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General recurrence formulas for molecular integrals over Cartesian Gaussian

functions
S. Obara and A. Saika

Department of Chemistry, Kyoto University, Kyoto 606, Japan
(Received 21 January 1988; accepted 21 April 1988)

General recurrence formulas for various types of one- and two-electron molecular integrals
over Cartesian Gaussian functions are derived by introducing basic integrals. These formulas
are capable of dealing with (1) molecular integrals with any spatial operators in the
nonrelativistic forms of the relativistic wave equations, (2) those with the kernel of the Fourier
transform, (3) those with arbitrarily defined spatial operators so far as the integrals can be
expressed in terms of the basic integrals, and (4) any order of their derivatives with respect to
the function centers in the above integrals. Thus, the present formulation can cover a large
class of molecular integrals necessary for theoretical studies of molecular systems by ab initio
calculations, and furthermore provides us with an efficient scheme of computing them by

virtue of its recursive nature.

I. INTRODUCTION

The basic step in ab initio calculations of molecular elec-
tronic structure is the computation of molecular integrals.
Recent developments in theoretical chemistry require var-
ious types of molecular integrals, such as the Fourier trans-
formed ones necessary for the calculations with the momen-
tum-space representation, analytical derivatives of
molecular integrals needed for the study of chemical reac-
tions, and molecular integrals for the relativistic interactions
as well as for the nonrelativistic ones. Several types of molec-
ular integrals have been formulated as reviewed by
Saunders,' and special efforts have been continued for the
time-consuming calculation of electron repulsion inte-
grals.>™'* These formulations are useful for some types of
molecular integrals, but not applicable to others. Thus, it is
desirable to have a general formulation of molecular inte-
grals, which gives an efficient computational scheme appli-
cable to any type of molecular integral. This paper is aimed
at such a generalization over Cartesian Gaussian functions
introduced by Boys? and now extensively in use.

There are available a couple of schemes, which can be
readily generalized. The first one proposed by Boys? differ-
entiates the expression for the target molecular integrals
over s-type functions with respect to the function centers to
get expressions over higher angular momentum functions.
This scheme is formally simple, but actually tedious math-
ematical manipulations are involved for higher angular mo-
mentum functions than p. The second is that by McMurchie
and Davidson.* They proposed to use the Hermite Gaussian
functions as the intermediaries for molecular integrals over
Cartesian Gaussian functions. The differential relation of
the Hermite Gaussian functions leads to simple expressions
for molecular integrals over the Hermite Gaussian func-
tions. Although this step is efficient computationally, the
scheme is indirect in the sense that these integrals have to be
transformed to those over the Cartesian Gaussian functions,
and the transformation would demand careful consideration
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for efficient computations. Recently we have given'* recur-
rence formulas for several types of molecular integrals over
Cartesian Gaussian functions in terms of three-center over-
lap integrals. This scheme is a direct one, and has been found
to be efficient for calculating electron repulsion integrals and
their first derivatives both on scalar and vector computers. '
In the present work we generalize this recursive formulation
s0 as to be suitable to general types of molecular integrals
over Cartesian Gaussian functions.

First we introduce basic one- and two-electron integrals,
which allow uvs to formulate various types of one- and two-
electron molecular integrals on the same ground, and then
give recurrence relations satisfied by the basic integrals.
Since many of general molecular integrals can be given as a
linear combination of the basic integrals, the recurrence rela-
tions for these molecular integrals can be readily obtained
from those for the basic integrals. The present formulation is
applicable to molecular integrals (1) having any spatial op-
erator in the nonrelativistic forms of the relativistic wave
equations in addition to ordinary nonrelativistic operators,
(2) of the Fourier transform, which would be necessary for
theoretical study in the momentum-space representation,
(3) of arbitrarily defined spatial operators as far as the mo-
lecular integrals can be expressed in terms of the basic inte-
grals, e.g., the spherically symmetric part of the effective
core potential™ proposed by Kahn, Baybutt, and Truhlar,
and (4) having any order of their derivatives with respect to
the function centers of the Cartesian Gaussian functions,
required for the “analytical derivative method.”'>!¢ The re-
sulting expressions for the target molecular integrals take
recursive forms, thus leading to efficient computation. '’

In the next section the basic integrals are defined and
then the recurrence formulas for the basic two-electron inte-
grals are derived. In Sec. III mathematical properties of the
basic two-electron integrals are discussed from the computa-
tional viewpoint, and concluding remarks are drawn in the
last section. Expressions for the basic one-electron integrals,
which are reducible from those for the basic two-electron
integrals, are collected in the Appendix.

© 1988 American Institute of Physics



S. Obara and A. Saika: Formulas for molecular integrals 1541

il. GENERAL RECURRENCE FORMULAS FOR
MOLECULAR INTEGRALS OVER CARTESIAN
GAUSSIAN FUNCTIONS

A. Cartesian Gaussian functions

We shall closely follow the definitions and notation of
Ref. 13. The unnormalized Cartesian Gaussian function
with origin at R has the form

p(r—Rng) = (r, —R)™ (r, —R,)"(r, —R,)™
Xexp[ — £(r — R)?] (n

with the normalization constant
'/V'(n,é‘) — (_2_5;)3/4(44—) (ny+n,+n,)/2
T

X [(2n, — D20, — D20, — HN]7V2,
(2)
Here n denotes a set of nonnegative integers n,, n,, and n,,

n= (n,n,.n,), (3)
and let us define

In| =n, +n, +n, (4)
which is closely related to the total angular momentum
quantum number. |n| and n will be, hereafter, termed the
angular momentum and the angular momentum index, re-
spectively.

We begin with the basic equations for the Cartesian
Gaussian functions that will be utilized in the following deri-
vations of molecular integrals. With the definition Eq. (1) of
the Cartesian Gaussian function, one can write the Cartesian

Gaussian function having an angular momentum higher by
one as

¢(r - R;n + lﬂyg)
= (I'—R)#¢J(I'—R;ll,§) (/J'=x9y,z)- (5)

Decomposing a Cartesian Gaussian function ¢(r — R;n,{)
into a product of an *“exponential” factor 2.,

g. =exp[ — £(r —R)?] (6)
and an “angular” factor ¢, (n),

gam) = (r, —R)™(r, —R)” (r,—R)™, (7)
we find the following differential relations:

5‘378 = —2%(r—R),g, (8)
and

3

5;}:%(“) =N,(n)g,(n—1,), 9

where N, (n), standing for n,,, is meant to take the value of
the 4 component of the angular momentum index mn, and
thus N, (1,) plays the same role as Kronecker’s delta §,,,.. It
follows readily that

N,(n+n')=N,(n) + N, (n). (10)
Combining Eqgs. (5), (8), and (9) together with the relation

¢(r"'R;“,§) = - i¢7(r—R;n,§),
ar,

u 7

11
3R (11)

one gets the differential relation of the Cartesian Gaussian
functions with respect to the function center R,,:

R o(r—Rnf) =2{p(r —Rin+1,,,5)

"
—N,(n)p(r —Rn — lﬂ,é’). (12)
As |r, | goes to infinity the exponential factor ¢, decreases to

zero much faster than the increase of the angular factor
#4 (n). Thus we have

p(r—Rn) -0 (|r,|-»,5>0), (13)
which will be utilized in integration by part over the electron
coordinate.

A product of a Cartesian Gaussian function and the ker-
nel exp[i ker] of the Fourier transform can be reduced!” to a
linear combination of Cartesian Gaussian functions having a
complex function center R:

exp[ik-r]o(r — R;ng)

= Z Z Z C(Rb,n,s)p(r — R"s,0), (14)
&=0%=0§=0
where
i
b=—%k, 1
26 (16)
s= (sx’ y,sz), (17)
and the coefficient C(R,b,n,s),
oy (P (M) (-
C(Rybyn’s) = CXP[ng'R + ;b ]
5./ \s,/ \s,
Xby by Vb (18)

comes from the following expression for (7, — R, )" in the
angular factor g, (n):

(7, _R#)n={(ru _R;Tt) +b,u}"

=3 (:)b,’j_’(ry —~R1)"

s=0

(19)

Differentiation of Eq. (14) with respect to R leads to
2 ;(Mexplik-r]e(r — Rn,t)

= Qe (t9) 2} (@(r —R"8,0), (20)
where 2 ,(1) is a product of differential operators with re-

spect to R,
Le g \k:
(aR,) ’
(22)

ad \x( 3
2. =
®=(5) (3%,)

1= (,.1,,0,),
and the operator 27, (t) on the right-hand side of Eq. (20)
denotes a similar product of differential operators with re-
spect to R' rather than R. Here we have utilized the follow-
ing relation:

20

J. Chem. Phys., Vol. 89, No. 3, 1 August 1988



1542 S. Obara and A. Saika: Formulas for molecular integrals

2,;(e(r—R's,0) = 2L (He(r —RYsL).  (23)
We refer to 1 or t as the derivative index. 2 gg (t,8) in Eq.
(20) is an abbreviated expression for the sixfold summation
over the derivative index t and the angular momentum index
s:

Iy
QEF = Z

,=01,=0¢

Y D(26bLt)C(R,b,n,s),
=0

(24)
where the coefficient D(24b,1,t) follows from the differentia-
l

tions of C(R,b,n,s);
vz =(7) () ;)
(§b,,t)——tx i)\,
X (26b,) "7 (26b,) Y (28b,)5 7. (25)

Equations (14) and (20) provide us with four useful
equations which allow us to rewrite molecular integrals con-
taining the real Cartesian Gaussian functions and the kernel
exp [/ ker] in their integrands into those containing the com-
plex Cartesian Gaussian functions, or vice versa. Multiply-
ing Eq. (14) by (r — R"),,, rewriting it with the aid of Eqgs.
(5) and (15), and then finally operating 2 ,(1), we get the
first equation increasing the angular mementum index s of
the complex Cartesian Gaussian function tos + 1,,:

Per 25 (@(r —RYs +1,,8)
=2 ,;(Mexplikr]le(r —Rn + 1,.5)
—b,2,(explikr]p(r — Rn,f). (26)
Differentiating Eq. (14) with respect to R,,, rewriting it by
the use of Egs. (12) and (14) as well as Eq. (26) having
1= (0,0,0), and finally operating £, (1), we have the sec-

ond equation decreasing the angular momentum index s of
the complex function tos — 1,,:

QEFN,, ()2, (He(r —RYs — 1,.6)
=N, (m)2,(Mexplikrijp(r—Rn—1,8). (27)

Differentiating Eq. (20) with respect to R, and then rewrit-
ing it by the use of Eq. (20), we find the third equation in
which the derivative indexist + 1,:
2ep 25 (t+1,)9(r — R's,8)
={2,0+1,)—26b,2,(1) }exp[i krlp(r — R;n,{).
(28)
Replacinglin Eq. (20) byl — 1,,, and multiplying by N,, (1),
we arrive at the final equation in which the derivative index
ist—1,:
DeeN, ()24 (t—1,)p(r —R's;8)
=N,MD2,0-1))explikr]lp(r—Rng), (29
where the following relations have been used:
N,(DD(26b1 — 1,,t — 1,) = N, (t)D(26bLt), (30)

—1 I

S Hn=3 H(t—1), 31
t=0

t=1

and

1

1
z tH(t) = z tH(t). (32)

t=1 t=0
We note that the right-hand sides of Egs. (26)-(29) do not
include the sixfold summation appearing in £ . {Eq. (24)].

