
dition to the results of Table IV we show the effect of using used initially but nonlinear optimization of the GTGs is em-
more GTGs. These are combined with single GTO approxiployed. We regard it as desirable to avoid nonlinear optimi-
mations to the occupied orbitals. Neither the expansion ofation even if this requires the use of larger GTG basis sets.
the range of geminal exponenflBy adding functions with In Table VI we list pair-correlation energies obtained
exponents of 81 and 0.037 037 at either end of the canonicaising the larger Dunning cc-pVTZ bagif\gain, the basis is
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TABLE VII. Ne atom MP2 valence-shell correlation energiesEy,).? for the valence-shell correlation energy in Table VII. It is
noteworthy that our GTG-augmented cc-pVTZ basis calcu-

Basis e';::gy lation recovers more correlation thaany GTO basis set
in Table VII, even including sets containing multiple
ce-pVDZ _ —1855 i functions. This includes not only the correlation-
gz:g&gé Eﬂzigggggzg 22222:2;;6 TGS :gég:g consistent cc-pV5Z badis but also the uncontracted
cc-pvTZ _264.3 (15s9p7d5f3glh) basis constructed by Klopperwhich
cc-pVTZ+linearr;;® —298.8 must be close to saturation in tdeandf spaces at least. The
cc-pVTZ (uncontracted, Cartesians —-273.1 MP2-R12 approach gives a result within a mhartree of the
CC-pVTZ (uncontracted, Cartesianss GTGs ~3814.0 MP2 limit, although this is based on the uncontracted
gg:gxgzz(“ncomradem"”earr” :232:2 (15s9p7d5f3glh) set. MP2-R12 calculations based on
cc-pVQZ+linearr;,° ~310.0 various correlation-consistent basis sets are also given in
cc-pVQZ (uncontractegit-linearr;; -312.7 Table VII. Only the cc-pV5Z with linear;; terms outper-
cc-pVsZ —306.2 forms the GTG-augmented cc-pVTZ set, but we should em-
cc-pvBZtiinearr;® ) —3145 phasize here that the correlation-consistent basis sets are not
ii’;vgi(L;':jcosnf"zcgei')'gearr” :gég:g well suited for use in the MP2-R12 method and are not at all
(15s 9p 7d 5f 3g 1h)-+linearr;® ~320.0 the optimum choice of GTO set of the given size for use with
(18s 13p 6d 5f 4q) —306.8 linearr;;, as discussed by Klopper and co-work&rghe
(18s 13p 6d 5f 4g 3h) -311.8 (18s13p6d5f4g3h2i) set of Almldf and Taylot’ should be
(18 13p 6d 5f 4g 3h 2i) N —313.8 close to saturation for thd, f, andg spaces, and gives an
Extended GTG set with nonlinear optimization —-317.6 . . . . .
CBS extrapolatioh _3175 idea of the contribution of functions, which Iower th_e en-
Limit' _320.2 ergy by only 2 nky, compared to the same basis without
functions. This may be compared in turn with the energy
:,\S,\fhflrical h?fmonki)cl’_ bhasaiis functions except as noted. lowering of theh functions, which is 5 r&,, compared to the
cRéfergﬁgsr;npu she basis with up tog functions only. The slow convergence
dReference 34. with angular momentum is very evident in these results.
:‘Reference 14. Even the set containingfunctions does not quite match the
References 5, 54. result obtained with the cc-pVTZ set augmented with our six

