
General recurrence formulas for molecular integrals over Cartesian Gaussian
functions
S. Obara and A. Saika 
 
Citation: The Journal of Chemical Physics 89, 1540 (1988); doi: 10.1063/1.455717 
View online: http://dx.doi.org/10.1063/1.455717 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/89/3?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Efficient formulas for molecular integrals over the Hiller–Sucher–Feinberg identity using Cartesian Gaussian
functions: Towards the improvement of spin density calculations 
J. Chem. Phys. 87, 2832 (1987); 10.1063/1.453071 
 
Efficient recursive computation of molecular integrals over Cartesian Gaussian functions 
J. Chem. Phys. 84, 3963 (1986); 10.1063/1.450106 
 
Comment on: ‘‘Relativistic integrals over Breit–Pauli operators using general Cartesian Gaussian functions’’ 
J. Chem. Phys. 80, 6329 (1984); 10.1063/1.446705 
 
Molecular Integrals over Generalized Hermite–Gaussian Functions 
J. Chem. Phys. 51, 3709 (1969); 10.1063/1.1672583 
 
Explicit Formulas for Molecular Integrals over Hermite–Gaussian Functions 
J. Chem. Phys. 49, 3083 (1968); 10.1063/1.1670551 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

150.203.123.149 On: Mon, 27 Jul 2015 23:32:29

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1409059336/x01/AIP-PT/JCP_ArticleDL_061715/AIP-APL_Photonics_Launch_1640x440_general_PDF_ad.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=S.+Obara&option1=author
http://scitation.aip.org/search?value1=A.+Saika&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.455717
http://scitation.aip.org/content/aip/journal/jcp/89/3?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/87/5/10.1063/1.453071?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/87/5/10.1063/1.453071?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/84/7/10.1063/1.450106?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/80/12/10.1063/1.446705?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/51/9/10.1063/1.1672583?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/49/7/10.1063/1.1670551?ver=pdfcov


General recurrence formulas for molecular integrals over Cartesian Gaussian 
functions 

S. Obara and A. Saika 
Department o/Chemistry, Kyoto University, Kyoto 606, Japan 

(Received 21 January 1988; accepted 21 April 1988) 

General recurrence formulas for various types of one- and two-electron molecular integrals 
over Cartesian Gaussian functions are derived by introducing basic integrals. These formulas 
are capable of dealing with (1) molecular integrals with any spatial operators in the 
nonrelativistic forms of the relativistic wave equations, (2) those with the kernel ofthe Fourier 
transform, (3) those with arbitrarily defined spatial operators so far as the integrals can be 
expressed in terms of the basic integrals, and (4) any order of their derivatives with respect to 
the function centers in the above integrals. Thus, the present formulation can cover a large 
class of molecular integrals necessary for theoretical studies of molecular systems by ab initio 
calculations, and furthermore provides us with an efficient scheme of computing them by 
virtue of its recursive nature. 

I. INTRODUCTION 

The basic step in ab initio calculations of molecular elec­
tronic structure is the computation of molecular integrals. 
Recent developments in theoretical chemistry require var­
ious types of molecular integrals, such as the Fourier trans­
formed ones necessary for the calculations with the momen­
tum-space representation, analytical derivatives of 
molecular integrals needed for the study of chemical reac­
tions, and molecular integrals for the relativistic interactions 
as well as for the nonrelativistic ones. Several types of molec­
ular integrals have been formulated as reviewed by 
Saunders,1 and special efforts have been continued for the 
time-consuming calculation of electron repulsion inte­
grals?-13 These formulations are useful for some types of 
molecular integrals, but not applicable to others. Thus, it is 
desirable to have a general formulation of molecular inte­
grals, which gives an efficient computational scheme appli­
cable to any type of molecular integral. This paper is aimed 
at such a generalization over Cartesian Gaussian functions 
introduced by Boys2 and now extensively in use. 

There are available a couple of schemes, which can be 
readily generalized. The first one proposed by Boys2 differ­
entiates the expression for the target molecular integrals 
over s-type functions with respect to the function centers to 
get expressions over higher angular momentum functions. 
This scheme is formally simple, but actually tedious math­
ematical manipulations are involved for higher angular mo­
mentum functions thanp. The second is that by McMurchie 
and Davidson.4 They proposed to use the Hermite Gaussian 
functions as the intermediaries for molecular integrals over 
Cartesian Gaussian functions. The differential relation of 
the Hermite Gaussian functions leads to simple expressions 
for molecular integrals over the Hermite Gaussian func­
tions. Although this step is efficient computationally, the 
scheme is indirect in the sense that these integrals have to be 
transformed to those over the Cartesian Gaussian functions, 
and the transformation would demand careful consideration 

for efficient computations. Recently we have given 13 recur­
rence formulas for several types of molecular integrals over 
Cartesian Gaussian functions in terms of three-center over­
lap integrals. This scheme is a direct one, and has been found 
to be efficient for calculating electron repulsion integrals and 
their first derivatives both on scalar and vector computers. 13 

In the present work we generalize this recursive formulation 
so as to be suitable to general types of molecular integrals 
over Cartesian Gaussian functions. 

First we introduce basic one- and two-electron integrals, 
which allow us to formulate various types of one- and two­
electron molecular integrals on the same ground, and then 
give recurrence relations satisfied by the basic integrals. 
Since many of general molecular integrals can be given as a 
linear combination of the basic integrals, the recurrence rela­
tions for these molecular integrals can be readily obtained 
from those for the basic integrals. The present formulation is 
applicable to molecular integrals ( 1) having any spatial op­
erator in the nonrelativistic forms of the relativistic wave 
equations in addition to ordinary nonrelativistic operators, 
(2) ofthe Fourier transform, which would be necessary for 
theoretical study in the momentum-space representation, 
(3) of arbitrarily defined spatial operators as far as the mo­
lecular integrals can be expressed in terms of the basic inte­
grals, e.g., the spherically symmetric part of the effective 
core potential14 proposed by Kahn, Baybutt, and Truhlar, 
and (4) having any order of their derivatives with respect to 
the function centers of the Cartesian Gaussian functions, 
required for the "analytical derivative method."IS.16 The re­
sulting expressions for the target molecular integrals take 
recursive forms, thus leading to efficient computation. 13 

In the next section the basic integrals are defined and 
then the recurrence formulas for the basic two-electron inte­
grals are derived. In Sec. III mathematical properties of the 
basic two-electron integrals are discussed from the computa­
tional viewpoint, and concluding remarks are drawn in the 
last section. Expressions for the basic one-electron integrals, 
which are reducible from those for the basic two-electron 
integrals, are collected in the Appendix. 

1540 J. Chem. Phys. 89 (3),1 August 1988 0021-9606/88/151540-20$02.10 © 1988 American Institute of Physics 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

150.203.123.149 On: Mon, 27 Jul 2015 23:32:29



S. Obara and.A. Saika: Formulas for molecular integrals 1541 

II. GENERAL RECURRENCE FORMULAS FOR 
MOLECULAR INTEGRALS OVER CARTESIAN 
GAUSSIAN FUNCTIONS 

A. Cartesian Gaussian functions 

We shall closely follow the definitions and notation of 
Ref. 13. The unnormalized Cartesian Gaussian function 
with origin at R has the form 

tp(r - R;n,~) = (rx - Rx) nx (ry - Ry) nY(rz - R z )nZ 

Xexp[ - ~(r - R)2] (1) 

with the normalization constant 

ff(n,~) = (;)3/4(4~)(nx+ny+nz)/2 

X [(2nx - 1 )!!(2ny - 1 )!!(2nz - 1)!!] -1/2. 

(2) 

Here n denotes a set of nonnegative integers nx, ny, and nz ' 

n = (nx,ny,n z ), 

and let us define 

Inl = nx + ny + nz ' 

(3) 

(4) 

which is closely related to the total angular momentum 
quantum number. Inl and n will be, hereafter, termed the 
angular momentum and the angular momentum index, re­
spectively. 

We begin with the basic equations for the Cartesian 
Gaussian functions that will be utilized in the following deri­
vations of molecular integrals. With the definition Eq. (1) of 
the Cartesian Gaussian function, one can write the Cartesian 
Gaussian function having an angular momentum higher by 
one as 

tp(r - R;n + Ip,~) 

= (r - R)ptp(r - R;n,~) (J.L = x,y,z). (5) 

Decomposing a Cartesian Gaussian function tp(r - R;n,~) 

into a product of an "exponential" factor fl'e' 

fl'e = exp[ - ~(r - R)2] (6) 

and an "angular" factor fl'a (n), 

fl'a (n) = (rx - Rx (x (ry - Ry (Y (rz - R z )nZ , (7) 

we find the following differential relations: 

a 
-fl'e = - 2~(r - R)pfl'e (8) 
arp 

and 

a 
- fl'a (n) = Np (n)fl'a (n - Ip)' (9) 
arp 

where Np (n), standing for np' is meant to take the value of 
the J.L component of the angular momentum index n, and 
thus Np (Iv) plays the same role as Kronecker's delta {jpv. It 
follows readily that 

Np (n + n') = Np (n) + Np (n'). (10) 

Combining Eqs. (5), (8), and (9) together with the relation 

a a 
aRp tp(r - R;n,~) = - arp tp(r - R;n,~), (11) 

one gets the differential relation of the Cartesian Gaussian 
functions with respect to the function center Rp: 

a 
-tp(r - R;n,~) = 2~tp(r - R;n + Ip,~) 
aRp 

- Np (n)tp(r - R;n - Ip,~). (12) 

As Irp I goes to infinity the exponential factor fl'e decreases to 
zero much faster than the increase of the angular factor 
fl'a (n). Thus we have 

tp(r - R;n,~) -0 (Irp I- 00 ,~> 0), (13) 

which will be utilized in integration by part over the electron 
coordinate. 

