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Accurate quantum-chemical calculations: The use of Gaussian-type
geminal functions in the treatment of electron correlation

B. Joakim Persson and Peter R. Taylor
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
and San Diego Supercomputer Center,a! P.O. Box 85608, San Diego, California 92186-9784

~Received 9 May 1996; accepted 27 June 1996!

We investigate augmenting conventional Gaussian-type one-electron orbital basis sets with
two-electron functions that have a Gaussian dependence on the interelectronic distance. We observe
substantial improvements in calculated correlation energies for helium and neon atoms and for the
water molecule. A feature of our approach is that there is no nonlinear optimization of the
two-electron basis function parameters at all. ©1996 American Institute of Physics.
@S0021-9606~96!02937-6#

I. INTRODUCTION

Almost all quantum-chemical calculations performed to-
day use an expansion in one-electron functions. The conver-
gence of calculated energies and properties with the size of
this one-electron basis is a critical issue. At the Hartree–
Fock self-consistent field~SCF! level, the convergence of the
total energy as the basis set is expanded is reasonably rapid,
and so are properties directly related to the energy, such as
the equilibrium geometry or harmonic vibrational frequen-
cies. Comparison studies such as those performed in a recent
review1 show that a basis set of double-zeta quality~for the
valence shell at least! augmented with a single set of polar-
ization functions yield structures and frequencies close to the
‘‘Hartree–Fock limit’’ ~complete basis! results. Properties
such as the dipole moment or polarizability require some-
what larger sets, but the convergence behavior is well under-
stood and is still reasonable. And the same arguments apply
to methods such as multiconfigurational SCF, in which the
aim is to account for nondynamical correlation effects such
as near degeneracies.

Unfortunately, the convergence of calculations designed
to recover dynamical correlation—the effects that arise from
the detailed correlation in the electronic motion from the
Coulomb repulsion term in the electronic Hamiltonian—is
much less satisfactory. This is a basis set phenomenon quite
independent of whether the dynamical correlation is treated
by perturbation theory, coupled-cluster methods, or configu-
ration interaction. Indeed, the slow convergence of computed
correlation energies with the size of the orbital basis is one of
the most frustrating aspects of quantum-chemical calcula-
tions. A simple quantitative example is provided by the neon
atom, using the correlation-consistent basis sets developed
by Dunning and co-workers2–4 ~these are basis sets opti-
mized for treating dynamical correlation!. The error in the
SCF and MP2 valence-shell correlation energy for Ne for the
sequence of basis sets denoted2 cc-pVDZ, cc-pVTZ, cc-
pVQZ, and cc-pV5Z is listed in Table I. The slow conver-
gence of the correlation energy is obvious. For example,
since the MP2 valence-shell limit correlation energy is 320

mEh ~see, e.g., Ref. 5!, even the largest basis set here yields
only about 95% of the correlation energy, despite containing
functions ofh type (l55)! We should stress that the errors
in the SCF energy are much easier to correct than in the
correlation energy. An atomic natural orbital basis6 con-
tracted from a large primitive basis would show errors of less
than 1 mEh in the SCF energy for any size of contracted
basis, but the correlation energy errors would be similar to
those of the correlation-consistent basis sets. As we have
said, the situation is the same for other correlation treat-
ments: this is a basis set problem, not a limitation of the
many-body treatment. The consequence is that even neglect-
ing correlation of the core electrons it is rarely possible to
calculate total energies to an accuracy of tens of mhartree,
and errors of a hundred or more would not be uncommon.
What makes quantum chemistry at the level of accuracy of a
few kcal/mol possible is that most phenomena of interest
involve energy differences, and there are large cancellations
of error that improve the accuracy of the energy differences
by an order of magnitude or more over the accuracy in the
total energies.

By relying on cancellations of error, therefore, it is pos-
sible to predict thermochemical quantities to an accuracy of
perhaps 2–5 kcal/mol in binding energies or heats of forma-
tion by ab initio calculation alone. Such accuracy requires
basis sets with up tog type functions on nonhydrogen atoms
and f functions on hydrogen.7,8 To obtain ‘‘thermochemical
accuracy’’ of 1 kcal/mol requires either even larger basis
sets, or the inclusion of some type of correction,7,9–15possi-
bly empirically derived. Such corrections are valuable, but
there is always concern about the range of validity of any
correction treatment. The ability to calculate the energy and
properties more accurately from first principles would be
highly desirable.

The reason for the slow convergence of correlation en-
ergy with basis set is the behavior of the wave function as
two electrons approach one another. In a helium atom, for
example, the known behavior of the exact wave function as
the interelectronic distancer 12 tends to zero is 11 1

2r 12, as
may be shown from the cusp analysis by Kato.16 This linear
behavior in r i j corresponds to a two-electron cusp that isa!Author to whom correspondence should be addressed.
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poorly represented by products of one-electron functions.
The correlation contribution of high angular momentum
functions can be shown by partial-wave expansion studies to
go as (l1 1

2)
24 for functions of angular momentuml , for

example. The contribution from a given higherl value is
almost exhausted once about six basis functions of thatl are
included,17 but the convergence withl itself is evidently
slow. Hence attempts to obtain~for example! mhartree accu-
racy in correlation energies using one-electron basis sets do
not look promising, and other avenues must be explored. We
should perhaps also note here that the nature of the one-
electron orbitals does not strongly affect calculations of the
correlation energy: Slater-type orbitals do not offer any sig-
nificant advantage over Gaussian-type orbitals, for example,
especially when the latter have been optimized with correla-
tion in mind.

Various alternatives have been suggested instead of us-
ing one-electron orbitals. We will not attempt a complete
discussion, and we will exclude treatments applicable only to
atoms. The most obvious extension to orbital-based methods
is to include functions that depend on the coordinates of two
electrons rather than just one. Hylleraas’s work on the he-
lium atom18 is one of the best-known early explorations of
this type. Hylleraas used a variational trial function that in-
cluded terms linear and quadratic in the interelectronic dis-
tancer 12, thus allowing for a proper description of the two-
electron cusp behavior. He obtained extraordinarily good
results for He, as we discuss at greater length in Sec. II. It
would thus seem obvious that one should base a strategy for
describing correlation on the inclusion of interelectronic co-
ordinatesr i j in the wave function, and in particular one
should include linear terms of this type. Unfortunately, the
use of linearr i j basis function in many-electron calculations,
especially for molecules, leads to insuperable difficulties
with various two-electron and even three-electron or higher
integrals. Thus linearr i j terms have been used mainly in
benchmark calculations for two-, three-, and four-electron
systems.