B. Definition of basic integrals

In performing ab initio calculations of molecular sys-
tems by using the Cartesian Gaussian functions

¢7,~(l‘) =¢J(l‘—R,~;ll,-,§,-), (33)
one has to evaluate one-electron integrals (OEI’s)

(n,|&(r)|n,) =Jdr¢a(r)ﬁ(r)¢b(r) (34)

and two-electron integrals (TED’s)
(nanb | g (l",l'z) |ncnd) = J- drl J dl'2 Pa (rl )¢c (r2)

X O (x1,0)@, (1) @y (12).
(35)
Here £ (r) and & (r,,r,) are one- and two-electron opera-
tors, respectively, in the Hamiltonian 57 of the equation

YV =EVY, (36)

which is either nonrelativistic, with two components for
each electron, or relativistic with four components for each
electron. When a molecule is in a uniform external field, the
time-independent relativistic wave equation is given by using
spatial operators r—R, |r—R|™*, |r,—r,]"*, and
p( = — ifiV = — ifid /dr), as well as spin matrices. There-
fore, the reduced relativistic equation to the nonrelativistic
form includes products of the above spatial operators'®; for
instance, the spatial part of the operators for the orbital Zee-
man interaction & u» the electron—electron orbital interac-
tion & ,,, and the electron spin—spin dipolar interaction % ,,
become

Z,={(r—=R,)XV},

a a
=(r—R —(r—R 3
¢ i ar, _ ( o~ ar,
37N
(r,—r,) ad 1 d
€, = LV =( ) , (38)
“ v, —r,|? ? o, Ity —xy|" dry,
and
S _ -
ﬂ#v= nv - — (rl rZ)fl—(rls r2)v
vy — 1y ry — 1y
2
- —{ 9 ! ] (39)
0Oy, dr,, vy — 1y

respectively, where u + and 4 — denote the next and the
preceding component of u, respectively, in a cyclic order of
x, y, z. The Dirac delta function §(r — R) is also involved in
the reduced relativistic Hamiltonian as a substitute for the
operator (47) ~!(V3r — R| ™), such as that for the Fermi
contact hyperfine interaction. Another type of molecular in-

J. Chem. Phys., Vol. 89, No. 3, 1 August 1988
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[}

z

d
IR,

tegral important in ab initio calculations are the derivatives
of the OEI’s and TED’s:
d (3 Y
2, (0EI) =
(1) (OED) (aR)(aRy)( )

X (na |ﬁ(r)|nb)
a a )1,

(55) G

X (nn,|& (r,r,)|n.ny) (41

with respect to the coordinates of the function center R,
which are necessary in the analytical derivative method.!>'¢
Before formulating these molecular integrals, we look
over the mathematical relations concerning the above spatial
operators. As is well known, the above multiplicative opera-
tors r — R, 8(r — R), and |r — R|~* can be expressed in
terms of the unnormalized Cartesian Gaussian functions.
The |n|th order moment operator is the function with the
angular momentum |n| and the zero orbital exponent

(r, —R)™(r, —R)™ (r, — R,)™
={p(r—RnH},_,

(40)

and

3
2 ,(D(TEI) =
L, () (TED) (aR,)

I

x

s

=lim ¢(r — R;n;{), (42)
£~0

1543

the Dirac delta function §(r — R) is given by the s-type func-
tion

8(—R) = lim (£)320(r — RO,E), (43)
— 0 77'

and the operator |r — R| ~*can be expressed as an integral of
the s-type function over the square root of its orbital expo-
nent u°, namely, the Laplace transform of the operator

(=) =L

where I' (A /2) is the Gamma function, and for A = 1, T'(1/
2) = 7'/2, By virtue of Eq. (11), the differential operator
ifid /d R plays the sameroleasp( = — i#id /dr) when it op-
erates on the Cartesian Gaussian function

1
Ir—R|

Zuzl—l

r'/2)

p(r —R0,u%), (44)

pp(r—Rng) = — ifig;«p(r —Rn,{)

_ iﬁ——q:a(; (r —Rng), (45)

and hence p can be treated similar to the differential opera-
torsin £ ,(1). The Leibnitz relation for integration by part is
also useful to treat the operator d /dr because of Eq. (13):

(n‘,I[—a- 'ﬁ(r)]ln,,) — fdr{i-¢a]ﬁ(r)¢b —
ar, ar,

d J
dR,, OR,,

+

|

](nalﬁ(r)|n,,).

Jdr ®.9 (1) [-a“"Pb]
ar,

(46)

Combination of these mathematical relations reduces molecular integrals with the operators & wr & uvs and $Z4 uv 1O

. J
(nalgﬂlnb) = él‘xlg})(na![¢7s (l‘ - Rs;lsy—{- 1;:) aru_ — @5 (l' _ Rs;l.w-— ’;s)'é:]'nb)
. . a
= - 4]‘,1—% . (na|¢s(lsu+ )|ng) + g:%gR_buT(na|¢s(lw— )|ny), (47)
2 a3 a a
(ngn, |&,, [ncn,) = — fdul? 72 (aRC” R, )aRdv (0,1, | @5 (1) — 130,543, ) [n.ny)
® 2 4 a
== z;c,dL du12”1/2 3R,, 3R, (n,m, |@,,(0;) |n.my ), (48)
and
* 2 a a a
(nanb,'g?yvlncnd) = — J; du,, ﬂ"/z(aRc” + 3Rd” ) (HRW + R, ) (mgn, |@y, (T, —1'2;012:“%2)|“cnd)
* 2 4 4a
= - dy,, —= ———(n,n 0,,)|n.n,), 49
.-,,-;,::J; U, puVE R, aij(na 5 @12(012) [cmy ) (49)

J. Chem. Phys., Vol
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1544 S. Obara and A. Saika: Formulas for molecular integrals

respectively. These expressions for (n,|Z,|n,),
(n,n,|&,,|nn,), and (n,n,|Z#,, [nn,) as well as the
above mathematical relations of the operators allow us to
express molecular integrals as a linear combination of the
basic one- or two-electron integrals:

(OED) = ¥ ¢,(BOEI),, (50)

(TED) = ¥ ¢,(BTEI),. (51)

The definitions of the basic one-electron integrals (BOEI’s)
and basic two-electron integrals (BTEI’s) will follow.
We define the basic one-electron integrals (BOEI’s) as

{n}-0h) = 2,2,2,{1H fdr gdnh).  (52)

Here % ({n}) is a product of N unnormalized Cartesian
Gaussian functions

N
g({]‘l}) = H ¢)(r_Ri;ni,§i)’ (53)

i=1
which includes not only the basis functions but also those
originating from the one-electron operator & (r), and
2, ({1}) is a product of differential operators with respect
to all the function centers R,’s in the product & ({n}),

N a Iie a Ii}' 3 be
2,{1hH = H1 (3]{, ) (6R‘ ) (8R- ) ’ oY
pS i iy iz

where unnecessary differentiations are to be suppressed by
setting the derivative index l; identically to 0 = (0,0,0). The
{n} and {1} denote collectively the angular momentum in-
dices n;’s in Eq. (53) and the derivative indices 1,’s in Eq.
(54), respectively. The operator 2, in Eq. (52) means inte-
grations over «’s in Eq. (44),

20t
Q - [J‘d Y ] ]’
= % 775

and £ , means other necessary operations, such as to put an
orbital exponent to zero in the moment operator [Eq. (42)].
When the operators £, and £ , are unnecessary in some
molecular integrals, they are to be considered as £ ; = 1and
2 , = 1. Since the 2, and £ , operate on different param-
eters in & ({n}), they commute (2,2, = 2,2 ,). For
convenience of later discussions, we designate the integrals
of & ({n}) over the electron coordinate as

(55)

[{n}] =Jdr9({n}), (56)
their derivatives as
[{n}(1}] = 2,1} [{n}], (57)

and refer to them as overlap OEI’s (OOETI’s) and derivatives
of OOEI’'s (DOOELI’s), respectively.

Similarly we define the basic two-electron integrals
(BTEI’s) as

(n;,,{n"}, {n®}:- (1"}, (1?})
= 2 ,2,[n,,{n"},{n?}{1M}, {19}, (58)

where

2, =QA,IZQ;1)Q§2), (59)

2,= szgy)gﬁz), (60)
the square-bracketted integral [n,,,{n},{n®},:{1"},{1?%}]
in Eq. (58) is the derivative of the overlap TEI (DOTEI)
[0, {0V}, {n®}: {1}, {1¥}]

=20 {1"H 2P {1?}) [0, (0"}, {n?}],  (61)

and [n,,,{n},{n®}] in Eq. (61) is the overlap TEI
(OTEI)

(0 03,03 = [(ai, [ dr, & (0, (870,
(62)

The superscripts 1 and 2 in Eqs. (58)-(62) refer to
the first and the second electron, respectively, and
9 (n,,{n"},{n”}) denotes the product of ¥V ({n"}),
%2({n?}), and the Cartesian Gaussian function
@(r, —r;n;,6,) in the two-electron operator, such as
|r, —r,] ~* and 8(r; —1,):

g (nlz,{“(n}’{n(z)})
= 79" g(Z)({n(Z)})¢(rl —I3055,612). (63)
212 in Eq. (60) indicates integration over u,,( = ¢ 15%),
when it is necessary such as for &, and %,
2 J. d e (64)
B U, ———,
1,12 12 F (A /2)

and £ ,,, in Eq. (59) indicates other necessary operations
with respect to §,.