A product of a Cartesian Gaussian function and the ker­
nel exp [i k-r] of the Fourier transform can be reduced 17 to a 
linear combination of Cartesian Gaussian functions having a 
complex function center Rt: 

exp[ik'r]tp(r - R;n,~) 

nx "y nz 

= I I I C(R,b,n,s)tp(r - Rt;s,~), 
Sx=O Sy=O 5z =0 

where 

Rt=R+b, 

i 
b=-k, 

2~ 

s = (sx,Sy,sz), 

and the coefficient C(R,b,n,s), 

X b nx - Sx b ny - Sy b n z - Sz 
x y z 

(14) 

(15) 

(16) 

(17) 

(18) 

comes from the following expression for (rp - Rp)n in the 
angular factor fl'a (n): 

(rp -Rp)n={(rp -Rt) +bp}n 

= stJ:) b;-S(rp -Rt)s. (19) 

Differentiation ofEq. (14) with respect to R leads to 

f!2 d(1)exp[ik'r]tp(r - R;n,~) 

= .@EF (t,s).@~ (t)tp(r - Rt;s,~), (20) 

where f!2 d (1) is a product of differential operators with re­
spect to R, 

(
a )lx ( a )IY ( a )lz 

f!2 d (I) = aRx aRy aR
z 

' 
(21) 

1= (/x,ly,lz)' (22) 

and the operator f!2~(t) on the right-hand side ofEq. (20) 
denotes a similar product of differential operators with re­
spect to Rt rather than R. Here we have utilized the follow­
ing relation: 
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g d (t)<p(r - Rt;s,t) = g1 (t)<p(r - R\s,t). (23) 

We refer to I or t as the derivative index. g EF (t,s) in Eq. 
(20) is an abbreviated expression for the sixfold summation 
over the derivative index t and the angular momentum index 
s: 

(24) 

where the coefficient D(2tb,l,t) follows from the differentia­
tions of C(R,b,n,s); 

D(2tb,l,t) = G:) (~) G:) 
X (2tb

x
) Ix - tX (2tby

) 1,- t, (2tb
z

) Iz - tz • (25) 

Equations (14) and (20) provide us with four useful 
equations which allow us to rewrite molecular integrals con­
taining the real Cartesian Gaussian functions and the kernel 
exp [i kor] in their integrands into those containing the com­
plex Cartesian Gaussian functions, or vice versa. Multiply­
ing Eq. (14) by (r - Rt)/L' rewriting it with the aid of Eqs. 
( 5) and (15), and then finally operating Pl d (I), we get the 
first equation increasing the angular mementum index s of 
the complex Cartesian Gaussian function to s + 1/L: 

PlEF g1(t)<p(r - Rt;s + l",t) 
= g d (I)exp [i kor ]<p(r - R;n + l/L,t) 

- b/LPld(l)exp[ikor]<p(r - R;n,t). (26) 

Differentiating Eq. (14) with respect to R/L' rewriting it by 
the use of Eqs. (12) and (14) as well as Eq. (26) having 
1= (0,0,0), and finally operating g d (I), we have the sec­
ond equation decreasing the angular momentum index s of 
the complex function to s - 1/L: 

PlEFN/L (s)Pl1(t)<p(r - Rt;s -l/L,t) 

= N/L (n)Pl d (I)exp[i kor]<p(r - R;n - l/L,t). (27) 

Differentiating Eq. (20) with respect to R/L and then rewrit­
ing it by the use of Eq. (20), we find the third equation in 
which the derivative index is t + 1/L: 

gEFPl1(t + 1/L )lj1(r - Rt;s,t) 

= {g d (I + 1/L) - 2tb/L Pl d (I) }exp [i kor ]<p(r - R;n,t)· 
(28) 

Replacing lin Eq. (20) byl- 1/L' and multiplying by N/L (I), 
we arrive at the final equation in which the derivative index 
is t - I/L: 

PlEFN/L (t)Pl1(t -1/L )<p(r - Rt;s;t) 

= N/L (I) Pl d (1- 1/L )exp[i kor ]<p(r - R;n,t), (29) 

where the following relations have been used: 

N/L (I)D(2tb,l- l/L,t - 1/L) = N/L (t)D(2tb,l,t), (30) 
I-I I 

L H(t) = L H(t-1), (31) 
t=O t=1 

and 

I I 

L tH(t) = L tH(t). (32) 
t=1 t=O 

We note that the right-hand sides ofEqs. (26)-(29) do not 
include the sixfold summation appearing in g EF [Eq. (24) ]. 

B. Definition of basic integrals 

In performing ab initio calculations of molecular sys­
tems by using the Cartesian Gaussian functions 

(33) 

one has to evaluate one-electron integrals (OEl's) 

(naIO'(r)lnb) = f dr <Pa (r)O'(r)lj1b(r) (34) 

and two-electron integrals (TEl's) 

(nanb I & (r l,r2) Inend) = f dr l f dr2 <Pa (rl )<Pe (r2) 

X & (r l,r2)<Pb (r l )<Pd (r2)· 
(35) 

Here O'(r) and 0'(r l,r2) are one- and two-electron opera­
tors, respectively, in the Hamiltonian K of the equation 

(36) 

which is either nonrelativistic, with two components for 
each electron, or relativistic with four components for each 
electron. When a molecule is in a uniform external field, the 
time-independent relativistic wave equation is given by using 
spatial operators r - R, Ir - RI-", Irl - r21-", and 
p ( = - iflV = - iM / ar), as well as spin matrices. There­
fore, the reduced relativistic equation to the nonrelativistic 
form includes products of the above spatial operators l8; for 
instance, the spatial part of the operators for the orbital Zee­
man interaction if /L' the electron--electron orbital interac­
tion 5' /LV' and the electron spin-spin dipolar interaction flJ? /LV 
become 

and 

if /L = { (r - Rs) XV} /L 

a a 
= (r - R ) -- - (r - R) --

s /L+ a s /L- a ' 
r/L- r/L+ 

(37) 

5' = (r l - r 2 )/L V = (~ 1 ) ~ (38) 
/LV Irl - r213 2v ar2/L Irl - r21 ar2V ' 

{ 

a2 

= - ar2/Lar2v 

(r l - r2)/L (r) - r2 )v 

Ir) - r215 

Ir) ~r21}' (39) 

respectively, where p, + and p, - denote the next and the 
preceding component of p" respectively, in a cyclic order of 
x,y, z. The Dirac delta function c5(r - R) is also involved in 
the reduced relativistic Hamiltonian as a substitute for the 
operator (41T)-I(V2Ir - RI- I), such as that for the Fermi 
contact hyperfine interaction. Another type of molecular in-
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tegral important in ab initio calculations are the derivatives 
of the OEl's and TEl's: 

.@dO)(OEI) = (~)Ix (~)IY (~)/z 
aRx aRy aRz 

X (na I&(r) Inb) (40) 

and 

.@ d (l)(TEI) = (~)Ix (~)IY (~)/z 
aRx aRy aRz 

X (nanb 1& (r1,r2 ) Inend) (41) 

with respect to the coordinates of the function center R, 
which are necessary in the analytical derivative method. 15,16 

Before formulating these molecular integrals, we look 
over the mathematical relations concerning the above spatial 
operators. As is well known, the above multiplicative opera­
tors r - R, 8(r - R), and Ir - RI-A can be expressed in 
terms of the unnormalized Cartesian Gaussian functions. 
The Inlth order moment operator is the function with the 
angular momentum Inl and the zero orbital exponent 

(rx -Rx)"x (ry -Ry)"Y (rz -Rz)"z 

= {97(r - R;n,~)}~=o 

= lim 97(r - R;n;~), 
~-o 

(42) 

the Dirac delta function 8(r - R) is given by the s-type func­
tion 

8(r - R) = lim (1.)3/2
97(r - R;O,~), (43) 

~-"" rr 
and the operator I r - R I - A can be expressed as an integral of 
the s-type function over the square root of its orbital expo­
nent u2

, namely, the Laplace transform of the operator 

- du r R·O u2 
( 

1 )A Sa"" 2u
A - 1 

Ir-RI - 0 r(liI2)97( - " ), 
(44) 

where r(1i 12) is the Gamma function, and for Ii = 1, r( 11 
2) = rr1/2. By virtue of Eq. (11), the differential operator 
ilWlaRplaysthesameroleasp( = - iIWIJr) whenitop­
erates on the Cartesian Gaussian function 

P97(r - R;n,t) = - i~(r - R;n,t) 
Jr 

= Hi .. ~(r - R,n,t), 
aR 

(45) 

and hence p can be treated similar to the differential opera­
tors in S?2 d (I). The Leibnitz relation for integration by part is 
also useful to treat the operator a 1 Jr because of Eq. (13): 

(46) 

Combination ofthese mathematical relations reduces molecular integrals with the operators :1'1" 'll 1'''' and f!lt 1''' to 

(na 1:1'1' Inb) = lim (na I {97s (r - Rs;ls# + ,ts) _a_ - 97s (r - Rs;ls# _ ,ts )_a_} Inb) 
~s-o arp, _ arp, + 

-lim a (na l97s(lS#+)lnb)+lim a (na l97s(ls#_)lnb), 
~s-o aRb,. _ ~s-o aRb,. + 

(47) 

(48) 

and 

(49) 
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respectively. These expressions for (na I..P' p.lnb), 
(nanb I ~ p.v Inend ), and (nanb I~ p.v Inend) as well as the 
above mathematical relations of the operators allow us to 
express molecular integrals as a linear combination of the 
basic one- or two-electron integrals: 

(OEI) = L c;(BOEI);o (50) 
; 

(TEl) = L c;(BTEI)j. (51) 
j 

The definitions of the basic one-electron integrals (BOEl's) 
and basic two-electron integrals (BTEl's) will follow. 