GTGs. It is hardly feasible to extrapolate the effect of adding

these GTGs to the cc-pVQZ set from just the cc-pvVDZ and
used uncontracted, and Cartesian polarization functions a@c-pVTZ results in Table VII, but it is certainly tempting to
used. The GTO basis MP2 valence-shell correlation energhelieve that this would give a correlation energy within
here is—273.1 nE,,, or 85% of the exact valugRunning 1 ME, of the valence MP2 limit.
this basis contracted as recommended by Dunning and using Several methods included in the comparisons in the
spherical harmonic GTOs gives a somewhat smaller correlavork by Klopper (such as the finite element approach or
tion energy, as listed in Table VII, but the difference is lesspartial-wave expansiongive similar or even slightly better
than 9 nE,,, much smaller than the analogous difference forresults than MP2-R12, but these methods are not applicable
the cc-pVDZ sed. Augmenting the GTO set with six GTG to polyatomic molecules and are not listed here. The com-
correlation factors for each pair-correlation energy calculaplete basis setCBS) extrapolation”*°is a system of cor-
tion gives a MP2 value of 314.0 By . This is more than rections developed by comparing computed atomic pair-
98% of the MP2 limit: an impressive result for such a Simp|ecorrelation energies to estimated limit values. For Ne this
augmentation of a medium-sized basis. In these calculatior@xtrapolation(which costs essentially nothing beyond the
the outermost twes and/or threep GTOs are used in the original GTO basis MP2 calculatioris in very good agree-
expansion of Eq(18). The individual pair-correlation ener- ment with the MP2 limit, although one might hope that this
gies show similar trends to those seen in the cc-pVDZ basi#ould be the case for an atom, given the atomic origins of
calculations. Pairs involving thes2orbital are very well de- the extrapolation. For molecules the error in the CBS ex-
scribed and the pair energies appear converged to within orfgapolation is somewhat larger, similar in fact to the error in
or two tenths of a mhartree. Pairs involving only thp 2 our GTG-augmented cc-pVTZ basis results for Ne.
orbitals are less well converged, but the differences are still
well below 1 nE,. In another attempt to assess how the
number of GTOs used in E¢L8) affects the calculation, we
have computed theg intrapair energy using all five primi- The recovery of 98% of the Ne valence-shell MP2 cor-
tive p GTOs. The difference from the calculation with three relation energy by a simple extension of a cc-pVTZ basis
p GTOs is less than 0.1, , which again suggests that the strongly suggests that GTGs offer much promise in elec-
contribution from virtual orbital product terms like tronic structure calculations. A skeptical observer, however,
exp(— 7Ur§2) by is negligible. might point to the results presented so far as being exclu-

To summarize our Ne results and to allow a comparisorsively for atoms, and that a molecular example would be

with other basis sets we have listed a number of MP2 resultkighly desirable to allay fears that the approach works well

B. Water molecule
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TABLE VIII. H,0 pair-correlation energie@nE,): cc-pVDZ basis. verge more rapidlyfthe GTO basis alone also performs bet-
ter for H,O than Ne. An inspection of the pair-correlation
energies suggests that pairs containing the lbne-pair or-
‘(2a;2ay) —-10.0 752 126 947  -133 bital are harder to describe than the others, which is consis-

Pair GTO basis %  6GTGs % Limit®

1gbzéb2; _ig-g 32'2 _53-2 Zgg _gg-g tent with the greater difficulties of describing2pairs in Ne
a;3a; —18. . —24. . —25. . .

'(1b,1b,) _184 700  —233 887  —26.3 (th(za.l-ho 1p1 orbital is glmost pure ﬁy). For example, the .
1(2a,1b,) 138 64.8  —20.4 958 -213 1b7 intrapair energy using the GTGs is only 85% of the limit
3(2a,1b,) -6.9 85.2 -7.7 94.2 -8.1 value, compared to 94% or more for the other intrapairs. The
'(2a,3a,) -106 59.9  -16.7 948  -17.7 situation is similar for the interpairs. We would expect, from
3(2a,3a,) -6.8 80.0 -7.8 91.5 -85 i ; ;
et comparing with Ne, that the use of a cc-pVTZ basis aug-
(22,1by) 109 >9  ~178 939 ~189 mented with our canonical set of GTGs might recover 99%
3(2a,1b,) —7.2 766 -85 906  —94 gntr 0
1(1b,3a,) —13.7 770 —16.6 932 —-178 or more of the !—ZIO MP2 valgnce-shell gorrelatl_on_ energy,
3(1b,3ay) —-19.8 832 —221 925 —238 but it is not feasible to test this hypothesis by mimicking the
'(1b,1by) —9.6 658  —125 858  —146 ansatz of Eq(14) usingGEMINAL91 with a basis of this size.
3(1b,1by) -20.8 80.9 -236 91.8 -257