By the use of these notations for the integrals, the molec-
ular integrals (m,|Z,|n,) and (n,n,|%,, |n.n,), for in-
stance, become

n,|Z,Iny)= —2,[n,m,,1,, , 0,,1,, ,0,]
+ 2 ,[n,mp1,,_:0,,1,,, 0] (65)
and
(n,n,|%,,[n.ny)
= - Quz [012’na’nb’nc’nd :oa’ob’lqu 1]
— 2112 [0120,,0,,0,,10,:0,,0,,0,,1,, +1,], (66)
respectively, with

2 , = lim, (67)
£~0
* 2
D4s = f du,,——. 68
m2 = | 127 (68)

It is noteworthy that the present formulation of inte-
grals is suited for the derivative integrals necessary in the
analytical derivative method, since they can be specified by
just giving the appropriate values for the derivative indices
P’s in the basic integrals. Also note that molecular integrals
with any arbitrarily defined spatial operators, even if the
operators are not of the reduced form of the relativistic Ham-
iltonian, can be dealt with so far as the molecular integrals
can be expressed in terms of the basic integrals. One of the
examples is the molecular integral with the spherically sym-
metric operator & gcp Of the effective core potential (ECP)

J. Chem. Phys., Vol. 89, No. 3, 1 August 1988
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proposed by Kahn, Baybutt, and Truhlar.'* The operator
located at R, takes the form

N -2
1 =.___‘_+Z:d r—R,|™
ECP lr"Rcl kl I

xexp[ — 7, (r —R,)?], (69)

where N, d;, 17, , and n, are the prefixed constants, and n,
takes one of the values O, 1, and 2. The second term of the
& gcp With n, = 0, for instance, can be reduced to

o=|r—R.|%exp[ — 7, (r —R,)?]

=f du2up(r — R,;0,,7, + u?), (70)
0

and thereby the molecular integral with this operator be-
comes

(n,|oln,) = f dr @, (r)op, (r)

=f du2un,,n,,0.:0,,0,,0.]. (71)
(o]

The present formulation is also applicable to molecular inte-
grals including the kernel of the Fourier transform, because
the product of the Cartesian Gaussian function and the ker-
nel becomes a sum of Cartesian Gaussian functions having a
complex function center [Eq. (14)]. The molecular inte-
grals then become reducible to the form of Eq. (50) or (51).
The details will be given in a later section.

As far as the molecular integrals are reducible to the
form of Eq. (50) or (51), the recurrence relations for the
molecular integrals can be readily obtained by using the re-
currence relations of the basic integrals as will be exemplified
in later sections. Reduction of molecular integrals to sums of
the basic integrals affords the key to get the recurrence rela-
tions for the target molecular integrals. Now it may be in-
structive to work out some other molecular integrals. The
overlap integrals

(na“nb) = f dr ¢7(l' - Ra;ntvga )¢7(l' - Rb;nb’;b ):

(72)
the nuclear attraction integrals
(na |dlnb) = f dr ¢(l‘ - Ra;na’ga )
X——-l——:p(r—R Mpsly) (73)
ll‘ - Rcl e
and the electron repulsion integrals
(n,n,,n.n,) = J dr, fdrz @(r,—R;n,.¢,)
1
Xe(r,—Ryn,.6p ) ———
vy — 1y
X@(r; —Ron, S )ep(r, — Rysng 6y)
(74)
are found to be
(n, ”nb) = [na’nb:oa’ob ]: (75)

® 2
|t iny) = [ " du—2 [1,0,0.0,0,0.], (76)
o
and
(nanb’ncnd)
=f du12_12/'2" [0,2:0,,0,,0,,0,:0,,0,,0.,0,], (77)
o T

respectively. As their derivatives, the kinetic energy inte-
grals

(n,}7 |n,) =fdr<p(r—R,,;na,§,,)

X ( —£v2)¢(r—'Rb;nb,§b); (78)

the electric field gradient integrals

(n, |, [n,) = f dro(r —R;n,.00)

] o(r —R,m,,8,),
(79

and the derivatives of the electron repulsion integrals with
respect to the function centers
") ]
aRiz

2
X[ d 1
dR,,IR,, r —R,|

(na nb ,l‘lcl‘ld :la lb ,lc ld )

N [.-=H,c,., (ai)'“ (az,.y)

X (m,m,,n.n,) (80)
can be written
1
(lla|.7-|nb) = —E— z [na,nbtlav,llw], (81)
V=X, 5z
(0, |, |n,) =fdu—2
a [add 77.1/2
X [ng5m,,0.:0,,0,,1,, +1.,], (82)
and
(na l:lb 9ncnd :la lb ’lc ld )
= J‘ du12 IL/Z [012’na oMy Bs My :la !lb91c9ld ] s (83)
T

respectively.

C. Recurrence formulas for basic two-electron
integrals

One can reduce the basic two-electron integrals
(BTETD’s) to the basic one-electron integrals (BOEI’s), not-
ing the following relation for the DOTEI’s and the
DOOET’s:

[{nV}0YH = 2, [0, (n®}, {0210}, {0}, (84)
N® § 372
2,= [H lim | lim (—11)

i=l§§z)~0 Cizm 0 w

(85)

obtained from the mathematical property of the Dirac delta
function §(r, — r,) and the s-type unnormalized Cartesian
Gaussian function with a zero orbital exponent (which is
unity)
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fdr H(r) = f dr, fdr2 H(r)6(r; —r,)

N(}\

x T {etr.—

i=1

Rgz);ogz),é-gZ))}

¢ =0

(86)

Now the recurrence formulas for the BTEY’s will be derived
in this section, and the reduction to those for one-electron
integrals will be given in the Appendix.

There are two kinds of Cartesian Gaussian functions in
the ¥ ({n® }) (k = 1,2): one is those with constant or-
bital exponents, and the other with integration exponents
over which the integrations are to be carried out [Eq. (44)].
We collect the former kind of functions in the first G
functions of & ({n‘® }), and the latter kind in the re-
maining (N*¥ — G'® ) functions:

(k)

g(k)({n(k)}) [ H ¢(rk (k) n(k) ;(k))]

N(k)
X[ H P(r, — R(k) n(k) é—(k))]
u=G® 41

(87)

The subscripts g and 4 refer to the former kind of functions,
the subscripts u and v to the latter ones, and the sub-
scripts / and j to either of them. Since the notations
G (n,,(n""}1L{n?}), [0, {n"},{n®}], and [n,,,{n"},
{n?}:{1},{1?}] are lengthy to write down, we abbreviate
them as &, [ ], and [:], respectively. When some of the
angular momentum indices and the derivative indices are
different from those in % (m,,,{n"},{n?}),
[n,{n"}{n®}], and  [n,{n"}L{n*}:{1"}L{(2,
only the distinct indices will be given, and thus
% (ny, + 1,,{n"},{n}), for instance, will be designated as
G(n,,+ 1,).

First, in order to derive a recurrence relation
for the OTEI's [n,,,{n"},{n®}], we differentiate
9 (n,,,{n'""},{n?}) with respect to the  component of the
first electron coordinate r,,. Equations (5), (8), and (9)
allow us to write the derivative as

g S —zglzg(nlz‘i‘l )+N (nlz)g(nIZ—l )
ar,#

i=1

N(l)
+ 3 N,(nf”)F (" —1,).

i=1

(88)

Introducing the parameters Z® and R$® (k = 1,2),

2= ¢o, (89)
i=1 '
1 N(k)
Ry = Z(k) 2 SR, (90)

we rewrite the factor in the third term of Eq. (88) as

S. Obara and A. Saika: Formulas for molecular integrals

B p——"

i=1

- _ 22(1)(1.1 _ R(zl))“
_ zz(l)(r1 _ R}l))” + 22(1)(R(Zl) - R}l))#’ (91)
and then finally obtain
G =—-2,9M,+ L)+N, )%, — 1)
c?r,ﬂ
-2Z"% (n{" +1,) +2ZRY —RM), ¥
N(ID
+ 2 N, a") g (" ~1,). (92)

The left-hand 31de of Eq. (92) vanishes by integration over
 due to Eq. (13). Therefore, integration of both sides over
r ' and r, gives

1
[n2 + 1, ‘. —1,]
)
B ?12 [l'l“) L]
L Z% Ro _go
(R —R{"),[ 1]
12
1 N(l)
2§ 2 N (n(l))[n(l) ] (93)
12 i=1

Another formula for [n,, + 1,,{n"},{n®}] is obtainable
by differentiating & (n,,,{n'"},{n®}) with respect to the
second electron coordinate r,, and then integrating over r,
andr,;

[n12 +1,]=—N,(n,y) [n12 —1,]

§

y A (2)
+

12
Z(Z)
;12

2y
1 N

(D[ _
24_12 lz N, (n{*) [n{ 1,1]

[0 +1,]

(R —RP),[ ]

(94)

The OTEI [n{’ +1,] in Eq. (94) can be expressed in
terms of [n,, + 1, ], [n{"” +1,], and [ ], because the fac-
tor (r, — R{?’),, in its integrand can be decomposed into
(r,—R®), = —(r,—1), + (r, —R{"),
+ (R{" —RP),. (95)
Substituting Eq. (95) into Eq. (94) and then subtracting Eq.

(93) multiplied by (1 + Z?/¢,,), we obtain the recurrence
formula for [n{" +1,],

[nf” +1,]
= {(RY —R"), + O(W —RE),H 1 +-=2
2Z }
N(I)
x[Nﬂ(nlz)[nIZ - lu] + 421 N;t (n§l))[n§l) - lﬂ]]
® N N

-~ (k) (k) __
+ 2Z kE 2 N (l’l )[ll ]’

=12i=

(96)
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where the parameters Z, W, and O are defined by

Z = Z(l) +Z(2), (97)
Z(I)R(l) Z(Z)R(Z)
W= zZ ; z , (98)
and
O = _51_2_ , (99)
Pz + 62
respectively, with
(7 2
py =2 ZZ . (100)

Equation (96) is a generalization of the recurrence formula
for one-electron three-center overlap integrals introduced in
our previous paper'> to that for the two-electron
(NY 4 N@)_center overlap integrals.