We define the basic one-electron integrals (BOEI's) as 

({n}:{l}) = 21A21121D({l}) f dr [9'({n}). (52) 

Here [9' ( {n}) is a product of N unnormalized Cartesian 
Gaussian functions 

N 

[9'({n}) = II ip(r-R;;n;o;j), (53) 
;=1 

which includes not only the basis functions but also those 
originating from the one-electron operator tJ (r ), and 
f!) D ( {l}) is a product of differential operators with respect 
to all the function centers R;'s in the product [9' ({n}), 

N ( a )liX ( a )liY ( a )liz 21 D ({l}) = II - - - , 
j= laRix aR;y aRiz 

(54) 

where unnecessary differentiations are to be suppressed by 
setting the derivative index Ij identically to 0 = (0,0,0). The 
{n} and {l} denote collectively the angular momentum in­
dices nj's in Eq. (53) and the derivative indices Ij's in Eq. 
(54), respectively. The operator 21 1 in Eq. (52) means inte­
grations over u's in Eq. (44), 

{f 2 A-I} 
211=1} dUvr:~/2)' (55) 

and 21 A means other necessary operations, such as to put an 
orbital exponent to zero in the moment operator [Eq. (42)]. 
When the operators 21 1 and 21 A are unnecessary in some 
molecular integrals, they are to be considered as 21 1 = 1 and 
21 A = 1. Since the 21 1 and f!) A operate on different param­
eters in [9' ( {n} ), they commute (21 A 211 = f!) 1 21 A ). For 
convenience of later discussions, we designate the integrals 
of [9' ( {n}) over the electron coordinate as 

[ {n}] = f dr [9' ( {n} ), (56) 

their derivatives as 

(57) 

and refer to them as overlap OEI's (OOEl's) and derivatives 
ofOOEl's (OOOEl's), respectively. 

Similarly we define the basic two-electron integrals 
(BTEl's) as 

(n
J2

, {n(1)}, {n(2)}:{I(1)}, {1(2)} ) 

= 21 A 21 1 [n
12

, {n(I)},{n(2)}:{I(1)}, {I(2)}], (58) 

where 

t7l _ t7l t7l (I) t7l (2) 
;;Z A - ;;Z A.12;;Z A ;;Z A , (59) 

211 = f!)I,1221jl)21?l, (60) 

the square-bracketted integral [n12,{n(I)},{n(2)},:{I(1)}, {1(2)}] 
in Eq. (58) is the derivative of the overlap TEl (OOTEI) 

[n 12' {n( I)}, {n(2)}:{I( I)}, {1(2)} ] 

= 21 tJ) ({l(I)}) 21~) ({l(2)} )[nI2,{n(1)}, {n(2)}], (61) 

and [n12,{n(I)},{n(2)}] in Eq. (61) is the overlap TEl 
(OTEI) 

[n I2,{n(1)},{n(2)}J = f dr l f dr2 .o/(n12,{n(l)},{n(2)}). 

(62) 

The superscripts 1 and 2 in Eqs. (58)-(62) refer to 
the first and the second electron, respectively, and 
[9' (n I2,{n(I)},{n(2)}) denotes the product of [9'(1)({n(I)}), 
[9' (2) ( {n(2)} ), and the Cartesian Gaussian function 
ip(r l - r2;nI2,;12) in the two-electron operator, such as 
Irl - r21- A and o(r l - r2}: 

[9' (n I2,{n(1)},{n(2)}) 

= [9'(1)({n(I)}) [9'(2)({n(2)})ip(r\ - r2;nI2,;12)' (63) 

f!) 1,12 in Eq. (60) indicates integration over u12 ( =; :~2), 
when it is necessary such as for ~ p.v and ~ p.v: 

21 - f du 2Ut2- I 
1,12 - 12 rCA. 12) , (64) 

and 21 A,I2 in Eq. (59) indicates other necessary operations 
with respect to ;12' 

By the use of these notations for the integrals, the molec­
ular integrals (na I..P' p.lnb) and (nanb I $' p.v Inend ), for in­
stance, become 

(nal..P'p.lnb) = - f!)A [na,nb,lsp.+ :Oa,lbp._ ,Os] 

+ 21 A [na,nb,lsp._ :Oa,lbp.+ ,Os] (65) 

and 

(nanb I $' p.v Inend) 

= - f!) 1,12 [012,na,nb,ne,nd:Oa,Ob,lep.,ldv] 

- f!) 1,12 [OI2,na ,nb,ne,nd:Oa ,Ob,Oe,ldp. + Idv]' (66) 

respectively, with 

21 A = lim, (67) 
{;,-O 

i "" 2 
21 1,12 = dU12--m' 

o 1T 
(68) 

It is noteworthy that the present formulation of inte­
grals is suited for the derivative integrals necessary in the 
analytical derivative method, since they can be specified by 
just giving the appropriate values for the derivative indices 
l's in the basic integrals. Also note that molecular integrals 
with any arbitrarily defined spatial operators, even if the 
operators are not of the reduced form of the relativistic Ham­
iltonian, can be dealt with so far as the molecular integrals 
can be expressed in terms of the basic integrals. One of the 
examples is the molecular integral with the spherically sym­
metric operator tJ ECP of the effective core potential (ECP) 
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proposed by Kahn, Baybutt, and Truhlar. 14 The operator 
located at Re takes the form 

d ECP = Ne +)dk lr-Rerk
-

2 

Ir - Rei 7' 
xexp[ -17dr - Rc )2], (69) 

where Ne , dk, 17k' and nk are the prefixed constants, and nk 
takes one of the values 0, 1, and 2. The second term of the 
d ECP with n k = 0, for instance, can be reduced to 

u = I r - Re 1-2exp [ - 17k (r - Re ) 2 ] 

(70) 

and thereby the molecular integral with this operator be­
comes 

(naluIDb) = J drrpa(r)urpb(r) 

= Loo du 2U[Da,Db,Oe:Oa,Ob,Oe]. (71) 

The present formulation is also applicable to molecular inte­
grals including the kernel of the Fourier transform, because 
the product of the Cartesian Gaussian function and the ker­
nel becomes a sum of Cartesian Gaussian functions having a 
complex function center [Eq. (14)]. The molecular inte­
grals then become reducible to the form ofEq. (50) or (51). 
The details will be given in a later section. 

As far as the molecular integrals are reducible to the 
form of Eci. (50) or (51), the recurrence relations for the 
molecular integrals can be readily obtained by using the re­
currence relations of the basic integrals as will be exemplified 
in later sections. Reduction of molecular integrals to sums of 
the basic integrals affords the key to get the recurrence rela­
tions for the target molecular integrals. Now it may be in­
structive to work out some other molecular integrals. The 
overlap integrals 

(Da II Db ) = J dr rp(r - Ra;Da,;a )rp(r - Rb;Db';b)' 

(72) 

the nuclear attraction integrals 

(Da IdlDb ) = J dr rp(r - Ra;Da,;a) 

X 1 rp(r - Rb;Db';b)' 
Ir-Rel 

and the electron repulsion integrals 

(DaDb,DeDd) = J dr l J dr2 rp(r l - Ra;Da,;a) 

1 
Xrp(r l - Rb;Db';b) I I 

r l - r2 

(73) 

X rp(r2 - Re;De,;e )rp(r2 - Rd;Dd';d) 
(74) 

are found to be 

(DaIlDb) = [Da,Db:Oa,Ob]' (75) 

(76) 

and 

(77) 

respectively. As their derivatives, the kinetic energy inte­
grals 

(Da 1S-IDb) = J dr rp(r - Ra;Da,;a) 

X ( - !V2 )rp(r - Rb;Db,;b)' (78) 

the electric field gradient integrals 

(DaldJ'vIDb) = J drrp(r-Ra;Da,;a) 

X {aRe:;R
cv 

Ir_
1
R

e
l}rp(r-Rb;Db,;b), 

(79) 

and the derivatives of the electron repulsion integrals with 
respect to the function centers 

(Da Db ,Dc Dd :la Ib ,Ie Id ) 

= tJt,d (a;ur~ (a;iyry (a;iZrz

} 

X (DaDb,DeDd) (80) 

can be written 

(DalS-IDb) =~ I [Da,Db:lav,lbv]' (81) 
2 V=X,y,z 

(Dal&'J'vIDb) = J du )/2 
X [Da,Db,Oe:Oa,Ob,leJ' + lev], (82) 

and 

(Da Db ,Dc Dd :Ia Ib ,Ie Id ) 

= J dU I2 1r~/2 [012,Da,Db,De,Dd:la,lb,le,ld]' 

respectively. 

C. Recurrence formulas for basic two-electron 
integrals 

(83) 

One can reduce the basic two-electron integrals 
(BTEl's) to the basic one-electron integrals (BOEl's), not­
ing the following relation for the DOTEl's and the 
DOOEl's: 

[{D(I)}:{I(I)}] = g A [012, {D(I)}, {0(2)}:{I(J)}, {0(2)}], (84) 

{ 
N'21 } (r )3/2 !!2A = IT lim lim ~ 
i=I;~2)_o ;,,-00 1r 

(85) 

obtained from the mathematical property of the Dirac delta 
function 8(rl - r 2 ) and the s-type unnormalized Cartesian 
Gaussian function with a zero orbital exponent (which is 
unity) 
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N(2) 

X IT { ( R(2)'O(2) r (2»} lP r 2 - ; , ; ,~; ;(2) =0 • 
;=1 i 

(86) 

Now the recurrence formulas for the BTEI's will be derived 
in this section, and the reduction to those for one-electron 
integrals will be given in the Appendix. 