Recently, however, Klopper, Kutzelnigg and
co-workers19–22have introduced a remarkably ingenious ap-
proximate method for incorporating linearr i j terms into
electronic structure calculations, leading to a hybrid ap-
proach that employs both one-electron orbitals andr i j terms
to describe correlation. The basic ansatz used in their so-
called MP2-R12 calculations, for example, is to write the
pair-correlation function for a pair of occupied molecular
orbitals ~MOs! f i andf j as

wi j ~1,2!5 (
a.b

fa~1!fb~2!ci j
ab1ci jQr12f i~1!f j~2!.

~1!

Herefa , etc., are virtual MOs;Q is a strong orthogonality
projector on the occupied orbital space. The trial functionwi j

is used to construct anN-electron wave function

C i j5C01ASwi j )
kÞ i , j

N

fkD , ~2!

where the antisymmetrizerA produces anN-electron func-
tion that is antisymmetric to exchanging any two particles. In
practice spin-coupled pairs are used but this need not con-
cern us here. The first term in Eq.~1! is the conventional
orbital contribution to the first-order wave function. The sec-
ond term is intended to describe the behavior of the wave
function in the region of the correlation cusp. Substituting
the expansion of Eq.~1! into the Hylleraas functional for the
second-order energy and minimizing leads to many difficult
integrals, so Klopper and Kutzelnigg19 introduce systematic
approximations that eliminate or simplify difficult integrals.
These approximations become more reliable as the orbital
basis set becomes more complete. Their method has been
used to calculate accurate correlation energies~at the
coupled-cluster as well as the MP2 level! for a variety of
systems and undoubtedly represents the most successful gen-
eral use of linearr i j terms. The main disadvantage is that
orbital basis sets that are already fairly large, such as cc-
pVTZ for first-row atoms, are required for the various ap-
proximations to be reliable. It is also not necessarily obvious
how to compute analytical derivatives of the MP2-R12 en-
ergy. We may finally note that the original Klopper and Kut-
zelnigg approach suffered from lack of invariance to unitary
transformations among the occupied orbitals: this has been
remedied completely by Klopper23 but need not be discussed
here.

A completely different set of basis functions that incor-
porate the interelectronic coordinate explicitly are the
Gaussian-type geminals~GTGs! introduced originally by
Boys24 and by Singer.25 The most general form of Cartesian
GTG is

g~a,b,c,d,e, f ,a,b,g,A,B!

5x1
ay1

bz1
cx2

dy2
ez2

f exp~2ar 1A
2 2br 2B

2 2gr 12
2 !, ~3!

where the electron coordinates are denoted 1 and 2 and the
GTG involves two centersA andB. The GTG differs from a
product of two Gaussian-type orbitals~GTOs!

f~a,b,c,a,A!f~d,e, f ,b,B!

5x1
ay1

bz1
cx2

dy2
ez2

f exp~2ar 1A
2 2br 2B

2 ! ~4!

by the inclusion of the correlation factor2gr 12
2 in the expo-

nential. The correlating pair function would then be ex-
panded as

wi j ~1,2!5(
v

ci j
v gv~1,2!, ~5!

TABLE I. Ne atom energies using correlation-consistent basis sets~mEh!.

DSCF Dcorr %corr

cc-pVDZ 58 136 58%
cc-pVTZ 15 56 83%
cc-pVQZ 3.5 26 92%
cc-pV5Z 0.2 14 96%
Total 2128.54709Eh 2320.2
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where we have collapsed all of the possible GTG index
quantities into one for notational convenience. The main mo-
tivation for the use of functions such as those of Eq.~3! is
that the integrals that arise in molecular calculations can be
evaluated using extensions of the formulas for integrals over
GTOs. All of the integrals, even three- and four-electron or
higher terms, can thus be expressed either in closed form or
in a form that involves a one-dimensional numerical integra-
tion or functional approximation.24,26 Hence the individual
integrals are not significantly more complicated than those
over GTOs, and are enormously simpler than those that arise
in a full implementation of linearr i j approaches. And al-
though the many-electron integrals are very numerous, like
any Gaussian integrals they can be generated in batches that
are completely independent of one another and are thus ideal
for implementation on scalable parallel computer architec-
tures. On the other hand, from the perspective of the two-
electron cusp condition these functions appear less suitable,
since they do not possess cusps. The obvious analogy is be-
tween STOs and GTOs: the latter lack the correct nuclear
cusp behavior of the former. Nevertheless, experience has
shown that there is a computational advantage to using
GTOs, even though many GTOs may be required to give an
adequate representation of a STO. The experience with
GTGs has been similar:27–37 these functions have been used
successfully in calculations of correlation energies to high
accuracy~that is, on the order of 0.1 mEh!, especially by
Szalewicz and co-workers~see Refs. 30, 34, 36, and 37, for
example! and recently to even higher accuracy in the work of
Cencek and Rychlewski38,39 on three- and four-electron sys-
tems. GTGs had been the only route to 0.1 mEh accuracy
applicable to polyatomic molecules until the advent of the
Klopper and Kutzelnigg approximate linearr i j method.

One of the questions that immediately arises with the use
of GTGs is that of the values of the nonlinear parameters in
Eq. ~3!. This can include the choice of exponents for the
‘‘angular’’ terms, where these are not constrained by sym-
metry, as well as the Gaussian exponents and, in molecules,
the centersA andB. The most common strategy has been to
optimize these nonlinear parameters, which~as with any
nonlinear optimization! requires considerable computational
effort. Good starting guesses for the optimization are valu-
able, and effort has been devoted to bootstrap procedures in
which a succession of calculations that begins with a small
set is used to provide starting guesses for larger and larger
calculations~see also Ref. 40!. Another approach to generat-
ing a starting guess is to fit the term involving linearr i j from
the Klopper and Kutzelnigg ansatz by GTGs36

r 12f if j'(
v

cvgv . ~6!

We shall have more to say about fits of this type in this work,
as our approach is closely related to this. Finally, we may
note that while a complete implementation of MP2 based on
GTGs requires four-electron integrals, a novel alternative to
the Hylleraas functional introduced by Szalewicz and

co-workers29,30 sidesteps this problem and requires at most
three-electron integrals, a very valuable computational sim-
plification.