Operation of 25° ({1'® }) (k= 1,2) on both sides of
Eq. (96) gives the recurrence formulas for the DOTEF’s.
Noting that the coefficient in the first term of Eq. (96) is
linear with respect to R and those of the remianing terms are
independent of R, we readily find the formula for the
DOTEI’s :

[0 +1,]

11—
= {(RY’ —RM), + O(W — RP), }:] +2—ZT,?—
. N(I)
X {Nﬂ(n,z) [ —1,:]+ .Zl N, (nfV) [n§1) —_ 1#:]]
1_@ Nl”
122 8 e

XN, A X [0 = 1,] = N, ()[4 1,1}
+SV+82, (101)
where S {*’ represents
® N
S0 = o7 ’; N, (a?)[n® —1,:]

X{N, (AP [P —1,]

— N, M) [0 -1, ]} (102)
The recurrence formulas with respect to other indices can
also be derived by the use of the above equations; operation
of 2 on Eq. (93) and subsequent substitution of Egs.
(101) and (102) yield the recurrence formula with respect
ton,,,
1-0/ 1 1
[m2+1,:] = (Z“’ + Zm)N,,(nn)
X [“12 _ IM:] + T(l) _ T(Z)’
where T © denotes

(103)

T® = (1-0)(RP), [:]

1—® N®
+ o 3 M) [~ 1,1]

1—-0 NGO
+ o 2 SN[ —1,].(104)
i=1

The formula with respect to the derivative index 1{"’ can be
obtained by differentiating & (n,,,{n"},{n®}) with respect
to R {1, substituting Eq. (12), and finally operating 2 {:

Ju ?
[ +1,] =26 [nf" +1,:] = N, (") [nf" —1,,:].
{105)
Substitution of Eq. (101) into the first term of Eq. (105)
gives a formula involving lower angular momentum and de-
rivative indices. In order to use these recurrence formulas we
need an initial DOTEI [0,,,{0"},{0?}:{0"},{0}], name-
ly, the DOTEI over s-type Cartesian Gaussian functions,
which readily reduces to

[0,,,{0"},{0?}:{0"},{0%}]

= FUF0(1 — 0)*%exp[ — Op,(RY’ —RP)?]
(106)
by employing the expression for ¥ X ({0® }),

g(k)({o(k)})

(7" P Z o ()y2
=\zw exp| — (r, —RZ”)%],(107)
where ¥ % is the one-electron overlap integral over N%) s-
type Cartesian Gaussian functions:

372 N(k)
f”‘):(_” ) I
Z®] i
(i<
(k) & (k)
X ex £ §,-
p Z(k)

For the BTEI’s without the integration over #’s in Eq.
(44), namely, 2, = 1, the operationof 2 ,2,(= 2 ,) on
the above formulas (101), (103), and (105) readily gives
the recurrence formulas for the BTED’s. In contrast, for the
BTEI’s with the integrations, namely, 2, # 1, these formu-
las are not suited for the operation of £ , 2, since the inte-
gration exponents appear in their coefficients through the
parameters ®, Z©’ | Z RY’, and W. So we rewrite the above
recurrence formulas by the use of the following decomposi-
tions of these parameters:

(R® — R}"’)’]. (108)

1-0 _1-0 ¥

Zu §(Gk) Z k)
-0 1 &
= - T~ u (109)
§£;k) (Gk) u=G;)+177
e 60 |1 LA
—_—=—— v (110)
V4 $e Se k=21:2u=(;)+l
(1 —@)RYP
N
=(1-0)RY¥ — Z 7 (RE — RP)Y, (111)
u=6% 41
and
N
OW = OW,; — 2 §f,"’(WG —R#y,
k=12 4y GW 41

(112)
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Here £ 9, L6, RY, and W are expressible in terms of the
constant parameters & { and R{®:

G(k)
(k) z é-(k) (113)
o =;<n P, (114)

G(k)
&k) ;(k) z §(k)R(k) (115)
and

Wo =§i (CVRY + £ PRD), (116)

G

respectively, and #{* and £ (¥, which include the integra-
tion exponents, are defined by
*

k
70 =(01-0) 55, (117)
é—(k)
W=02, 118
£ 7 (118)

respectively. For the convenience of reducing [:1{" +1,],
we also introduce the parameters 7% and £ {*” defined by

é— (k)§ (k)

(k)

7P =(1-0) 222, (119)

£ g kD
z

*) _ @ (kk'=12). (120)

Equations (109)-(112) allow the recurrence formulas to be
reduced to those having constant coefficients and DOTEI’s
multiplied by any one of the above parameters @, 7., £ (¥,
7, and £ X”. Now we introduce an auxiliary DOTEI
(ADOTEI) defined by the DOTEI and the parameters ©,

(k) (k) (k) k",
7714 ’§ ’nuu’andguv .

N

[N () n,— 1,07+ 3 N, (V) (nf" — 1”;;)(0]

i=1

J
N(II
[n”+1,::] =R -RM),[]1- ¥ (R -
u=G" 41
é—(l)
G(I)
= 2 ;él){N (l(l))<l(1)
G 8&=1
N(l)
+ 3 {;.a)[a —

u=GV 41

R(l)) [ m(l)

IM:)U) —

1,:m{) + 1]

(0,5, {0}, 0?3012}, m D, m@ M

— [n,z,{n“’} {n(Z)} {l(l)} {1(2)}]P(m12’m (2) M),
(121)
where
P( m |2,m(1),m(2),M)
Al (1) e 2)
S I SRS TN
u= l-‘["+l b= g‘IZ'+1
N N
X [ II || AR ] (122)
u=G"+1v=G2 41
and
C_‘(k) (n(k)) uu (g(k)) uu
N(k)
11 {(711(4’()) w (kk))Muu}. (123)
G( )
(v> u)

The indices m*® (k=1,2) and M in Eq. (121) are
U(k) X U(k) and (U(l) + U(Z)) X ( U(l) + U(2)) (U(k)
= N® _ G® ) matrices, respectively, and denote collec-
tlvely the elements m*’s (u,v=G* +1,..,N®) and

M,’s(uv=G" +1,. N‘”,G"’ + 1,...,N @) in their diag-
onal and wupper half off-diagonal parts. The indices m,,,
m®, and M termed integration indices take values of
nonnegative integers, and when they all vanish the
ADOTED’s become the corresponding DOTED’s, because
P(0,,,0",0?,0) = 1. With no integration exponent, say, in
the Z({n'"}), the indices m'" become redundant, but, for
clarity they will be retained with m'” = 0 rather than be
omitted.

Substitution of Egs. (109)-(112) into Eq. (101) and
multiplication by P(m,,,m'”,m?,M) lead to the recurrence
formula for the ADOTET’s with respect to the angular mo-
mentum index n} ",

+1]+ (Wg —RE), [::my, + 1]
N, (D) (1D —1,:)0}

—N A [ —1,:m) +1]}+SP +5P, (124)

where only the indices different from those in the integrals [n,,,{n"},{n®@}:{1""},{1?}:m,,,m",m® M] are explicitly given.

The bracketted integrals {::)‘* in Eq. (124) are defined by

N(k)

(::)(k)=[::]__[::m]2+1]_ Z [ m(k)+l] (125)
u=G6"% +1
and S § is expressed as
N(k) 1 N(k)
S = — G;) l(W —RP), [::M,, +1] +_§_ ZIN () <n® — 1,55
u= + i=
l G(k)
§G gzl é—ék){N (1(k))< l(k) 1,:> —Ny(l}”)<:l}” _ 1”:>}
N(k)
+ Y NP - 1M + 1] - N [ - 1M, + 11 (126)
u=G® 41
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where the doubly bracketted integrals €::> are

N(k)
> =mp+1] - ¥ 2 [:M,, +1]. (127)
k=12 4 =G 41

The recurrence formula with respect ton,, [Eq. (103)] reduces to
[1112+l ] == E 2§(k) N (n12)(n12”’1 >(k)+T“) T,(qz), (128)

where T ¢ denotes
N (k) 1 N (k)

T = (REP),(HP+ 2 (R, [::m® + 1] + 7z Z N, (a)(nf —1,::)®
u= G 41 i=
G N
5 Z ;(k)N (1;k))<:lék) — 1”:>(k) + 2 N,‘ (lf:k)) [:lik) . (k) + 1] (129)
G g=1 u=0G® 41

For the recurrence formula with respect to the derivative indices I{”’s we have to consider two cases, namely, j = gand j = u.
When j =g, the orbital exponent & ]‘ D is not the integration exponent, and therefore multiplication of Eq. (105) by
P(m,,,m"";m? M) readily yields the recurrence formula

[P +1,:] =25 [ + 1,::] =N, (n{”) [n{"” —1,::], (130)
and substitution of Eq. (124) into the first term of Eq. (130) gives a formula involving lower angular momentum and
derivative indices. When j = u, namely, the exponent ¢ " is the integration exponent, the integral 25 (" [n{" + 1,,:] multi-
plied by the factor P(m,,m"’,m®,M) is not the ADOTEL Accordingly, we have to rewrite Eq. (105) by the use of Eq. (101)
as well as Eqgs. (109)-(112) in order to express the formula in terms of the ADOTELD’s. Utilizing the following relation:

g{l) g(!) N N@
1____@) f;l)(l )+® (l)( ) (l)( (l) ’(‘1))+ (,”(1) !("1)1))_{_ ‘(“1)2), (131)
¢ 3 )= +¢ > TR

(1
Z U=G(”+ 1

(v#u)

we finally arrive at the following recurrence formula:
[P +1,:] =26 (R —RD), [1:ml) + 1] +266(We —R), [1:M,, + 1]

N(I)

+N, () [0, —1,:ml) +1]+ 3 N, () [0 —1,::m{) + 1]

i=1
G(I'

+2 3 EON AP AP — 1,:mB +1] — 28 PN, AP [P — 1,:mD + 1]
g=1

N(I)