There are two kinds of Cartesian Gaussian functions in 
the [1(k) ({n(k)}) (k = 1,2): one is those with constant or­
bital exponents, and the other with integration exponents 
over which the integrations are to be carried out [Eq. (44) ] . 
We collect the former kind of functions in the first G(k) 

functions of [1(k) ({n(k) }), and the latter kind in the re­
maining (N<k) - G(k) ) functions: 

The subscripts g and h refer to the former kind of functions, 
the subscripts u and v to the latter ones, and the sub­
scripts i and j to either of them. Since the notations 
[1 (n I2,{n(1)},{n(2l}), [n I2,{n(1)},{n(2l}], and [n

12
,{n(I)}, 

{n(2l}:{I(l)},{l<2l}] are lengthy to write down, we abbreviate 
them as [1, [ ], and [:], respectively. When some of the 
angular momentum indices and the derivative indices are 
different from those in [1 (n I2,{n(Il},{n(2l}), 
[n I2,{n(ll}, {n(2l}], and [n

12
,{n(1)},{n(2l}:{l(ll}, {l(2l}], 

only the distinct indices will be given, and thus 
[1 (n12 + 1",{n(1)},{n(2l}), forinstance, will be designated as 
[1 (n 12 + 1,,). 

First, in order to derive a recurrence relation 
for the OTEI's [nI2,{n(l)},{n(2l}], we differentiate 
[1 (n I2,{n(J)},{n(2l}) with respect to theJl component of the 
first electron coordinate r lw Equations (5), (8), and (9) 
allow us to write the derivative as 

Nil) 

+ 2: N,,(n}I)[1(n}1) -1,,). (88) 
;=1 

Introducing the parameters Z(k) and R¥') (k = 1,2), 
N(k) 

Z(k) = 2: t}k), (89) 
;=1 

(90) 

we rewrite the factor in the third term ofEq. (88) as 

-L~: 2t )I)(r l - R)ll),,} 

= - 2Z(ll(r l - R~»" 

= - 2Z(Il(r l - RJI)" + 2Z(ll(R~) - RJ'»", (91) 

and then finally obtain 

a 
-- [1 = - 2t12[1 (n12 + 1,,) + N" (n12 ) [1 (n 12 - 1,,) ar l ,., 

- 2Z(J)[1(n~1) + 1 ) + 2Z(I)(R(1) - R~I) [1 
1,., Z 1,., 

NUl 

+ L N,., (n}l) [1 (n}1) - 1,.,). (92) 
i= I 

The left-hand side of Eq. (92) vanishes by integration over 
r l " due to Eq. (13). Therefore, integration of both sides over 
r l and r2 gives 

1 N
IIl 

+- L N,,(n}I»[n)l)-I,.,]. (93) 
2tl2 ;=1 

Another formula for [n 12 + 1",{n(J)},{n(2l}] is obtainable 
by differentiating [1 (n I2, {n(t)}, {n(2)}) with respect to the 
second electron coordinate r2" and then integrating over r l 

and r2; 

The OTEI [nlc2) + 1,,] in Eq. (94) can be expressed in 
terms of [n 12 + 1,,], [nJI) + 1,.,], and [ ], because the fac­
tor (r2 - Rlc2»" in its integrand can be decomposed into 

(r2 - Rlc2»,., = - (r l - r2)" + (r l - RJI)I' 

+ (RJI) - Rlc2»w (95) 

Substituting Eq. (95) into Eq. (94) and then subtracting Eq. 
(93) multiplied by (1 + Z(2l/tl2)' we obtain the recurrence 
formula for [nJ I) + 11' ], 

[nJI) + 1,.,] 

= {(R~) - RJI)" + 0(W - R~»I'}[ ] + ~~(~ 

{

NO) } 
X N,.,(nl2)[n t2 -1,.,] +;~I N,,(n}I»[n}I)-I,,] 

+ ~ L r) NI' (ni k» [ni k) -11']' 
2Z k= 1,2;= I (96) 
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where the parameters Z, W, and 0 are defined by 

Z = ZW + Z(2), 

ZWR(1) + Z(2)R(2) 
W- z Z 

- Z ' 

and 

0= {;12 , 
pz + (;12 

respectively, with 
ZWZ(2) 

pz= Z 

(97) 

(98) 

(99) 

(100) 

Equation (96) is a generalization of the recurrence formula 
for one-electron three-center overlap integrals introduced in 
our previous paper13 to that for the two-electron 
(N(I) + N(2»-center overlap integrals. 

Operation of I!2};') ({I(k)}) (k = 1,2) on both sides of 
Eq. (96) gives the recurrence formulas for the DOTEI's. 
Noting that the coefficient in the first term of Eq. (96) is 
linear with respect to R and those of the remianing terms are 
independent of R, we readily find the formula for the 
DOTEI's 

[nJl) + 11':] 

={(R(1)_R~o) +0(W-R(o) }[.]+ 1-0 
z J I' Z 1" 2Z(1) 

X {NI' (nI2 ) [n12 - 11':] + ;~: NI' (n~o) [n~O - 11':] } 

1 a N'" 
+~ '" ,..(1) 

ZW ;=-I ~ , 
X{NI' (I?» X [:I~o - 11'] - NI' (lJO) [:IJO - 11' P 
+SJI) +S?), (101) 

where S Y) represents 
o N(k) 

S(k) = _H_ '" N (n(k» [n.(k) -1 :] 
J 2Z ;=-I 1" • I' 

X{NI' (W» [:W) - 11'] 

- NI' (lJI) [:IJo - 11' p. (102) 

The recurrence formulas with respect to other indices can 
also be derived by the use of the above equations; operation 
of I!2 bk) on Eq. (93) and subsequent substitution of Eqs. 
( 101) and (102) yield the recurrence formula with respect 
to n12, 

1-0(1 1) [n12+11':] =--2- Z(I) + Z(2) NI'(n I2 ) 

x[n I2 -11':]+T(I)-T(2), (103) 

where T (k) denotes 

N(k) 

+ 1-0 '" "'~k)N (l(k»[:}<k)-1 ].(104) 
Z (k) .£.. ~, 1" , I' 

.=1 

The formula with respect to the derivative index IJ I) can be 
obtained by differentiating Y (nw {n(1)}, {n(2)}) with respect 
to R J~), substituting Eq. (12), and finally operating I!2 };'): 

[ :IJ I) + 11'] = 2{; J I) [ nJ I) + 11':] - NI' (nJl) ) [ nJ I) - 11': ]. 

(l05) 
Substitution of Eq. (101) into the first term of Eq. (105) 
gives a formula involving lower angular momentum and de­
rivative indices. In order to use these recurrence formulas we 
need an initial DOTEI [012,{OW},{0(2)}:{0(O},{0(2)}], name­
ly, the DOTEI over s-type Cartesian Gaussian functions, 
which readily reduces to 

[0
12

, {OW}, {0(2)}:{O(1)}, {0(2)}] 

= ,9"(1),9"(2)(1 - 0)3/2exp[ - 0pz(R!j) - R¥»2] 
(106) 

by employing the expression for Y(k) ((O(k) }), 

Y (k) ({O(k)}) 

=(Z~k»)-3/2 ,9"(k)exp[ -Z(k)(rk -R!!»2],(107) 

where ,9"(k) is the one-electron overlap integral over N<k) s­
type Cartesian Gaussian functions: 

,9"(k) = (~)312 Ii 
Z(k) ;.j=1 

(kj) 

X ~ ~J (R,(k) _ Rfk»2 . 
[ 

"',~k)'" (k) ] 

exp - Z(k) , (108) 

For the BTEI's without the integration over u's in Eq. 
(44), namely, I!2 1 = 1, the operation of !?2 A I!2 1 ( = !?2 A ) on 
the above formulas (101), (103), and (105) readily gives 
the recurrence formulas for the BTEI's. In contrast, for the 
BTEI's with the integrations, namely, I!21 =f 1, these formu­
las are not suited for the operation of I!2 A I!2 l' since the inte­
gration exponents appear in their coefficients through the 
parameters e, Z(k) ,Z, R!!), and W. So we rewrite the above 
recurrence formulas by the use of the following decomposi­
tions of these parameters: 

1-0 
Z(k) 

1 - e (;~) 
(; ~k) Z(k) 

N(k) 

~ 'T](k) 
= (; ~) - (; ~) u = tn) + I U , 

1-0 

N(k' 

(109) 

(110) 

= (1- 0)R~) - ~ 'T]~k)(R~) - R~k», (111) 
U= tn, + I 

and 
N(k' 

0W = 0WG - L ~ 5~k)(WG - R~k». 
k=I.2 u =G( '+1 

(112) 
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Here ~ ge), ~ G, Rge), and W G are expressible in terms of the 
constant parameters ~ ~k) and R~k): 

and 

G(k) 

~ge) = 2: ~~k1, 
g=1 

I- _ 1-(\) + 1-(2) 
~G - ~ G ~ G , 

1 
G(k) 

R(k) = __ ~ I- (k)R(k) 
G I- (k) ~ ~ g g, 

~ G g= I 

W - I (I-(IlR(\)+ I-(2)R(2» G-;;; ~G G ~G G , 

(113 ) 

(114) 

(115) 

(116) 

respectively, and 1]~k) and 5 ~k), which include the integra­
tion exponents, are defined by 

I- (k) 

(k) = (1 _ e) _~_u_ 
1]u Z(k)' 