Our purpose in the present work is to explore the use of
GTGs in molecular calculations with a more modest aim
than that of sub-mhartree accuracy. That is not to say we
would not be interested in achieving such accuracy, but it
appears at this stage that the more modest goal of mhartree
accuracy is the most appropriate step beyond the use of or-
bital basis sets. We are particularly interested in improving
the correlation energy available at, say, the valence double
zeta plus polarization basis level. A set such as cc-pVDZ
yields some 60%~Ne! to 75% ~C! of the valence-shell cor-
relation energy available with a given correlation treatment,
and as we have discussed a basis set of this size is required
anyway to obtain results close to convergence to the SCF
limit for structures, etc. Going to a larger set such as cc-
pVTZ recovers another 23% of the correlation energy in Ne,
but the use of basis sets even this large becomes problematic
in disk-based correlation treatments for large molecules, and
the Ne correlation energy is still in error by 17%, which is of
the order of 56 mEh! The question we wish to answer is as
follows: ‘‘How can we improvesubstantiallyon the 70%
correlation energy we can recover with a cc-pVDZ quality
basis?’’ That is, given that increasing the basis set is an
inefficient way to recover even 90% of the correlation en-
ergy, what is our most cost-effective alternative? We will
show here that a few GTGs may be used withoutany non-
linear optimization to augment basis sets of cc-pVDZ quality
so that more than 90% of the correlation energy can be re-
covered, and that when used with larger basis sets such as
cc-pVTZ it is possible to recover 98%–99%. We will first
consider the helium atom using~infinite-order! variational
calculations, and show how these results motivate our sug-
gestion of a pair-function ansatz that can be applied to many-
electron systems. We will then apply our approach to corre-
lation in the neon atom and water molecule as test systems.
Although most of our effort is directed toward the valence-
shell correlation energy, we will also consider the issue of
core correlation, since accurate total energies cannot be ob-
tained without correlating all electrons.

All of the calculations we report have been performed
using an IBM RS6000/model 350 workstation and SP-2
computer at the San Diego Supercomputer Center.

II. CORRELATION IN THE HELIUM ATOM

Considerable effort has been devoted to correlation in
the helium atom ground state and it is well known that rapid
convergence can be obtained using terms inr 12. The six-term
Hylleraas wave function18 yields a total energy only 0.4 mEh

above the estimated nonrelativistic limit. This result may ap-
pear surprising when one considers that the trial function

C~1,2!5exp@2z~r 11r 2!#@11c1~r 11r 2!1c2~r 11r 2!
2

1c3~r 12r 2!
21c4r 121c5r 12

2 #~ab2ba! ~7!

includes only a single exponential term: the optimum single-
zeta STO SCF energy for He is22.847 66Eh compared to
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the Hartree–Fock limit of22.861 68Eh , and anyway Hylle-
raas’s correlation-optimized exponent gives an even worse
SCF energy of22.821 34Eh . The polynomial part of Eq.
~7! thus plays a substantial role in the SCF description of the
system, as well as in the correlation energy: an aspect of
Hylleraas’s work that tends to be overlooked in some of the
literature and which we discuss at more length elsewhere.
We will in fact reduce Eq.~7! to the simpler two-term ex-
pression

C5exp@2z~r 11r 2!#~11c1r 12!, ~8!

partly to reduce the dimensionality of the problem but also
because this forms a more logical starting point for our ulti-
mate goal of building two-electron terms onto existing
orbital-based methods. As we see from Table II, the best
result we can obtain with a function of this form is
22.891 12, compared to22.821 34 at the SCF level using
just the exponential term but with the correlation-optimized
exponent. The exponential here is actually represented using
a 10-term GTO expansion, but this does not affect the results
above the 10mEh level. One immediate observation is that
the r 12 term contributes significantly to improving the SCF
part of the wave function, since it lowers the energy by 70
mEh , which is almost 30 mEh larger than the exact correla-
tion energy. Nevertheless, it will serve to illustrate our gen-
eral approach here.

A first step in avoiding the explicit use of linearr 12
would be to fit it using some more tractable functions, such
as GTGs

r 12' (
v50

bv@12exp~2gvr 12
2 !#. ~9!

Note that we arenot fitting the full expressionr 12f1s
2 here,

unlike Eq.~6! above, or the work of Ref. 36. The coefficients
and exponent values in Eq.~9! are chosen in some way to
representr 12 as accurately as possible. The analogy with
fitting STOs as expansions in GTOs41,42 is clear. Various
elaborate methods for accomplishing the latter have been
suggested, including integral-based methods. We have cho-
sen a cruder expedient, using an exponentially weighted
~weight factor exp[2r 12] ! least-squares procedure. The ex-
ponentsgv in Eq. ~9! are simply taken as an even-tempered
sequencea/3v, wherea is typically a power of three: values
are given in the tables. We have explored several different
exponent ranges and fitting ranges. Two fits are plotted in
Figs. 1 and 2. The larger fit here, involving 15 GTGs, differs
imperceptibly fromr 12 over a range of 15a0 except for a
region very close to the origin. Clearly, beyond some value
of r 12 the expansion on the right-hand side of Eq.~9! will be
dominated by the behavior of the GTG with the smallest
exponent and will approach a constant, which is not at all the
behavior of r 12. However, electron correlation is a short-
range phenomenon~hence our use of an exponentially
weighted fit! and we may assume that the long-range behav-
ior will not matter. The results of Table II suggest that as

TABLE II. He atom variational energies using GTG fits tor 12 and opti-
mized GTG expansions (Eh).

Number
of GTGs

Highest GTG
exponenta

Fitting
range (a0)

b Energy

SCF energy22.82134
Hylleraas energy22.89112c

6 81 2 22.88958
6 27 2 22.88991
6 9 2 22.82169
6 81 5 22.88260
6 27 5 22.89071
6 9 5 22.89066
6 81 optd 22.88988
6 27 optd 22.89115
6 9 optd 22.89112
9 2187 2 22.88965
9 729 2 22.89099
9 243 2 22.89030
9 729 5 22.89075
9 243 5 22.89110
9 81 5 22.89108
9 729 10 22.88897
9 243 10 22.89102
9 81 10 22.89108
9 27 10 22.89099
9 729 optd 22.89118
9 243 optd 22.89124
9 81 optd 22.89124

aHighest exponent of even-tempered sequence with ratio 3.
bGTG fit ~see text! to linear r i j from zero to this value.
cVariationally optimum energy for wave function of Eq. 8.
dVariationally optimum energy using this set of GTGs.

FIG. 1. Six GTG fit tor 12 over different ranges~solid line: fit; dashed line:
r 12!.
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long as the fitting range is more than 2a0 this is indeed the
case. The length of the fitting expansion does not appear to
be very critical: even a six-term fit introduces errors of only
0.5 mEh in the energy, while ten terms reduce the error to 20
mEh . The exponent range required in these fits is something
of a surprise. Despite naive expectations that the most im-
portant issue would be describing the cusp~i.e., short-range
behavior which would require very high exponents!, there
seems little need for high exponents. The best six-term fit
covers an exponent range in Eq.~9! of 27–0.111 111, the
best nine-term fit is from 243 to 0.037 037, but the difference
in energy between these results is only 0.4 mEh . We have
experimented with denser coverage of the exponent range
~that is, the use of a smaller even-tempered ratio! but the
results show little significant improvement. We may con-
clude from these experiments that it is certainly possible to
represent linearr 12 to any desired accuracy by an expansion
in GTGs like Eq.~9!, which may have its uses in facilitating
the evaluation of many-electron integrals involving linearr i j
terms, just as GTO expansion methods can be used to evalu-
ate integrals over STOs.43