-{-Uf,”-*— U,(JZ)—N;L(H,(‘”)[D,(‘”—I“ZZ] +2 2 (R,‘,”—R,‘,”)#[ (1)+1]
ve= G4 1
NU!
+2 3 AN AP ~1,mP + 1] = N, AD) [ — 1,:mD + 113, (132)
v=G" 41

where U {® is defined by

N G
UP = z N, (nik))[n(k) 1,::M,, + 17+2 2, ;;Ic)N# (lék))[:lék) —~1,:M,, + 1]
g=

i=1

N(k)
CUPN A AP — M, +1] 42 S (RP RO),[M,, +1]
v=6% 41
N(k)
+2 G; ] N A [P —1,: M, + 1] =N, A [P —1,:M,, + 1]} (133)
p= )y

It is to be noted that the off-diagonal indices m‘*’ and M, now appear in the last two terms of Eqs. (132) and (133), and they
are to be read as m{¥’ and M, , respectively, for u > v.
Substitution of Egs. (109)-(112) into Egs. (106) and (108) leads to the expression for the initial ADOTED’s
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[0,5,{09},{02}:{0%}, {02}, m® M
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EW D 2
=95 {Z(l) 7@ a ®)] & (006 (RS’ —RE)m,,)
N(I) N!Z) N(Il N(Z)
X[ II 7“’] [ I 75.%’] [ NI I #EP®e —Rf,”)z,Mu.,)]- (134)
u=G" 41 v=G? 1 u=G 4+ 1v=G%41

Here the factor #$ is the one-electron overlap integral
over the first G**) s-type Cartesian Gaussian functions in

g® (0% }:

- T \32 Gw
)
[ gh=1

(g<h)

k)é-(k)
X exp [ (k) (R —RH? [, (135)
the function & (w,a,m) stands for
& (w,a,m) = w™ exp[ — aw], (136)
F ) can be expressed in terms of & (w,a,m) as
FR =& (g ,£ (R — RP)2m0
X & (é‘l(lk)’gG (WG - Ra(ak))z’Muu )
x I Eow.eo - rme)
v=G% 41
(v>u)
X & (& 50, (RP — R LM, T, (137)
and pg is defined by
(£ (2)
;G + ;G

1t is to be noted that the initial ADOTELI’s consist only of the
function & (w,a,m) except for the factor P ¥ P
{72 (¢ P/ZP)(1 — @))% independent of the in-
tegration indices.

With the definitions of the BTEI’s [Eq. (58)] and the
ADOTEI's [Eq. (121)], we define auxiliary BTEI’s
(ABTETD’s) as

(0,5, {n"}{n?}-{1},{1?}:m o, m,m? M)

= 2,20 0"} 0PIV m pm Y m® M.
(139)

The recurrence formulas for the ABTEI’s can be readily
found by operating 2, and 2, on Eqgs. (124), (128),
(130), and (132), since the coeflicients are now independent

J

r

of the integration exponents. For 2 , = 1, the resulting for-
mulas take the same mathematical forms except that all the
square brackets are replaced by parentheses.

We add how to get recurrence formulas with respect to
theindices n{>’ and 1{*’ of the jth function in the second factor
9@ ({nm}) of g (nlz,{n“)} {n®}) [Eq. (63)]. If one con-
siders an interchange of the electron coordinates r; and r, in
Y (n,,{n"},{n”}), one may notice that the product
92({n}) becomes equivalent to ¥V ({n'"}) in the origi-
nal & (n,,,{n'"},{n?}), and the interchanged two-electron
function @(r, —ry;n,,,$,,) takes the opposite sign to the
original one @(r, — ryn,,,{;,) when the angular momen-
tum |n,,| is odd. The latter property means that the inter-
changed two-electron function ¢(r, — ry;n,, +1,,4;,) hav-
ing a higher or lower angular momentum by one always
takes the opposite sign to @(r, — ry;n,,,5,,).Thus one has
the following prescription: (1) interchange the superscripts
1 and 2 in the recurrence formulas given above, and (2)
invert the signs of terms having the angular momentum in-
dexn, +1,0rn,; —1,.

Asanillustration of the present formulation, we give the
recurrence formulas for the derivatives of the electron repul-
sion integrals (ERI’s). Since the integrals include integra-
tion over u,, [Eq. (83) ], we must resort to the formulas for
the auxiliary integrals. With no integration exponent in
G® ({n®}) (k= 1,2), the integration indices m® and
M are zero, namely, the factor P in ADOTEDs is
P = P(m,0,0,0), and all the terms involving summation over
u or v in the recurrence formulas are missing. The auxiliary
integrals reduce to

(n ny,n.n4l,1,,1.1,)¢

= (0,,,n,,0,,n_,n,:1,1,1.,1;:m,000)

“ 2
= | dup——
[ e

X [042,0,,05,0,,0, :1,,1,,1,1,:m,0,0,0] (140)

according to Eqgs. (83) and (139), and the recurrence for-
mulas are found to take the forms

(m, +1,:)=(RP ~R,), )+ (W —RF), Cim+1) + —— g“’ '—za N,(n)
X[(n,-—lﬂ::)_ '0(6” (n,-—ly::m+1)] 2% 2 N,(n)(n; -1, cm+1) + A4, (141)
G G i=cqcd
G, +1,)=2{,(n, +1,:)) —N,(n,)(n, —1,:2) (142)

from Eqgs. (124) and (130), respectively, where A4 represents
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;b . . ;a pG
A= ——E)—Nﬂ(la)[(.la —1,2) +a§(G”
[ b ; .
+ N#(lc)(:lc—l#:m+l)+——N”(ld)(.ld-—1#.m+1),
S $6

which vanishes when all the derivative indices I,
(i = a,b,c,d) are 0 = (0,0,0). The recursive calculations be-
gin with the integrals obtained from Eqgs. (134) and (140):

(0,0,,0.0,:0,0,,0.0,) om

2 ) ) © (Gl) (G2) 372
— (1) (2)
=—7 FPFE J; du”[___zmz(z) (1 —-®)]
X & (0,T,m)

PG 172
=z(—) FPFPF, (D),

T

where Z® (k= 1,2) is actually £ {” in this case, and T
denotes

(144)

T=ps(RG — RG> (145)
F,, (T) reduces to
1
Fm(T)=J dt ¥ exp[ — Tt?], (146)
0
after the following transformation of the variable:
u2
2=, (147)
P+ Un;

and its evaluation is simple.*'*>!%?° The above formulas are
generalizations of those for the ERI’s given in our previous
paper'® and those for the first and the second derivatives of
ERDI’s given by Schlegel, Binkley, and Pople.'?

Since the molecular integrals (n,n,|% ;, |n.n;) and
(n,n,|2,,[n.n,) take forms of linear combinations of the
derivatives of ERI’s [Egs. (66) and (49)], the recurrence
formulas readily follow from Egs. (141)-(143) with appro-
priate derivative indices, such as (1,,1,,1..,1,) = (0,0,1,,1,)
and (0,0,0,1, +1,) for (n,n,|% ;, |n.n,). The recurrence
formulas thus obtained take the same mathematical
form with Eq. (141) for the first four terms, and the remain-

ing terms in (n, +1,,n,|%,, |n.n,) and
(n, +1,,n,|%,,|n.n,) become
A(E,) = — 285 iy 545 () + (an))
o e
(148)
and
AP = — 554 15 (ew) + ()}

G
+ 8, {{cA) + (dA)}],
respectively, with

(149)

{cA ) = (0,5,n,,n,,n_,n,:0,,0,,1_,,0,:m + 1,0,0,0), (150)

(di ) = (0y,n,,n,,n,.,n,:0,,0,,0,,1,,:m + 1,0,0,0). (151)

(1, —1,:m + 1)] tw

o ,,(1,,)[(:1,, —1,) —EPG_ (i, —1,:m + 1)]

n )
G G

(143)

r

D. Exponential-factor-including basic integrals

Now to formulate molecular integrals including the ex-
ponential factor exp[/ker] in their integrands, we introduce
exponential factor (EF)-including basic one-electron inte-
grals (EF-BOEI’s) and EF-including basic two-electron in-
tegrals (EF-BTEI’s) as well as their auxiliary integrals.

We define auxiliary EF-including BOEI’s (AEF-
BOEI) (k;q|{n}:{1}) as BOEI’s whose integrand ¥ ({n}) is
multiplied by the factor F(k;q) exp[i ker],

(k;q[{n}(1}) = 2,2, [k;q|{n}:{1}], (152)

(k;q){n}:{1}] = F(k;q) 2, ({1}) fdr % ({n})
Xexpliker], (153)

F(k;q) = (ik,)*(ik,) " (ik,)™, (154)

where the square-bracketted integral { Eq. (153) ] is the aux-
iliary EF-including DOOEI (AEF-DOOEI), and q consists
of nonnegative integers g, (4 = x,y,z) referred to as the lin-
ear momentum index. The true EF-BOEI’'s and EF-
DOOET’s are, of course, those having the linear momentum
index q being 0 = (0,0,0), since in this case the factor re-
duces to just exp[i ker].

Similarly we define EF-including two-electron integrals
whose integrand & (n,,,{n‘"},{n®}) is multiplied by the
factor F(k'V;q'V)F(k®;q?) exp[ k™ r, + i k®r,]:

(k“),k(z’;q(”,q(z)|n12,{n("},{n(z’}:{l(”},{lm}) — QAQI
X [k kP;q®,q® 0, 01 {nPHALADY,
(155)

[k kg, [, a0} )0V AD) )
= F(k“);q‘”)F(k(Z);q(Z))Qg)({l(”})Qg)({lm})

derl fdrz g(“]z:{n(l)},{na)})

Xexpli k", 4 i k@, ). (156)

Multiplication of Eq. (156) by P(m,,m'’,m® M) gives
the auxiliary EF-including auxiliary DOTEI (AEF-4 DO-
TEI)
(kD kDD ¢Pln,, {00}, {(n @)D},
{1?}:m,m m» M]
= (KO kDiq,q [, (0} @)UV} 09)]
X P(m,m",m® M). (157)

As has been noted, the product of the Cartesian Gaus-
sian function and exp [/ k-r] can be reduced to a linear com-
bination of Cartesian Gaussian functions [Egs. (14) and
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(20) 1. Therefore, the recurrence formulas given in the pre-  summation [Eq. (24)], the reduction is not complicated by
vious section can be utilized after substituting Eq. (20) into  virtue of the four relations [Eqs. (26)-(29)]. The recur-
the EF-including integrals having n,, + 1,, n}"’ +1,, or  rence formula with respect to the angular momentum in-
¥ +1, (k=1,2). Although Eq. (20) includes sixfold dices, for instance, becomes