(117) 

~(k) 

s~k)=eT' (118) 

respectively. For the convenience of reducing [:IJ I) + lit ] , 
we also introduce the parameters 1] ~~) and 5 ~~ ') defined by 

I-(k)I-(k) 

(k) = (1 _ e) ~ u ~ u 
1]uu Z (k) , 

~(k)~(k') 

1;-(k')=e u u (k,k'=1,2). 
~ uu Z 

(119) 

(120) 

Equations (109)-( 112) allow the recurrence formulas to be 
reduced to those having constant coefficients and DOTEI's 
multiplied by anyone of the above parameters e, 1]~k), 5 ~k), 
1]~~1, and 5 ~~'). Now we introduce an auxiliary DOTEI 
(ADOTEI) defined by the DOTEI and the parameters e, 
1]

(k) 1;- (k) 1](k) and 1;- (k '). 
u ,~u , uv' ~ uv • 

N tU 

[n I2,{n(I)},{n(2)}:{I(I)},{1(2)}:m I2,m(\),m(2),M] 

and 

= [n
12

,{n(I)},{n(2)}:{I(I)},{I(2)} ]P(m
12

,m(l),m(2),M), 
(121) 

(122) 

The indices m(k) (k = 1,2) and M in Eq. (121) are 
[J<k) X [J<k) and (U(l) + U(2) X (U(I) + U(2) ([J<k) 

= }fk) - G(k) ) matrices, respectively, and denote collec­
tively the elements m~~)'s (u,v = G(k) + 1, ... ,}fk» and 
Muu's (u,v = G (I) + 1, ... ,N(\), G (2) + 1, ... ,N(2» in theirdiag­
onal and upper half off-diagonal parts. The indices m 12 , 

m(k), and M termed integration indices take values of 
nonnegative integers, and when they all vanish the 
ADOTEI's become the corresponding DOTEI's, because 
P(012,O(!),O(2l,O) = 1. With no integration exponent, say, in 
the ~(I)( {n(!)}), the indices m(l) become redundant, but, for 
clarity they will be retained with m(l) = 0 rather than be 
omitted. 

Substitution of Eqs. (109)-( 112) into Eq. (101) and 
multiplication by P(m 12,m(!),m(2),M) lead to the recurrence 
formula for the ADOTEI's with respect to the angular mo­
mentum index njl 1, 

[nJ 1) + lit: :] = (Rg) - RjI» It [: :] - 2: (Rg) - R~\) It [: :m~~) + 1] + (W G - Rg» It [: :m 12 + 1] 
u=G tIl + 1 

1 { N'" } 
+ -- N (n )(n -1 ,,)(1)+ ~ N (n~\)<n(\)-l ,,)(1) 

21-(1) It 12 12 It" .~ It lIlt" 
~ G 1= I 

+ { N (1(1»['1(1)-1 'm(\)+I] -N (1(1»['1(1)_1 'm(\)+I]}+S(I)+S(2) (124) It u . u It . uu It J • J It . uu AJ AJ ' 
u=G\I)+ 1 

where only the indices different from those in the integrals [n12,{n(t)},{n(2)}:{I(I)},{I(2)}:m I2,m(l),m(2),M] are explicitly given. 
The bracketted integrals (::) (k) in Eq. (124) are defined by 

N(k) 

(::)(k)=[::]-[::m12+ 1]- ~ [::m~~)+l], 
u=G( ) + I 

and S ~~) is expressed as 
N(k) 1 N(k) 

S~~) = - ~ (WG - R~k»1t [: :Muu + 1] + -21- L Nit (ni k » ~nik) -llt::~ 
u = ;rt) + I ~ G j = I 

1 G(k) 

+- L ~~k){NIt(l~k»~:W)-llt:~ -NIt(~I)~:I?)-llt:~} 
~G g=1 

N(k) 

+ ~ {Nit (I~k» [:I~k) - llt:Muu + 1] - Nit (lJI) [:IJI) - lit :Muu + 1]}, 
u=;rt) + I 
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where the doubly bracketted integrals -<:: > are 
N(k) 

-<::>=[::mI2+1]- L ~ [::Muu +l]. 
k=I.2 u=G( '+1 

(127) 

The recurrence formula with respect to n l2 [Eq. (103)] reduces to 

1 
[012 + 11'::] = L --WNI' (n 12 ) (n12 -11': :)(k) + T~l) - T~2), 

k=I.22~G 
(128) 

where T~k) denotes 

1 
G(k, N(k, 

+ __ '" r(klN (l(kl)('I(k)_l .)(k) + ~ N (l(k»('I(k)_l 'm(k) + 1] r (k) £..J :. g I' g • g I' . I' u . u I' . uu . 
:'G g=l u=G('+1 

(129) 

For the recurrence formula with respect to the derivative indices IJ I )'s we have to consider two cases, namely,j = g andj = u. 
When j = g, the orbital exponent ~ J I) is not the integration exponent, and therefore multiplication of Eq. (105) by 
P(m I2,m(l),m(2),M) readily yields the recurrence formula 

(130) 

and substitution of Eq. (124) into the first term of Eq. (130) gives a formula involving lower angular momentum and 
derivative indices. Whenj = u, namely, the exponent ~ ~I) is the integration exponent, the integral2~ ~l) [o~l) + 11':] multi­
plied by the factor P(m I 2,m(l),m(2),M) is not the ADOTEI. Accordingly, we have to rewrite Eq. (105) by the use ofEq. (101) 
as well as Eqs. (109)-( 112) in order to express the formula in terms of the ADOTEl's. Utilizing the following relation: 

( r (I) ) (r (I) ) N'" N(2I 

(1-0)~~1) 1-~~1) +0~~1) 1-:'; =~~,\)(7]~I)+5~\)+v=~I+I(7]~~)+5~~I»+v=~'+15~~2), (131) 

(v,,",u) 

we finally arrive at the following recurrence formula: 

[:I~\) + 11':] = 2~ ~)(R~J> - R~I»I' [: :m~~) + 1] + 2~G(WG - R~\)I' [: :Muu + 1] 
N(1) 

+NI'(n12 )[012 -11'::m~~) + 1] + L NI'(n}I» [np) -lJl::m~~) + 1] 
1=1 

GW 

+ 2 L ~ ~l) NJl (l~l) [:I~I) - 1Jl :m~~) + 1] - 2~~) NJl (l~\) [:l~\) - 1Jl :m~~) + 1] 
g=1 

Nil) 

+ U~\) + U~2l - NI' (n~I» [n~l) - 11'::] + 2 L (R~1) - R~I»Jl [: :m~~) + 1] 
v=G(I)+ 1 

NUl 

+ 2 L {NJl (l~l) [:l~l) - 1Jl :m~~) + 1] - NJl (l~l» [:l~\) - 11':m~~) + 1 p, (132) 
v=GnJ+l 

where U~k) is defined by 

N(k) G(k) 

U~k) = L NJl (n~k» [O}k) -lJl: :Muu + 1] + 2 L ~~k)NJl (l~k» [:l~k) - 11' :Muu + 1] 
1=1 g=1 

N(k, 

- 2~ ~k) NJl (l~I}) [:I~1} - 1Jl :Muu + 1] + 2 L (R~k) - R~I»Jl [: :Muv + 1] 
v=G(k'+1 

N(k, 

+ 2 ~ {NI' (W» [:W) -lJl:Muv + 1] - NI' (l~l) [:I~I) -IJl:Muv + I]}. 
v=G( '+ 1 

(133) 

It is to be noted thatthe off-diagonalindices m~~) andMuv now appearin the lasttwo terms ofEqs. (132) and (133), and they 
are to be read as m~=) and M vu , respectively, for u > v. 

Substitution ofEqs. (109)-(112) into Eqs. (106) and (l08) leads to the expression for the initial ADOTEI's 
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Here the factor y~k) is the one-electron overlap integral 
over the first G(k) s-type Cartesian Gaussian functions in 
[1(k) ({O(k)}): 

y(k) = (~)3/2 °n(k
l 

o r(k) 
~ 0 g,h= I 

(g<h) 

[ 

; (k); hk) ] 
X exp - g k (R~k) - Rhk»2 , 

;~) 

the function IF (w,a,m) stands for 

IF (w,a,m) = wm exp[ - aw], 

Y~~d can be expressed in terms of IF (w,a,m) as 
YCk) = IF (-n(k) r(k)(R(k) _ RCk»2 m Ck» 

U,O rlU '~G G u' uu 

N(k) 

( 135) 

(136) 

X ij {1F(71~~),(R~k) - R~k»2,m~~» 
v=O( ) + I 

Cv> u) 

X IF(s~~k),(R~k) - R~k»2,Muv)}' (137) 

and po is defined by 

;g);l]) 
Po = ; g) + ; l]) . ( 138) 

It is to be noted that the initial ADOTEl's consist only of the 
function IF (w,a,m) except for the factor Yg)Yl]) 
{(; ~I)/Z(I) (; l])/Z(2) (1 - ®)}3/2 independent of the in­
tegration indices. 

With the definitions of the BTEI's [Eq. (58)] and the 
ADOTEI's [Eq. (121)], we define auxiliary BTEI's 
(ABTEl's) as 

(012, {OCI)}, {O(2)}:{I(I)}, {I(2)}:m 12,m(l),m(2),M) 

= f!2 A f!2 I [012' {oC!)}, {0(2)}:{I(1)}, {I(2)}:m I 2,m(l),m(2),M]. 
(139) 

The recurrence formulas for the ABTEl's can be readily 
found by operating f!2 A and f!2 I on Eqs. (124), (128), 
( 130), and ( 132), since the coefficients are now independent 

(134) 

of the integration exponents. For f!2 A = 1, the resulting for­
mulas take the same mathematical forms except that all the 
square brackets are replaced by parentheses. 