}(3a,1b,) -10.9 64.1 147 86.9 —17.0

3(3a;1b,) -21.0 78.7 —24.3 91.0 —26.7 V. DISCUSSION

Total -219.8 731 —277.0 92.1 —300.5

s t PyT— FTR=——— One of the first questions that must be asked about any
ercentage o Imit recovere y aslis calculation. . - _
bPercentage of MP2 limit recovered by GTO basis augmented with 6 GTGsprOpgsed ,neW method is the CompUtatlom_il COSt,' For the cal
Reference 5. culations listed above on Ne and®|, those including GTGs
required about 25% more computer time than those without,
but this is not remotely an honest comparison because of the

only for atoms, and to demonstrate the potential for applicaneed to construct GTGs for the virtual orbital product terms
tions in molecular physics and chemistry as well as atomidn Ed. (14) when usingGEMINAL9L. This greatly inflates the
physics. We have therefore computed the MP2 valence-sheime required to compute a GTO basis MP2 energy com-
correlation energy for the molecule,8, pair energies for pared to conventional programs. A more accurate picture can
which are listed in Table VIIIl. The oxygen atom is at the be obtained by considering the scaling of the work required.
coordinate origin and the hydrogen atoms are located dtor @ MP2 method that exploits the weak orthogonality func-
(+1.430 432, 0, 1.107 16@,). This is the same geometry tional of Szalewicz and co-workérs® (requiring only three-
used by both Bukowski and co-work&tsn their extensive electron integrals the integral calculation scales as
optimized GTG basis calculation and by Klopgefhe GTO ~ NarN&ro andNEgraN&ro. If the full GTO basis were used
basis is the cc-pVDZ set of Dunnifpr both O and H, run in the construction of the GTGs in E(l4) (that is, all¢; are
uncontracted and with Cartesian polarization functions. Théaken as¢;) these expressions both reduceNfiro. Note
occupied orbital product was expanded in GTOs as in eq_hat since we use the same correlation factors for each pair
(18): the number of GTOs needed to represent each MO wasorrelation function there is no dependence on the number of
estimated by inspection of the MO coefficients, and to assigkairs here. Alternatively, we may use a reduced GTO set or
anyone trying to reproduce these calculations the exponegme other different or approximate representation of MOs
values and centers of the GTOs used to approximate eachi in Ed. (14), similar to the spirit of the “dual basis sets”
MO in Eq. (18) are listed in Table IX. We emphasize that all for correlated calculations used by Jurgens-Lutovsky and
these GTOs are part of the original basis and neither theiflmIGf.*” In this case Ngr will depend explicitly on the
location nor their exponents were adjusted in any way. ~ number of pairsn? for n occupied MOs, and on the square
The GTO basis alone recovers about 73% of the MP2f the number of GTON gy used to represent thé; . The
valence-shell limit; augmented with the canonical six GTGScaling would then be®NgroNgro and n*NgroNgro. In
correlation factors this fraction rises to more than 92%. Thignost cases, wheme<Ngro, the former term will dominate.
is actually slightlybetterthan the Ne result in the same basis, Note that for a given system, the work required as a larger
probably because the,B correlation energy is smaller than basis set is used scales the same way for our GTG-

that of Ne to start with, and the calculations appear to con2ugmented basis set as for a GTO baigio. o
Another advantage of our suggested GTG set arises in

the calculation of energy derivatives. Since our GTGs have

TABLE IX. H,0: GTOs used in approximating the occupied orbitals. no dependence on nuclear centers other than those that al-
ready appear in the GTO basis itself, there are no complica-
2a, 1b, 3a, 1b, tions to the expressions for the forces on the nuclei, or the

O(s 1.013 O(p, 1.046 O(s 1.013 O(p, 1.046 harmonic force constants from other centers appearing in the
O(s 0.3023 O(py 0.2753 O(s 0.3023 O(p, 0.2753 GTGs. Hence energy derivatives involve no additional com-

H(s 0.4446 O(p; 1.048 plications from our GTGs.

?4((22(?42475; Our theoretical presentation and results here have been

i cast in terms of MP2 as the many-electron treatment. This is

3See Eq. 18 in the text. convenient as the simplest approach, but we wish to stress
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