Gin® +1,:] = {(RY —RM), +O(W —RP), };|:] + Z“’ [N (ny2) [5]mp — 1,,2]
N —® N
+3 Na i - 1,0]+ =05 gy, am i -1,

— N 10~ 1,7}

+ S8 +SE + ([ +1,:]), (158)
where k‘® and q"" (k = 1,2) in the AEF-DOTED’s have been omitted for simplicity, and S ¥, is defined by
(k) (k)
(R
S =z Z N, (a®) [;in{* —1,:] +> 3 &N, AP AP —1,] = N, A [P — 1,1} (159)

:»l "“

The last term  [:|n{" + 1,,:] ) results from the decomposition of the complex parameters RS’ and W' into the real param-
etersand i k® (k=1 2), and involves terms whose linear momentum indices ¢‘"” and q‘»’ are increased by one:

-0 )
(LI +1,:]) = 22“) = E [:a® +1,]:]. (160)

2
As can be seen from these formulas, the expression for [,{n}” + 1,,:] takes the same form with that for [n{" +1,:] [Eq.
(101)] except for the last term. Remaining recurrence formulas reduced from Eqgs. (103), (105), (124), (128), (130), and
(132) also take the same forms with those for the corresponding ones except for the additional terms resulting from the
decomposition of the complex parameters. In the following we give only these additional terms:

[ +1.0:] +

-0 1-0
(Gine+1.:]) = Z‘“ [0 + L) = —— [9® + L], (161)
(I +1,1) =0, (162)
1
(D) .o {1) Sy (1) k) P
(GImP +1,::]) = ———g(l,(,q +1,0:0) LT k;m<,q +1,]:>, (163)
1
([;!nl2+lﬂ::])=2§g) VL0 — T —— (@ + 1,0, (164)
(GIR" +1,:]) =0, (165)
([;l:lf,”+1u=]>=—2-£m gD+ 1, m + 1] + 2 [a® +1,]::M,, +1], (166)
G
where (;]::)®(k = 1,2) and «;|::> are defined similarly to (::)“" and €::» [Eqgs. (125) and (127)]:
N(k)
Gldy® =[Llel = Glomgp+ 1] — 2 [oimid + 17, (167)
. u=G® 41
N
&Gli> =hlimp+11 - 3 2 []::m& +1]. (168)
k=12 4.-6M 11

The expressions for the AEF-DOTED’s and the AEF-4 DOTELD’s over s-type functions reduce via Egs. (106) and (134) to
[k k®:q",q?]0,,,{0},{0}:{0},{0®}]
= F(kV;q)F(k®;q?) [0,, {0}, {0®}: {0V}, {0>}]*
= F(kM;q V) F(k®;q®)[0,,,{00},{02}:{00}, {02} ] exp| Ter | (169)
and
[k(l) k(2)’q(l) q(Z)iolz,{o(l)}’{oﬁ)}:{o(1)}’{0(2)}:’"12’“‘(1),m(2),M]
— F(k(l);q(l))F(ku);q(Z)) [olz’{o(!)},{0(2)}:{0(l}}’{0(2)}:mlz,m(!)’m(Z}’M] t
= F(kV;q')F(k?;) [0,,,{01L{09}:{0V}{0 P} p,m D, m® M exp[ Ter |, (170)
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respectively, where the daggers in Egs. (169) and (170) in-
dicate that the parameters Ry, R, £0, #P (k= 1,2),
and W, have been replaced by the following daggered ones:

R©T =R 4 ik® (171)
yA - VA Zz(k)’
k)
R = ;g (172)
Pt R oy [ (k)( (k)+ ik(k))] (173)
4z®Jy
5]
FPt = gl CXP[’k(k)(R(k)+;:(k))] (174)
)
r . (1-0) (k) R® 4 k(k)
e zo\" Y up

ik“’+ik‘2’)+

+ (i kY +zk‘2’)[®(wa +
46 k

Let us illustrate the EF-including integrals. Theoretical
analysis of the van der Waals forces based on the linear re-
sponse theory?! requires the following two-electron inte-
grals:

({n’}{n>})

= fdk _lil‘_l expli k'V][k;0",0%[{n"},{n®}],
(178)

where \'% is a prefixed coordinate, and
[k;00,02{n"},{n®}] is the EF-including integrals de-
fined by

00 02 {p"} {p@
(k0,02 [{n"},{n>}]

=J’a’rl fdrz expl —ike(r, —r,)]

XIP({n"HF > ({n*}). (179)

One may notice that the integral [k;0,0?|[{n‘"},{n®}]
is closely related to the momentum-space represen-tation of
the two-electron density described by
GO{nPHI®{n?}. The integral
[k;00,02|{n"},{n®}] can be expressed in terms of the
AEF-DOTETI’s as

[k, a® [{n"},{a®}]

= lim [ — kkq",q?|0,,,{n"},{n®}:{0},{0V}]

glz"'o ( 1 80)
with q® =0(k = 1,2), so that Egs. (158) and (180)
yield the recurrence formula for the integrals

[%;4",q®|{nV},{n®}],

N

ik 4+ ik
, 2%
The last expressions of Egs. (169) and (170) do not involve

the daggered parameters while they include the exponential
factor exp[ Ty ], where

Wh =W, + (175)

-k(k)
— _ (k) (k)
Ter = (1-0) T ikORE +2X0)
P (1) (2)
+ Ok + k) (w4 K HIKT 4;"‘ ),

(176)
which can be rewritten by the use of Egs. (109)-(112) as

ﬂl(lk)R(k)]
Y+1
N(k)
2 §£“R£"’]. (177)
= B I R
r
[k;ln}” +1,]
N N (n(l))
_ 1
""(R(Z” ( ))#[k|]+ ,Zl 22(1)
X[k |n(”—lﬂ] + — [k,q(“+l |] (181)

2z<”

If one introduces the auxiliary molecular integrals defined
by

({n°}{n®}:qV,q?)

— f dk“‘(—lexp[ik-w[k;q<”,q<2>|{n<”},{n<2>}1,
(182)

the recurrence formula for the auxiliary molecular integrals
becomes

" o a N(I)N ( (l))
) N = )
(n; +1,,-)—(R —R; D ()+§1—Em—
() b (aD
X —1,:) 4+ Z(”(q +1.),
(183)
where only different indices from those in

({nV},{n®}:q'",q'®) are given. Equations (169), (176),
(180), and (182) provide us with the expression for the ini-
tial integrals

{01 (0P} q,a)
=PFOLOF (|qV))

fdk——(zk )= (ik,)*(ik,)* exp[i k-Q]

Xexp[ ], (184)

V4
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where p, has been defined by Eq. (100), |q‘"| is the sum of
¢'", ¢", and ¢{", and other parameters %" (|q‘"|), g,,, and
Q denote

(D
F (1) =[1«_1 E}:(,,Lz‘é:’)), (185)
9, =94\ + 47, (186)
and
Q=V-R{ +RY, (187)
respectively.

Ascan beseen from Eq. (184), the initial integrals satis-
fy the following differential relation with respect to Q:

({0},{0P}:q,q®)

a 9x a 9y a 9x
=7 io 56 5e)
"DiGal aa] 130
X ({0“)},{0(2’}:0‘”,0(2’). (188)

As a consequence, we have to evaluate ({0‘V},
{02}:0,0V), which can be expressed as*'

({0V},{0}:0°,0) = B(Q*) Fo(T), (189)
where F,, (T) has been defined by Eq. (146), and

B(Q?) =87, VS Pexp[ — pQ?], (190)

T=—p,Q. (191)

Then ({0‘”},{0‘2’}:1}}),0‘2)) and ({0“’},{0‘2)}:1,&”,15,2)),
for instance, become

({0(1)} {0(2)}.1(1) 0(2))
) . M b

=2p20,B(Q){F,(T) — F,(} (192)

and
({0}1{0}:1",18)
= 2076, BIQ*){F,(T) — F,(D)}

—4p%0,0,B(Q){F,(T) — 2F,(T) + F,(D},
(193)

respectively.

We note that the recurrence formulas and the expres-
sions for the initial integrals provide us with a simple scheme
to obtain nonrecursive but explicit expressions for molecular
integrals over higher angular momentum functions. Thus
the formulas, such as Eqs. (183), (189), (192), and (193),
can reproduce the explicit expressions over all possible com-
binations of s and p functions tabulated according to Boys’
scheme? by Ishida.”!

lil. DISCUSSION

The auxiliary basic two-electron integrals (ABTED’s)
with 2 , =1,

(0,5, {0} {n?}{1V}, (19} :m ,,mD,m®, M)
= “02 1 [an’{n(l)}y{n(Z)}:{l(l)}’{l(Z)}:m12’m(”9m(2),M] ’
(194)

which will be discussed in this section, are closely related to
important two-electron integrals, such as the electron repul-
sion integrals and their derivatives. The effect of £ ,(#1)

S. Obara and A. Saika: Formulas for molecular integrais

on the recurrence formulas is trivial, as in Eq. (84). The
recurrence formulas for ADOTED’s given in the previous
sections will be referred to as those for the ABTETI’s, because
for 2 , = 1 they take the same mathematical forms.