We add how to get recurrence formulas with respect to 
the indices oj 2) and Ij 2) of the jth function in the second factor 
[1(2) ({0(2)}) of [1 (012,{O(l)},{0(2)}) [Eq. (63)]. If one con-
siders an interchange of the electron coordinates fl and f2 in 
[1 (012,{0(1)},{0(21}), one may notice that the product 
[1(2)( {0(2)}) becomes equivalent to [1(1) ({o(l)}) in the origi­
nal [1 (012,{o(l)},{0(2)}), and the interchanged two-electron 
function q;(f2 - f l;OI2,;I2) takes the opposite sign to the 
original one q;(f l - f2;012,;I2) when the angular momen­
tum Ion! is odd. The latter property means that the inter­
changed two-electron functionq;(f2 - f 1;012 ± 1}',;12) hav­
ing a higher or lower angular momentum by one always 
takes the opposite sign to q;(r2 - r 1;012';12).Thus one has 
the following prescription: (1) interchange the superscripts 
1 and 2 in the recurrence formulas given above, and (2) 
invert the signs of terms having the angular momentum in­
dex 012 + I}' or 0 12 - I}'. 

As an illustration of the present formulation, we give the 
recurrence formulas for the derivatives of the electron repul­
sion integrals (ERI's). Since the integrals include integra­
tion over u 12 [Eq. (83)], we must resort to the formulas for 
the auxiliary integrals. With no integration exponent in 
[1 (k) ({O(k)}) (k = 1,2), the integration indices m(k) and 
M are zero, namely, the factor P in ADOTEl's is 
P = P( m,O,O,O), and all the terms involving summation over 
u or v in the recurrence formulas are missing. The auxiliary 
integrals reduce to 

(Oaob,OeOd:laIb,leld) (m) 

= (012,oa 'Ob ,Oe ,Od :la ,Ib ,Ie ,ld :m,O,O,O) 

( 140) 

according to Eqs. (83) and (139), and the recurrence for­
mulas are found to take the forms 

1 
(Oa + 11': :) = (Rg) - Ra ) I' (: :) + (W 0 - Rg» I' (: :m + 1) + --(1-) . L NI' (0;) 2; 0 I=a,b 

X{(O;-ll'::)- p~) (O;-ll'::m+l)}+_l- L NI'(o;)(o;-ll'::m+l)+A, (141) 
; 0 2;0 ;=e,d 

(:Ia + 11':) = 2;a(oa + 11'::) - NI' (Oa )(Oa -11'::) (142) 

from Eqs. (124) and (130), respectively, where A represents 
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A = - f~) N,,(lo){ (:10 -I,,:) +~: ;g) (:10 -I,,:m + 1)} + f~) N,,(lb){ (:Ib -I,,:) - ;g) (:Ib -I,,:m + 1)} 

+ i:..- N" (lc)(:lc -I,,:m + 1) + kN" (ld)(:ld -I,,:m + 1), (143) 
~G ~G 

which vanishes when all the derivative indices I; 
(i = a,b,c,d) are ° = (0,0,0). The recursive calculations be­
gin with the integrals obtained from Eqs. (134) and (140): 

(OoOb,OcOd:OoOb,OcOd) (m) 

__ 2_ (\) ",,(2) LOO {~l])~ l]) _" }3/2 
- 1/2.Y G J G dU]2 (I) (2) (1 ®) 

1T 0 Z Z 
Xg'(®,T,m) 

(144) 

where Z(k) (k = 1,2) is actually ~ ge) in this case, and T 
denotes 

T=PG(Rl]) - Rl]»2. (145) 

Fm (n reduces to 

Fm(n = f dtt 2m exp[ - Tt 2
], (146) 

after the following transformation of the variable: 
2 

2 u]2 
t = • 2' (147) 

PG + U l2 

and its evaluation is simple.4, 13, 19,20 The above formulas are 
generalizations of those for the ERI's given in our previous 
paper13 and those for the first and the second derivatives of 
ERI's given by Schlegel, Binkley, and Pople. 12 

Since the molecular integrals (no nb I g' ;. v Inc nd) and 
(no nb I !!It ;. v Inc nd) take forms of linear combinations of the 
derivatives of ERI's [Eqs. (66) and (49)], the recurrence 
formulas readily follow from Eqs. (141 )-( 143) with appro­
priate derivative indices, such as (10 ,lb,lc,ld ) = (0,0,1;.,11') 
and (0,0,0,1;. + Iv) for (nanb I g';.v Incnd). The recurrence 
formulas thus obtained take the same mathematical 
form with Eq. (141) for the first four terms, and the remain­
ing terms in (na+I",nblg';'vlncnd) and 
(na + I",nb I !!It ;." Incnd) become 

A (g' ;'1') = - ~c + ~d 8p;. (dv) - k 8"" {(CA ) + (dA )} 
~G ~G 

and 

A (!!It;.,,) = - ~c + ~d [8p;. {(cv) + (dv)} 
~G 

+8"v{(CA) + (dA)}], 

respectively, with 

(148) 

(149) 

D. Exponentlal-factor-includlng basic Integrals 

Now to formulate molecular integrals including the ex­
ponential factor exp [ik·r] in their integrands, we introduce 
exponential factor (EF)-including basic one-electron inte­
grals (EF-BOEI's) and EF-including basic two-electron in­
tegrals (EF-BTEI's) as well as their auxiliary integrals. 

We define auxiliary EF-including BOEI's (AEF­
BOEl) (k;ql{n}:{I}) as BOEl's whose integrand [§ ({n}) is 
multiplied by the factor F(k;q) exp [i kor], 

(k;ql{n}:{I}) = .@A.@[[k;ql{n}:{I}], (152) 

[k;ql{n}:{I}] =F(k;q)22 D ({I}) Jdr Y({n}) 

xexp[i kor], 

F(k;q) = (ikx )qx(iky )qY(ik.) q., 

(153) 

(154) 

where the square-bracketted integral [Eq. (153)] is the aux­
iliary EF-including DOOEI (AEF-DOOEI), and q consists 
of nonnegative integers q" (It = x,y,z) referred to as the lin­
ear momentum index. The true EF-BOEI's and EF­
DOOEI's are, of course, those having the linear momentum 
index q being 0= (0,0,0), since in this case the factor re­
duces to just exp [i kor] . 

Similarly we define EF-including two-electron integrals 
whose integrand Y(nI2,{n(\)},{n(2)}) is multiplied by the 
factor F(k(\);q(I)F(k(2);q(2» exp[zk(I)or

l 
+ ik(2)or2]: 

(k(\),k(2);q(\),q(2) In12, {n(\)},{n(2)}:{I(I)}, {1(2)}) = .@A g [ 

X [k(l) ,k(2);q(l) ,q(2) In]2, {n(\)}, {n(2)}:{I( I)}, {1(2)} ], 

(155) 

[k( I ),k(2);q( l),q(2) In
12

, {n(\)}, {n(2)}:{I( I)}, {1(2)}] 

= F(k(\ );q( I) )F(k(2);q(2».@ lJ) ({I(\)}).@ 11) ({I(2)}) 

xJ dr l J dr2 [§ (nI2,{n(l)},{n(2)}) 

(156) 

Multiplication of Eq. (156) by P(ml2>m(l),m(2),M) gives 
the auxiliary EF-including auxiliary DOTEI (AEF-A DO­
TEl) 
[k( I) ,k(2);q( I) ,q(2) In12, {n( I)}, {n(2)}:{I( I)}, 

{1(2)}:m
12

,m(I),m(2),M] 

= [k(l),k(2);q(\),q(2) In12' {n(\)}, {n(2)}:{I(1)}, {I(2)}] 

(157) 

As has been noted, the product of the Cartesian Gaus­
sian function and exp[i kor] can be reduced to a linear com­
bination of Cartesian Gaussian functions [Eqs. (14) and 
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(20)]. Therefore, the recurrence formulas given in the pre­
vious section can be utilized after substituting Eq. (20) into 
the EF-inc1uding integrals having n l 2 + 1,.., nJk) + 1,.., or 
W) + 1,.. (k = 1,2). Although Eq. (20) includes sixfold 

summation [Eq. (24) ], the reduction is not complicated by 
virtue of the four relations [Eqs. (26)-(29)]. The recur­
rence formula with respect to the angUlar momentum in­
dices,forinstance, becomes 

[ 'In(1) + 1 .] = {(R(I) - R~I) + 0(W - R(1» }['I'] + 1 - 0 {N (n ) ['In - 1 .] 
'1 ,..' Z J'" Z P. ,. 2Z (I) ,.. 12 ,12 p.' 

N(1) J 1 0 N(I) 

+ i~1 Np. (n~I) [;ln~1) -1,..:] + ~I~ i~1 ~P){N,.. (lP» [;I:W) -1,..] 

- N,.. (W» [;I:IJI) -I,..]} 

+S~~j +S~~ + ([;lnJl) + Ip.:]), (158) 

where k(k) and q(k) (k = 1,2) in the AEF-DOTEl's have been omitted for simplicity, and S ~~ is defined by 
o N(l) 0 N(l) 

S(k).=_"_ '" N (n(k»['ln(k)_1 .] +..: '" ~(k){N (l~k»['I'I(k)_1 ] -N (I~l)['I'I~I)-1 ]) 
EFJ 2Z i.f-I ,.. I ., ,.. • Z i.f-1 ' p.' , . , ,.. ,.. 1 • • J ,... 