The most obvious way to improve the energy obtained in
a calculation with GTO fits to STOs is to optimize the coef-
ficients of the Gaussians, by the variation principle, say,
rather than constraining them by the fit. Pushing the analogy
between GTO fits to STOs and GTG fits to linearr i j further,
then, the obvious step is to use the GTGs that appear in Eq.
~9! as basis functions in themselves, with variationally opti-

mized coefficients. The trial wave function for He could thus
be written as

C5exp@2z~r 11r 2!#Fc01(
v

cv exp~2gvr 12
2 !G , ~10!

where the linear coefficients are variationally optimized. Re-
sults obtained in this way are also shown in Table II. Such
additional flexibility produces results that are somewhat bet-
ter than the fitted result alone for the best fits, and noticeably
better in cases where the fits were less satisfactory. The GTG
terms in the wave function are plotted together withc1r 12
from Eq. ~8! in Fig. 3—this shows some deviation from the
linear r 12 behavior in the cusp region, interestingly enough.

We now consider a more elaborate trial wave function,
where we will see that the variational inclusion of the GTGs
gives significantly better results than the use of a GTG fit to
linear r i j . We first recall the general remarks made in Sec. I
that the use of a basis set of valence double zeta plus polar-
ization quality was necessary to obtain molecular Hartree–
Fock level results that are qualitatively converged. Such a
basis set is found to yield about 60%–75% of the valence-
shell correlation energy: we would like to find an efficient
way to recover the remaining 25%–40%. The suggestion of
Klopper and Kutzelnigg19 can be viewed here as an attempt
to augment a wave function for He like

C5c01s
21c11s2s1c22s

21c3~2px
212py

212pz
2! ~11!

with a linear term to give

FIG. 2. Fifteen GTG fit tor 12 over different ranges~solid line: fit; dashed
line: r 12!.

FIG. 3. Six optimized GTGs compared to variational contribution fromr 12
in He ~see the text! over different ranges~solid line: calculated; dashed
lines: r 12!.
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C5c01s
21c11s2s1c22s

2

1c3~2px
212py

212pz
2!1c4r 121s

2. ~12!

In the present work, we can either replace the linear term
with a GTG fit as in Eq.~9!, or we could increase the varia-
tional flexibility and use a form like

C5c01s
21c11s2s1c22s

21c3~2px
212py

212pz
2!

1(
k
dk exp~2gkr 12

2 !1s2, ~13!

where thedk and ci are all optimized variationally. These
alternatives have been tested using a large primitive GTO
basis contracted to [2s1p] using atomic natural orbitals, and
the results are shown in Table III. The SCF energy in this
basis is essentially at the Hartree–Fock limit, so that all en-
ergy lowering due to other wave function terms represent
contributions to the correlation energy. The GTO basis alone
yields235.8 mEh for the correlation energy out of an exact
correlation energy of242.0 mEh , or 85%. This is, of course,
a considerably larger fraction of the correlation energy than
would be obtained for larger systems with a basis of this
quality, so in one sense He represents a better situation for
GTOs alone than would larger systems. The addition of the
linear r 12 term as a fit by GTGs doesnot result in a very
significant energy lowering here: the correlation energy in-
creases in magnitude by only 1 mEh , giving 88% of the
exact result. Using more elaborate fits, over a greater range
of r 12 and with more exponents, does not help and actually
very slightly degrades the results, further emphasizing that
the deficiencies in the original GTO-based CI wave function
are more than just the failure to describe the cusp behavior.
We may thus speculate that adding a linear term to a rela-
tively small basis would not necessarily yield great improve-
ments in the correlation energy, at least not for the typical
small basis sets used in quantum chemistry. Further, attempts
to refine the approximations used by Klopper and
Kutzelnigg19,22 so that smaller basis sets could be used in

that approach would not appear to be very fruitful, unless
perhaps reoptimizing basis sets explicitly for use with linear
r 12 changes our observations here.

Much better results are obtained by augmenting the GTO
basis with GTGs and optimizing their coefficients, as in Eq.
~13!. Results are shown in Table III. Correlation energies of
more than240 mEh are obtained, or more than 96% of the
exact result. The number of GTG correlation factors and the
exponent range does not seem to be at all critical: the differ-
ence between the six-term canonical set with exponentsgk of
27, 9, 3, 1, 0.333 333, and 0.111 111, and a fifteen-term set
extrapolated with six larger exponents and three smaller ex-
ponents~all even-tempered with ratio three! is around 10
mEh . The correlation energies we obtain in this way are
accurate to almost 1 mEh , an accuracy that would require
multiple d and f functions to achieve with a GTO basis. In
any event, our He results thus suggest that a profitable way
to improve GTO basis set results may be to add a few GTGs
~our canonical set of six, say! rather than to include more
shells of GTOs with higher angular momentum. In Sec. III
we outline a pair function approach along these lines that can
be used for MP2 calculations on many-electron systems.

III. PAIR FUNCTION ANSATZ FOR MP2

As we have noted, our helium results strongly suggest
that even though we can fit linearr i j using an expansion in
GTGs, much better results are obtainedwhen augmenting
small GTO setsby allowing the weights of these geminals to
be optimized. This immediately suggests adding terms such
as exp(2gvr 12

2 )f if j to the pair correlation functions to be
used for many-electron systems, just like the addition of
r 12f if j in the approach of Klopper and Kutzelnigg@Eq. ~1!#.
However, it is not clear that the product of occupied MOs
f if j is necessarily the optimum factor to include when aug-
menting modest GTO basis sets that do not even describe the
wave function well away from the correlation cusp, nor is it
clear that this is the optimum choice from the perspective of
computational cost. We therefore suggest a modified form of
pair function ansatz

wi j5 (
a.b

fafbci j
ab1(

v
ci j
vQ exp~2gvr 12

2 !f̃ if̃ j . ~14!

The functionsf̃ i could be taken identical to the occupied
MOs f i , but we do not require this: the tilde is used to
indicate that these may differ from the corresponding occu-
pied MOs. This allows us the possibility of using different
GTO basis sets to represent the MOsf̃ i and f i , for ex-
ample. The use of Gaussian correlation factors in Eq.~14!
permits the evaluation of all many-electron integrals that
arise without requiring approximations. Of course, it is also
possible to exploit approximations where this is desired, as
in the use of the various weak orthogonality functionals and
strong orthogonality forcing techniques by Szalewicz and
co-workers,29,30 as well as to go beyond the MP2
approximation,33,34 but the latter is beyond the scope of the
present work.

TABLE III. He atom variational energies using GTO and GTG
basis sets (Eh).