First we consider the range of the values of the integra-
tion indices m,,, m*, and M in the initial ABTEI’s
(0,,{0},{0?}:{0}.{09}:m ,,,m",m? M) necessary to
start the recursive calculations to get the target integrals
(n,2,{n"}{n®}:{1"},{1”}.0,,,0",0?,0). The lower bound
of these indices is zero, and their upper bound remains to be
found. From the recurrence formulas (124), (128), (130),
and (132), one notes that the sum of all the indices n,,, n{*,
19, m,,, m®, and M in each ABTEI in the right-hand side
is not greater than the sum on the left-hand side. Repeated
use of this relation gives a relation between the sums of the
initial integrals and the target integrals. The sums of the
diagonal and the off-diagonal integration indices in the ini-
tial integrals designated as M,;,, and M, respectively,

N

My, =mpy+ ¥ Z (mi)+M,,), (195)
k=12 4,=G®
N(k)
Moﬁ = (mr(f:) + Muu)
k=12 4y~ G 4
(u<v)
N{H N(Z)
+ Muv * (196)
u= GZ’—Q- 1 ve= GZ’+ 1
satisfy the following inequalities:
N
0<My, + Mg<|npl+ 3 3 (Inf?| + 9],
k=12 i=1
(197)
N
(198)

0<Mu< 3 3 ey,
k=l,2u:G‘)+|

where |1| is the sum of /., [, and /,, and the latter inequality
obtains because the off-diagonal indices are involved only in
the recurrence formula for (:I¥ + 1,,:). In the case of the
derivatives of the electron repulsion integrals [Eq. (140)],
for instance, the inequality (197) becomes

o<m< Y

i=abcd

Since the auxiliary BTED’s are mathematical artifacts
introduced to reduce the expressions to recursive forms, they
are less directly related to the physical situation than the
corresponding true integrals. This means that it is not guar-
anteed that the auxiliary integrals take finite values. Of
course, their finiteness is essential for the present recursive
formulation, and hence we investigate the condition of the
ABTET’s being finite when the corresponding true BTED's
are finite. The recurrence formulas given in the previous sec-
tions are linear with respect to the ABTEI’s, so that they do
not induce divergence (if they are not linear, say, including
divisions by the ABTETI's, they would diverge when the inte-
grals happen to vanish). Therefore the divergence of
ABTEI’s would originate from the divergence of the initial
ABTELI’s, which differ from the corresponding true ones
only for the nonzero value of m in & (w,a,m) [Eq. (134)].

([ + LD (199)
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Thus we have only to investigate the relation between
& (w,a,m) (m>0) and & (w,a,0).

When m is one of the indices m,, and the diagonal ones
m'® and M, the parameter w in & (w,a,m) stands for one
of the factors ®, 7{¥, and £ (¥, respectively. For the possible
values of the integration exponents ¢, and ¢
(0<€12,¢ (P < 0 ) any one of these parameters takes a value
between zero and one (0<®,n{¥,& (¥<1), as can be seen
from Egs. (99), (117), and (118). For O<w<1, & (w,a,m)
satisfies the following inequality:

0<% (w,a,m) = w"% (w,a,0)< ¥ (w,a,0)
(a»0,0<wg1,m>0) . (200)

Application of this inequality to the integrands of the initial
ABTETJ’s yields the following relation:

0< (::my,mP,m2M)<(::0,,mP,mP M), (201)

where the subscript off indicates that only the off-diagonal
part of the indices have nonzero values. For m{¥’ = 0 and
M, ; = 0, corresponding to a large class of molecular inte-
grals, Eq. (201) shows that the auxiliary integrals are finite.

When m in & (w,a,m) is one of the off-diagonal indices
mi¥ and M,,, w denotes one of the factors 7%’ and £ (%,
respectively, and takes, at maximum, positive infinity for the
possible values of £,, and £ (¥’s. Because of the exponential
factorin & (w,a,m), however, the following relation holds as
far as a = (R{® — R%7)? is not zero:

% (w,a,m) = w™% (w,a,0)

=w"expl —aw] -0 (a>0,w— 0o,m>0).
(202)

Therefore, for a large value of w the contribution of
& (w,a,m) to the integrals can be ignored, which means that
we can find a finite positive value V., which satisfies the
relation

0<(::0,5,mP mP Mg ) < Vipax (::0,2,0,09,0) . (203)

From Eqgs. (201) and (203), one sees that the auxiliary inte-
grals are finite as far as @ > 0, namely, the centers R{¥ and
R{*” of functions having integration exponents are different
from each other. Note that even if a=0, namely
R = R{*", corresponding to the same function center, the
integrals having the sum of the derivative indices 1{,1$*" - - -
less than 2:

D 1P] <2 (204)

ku

(same function center)

can be evaluated by using the recurrence formula for
(:1{¥ + 1,,1), since in this case the terms with positive off-
diagonal indices in the formula drop out by virtue of
(R —R{¥?), =0and N, (1) =0.

The same discussion is applicable to the finiteness of the
AEF-ABTETD’s as far as the integrations over the integration
exponents ¢ ¥°s and ¢£,, are concerned, since the AEF-
ABTEI's [Eq. (170)] are just ABTEI’s multiplied by the
factor F(k'";q") F(k®;q®)exp(T g ), which is common to
both the auxiliary and true integrals.

Once the initial ABTEI’s are found to be finite, they can
be evaluated, namely, integrated over #’s in 2, straightfor-
wardly. Although in some cases convenient expressions for
actual evaluations can be found, suchas 7, (T") [Eq. (146)]
for the electron repulsion integrals and their derivatives, in
general the integrations are to be replaced by the quadrature
sums

(A—=1)72
QIH(gu)~QQH(§ua) = Z—ITE;_/F WaH(;ua) ’
(205)

where a refers to the quadrature node, &, is the integration
exponent at the quadrature node, and W, is the weight fac-
tor. Numerical calculation based on the quadrature formu-
las is a classical mathematical problem, so we just refer to the
famous books by Stroud and Secrest,?? and Krylov.??

With the quadrature, we have two computational proce-
dures for the calculation of the target integrals. The first one
is, as above, to use the quadrature only for the initial inte-
grals, and then to proceed recursively by using the recur-
rence formulas for the ABTED’s. The second one is to use the
quadrature directly to the target integrals
(0,5, {n"},{n®}: 00"}, {17})

— QQ [n,z,{n‘”},{n‘z’}:{l"’},{1‘2’}]a , (206)
where 2, denotes the product of the quadrature sums as in
Eq. (205), and the integrals [n,,,{n‘"},{n?}:{1},{1?}],
can be evaluated recursively by using the recurrence formu-
las for the DOTEDI’s [Eqgs. (101), (103), and (105)] rather
than those for the auxiliary ones. The second procedure can
be made efficient by taking advantage of the fact that the

DOTET’s can be factored as the product of three Cartesian
components

[n,,, {0}, {n?}{1},{12}]
= [I [P {@PY00LI2H,

H=Xxpz

(207)

and the linearity of the recurrence formulas allows us to
write the recurrence formula for each Cartesian component.
Details can be found in the work by King, Dupuis, and Rys®
for calculations of the electron repulsion integrals. Note that
the efficiency of the second procedure relies on the smallness
of the number of quadrature nodes, because for each node
each of the three Cartesian components of the DOTED’s has
to be calculated.

It would be noteworthy that even for the basic integrals
with divergent operators the recurrence relations remain val-
id. This is because the divergence appears after the integra-
tion of the ADOTEI'’s over u’s in £, while the recurrence
relations already hold before the integration. By virtue of
this property, we need not worry about the appearance of
divergent operators in reducing molecular integrals to sums
of the basic integrals [ Egs. (50) and (51) ]. In actual calcu-
lations, of course, one must employ sums of the recurrence
formulas for the basic integrals and of the initial integrals
rather than sums of the values evaluated from these expres-
sions. This caution would not be trivial when the quadrature
is employed with a finite numerical accuracy on a computer,
because the more accurate quadrature does not always give
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the more accurate value in the “sum-of-values” scheme. Let
us give an illustration. The first expression for %, in Eq.
(39),

P R R 0 ek O
vy — 1y [ry =y
(208)

consists of divergent operators, and the divergence can be
seen in the expressions for the initial integrals

(oaob'allocod)("l)
]

—vs,, f ar |

o 1-—

(0a0b|62locnd)( )
—tz m
———tz}tz( ”exp[—th]

1
=V5Wf dt{
o 1—

t2] t20m+ D expl — Tt%], (209)

— 206 V(RG> —RY), (RG’ —RY),
1
X j dt 1"+ exp[ — Tt?], (210)
V="4p; (”G) FPIE, 211)
T
obtained from the expressions for o, and o,
ag,=6, r; — 305,43, 212
1 J Uy F(3/2) —¢( 2012412 ) ( )

—— ¢ —rzl, + 1,,u3,),(213)

3 f l"(5/ 2)
as well as from Eqs. (128), (134), and the transformation of
the variable u,, to ¢ [Eq. (147)]. As ¢-1, the factors in
braces in Egs. (209) and (210) become positive and nega-
tive infinity, respectively, while the other factors in the inte-
grands remain positive finite, so that these integrals diverge.
When one employs a less accurate quadrature, with few qua-
drature nodes near 7 = 1, the sum-of-values scheme might
give reasonable values for the initial integrals. However,
with a more accurate quadrature having many nodes near
t = 1 as well as in other regions within 0<z<1, the scheme
will fail to give more accurate values owing to the divergent
factors. On the contrary, the “sum-of-expressions” scheme
works well because the divergent factors become identically
unity in the summed expression. In this particular case of
A, the initial integrals can be calculated by using the re-
currence formulas for (:1, + 1,,:) [Eq. (142)] and the ini-
tial integrals for the electron repulsion integrals [Eq.
(144)]. Thus in this sum-of-expressions scheme, no diver-
gence difficulty arises.

In general, any numerical calculations based on recur-
rence relations are advised to check whether recursively cal-
culated values become less accurate due to the amplification
of the original errors of the initial value. If the recurrence
relation is used a large number of times, and/or if quite accu-
rate final values are required, it would be safe to check the
stability of the recurrence relation mathematically.?* In the
usual ab initio calculations, however, the recurrence rela-
tions for the molecular integrals are used a moderate number
of times, for instance, eight times for the electron repulsion

integral (d,,d,,.d,,d,,) "™, and a relative error of 10~ '° for
the final value appears to be achieved in double-precision
computation. Therefore, in these calculations it would be
sufficient to check the evaluated values rather than the sta-
bility of the relation. In the calculation of the electron repul-
sion integrals overs, p, andd functions with initial integrals
having a relative error of 10~'%,'> we have encountered no
problem. Although about the same accuracy is expected tor
other molecular integrals, it is recommended to check the
accumulated error in the following cases: (1) the recursive
calculations are initiated with less accurate values of initial
integrals and/or (2) much higher angular momentum func-
tions are employed in the molecular integrals, which re-
quires much more than ten times of the utilization of the
recurrence relations.

Finally a comment is in order on a relation among the
derivative indices 1!’ in the basic and the auxiliary basic
integrals. The translational invariance of these integrals al-
lows us to find the relation, for instance, for the ABTEI’s:

N(l) N(Z)
Z CEY +1,:) + Z (1P +1,:)=0

i=1 i=1

(214)

This relation is of use in reducing the number of terms in the
recurrence formulas, as is shown in the reduction of the for-
mulas for the kinetic energy integrals in the Appendix.