(159) 

The last term ( [ : InJ I) + Ip.: ] ) results from the decomposition of the complex parameters R~)t and wt into the real param­
eters and ik(k)(k = 1,2), and involves terms whose linear momentum indices q(l) and q(2) are increased by one: 

1-0 0 
(['ln~1) + 1 :]) =-- [.q(l) + 1 I:] +- L ['q(k) + 1 I:]· 

, 1 p. 2Z(I)' p. 2Z k=I,2 ' ,.. 
(160) 

As can be seen from these formulas, the expression for [;lnJl) + 1,..:] takes the same form with that for [nJI) + Ip.:] [Eq. 
( 101 ) ] except for the last term. Remaining recurrence formulas reduced from Eqs. (103). (105), (124), (128), (130), and 
( 132) also take the same forms with those for the corresponding ones except for the additional terms resulting from the 
decomposition of the complex parameters. In the following we give only these additional terms: 

1- 0 (I 1- 0 2 
([;ln12 + Ip.:]) = 2Z(1) [;q )+Ip.I:] - 2Z(2) [;q( )+1,..1:], 

([;I:IJI) + 1,..]) = 0, 

([ 'In(1)+1 ::])=_I_('q(l)+1 1::)(\)+_1_ '" A'q(k) +1 I::"" 
• 1 ,.. 2r (\ ) , ,.. 2r k .... • ,.." , 

~G ~Gk=I,2 

([ 'In +1 ,,])=_I_('q(\)+1 1··)(\) __ I_('q(2) + 1 1··)(2) 
,12 W' 2~~1)' ,.. .. 2~li) , p.'" 

([;I:I~I) + 1,..:]) = 0, 
1 

([;I:I~I) + 1,..:]) = -(-I) [;q(1) + 1,..1: :m~~) + 1] + L [;q(k) + 1,..1: :Muu + 1], 
2~ G k= 1.2 

where (;I::)(k)(k= 1,2) and <;1::> are defined similarly to (::)(k) and <::> [Eqs. (125) and (127)]: 
N(l) 

(;1: :)<k) = [;1::1 - [;1: :m12 + 1] - ~ [;1: :m~~) + 1], 
u G()+ 1 

N(k) 

<;I::>=[;I::mI2 +1]- L ~ [;I::m~~)+l]. 
k = 1,2 u = rfr') + I 

(161) 

(162) 

(163) 

(164) 

(165) 

(166) 

(167) 

(168) 

The expressions for the AEF-DOTEl's and the AEF-A DOTEI's over s-type functions reduce via Eqs. ( 106) and ( 134) to 

[k(I),k(2);q(I),q(2l I012,{0(ll},{0(2)}:{0(ll},{0(2)} ] 

= F(k(l);q(1»F(k(2);q(2» [OI2,{0(1)},{0(2)}:{0(1l}'{0(2)} p 
= F(k(1);q(I)F(k(2);q(2l) [012,{O(l)},{0(2)}:{0(1)},{0(2l}] exp[ T

EF
] (169) 

and 
[k( I) ,k(2);q(1 l ,q(2) 1012, {O(1l}, {0(2)}:{0( I)}, {0(2)}:mI2,m( I) ,m(2) ,M] 

= F(k( I );q( I »F(k(2);q(2» [012, {O( I)}, {0(2)}:{0( \}}, {0(2)}:m I2,m( I) ,m(2),M] t 

= F(k(\);q(I)F(k(2);q(2» [012,{0(1)},{0(2)}:{O(l)},{0(2)}:m
12

,m(1) ,m(2) ,M]exp[ T£F 1, (170) 
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respectively, where the daggers in Eqs. (169) and (170) in­
dicate that the parameters R~k), Rbk ), Y(k), Ybk)(k = 1,2), 
and W G have been replaced by the following daggered ones: 

'k(k) 
R(k)t - R(k) + -'-- (171) 

z - Z 2Z(k)' 

'k(k) 
R(k)t = R(k) + -'-- (172) 

G G 2tbk )' 

Y(k)t = y(k) exp[i k(k)(R(k) + i k(k) )] (173) 
Z 4Z(k)' 

y(k)t = y(k) exp[i k(k)(R(k) + i k(k) )] (174) 
G G G 4tbk ) , 

Let us illustrate the EF-including integrals. Theoretical 
analysis of the van der Waals forces based on the linear re­
sponse theory2J requires the following two-electron inte­
grals: 

({n(l)}, {n(2)}) 

= -ff3 I dk ~ exp[i k·V] [k;O(\),O(2)I{n(l)},{n(2)}], 

(178) 

where V is a prefixed coordinate, and 
[k;O(I),O(2)I{n(I)},{n(2)}] is the EF-including integrals de­
fined by 

[k;O(I),O(2)I{n(l)},{n(2)} ] 

= I drJ f dr2 exp[ - iko(rJ - r2)] 

X ~(I)({n(I)})~(2)({n(2)}), (179) 

One may notice that the integral [k;O(l>'O(2)I{n(I)},{n(2)}] 
is closely related to the momentum-space represen-tation of 
the two-electron density described by 
~(I)({n(l)})~(2)({n(2)}), The integral 
[k;O(l),O(2)I{n(l)},{n(2)}] can be expressed in terms of the 
AEF-OOTEI's as 

[k;q(l),q(2)I{n(I)},{n(2)} ] 

= lim [ - k,k;q(l),q(2)I012,{n(\)},{n(2)}:{O(l)},{O(2)}] 

',2-0 (180) 

with q(k) = O(k = 1,2), so that Eqs. (158) and (180) 
yield the recurrence formula for the integrals 
[k;q(l),q(2)I{n(l)},{n(2)} ], 

(175) 

The last expressions of Eqs. (169) and (170) do not involve 
the daggered parameters while they include the exponential 
factor exp [ TEF ], where 

'k(k) 
1', = (1- 0) ~ ik(k)(R(k) + -'-) 

EF £." Z 4Z (k) 
k= 1,2 

'k(\) 'k(2) 

+ 0Uk(l) + ik(2»(w +' 4~' ), 

(176) 

which can be rewritten by the use of Eqs, (109 )-( 112) as 

(177) 

N(I) N ( (I» 
= (R(I) - R(I) [k'l] + ~ p, nj 

Z J p,' if'! 2Z(I) 

X[k-ln(I)- 1 1+-
1
-[k-q(l)+111· (181) 

'I p, 2Z (I)' p, 

If one introduces the auxiliary molecular integrals defined 
by 
({n( \)}, {n(2)}:q( \),q(2» 

=-ff3 I dk~exp[ikoV][k;q(l),q(2)I{n(l)},{n(2)}], 
(182) 

the recurrence formula for the auxiliary molecular integrals 
becomes 

NO) N (n( \) 
(n~\)+l :)=(R(I)-R~I) (:)+ ~ p, j 

1 P, Z J P, ,£'" 2Z (I) 
1= 1 

1 x(n(l)-l :)+--(:q(l)+l), 
I Il 2Z(I) Il 

(183) 

where only different indices from those in 
({n(\)},{n(2)}:q(l),q(2» are given. Equations (169), (176), 
( 180), and (182) provide us with the expression for the ini­
tial integrals 
({O(l)}, {O(2)}:q(1) ,q(2» 

= -ff3Y(I)Y(2)%<lq(\)I) 

xI dk _l-Ukx )qxUky )qYUkz )qz exp[i koQ] 
Ikl 

xexp[ - ~:]. (184) 
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wherepz has been defined by Eq. (100), Iq(1) I is the sum of 
q~l), q~l), and q;l), and other parameters %( Iq(l) I), qp' and 
Qdenote 

%(lq(l)j) = {I 
-1 

qp = q~1) + q~2), 
and 

(lq(l)1 = even) 
(Iq(l) I = odd) , 

(185) 

(186) 

Q = V - Ri!) + R¥), (187) 

respectively. 
As can be seen from Eq. ( 184), the initial integrals satis­

fy the following differential relation with respect to Q: 

({O(l)}, {0(2)}:q(1) ,q(2» 

(188) 

As a consequence, we have to evaluate ({O(l)}, 
{0(2)}:O(l),O(l», which can be expressed asZI 

({O(l)},{0(2)}:0(\),0(2l) = B(Q2)Fo(D, (189) 

where Fm (D has been defined by Eq. (146), and 

B(Q2) = 81T4pz..9"(1)..9"(2lexp [ - pzQ2], (190) 

T= -pzQ2. (191) 

Then ({O(l)},{0(2l}:I~I),0(2» and ({0(1)},{0(2l}:1~1),1~2l), 
for instance, become 

({O(ll}, {0(2l}:I~ll ,0(2) 

=2pzQp B(Q2){Fo(T) -FI(D} (192) 

and 

({O( 1)}, {0(2)}:I~ll ,1~2l) 

= 2pz Dp"B(Q2){Fo(D - FI(T)} 

- 4p~QJtQ"B(Q2){Fo(D - 2FI (D + F2(D}, 
(193) 

respectively. 
We note that the recurrence formulas and the expres­

sions for the initial integrals provide us with a simple scheme 
to obtain nonrecursive but explicit expressions for molecular 
integrals over higher angular momentum functions. Thus 
the formulas, such as Eqs. (183), (189), (192), and (193), 
can reproduce the explicit expressions over all possible com­
binations of sand p functions tabulated according to Boys' 
scheme2 by Ishida.21 

III. DISCUSSION 

The auxiliary basic two-electron integrals (ABTEI's) 
with !!2 A = 1, 
(nI2, {n(J)}, {n(2)}:{I(J)}, {I(Z)}:m 12,m(J),m(Z),M) 

= !!2 I [n
I2

, {n(J)}, {n(2)}:{I(J)}, {I(2)}:m 12,m(!) ,m(Z),M] , 

(194) 

which will be discussed in this section, are closely related to 
important two-electron integrals, such as the electron repul­
sion integrals and their derivatives. The effect of !!2 A ( =1= 1 ) 

on the recurrence formulas is trivial, as in Eq. (84). The 
recurrence formulas for ADOTEI's given in the previous 
sections will be referred to as those for the ABTEl's, because 
for !!2 A = 1 they take the same mathematical forms. 