Number
of GTGs

Highest GTG
exponenta

Fitting
range (a0)

b Energy

SCF energy22.86166c

CI energy22.89748d

6 27 5 22.89853
6 27 opte 22.90198
9 243 5 22.89851
9 243 opte 22.90201
15 19683 15 22.89851
15 19683 opte 22.90201

aHighest exponent of even-tempered sequence with ratio 3.
bGTG fit ~see text! to linear r i j from zero to this value.
cSCF energy with ANO basis~see text!.
dCI energy with ANO basis~see text and Eq. 11!.
eVariationally optimum energy~Eq. 13! using this set of GTGs.
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The use of Eq.~14! as a pair-function expansion in prac-
tical MP2 calculations requires the development of consider-
able computer codes to evaluate and manipulate the neces-
sary integrals. Although there are no particular
complications, this is not work to undertake lightly based
only on He atom calculations as a proof of concept. We are
fortunate to have access to theGEMINAL91 program of Sza-
lewicz and collaborators,44 which provides us with a more
immediate way to verify the utility of our approach. We must
stress thatGEMINAL91 is designed for GTG calculations with
full optimization of nonlinear parameters. What we propose
to use it for is quite outside its design, and this will impose
some constraints on our calculations. One constraint is that it
is not possible to use contracted GTOs or GTGs—only
primitive ~i.e., uncontracted! functions may be used. Second,
the pair functions must all be represented as GTGs. Thus, for
example, the virtual orbital product term on the right-hand
side of Eq. ~14! is represented by a~strong-orthogonality
projected! ‘‘GTG basis’’ that comprises all symmetry-
allowed products of GTOsxm in the original basis

(
a.b

fafbci j
ab5 (

a.b
(
mn

ci j
abCmaCnbxmxn5(

mn
ci j

mnxmxn ,

~15!

where

ci j
mn5 (

a.b
ci j
abCmaCnb ~16!

andC is the matrix of SCF orbital coefficients. Hence the
orbital MP2 contribution can be expressed in terms of GTO
productsxmxn , that is, GTGs with no explicitr 12 depen-
dence.

The representation of the second term on the right-hand
side of Eq.~14! is more complicated. Since contracted GTGs
are not implemented inGEMINAL91, we must replace

(
v

ci j
vQ exp~2gvr 12

2 !f̃ if̃ j

[(
v

(
mn

ci j
v C̃m i C̃n jQ exp~2gvr 12

2 !x̃mx̃n , ~17!

wherex̃m is the expansion basis used for the MOsf̃ i , with

(
v

(
mn

8 cmn
v Q exp~2gvr 12

2 !xmxn . ~18!

Note that the constraint that the GTOs appear multiplied by
their SCF coefficients has been lifted. The prime on the sum-
mation in Eq.~18! indicates that the range of the summation
is not required to be over all GTOs of the correct symmetry:
the terms to be included are at our discretion. This is a con-
venient notation since in all of our calculations the GTOs
used to expand thef̃ i have been a subset of the full GTO
basis. Including all GTOs would anyway greatly increase the
size of the geminal basis sets to be employed, and we have
restricted the sums over GTOs in Eq.~18! to include only the
GTOs that have the largest coefficients in the original MOs
f i andf j . Full details are given in Sec. IV. We may also

note that the use of Eq.~18! with fully optimized values of
the coefficientscmn

v may give a more flexible wave function,
in essence including also MO terms like exp(2gvr 12

2 )fafb ,
and thus may yield a lower MP2 energy than the original
ansatz of Eq.~14!. It is not straightforward to quantify this
here, but as we show below there is reason to believe this
extra flexibility contributes very little to the energy.

IV. RESULTS USING GTGs

A. Ne atom

The neon atom provides a good initial test case for our
proposed method. There are several very accurate estimates
of the valence-shell and total MP2 correlation energies
which provide solid benchmarks~see Ref. 5 and references
therein!, and the symmetry reduces the number of distinct
pairs that must be considered, as well as speeding up the
calculation because all integrals are one center. Results for
Ne valence-shell pair correlation energies are given in Tables
IV and V. In Table IV we list the distinct pair energies ob-
tained with the Dunning cc-pVDZ basis set2 ~run uncon-

TABLE IV. Ne atom MP2 pair-correlation energies~mEh!: cc-pVDZ basis.

Pair GTO basis 16 GTGsa 16 GTGsb %c Limit d

Valence:
1(2s2s) 28.5 211.7 211.8 98.3 212.0
1(2s2p) 210.2 218.7 219.2 95.4 220.1
3(2s2p) 26.8 28.0 28.1 91.3 28.9
1(2px2px) 218.1 222.2 223.4 87.0 226.9
1(2px2py) 211.4 214.1 214.8 83.9 217.6
3(2px2py) 222.5 225.6 227.2 93.5 229.1
Total 2215.5 2277.2 2290.0 90.6 2320.2
Core:
1(1s1s) 227.7 ••• 239.0 96.9 240.2
1(1s2s) 22.6 ••• 23.6 90.1 24.0
3(1s2s) 21.2 ••• 21.6 98.4 21.6
1(1s2p) 20.5 ••• 22.4 86.5 22.7
3(1s2p) 22.8 ••• 24.5 96.4 24.6
Total 2256.8 ••• 2354.6 91.4 2387.8

aSingle GTO used to represent occupied MOs in Eq. 18.
bMultiple GTOs used to represent occupied MOs in Eq. 18.
cPercentage of MP2 limit recovered by 6 GTG calculation with multiple
GTO representation of occupied orbitals.
dReferences 5, 54.

TABLE V. Ne atom 2px
2 MP2 pair-correlation energy~mEh!.

Basis
Pair
energy

cc-pVDZa 218.1
cc-pVDZ16 GTGsb/1 GTO per occupied MO 222.2
cc-pVDZ16 GTGsb/2 GTO per occupied MO 223.4
cc-pVDZ18 GTGsc/1 GTO per occupied MO 222.3
cc-pVDZ110 GTGsd/1 GTO per occupied MO 222.3
Limit 226.9e

aUsed uncontracted in all calculations here.
bCanonical set: exponents 27, 9, 3, 1, 0.333333, 0.111111.
cExponents 81, 27, 9, 3, 1, 0.333333, 0.111111, 0.037037.
dExponents 32, 16, 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.0625.
eReferences 5, 54.
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tractedand with a Cartesiand set—as noted above these are
requirements inGEMINAL91!. Results are given for the GTO
basis alone and augmented by six GTG correlation factors
with exponents of 27, 9, 3, 1, 0.333 333, and 0.111 111.
Such results are denoted ‘‘16 GTGs’’ in the tables: this is a
convenient label although strictly speaking we are introduc-
ing six geminal correlation factors multiplying occupied
MOs or approximations thereto. The number of GTGs ex-
pressed as products of correlation factors and GTO basis
functions, as in Eq.~18!, can be larger than six. Where GTGs
are used, we have used two different sets of GTOs in Eq.
~18! to represent the occupied orbitals. The single GTO ap-
proximation involves a compromise exponent that is a crude
fit to the 2s or 2p SCF orbitals; this compromise exponent is
in neither case represented in the original basis. Examination
of the cc-pVDZ set itself shows that the 2s and 2p orbitals
are both dominated by two GTOs~the outermost exponents
in both cases!, and in the second set of GTG calculations
shown in Table IV these twos or twop GTOs were included
in the expansion of Eq.~18!.