1V. CONCLUDING REMARKS

In this paper we have introduced basic one- and two-
electron integrals, and have shown how general one- and
two-electron molecular integrals over Cartesian Gaussian
functions can be expressed in terms of the basic integrals,
how the recurrence relations satisfied by the basic integrals
can be derived, and how these relations can be reduced to
recurrence formulas for the target molecular integrals. The
present formulation of molecular integrals is applicable (1)
to the integrals with any spatial operators in the nonrelativis-
tic form of the relativistic Hamiltonian, (2) to those includ-
ing the kernel exp[ik - r] of the Fourier transform in their
integrands, (3) to those with any arbitrarily defined spatial
operators as far as they can be expressed in terms of the basic
integrals, and (4) to any order of their derivatives with re-
spect to the function centers. This formulation allows an
efficient recursive computation of molecular integrals. The
present method is, therefore, expected to be of general use for
a further extension of ab initio theoretical studies of molecu-
lar systems.
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APPENDIX
Recurrence formulas for basic one-electron integrals

By the use of Eq. (84), the recurrence formulas for the
derivatives of the overlap one-electron integrals (DOOEI’s)
can be reduced from Eqgs. (101) and (105) to

ZN (m;)[m; —1,:

1*1

[0 +1,:]=(R,—R)), []+

+Z—{N [, —1,]

i=1

~N, ([, —1,1} (A1)

and

[ +1.] =26 [ + 1] = N, (m)[n, — 1], (A2)
respectively, where the superscript 1 is omitted for simpli-
city. The omission will be made for other formulas in this

section as far as no confusion would take place. The
DOOET’s over s-type Cartesian Gaussian functions become

[{0}:{0}] = (A3)
by the use of Eq. (106) and the following relation:
4 T
_1172" Z M Z(z) (1-0)

_ m T

T Z0Z%E (20 1 Z) ~Zm

(§12— 0,6 (P =0) (A4)

With no integration exponent (2, = 1), such as in the ki-
netic energy integrals, the above formulas can be readily re-

N

> (Rg

u=G+1

[m;+1,::]=(Rg—R)),[::]— -R), [

+E

M, +1]+

duced to those for the BOED’s. In contrast, for Z,#1 we
have to use the auxiliary integrals. Formally the auxiliary
DOOEI’s (ADOOETI’s) are obtained from the correspond-
ing two-electron integrals and 2 , defined by Eq. (85) as

[{n}:{1}:m,,,m?",m?M]
= 2 ,[0,,{n},{0?}:{1},{0?}:m,,m"",m® M]
= [{n}:(1}] x{2 P(m;,,m",m?P M)}. (A5)

Here, however, all of the integration indices except for M are
not necessary in the case of one-electron integrals. This is
because at positive infinity of {|,, the factor ® becomes iden-
tically unity, and the factors ¥ and 7¥ (k = 1,2) identi-
cally vanish, therefore the index m,, (the power of ®) can be
set always to zero, and the indices m{¥’ (the power of 7¢®)
and m’¥ (the power of 7¥) are to be taken into account
only when m{¥’ = m{¥’ = 0. Thus we have

PO oM o M) (m(k) =0)

(1) a(2) _ [ A

2 P(m,,m"mPM) = {0 (9 £0)’
(A6)

Then [{n}:{1}:0,,,0",0®,M] of Eq. (A5) denoted as
[{n}:{1}:M] becomes

[{n}:{1}:M]
-won {1 1(3)", 05507
(v>u)

(A7)

With the aid of Eq. (A6), Eq. (124) can be rewritten

1

EN (n)<n;, —1,::>

Gl—]

{N ()<l —1,:> — N, ()<L, —1,:>}

g-—l
+ Z N AD[A, —1,:M,, +1] =N, ) [, —1,:M,, + 11}, (A8)
u=G+1
where the doubly bracketted integrals denote
N
< >=[:]- Y [:M,+1] (A9)
u=G+1
In combination with Eq. (A8), Eq. (130) is found to reduce to
N
[ +1,:] =26, (R —R,), [::] — 2 z (Rg—R,),.[::M,, +1]
u=G+1
gg .ZN (n;)<n; —1,::> — N, (n,)[n, —1,::]
G i=
N
+ 24, z ? {N )<, —1,:> — N, (L) [, —1,:]1} + 24, z N, )N, —1,:M,, +1].
h=1 u=G+1
(A10)

The recurrence formula with respect to 1, finally takes the form
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N
[L +1,:] =206(Rs —R,), [::M,, + 1] + 3 N, () [n, -1,
i=1

M, +11—-N,(n,)[n, —1,::]

N
+2 2 (R, —R,),[::M,, +1]
v=G+1
N
+2 Y N[, — 1M, + 1] =N, A)[, —1,:M,, + 1]}, (A1)
v=G+ 1
|
where the off-diagonal indices M,,, are involved in the last ~ ([;|l, +1,:]) = [ q+1,]]
two terms. The integrals over s-type Cartesian Gaussian
functions become § PR 4 LlM .
— 5 + .l uu + ’
[{0}:{0}:M] Lo utr, PO ]
AV (A20)
7o) 11 (oG e —monml) (i ay = s b 1) (A21)
N &L, The initial integrals for the AEF-DOOEI's and AEF-
x II ?f( (R, — Ru)z,M,w) . (A12)  ADOOEDs are
v=G+1 Z
(v>u)
. . — F(k: . 1
The definition of the auxiliary basic one-electron integrals [k;q{{0}:{0}] = F(k;q) [{0}:{0}]
(ABOET’s) is j
— Fic) (10340} Jexp| (R, + 2]
({n}:1}3M) = 2,2, [{n}:01}:M]. (A13) 4z
(A22)
The range of the integration index M in the initial integrals
10} target i 1
({0}:{0}:M) necessary to calculate the target integrals [kl {03:0}M]

({n}:{1}:0) is

N N
< ¥ M,+ uv\2(|n|+|l|), (Al4)
u=G+1 uv=G+1 i=1
(u<v)
N N
< ¥y M,< Y |LI (A15)
uv=G+1 u=G+1
(v<v)

As in the two-electron integrals [cf. Eq. (214)], the transla-
tional invariance of the integrals leads to the relation for the
derivative indices, such as

N

z ¢, 4+1,)=0

i=1
for the BOEDI’s.

The recurrence formulas for the AEF-DOOEI’s and
AEF-ADOOELDI’s take the same forms with those for
DOOETI’s [Eqgs. (A1) and (A2)] and ADOOETI’s [Egs.
(A8), (A10),and (A11)], respectively, except for the addi-
tional terms. The additional terms in these recurrence for-
mulas are

(A16)

<[In+1p]>— [a+ 1.1, (A17)
(GELy +1,1) =0, (A18)
) T S .
<[’lnj+1u"]>—2§6 [’q+lu|"]
1 N - ..
_2§G u=§(;:+1[’q+1”,”Muu+l]’ ’
(A19)

= F(k;q) [{0}:{0}:M]"
= F(kq) [{0}:{0}:M]

ik .

gG ( )] ' >
Xexplk—|Rgs + +ik R,, (A23)
p[ Z ¢ 4§G u=G+1 Z

where the daggered integrals are defined by Egs. (A3) and
(A12) with #1 [Eq. (175)], &% [Eq. (176)], R} [Eq.
(174)] instead of ., .# 5, and Ry, respectively.

The recurrence formula for the kinetic energy integrals,
for instance,

(n, l‘d/-‘nb ) =—

S [n.n,1,,.1,,] (A24)

v=xyz

can be readily obtained by noting that the summand in Eq.
( A24) satisfies the following recurrence relation:

[m, +1,:]

1
T iz;bN#(n,.)[n,--—l’,:]

gc 22 {N,(1,,)[1,, —1,]

—-N,(1,)[1,, —1,1}.

=(Rs —R,),[:] +

(A25)

Owing to the translational invariance [Eq. (A16)], the last
term in Eq. (A25) can be rewritten as a sum of the overlap
integrals:
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g”—{N,‘(lb,,)[:l,,v -1L,]-N,(1,.)[1,, —1,‘]}
G

$s

= 25pv d;: [na,nbzlay,ob]

= 25"‘, % {2;,, [na + lﬂ,nbzoa,ob]

—N,(n,)[n, —1,,n,:0,,0,]}. (A26)

Then one can finally obtain the formula given in our pre-
vious paper.'?

The molecular integral necessary for the calculation of
the diamagnetic contribution to the nuclear spin-spin cou-
pling constant® involves two integration exponents. The op-
erator & ,, for the molecular integral is

_ (r—R.),;(r—R,),
Ir =R [r—R,?

Av

2
—2,—9 __
aRdaRd,,
X¢J(l’ -_ Rd;od,ug),

I=f dch- dudi’
0 0 T

and the auxiliary molecular integral becomes
(na 'g/lv ,nb ) M = (na 7nb’oc’od:0a’0b’1c/1 !ldv ‘M)
= Q, [na s ,Oc ,od :0a ,0,, ’lcll ’ld‘v ‘M ] ’

@(r—R_;0,,u2)

(A27)
with

(A28)

(A29)
where M is a 2 X 2 matrix
M, M,

Equation (A8) provides us with the recurrence formula for
the molecular integrals with respect to the angular momen-
tumn,,

(n,+1,:)=(Rg—R,), () —(Rg =R, :: M, +1)— (Rg —R,), (::My; + 1)

1

+
2§G i=ab

with

€>=0)-0CM, . +1)—(C:My,u+1).
The initial integral is
(0,,0,,0.,0,:0,,0,,0.,0,:M)

o © 372
_4 L f du, f dud(—gf—)
T o o YA

2
x g(f‘zi,ga (Ry; —R, )Z,Mw)

(A32)

2
x f(%i,;c (R — R,>2,Mdd)

(A33)

W
Xg( ';Zd 9(Rc - Rd)zyMcd)’

and can be evaluated by quadrature.”® According to Eq.
(A11), the values of the derivative indices can be increased.
For the increase from (1.,1;) = (0,,0,) to (1_,,0;), e.g.,

(:1.,,0,:) =2((Rs —R.),; (:0,,0,:M_. + 1)
+2(R;, —R.);(:0,,0,:M_,+ 1)

+ 2 Nl(n‘-)(ni —_— llzoc,od:Mc‘. + 1)-
i=ab
(A34)
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