The fraction of the MP2 valence-shell correlation energy
recovered by the cc-pVDZ basis alone here is modest: 67%,
and this reflects the use of an uncontracted set—in the usual
[3s2p1d] contracted form only 58% is recovered. Adding
six GTGs and using a single-term approximation to the oc-
cupied orbitals as in Eq.~18! we recover 87%, and using a
more accurate two-term approximation to the occupied orbit-
als gives 91%. That is, we have reduced the error in the
correlation energy by almost a factor of 4. It is of some
interest to study the individual pair energies. The 2s2 pair
and the 2s2p interpair singlet and triplet are all rather close
to their limiting values when GTGs are included in the basis,
even though the interpairs particularly show significant er-
rors in the GTO basis alone. The 2s2p singlet interpair cor-
relation energy is substantially improved by the GTGs, since
the GTO value is only about half the estimated limit,
whereas the error in the value when GTGs are used is only
5%. The various 2p2 pairs are not well described by the
cc-pVDZ basis in comparison to pairs involving the 2s or-
bital. The slower convergence of the 2p2 pairs is already
well known.34 Inclusion of six GTGs once again effects a
dramatic improvement in the pair energies, although the sin-
glet pairs are still in error by about 2 mEh . For the pairs
involving the 2s orbital the difference between the use of
single-term and two-term GTO approximations to the occu-
pied orbitals, as in Eq.~18!, is only tenths of a mhartree. For
the 2p2 pairs the difference is larger and exceeds 1.5 mEh in
one case, but we will see later that this is not typical. We can
reasonably assert that the main result of adding more GTOs
is to improve the representation of the occupied orbital prod-
uct, rather than describing terms such as exp(2gvr 12

2 )fafb .
In Table V we show the convergence of the 2px

2 intra-
pair correlation energy with different GTG basis sets. In ad-
dition to the results of Table IV we show the effect of using
more GTGs. These are combined with single GTO approxi-
mations to the occupied orbitals. Neither the expansion of
the range of geminal exponents~by adding functions with
exponents of 81 and 0.037 037 at either end of the canonical

even-tempered sequence! nor the use of a denser coverage of
the canonical exponent range lead to significant improve-
ment of the pair-correlation energy. Indeed, the improvement
of the occupied orbital product by using more GTOs changes
the pair energy by considerably more than these exponent
adjustments.

Table IV also contains results for pair-correlation ener-
gies involving the Ne 1s core orbital. The GTO basis is not
expected to perform even as well as it does for the valence-
shell pairs here, since no attempt has been made to augment
the basis with the high-exponent functions needed to de-
scribe core correlation. Of course, running the GTO basis
uncontracted helps, since the innermostp functions and vari-
ouss functions can contribute to the correlating orbitals. The
contractedcc-pVDZ basis recovers almost no core correla-
tion at all in fact: only22.1 mEh from all pairs involving the
1s orbital—the 1s2 pair itself has a pair-correlation energy
of only 20.25 mEh in the contracted basis, compared to
227.7 mEh in the uncontracted basis. The same six GTGs
that improve the valence-shell pair energies so dramatically
play a similar role here, giving a 1s2 pair-correlation energy
only 1 mEh from the exact result, for example. This is con-
sistent with the observation of Klopper5 that with the linear
r i j method it is less critical to have core-correlating GTOs in
the basis, although Klopper’s best results are obtained, like
those here, with an uncontracted basis. It is difficult to say
more without performing calculations using contracted sets
augmented with GTGs, which is not possible here. Finally,
we note that three GTOs~the fifth, sixth, and seventh with
exponents in descending order! were used to represent the 1s
orbital in Eq.~18!.

Our GTG sets are thus constructed by taking products of
our canonical list of six GTG correlation factors and multi-
plying them by selected products of GTOs. The use of a
smaller GTO set in GTG calculations has commonly been
done in the opposite fashion, using a small GTO set to rep-
resent the Fock operator for use with a large set of GTGs.45

Our approach has more in common with the first phase@use
of a GTG fit to the productr 12f if j as in Eq.~6!# of the work
of Bukowski and co-workers,40 where a smaller GTO set is
used initially but nonlinear optimization of the GTGs is em-
ployed. We regard it as desirable to avoid nonlinear optimi-
zation even if this requires the use of larger GTG basis sets.

In Table VI we list pair-correlation energies obtained
using the larger Dunning cc-pVTZ basis.2 Again, the basis is

TABLE VI. Ne atom MP2 pair-correlation energies~mEh!: cc-pVTZ basis.

Pair GTO basis 6 GTGs %a Limit b

1(2s2s) 210.3 212.0 99.6 212.0
1(2s2p) 215.4 220.0 99.1 220.1
3(2s2p) 28.2 28.7 97.9 28.9
1(2px2px) 222.7 226.3 97.9 226.9
1(2px2py) 214.1 217.0 96.8 217.6
3(2px2py) 227.2 228.6 98.3 229.1
Total 2273.1 2314.0 98.1 2320.2

aPercentage of MP2 limit recovered by GTO basis augmented with 6 GTGs.
bReferences 5, 54.
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used uncontracted, and Cartesian polarization functions are
used. The GTO basis MP2 valence-shell correlation energy
here is2273.1 mEh , or 85% of the exact value.~Running
this basis contracted as recommended by Dunning and using
spherical harmonic GTOs gives a somewhat smaller correla-
tion energy, as listed in Table VII, but the difference is less
than 9 mEh , much smaller than the analogous difference for
the cc-pVDZ set.! Augmenting the GTO set with six GTG
correlation factors for each pair-correlation energy calcula-
tion gives a MP2 value of 314.0 mEh . This is more than
98% of the MP2 limit: an impressive result for such a simple
augmentation of a medium-sized basis. In these calculations
the outermost twos and/or threep GTOs are used in the
expansion of Eq.~18!. The individual pair-correlation ener-
gies show similar trends to those seen in the cc-pVDZ basis
calculations. Pairs involving the 2s orbital are very well de-
scribed and the pair energies appear converged to within one
or two tenths of a mhartree. Pairs involving only the 2p
orbitals are less well converged, but the differences are still
well below 1 mEh . In another attempt to assess how the
number of GTOs used in Eq.~18! affects the calculation, we
have computed the 2px

2 intrapair energy using all five primi-
tive p GTOs. The difference from the calculation with three
p GTOs is less than 0.1 mEh , which again suggests that the
contribution from virtual orbital product terms like
exp(2gvr 12

2 )fafb is negligible.
To summarize our Ne results and to allow a comparison

with other basis sets we have listed a number of MP2 results

for the valence-shell correlation energy in Table VII. It is
noteworthy that our GTG-augmented cc-pVTZ basis calcu-
lation recovers more correlation thanany GTO basis set
in Table VII, even including sets containing multiple
i functions. This includes not only the correlation-
consistent cc-pV5Z basis2 but also the uncontracted
(15s9p7d5 f3g1h) basis constructed by Klopper,5 which
must be close to saturation in thed and f spaces at least. The
MP2-R12 approach gives a result within a mhartree of the
MP2 limit, although this is based on the uncontracted
(15s9p7d5 f3g1h) set. MP2-R12 calculations based on
various correlation-consistent basis sets are also given in
Table VII. Only the cc-pV5Z with linearr i j terms outper-
forms the GTG-augmented cc-pVTZ set, but we should em-
phasize here that the correlation-consistent basis sets are not
well suited for use in the MP2-R12 method and are not at all
the optimum choice of GTO set of the given size for use with
linear r i j , as discussed by Klopper and co-workers.46 The
(18s13p6d5 f4g3h2i ) set of Almlöf and Taylor17 should be
close to saturation for thed, f , andg spaces, and gives an
idea of the contribution ofi functions, which lower the en-
ergy by only 2 mEh compared to the same basis withouti
functions. This may be compared in turn with the energy
lowering of theh functions, which is 5 mEh compared to the
basis with up tog functions only. The slow convergence
with angular momentum is very evident in these results.
Even the set containingi functions does not quite match the
result obtained with the cc-pVTZ set augmented with our six
GTGs. It is hardly feasible to extrapolate the effect of adding
these GTGs to the cc-pVQZ set from just the cc-pVDZ and
cc-pVTZ results in Table VII, but it is certainly tempting to
believe that this would give a correlation energy within
1 mEh of the valence MP2 limit.

Several methods included in the comparisons in the
work by Klopper5 ~such as the finite element approach or
partial-wave expansions! give similar or even slightly better
results than MP2-R12, but these methods are not applicable
to polyatomic molecules and are not listed here. The com-
plete basis set~CBS! extrapolation12–15 is a system of cor-
rections developed by comparing computed atomic pair-
correlation energies to estimated limit values. For Ne this
extrapolation~which costs essentially nothing beyond the
original GTO basis MP2 calculation! is in very good agree-
ment with the MP2 limit, although one might hope that this
would be the case for an atom, given the atomic origins of
the extrapolation. For molecules the error in the CBS ex-
trapolation is somewhat larger, similar in fact to the error in
our GTG-augmented cc-pVTZ basis results for Ne.

B. Water molecule

The recovery of 98% of the Ne valence-shell MP2 cor-
relation energy by a simple extension of a cc-pVTZ basis
strongly suggests that GTGs offer much promise in elec-
tronic structure calculations. A skeptical observer, however,
might point to the results presented so far as being exclu-
sively for atoms, and that a molecular example would be
highly desirable to allay fears that the approach works well

TABLE VII. Ne atom MP2 valence-shell correlation energies~mEh!.
a

Basis
Pair
energy

cc-pVDZ 2185.5
cc-pVDZ ~uncontracted, Cartesians! 2215.5
cc-pVDZ ~uncontracted, Cartesians!16 GTGs 2290.0
cc-pVTZ 2264.3
cc-pVTZ1linear r i j

b 2298.8
cc-pVTZ ~uncontracted, Cartesians! 2273.1
cc-pVTZ ~uncontracted, Cartesians!16 GTGs 2314.0
cc-pVTZ ~uncontracted!1linear r i j

b 2298.8
cc-pVQZ 2293.6
cc-pVQZ1linear r i j

b 2310.0
cc-pVQZ ~uncontracted!1linear r i j

b 2312.7
cc-pV5Z 2306.2
cc-pV5Z1linear r i j

b 2314.5
cc-pV5Z ~uncontracted!1linear r i j

b 2316.2
(15s 9p 7d 5 f 3g 1h)b 2309.0
(15s 9p 7d 5 f 3g 1h)1linear r i j

c 2320.0
(18s 13p 6d 5 f 4g) 2306.8
(18s 13p 6d 5 f 4g 3h) 2311.8
(18s 13p 6d 5 f 4g 3h 2i ) 2313.8
Extended GTG set with nonlinear optimizationd 2317.6
CBS extrapolatione 2317.5
Limit f 2320.2

aSpherical harmonic basis functions except as noted.
bW. Klopper ~unpublished!.
cReference 5.
dReference 34.
eReference 14.
fReferences 5, 54.
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only for atoms, and to demonstrate the potential for applica-
tions in molecular physics and chemistry as well as atomic
physics. We have therefore computed the MP2 valence-shell
correlation energy for the molecule H2O, pair energies for
which are listed in Table VIII. The oxygen atom is at the
coordinate origin and the hydrogen atoms are located at
~61.430 432a0 , 0, 1.107 160a0!. This is the same geometry
used by both Bukowski and co-workers36 in their extensive
optimized GTG basis calculation and by Klopper.5 The GTO
basis is the cc-pVDZ set of Dunning2 for both O and H, run
uncontracted and with Cartesian polarization functions. The
occupied orbital product was expanded in GTOs as in Eq.
~18!: the number of GTOs needed to represent each MO was
estimated by inspection of the MO coefficients, and to assist
anyone trying to reproduce these calculations the exponent
values and centers of the GTOs used to approximate each
MO in Eq. ~18! are listed in Table IX. We emphasize that all
these GTOs are part of the original basis and neither their
location nor their exponents were adjusted in any way.

The GTO basis alone recovers about 73% of the MP2
valence-shell limit; augmented with the canonical six GTG
correlation factors this fraction rises to more than 92%. This
is actually slightlybetterthan the Ne result in the same basis,
probably because the H2O correlation energy is smaller than
that of Ne to start with, and the calculations appear to con-

verge more rapidly~the GTO basis alone also performs bet-
ter for H2O than Ne!. An inspection of the pair-correlation
energies suggests that pairs containing the 1b1 lone-pair or-
bital are harder to describe than the others, which is consis-
tent with the greater difficulties of describing 2p2 pairs in Ne
~the H2O 1b1 orbital is almost pure 2py!. For example, the
1b1

2 intrapair energy using the GTGs is only 85% of the limit
value, compared to 94% or more for the other intrapairs. The
situation is similar for the interpairs. We would expect, from
comparing with Ne, that the use of a cc-pVTZ basis aug-
mented with our canonical set of GTGs might recover 99%
or more of the H2O MP2 valence-shell correlation energy,
but it is not feasible to test this hypothesis by mimicking the
ansatz of Eq.~14! usingGEMINAL91 with a basis of this size.

V. DISCUSSION

One of the first questions that must be asked about any
proposed new method is the computational cost. For the cal-
culations listed above on Ne and H2O, those including GTGs
required about 25% more computer time than those without,
but this is not remotely an honest comparison because of the
need to construct GTGs for the virtual orbital product terms
in Eq. ~14! when usingGEMINAL91. This greatly inflates the
time required to compute a GTO basis MP2 energy com-
pared to conventional programs. A more accurate picture can
be obtained by considering the scaling of the work required.
For a MP2 method that exploits the weak orthogonality func-
tional of Szalewicz and co-workers29,30~requiring only three-
electron integrals!, the integral calculation scales as
NGTGNGTO

4 andNGTG
2 NGTO

2 . If the full GTO basis were used
in the construction of the GTGs in Eq.~14! ~that is, allf̃ i are
taken asf i! these expressions both reduce toNGTO

6 . Note
that since we use the same correlation factors for each pair
correlation function there is no dependence on the number of
pairs here. Alternatively, we may use a reduced GTO set or
some other different or approximate representation of MOs
f̃ i in Eq. ~14!, similar to the spirit of the ‘‘dual basis sets’’
for correlated calculations used by Jurgens-Lutovsky and
Almlöf.47 In this case,NGTG will depend explicitly on the
number of pairs,n2 for n occupied MOs, and on the square
of the number of GTOsÑGTO used to represent thef̃ i . The
scaling would then ben2ÑGTO

2 NGTO
4 and n4ÑGTO

4 NGTO
2 . In

most cases, wheren!NGTO, the former term will dominate.
Note that for a given system, the work required as a larger
basis set is used scales the same way for our GTG-
augmented basis set as for a GTO basis:NGTO

4 .
Another advantage of our suggested GTG set arises in

the calculation of energy derivatives. Since our GTGs have
no dependence on nuclear centers other than those that al-
ready appear in the GTO basis itself, there are no complica-
tions to the expressions for the forces on the nuclei, or the
harmonic force constants from other centers appearing in the
GTGs. Hence energy derivatives involve no additional com-
plications from our GTGs.

Our theoretical presentation and results here have been
cast in terms of MP2 as the many-electron treatment. This is
convenient as the simplest approach, but we wish to stress

TABLE VIII. H 2O pair-correlation energies~mEh!: cc-pVDZ basis.

Pair GTO basis %a 6 GTGs %b Limit c

1(2a12a1) 210.0 75.2 212.6 94.7 213.3
1(1b21b2) 220.6 80.5 224.2 94.5 225.6
1(3a13a1) 218.7 72.5 224.2 93.8 225.8
1(1b11b1) 218.4 70.0 223.3 88.7 226.3
1(2a11b2) 213.8 64.8 220.4 95.8 221.3
3(2a11b2) 26.9 85.2 27.7 94.2 28.1
1(2a13a1) 210.6 59.9 216.7 94.8 217.7
3(2a13a1) 26.8 80.0 27.8 91.5 28.5
1(2a11b1) 210.9 57.9 217.8 93.9 218.9
3(2a11b1) 27.2 76.6 28.5 90.6 29.4
1(1b23a1) 213.7 77.0 216.6 93.2 217.8
3(1b23a1) 219.8 83.2 222.1 92.5 223.8
1(1b21b1) 29.6 65.8 212.5 85.8 214.6
3(1b21b1) 220.8 80.9 223.6 91.8 225.7
1(3a11b1) 210.9 64.1 214.7 86.9 217.0
3(3a11b1) 221.0 78.7 224.3 91.0 226.7
Total 2219.8 73.1 2277.0 92.1 2300.5

aPercentage of MP2 limit recovered by GTO basis calculation.
bPercentage of MP2 limit recovered by GTO basis augmented with 6 GTGs.
cReference 5.

TABLE IX. H2O: GTOs used in approximating the occupied orbitals.a

2a1 1b2 3a1 1b1

O~s 1.013! O~px 1.046! O~s 1.013! O~py 1.046!
O~s 0.3023! O~px 0.2753! O~s 0.3023! O~py 0.2753!

H~s 0.4446! O~pz 1.046!
O~pz 0.2753!
H~s 0.4446!

aSee Eq. 18 in the text.
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that there are no fundamental restrictions preventing these
GTG basis functions from being used inany correlation
treatment that involves pair excitations of the type shown in
Eq. ~14!, just as is the case for the ansatz of Klopper and
Kutzelnigg in principle, or the general GTG treatment of
Szalewicz and co-workers. Kutzelnigg and co-workers20,48

have developed coupled-cluster analogues of the Klopper
and Kutzelnigg method, and Szalewicz and co-workers33,34

have implemented both MP3 and coupled-cluster with
double excitations using pair functions expanded in arbitrary
sets of GTGs. To take a historical perspective, much of this
work can be viewed as practical implementations of the very
general methods outlined by Sinanog˘lu in his ‘‘many-
electron theory’’~MET! in the early 1960s.49,50This was the
stimulus for the early GTG work by Pan and King,27,28 for
example. Sinanog˘lu’s MET was extended by Silverstone and
Sinanog˘lu51,52 to open-shell and multireference cases, pro-
viding one possible route to using functions that depend on
the interelectronic distance in these situations as well. We are
currently implementing many-electron integrals over GTGs
in our SCF, MCSCF, and coupled-cluster molecular proper-
ties programDALTON53 in order to investigate these possibili-
ties further. This will allow us to use contracted GTO basis
sets and to resolve conclusively such issues as the represen-
tation of the occupied orbital term in Eq.~14! and the ability
of GTGs to describe core correlation accurately in basis sets
that do not include core-correlating GTOs. Going further, the
opportunity to obtain essentially basis set limit correlation
energies for multireference methods is an intriguing one, and
we hope our work here will stimulate other groups to con-
sider the use of GTG basis sets in their methodological work.

VI. CONCLUSIONS

We have shown that it is possible to achieve mhartree
accuracy in pair-correlation energies with a straightforward
extension of Gaussian orbital basis sets by a few functions
with a Gaussian dependence on the interelectronic coordi-
nate. In this way we are confident we can obtain more than
90% of the valence-shell correlation energy even with a
modest GTO basis of split-valence plus polarization type;
with larger basis sets with two or more polarization sets we
expect 98%–99% of the correlation energy. We have also
shown that GTG correlation factors can be used to approxi-
mate linearr i j to essentially arbitrary accuracy, providing a
method analogous to GTO expansions of STOs to evaluate
many-electron multicenter integrals involving linearr i j
terms.

ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation through Grant No. CHE-9320718 and Cooperative
Agreement No. DASC-8902825. We would like to thank
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