First we consider the range of the values of the integra­
tion indices mlZ' m(k), and M in the initial ABTEI's 
(012,{0(1)},{0(2)}:{0(1)}.{0(21}:mwm(i),m(2),M) necessary to 
start the recursive calculations to get the target integrals 
(n IZ,{n(J)},{n(2)}:{I'!)},{I(2)}:012,O(J),O(2),0). The lower bound 
of these indices is zero, and their upper bound remains to be 
found. From the recurrence formulas (124), (128), (130), 
and ( 132), one notes that the sum of all the indices n 12' nt k) , 

W), mw m(kl, and M in each ABTEI in the right-hand side 
is not greater than the sum on the left-hand side. Repeated 
use of this relation gives a relation between the sums of the 
initial integrals and the target integrals. The sums of the 
diagonal and the off-diagonal integration indices in the ini­
tial integrals designated as Mdia and Motr , respectively, 

N(k) 

Mdia = m l2 + L '\' (m~~) + M uu ), (195) 
k = 1.2 u = trl) + I 

N(k) 

Motr = L L (m~~l + Muv) 
k 1.2 U,v= G(k) + I 

NO} Nt'll 

+ U=~'+I V=~)+I M uv , 

satisfy the following inequalities: 
N(k) 

(196) 

O<Mdia + Motr<lnuJ + L L (In}kll + IW)I), 
k= 1,2 i= I 

(197) 

(198) 

where III is the sum of Ix. ly, and lz' and the latter inequality 
obtains because the off-diagonal indices are involved only in 
the recurrence formula for (:l~k) + 11':)' In the case of the 
derivatives of the electron repulsion integrals [Eq, (140)], 
for instance, the inequality (197) becomes 

O<m< L (Inil + 11il) . (199) 
i=a.b,c,d 

Since the auxiliary BTEI's are mathematical artifacts 
introduced to reduce the expressions to recursive forms, they 
are less directly related to the physical situation than the 
corresponding true integrals. This means that it is not guar­
anteed that the auxiliary integrals take finite values. Of 
course, their finiteness is essential for the present recursive 
formulation, and hence we investigate the condition of the 
ABTEI's being finite when the corresponding true BTEI's 
are finite. The recurrence formulas given in the previous sec­
tions are linear with respect to the ABTEI's, so that they do 
not induce divergence (if they are not linear, say, including 
divisions by the ABTEI's, they would diverge when the inte­
grals happen to vanish). Therefore the divergence of 
ABTEI's would originate from the divergence of the initial 
ABTEI's, which differ from the corresponding true ones 
only for the nonzero value of m in ?f (w,a,m) [Eq. (134)]. 
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Thus we have only to investigate the relation between 
ff(w,a,m) (m > 0) and ff(w,a,O). 

When m is one of the indices m 12 and the diagonal ones 
m~!) and M uu ' the parameter W in ff (w,a,m) stands for one 
of the factors 0, 1}~k), and 5 ~k), respectively. For the possible 
values of the integration exponents ~12 and ~ ~k) 
(O<~12'~ ~k)< 00) anyone of these parameters takes a value 
between zero and one (0<0,1}~k),s~k)<I), as can be seen 
from Eqs. (99), (117), and (118). ForO<w<l, ff(w,a,m) 
satisfies the following inequality: 

O<ff(w,a,m) = wmff(w,a,O)<ff(w,a,O) 

(200) 

Application of this inequality to the integrands of the initial 
ABTEl's yields the following relation: 

0< (: :m12,m(l),m(2),M) < (: :012,m~:i,m~i!,Molf)' (201) 

where the sUbscript off indicates that only the off-diagonal 
part of the indices have nonzero values. For m~~) = 0 and 
Molf = 0, corresponding to a large class of molecular inte­
grals, Eq. (201) shows that the auxiliary integrals are finite. 

When m in ff (w,a,m) is one of the off-diagonal indices 
m(k) and M W denotes one of the factors 1}(k) and /:" (kk') uv uv' uv ~ uv , 

respectively, and takes, at maximum, positive infinity for the 
possible values of ~12 and ~ ~k)'S. Because of the exponential 
factor in ff (w,a,m), however, the following relation holds as 
far as a = (R~k) - R~k'»2 is not zero: 

ff (w,a,m) = wm ff (w,a,O) 

= wm exp[ - aw] ..... O (a>O,w ..... oo,m;;;'O) . 

(202) 

Therefore, for a large value of W the contribution of 
ff (w,a,m) to the integrals can be ignored, which means that 
we can find a finite positive value Vmax which satisfies the 
relation 

0«: :OI2,m~:i,m~i!,Molf) < Vmax (: :012,0(1),0(2),0) . (203) 

From Eqs. (201) and (203), one sees that the auxiliary inte­
grals are finite as far as a> 0, namely, the centers R~k) and 
R~k') offunctions having integration exponents are different 
from each other. Note that even if a = 0, namely 
R~k) = R~k '), corresponding to the same function center, the 
integralshavingthesumofthederivativeindicesW),I~k') ... 
less than 2: 

(204) 

(same function center) 

can be evaluated by using the recurrence formula for 
(:I~k) + 11':)' since in this case the terms with positive off­
diagonal indices in the formula drop out by virtue of 
(R(k) _ R(k'» = 0 and N (I(k» = 0 

U v JJ p. u • 

The same discussion is applicable to the finiteness of the 
AEF-ABTEl's as far as the integrations over the integration 
exponents ~ ~k)'S and ~12 are concerned, since the AEF­
ABTEl's [Eq. (170)] are just ABTEl's multiplied by the 
factor F(k(l);q(J)F(k(2);q(2»exp( T EF)' which is common to 
both the auxiliary and true integrals. 

Once the initial ABTEl's are found to be finite, they can 
be evaluated, namely, integrated over u's in P2 I straightfor­
wardly. Although in some cases convenient expressions for 
actual evaluations can be found, such as F m (T) [Eq. (146) ] 
for the electron repulsion integrals and their derivatives, in 
general the integrations are to be replaced by the quadrature 
sums 

where a refers to the quadrature node, ~ ua is the integration 
exponent at the quadrature node, and Wa is the weight fac­
tor. Numerical calculation based on the quadrature formu­
las is a classical mathematical problem, so we just refer to the 
famous books by Stroud and Secrest,22 and Krylov.23 

With the quadrature, we have two computational proce­
dures for the calculation of the target integrals. The first one 
is, as above, to use the quadrature only for the initial inte­
grals, and then to proceed recursively by using the recur­
rence formulas for the ABTEl's. The second one is to use the 
quadrature directly to the target integrals 

(n12, {n(I)}, {n(2)}:{I(I)}, {I(2)}) 

-.@ Q [n
I
2,{n(I)}, {n(2)}:{I(J)}, {I(2)}]a , (206) 

where P2 Q denotes the product of the quadrature sums as in 
Eq. (205), and the integrals [n12,{n(I)},{n(2)}:{I(I)},{t2)}]a 
can be evaluated recursively by using the recurrence formu­
las for the DOTEl's [Eqs. (10 1), (103), and (105)] rather 
than those for the auxiliary ones. The second procedure can 
be made efficient by taking advantage of the fact that the 
DOTEl's can be factored as the product of three Cartesian 
components 

[n
12

, {n(I)}, {n(2)}:{I(I)}, {I(2)}] 

= II [nI2J',{n~I)},{n~2)}:{l~I)},{l~2)}], (207) 
p.=x,y,z 

and the linearity of the recurrence formulas allows us to 
write the recurrence formula for each Cartesian component. 
Details can be found in the work by King, Dupuis, and Rys8 

for calculations of the electron repulsion integrals. Note that 
the efficiency of the second procedure relies on the smallness 
of the number of quadrature nodes, because for each node 
each of the three Cartesian components of the DOTEl's has 
to be calculated. 

It would be noteworthy that even for the basic integrals 
with divergent operators the recurrence relations remain val­
id. This is because the divergence appears after the integra­
tion ofthe ADOTEl's over u's in .@ I' while the recurrence 
relations already hold before the integration. By virtue of 
this property, we need not worry about the appearance of 
divergent operators in reducing molecular integrals to sums 
of the basic integrals [Eqs. (50) and (51) ]. In actual calcu­
lations, of course, one must employ sums of the recurrence 
formulas for the basic integrals and of the initial integrals 
rather than sums of the values evaluated from these expres­
sions. This caution would not be trivial when the quadrature 
is employed with a finite numerical accuracy on a computer, 
because the more accurate quadrature does not always give 
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the more accurate value in the "sum-of-values" scheme. Let 
us give an illustration. The first expression for ~ II" in Eq. 
(39), 

t1Jl lJll" (fl - f 2 )11 (f l - f 2 )" 
;n IlV = U I + U 2 = 3 - 3 ---~----

If I - f21 If I - f21 S 

(208) 

consists of divergent opefators, and the divergence can be 
seen in the expressions for the initial integrals 

(OaOb IUllOcOd lIm) 

= VlJll" f dt {I ~ t2} t 2(m+l) exp[ - Tt 2], (209) 

(OaOb IU21 0cOd )(m) 

= VlJll" f dt { 1-=.tt22 } t 2(m+ I) exp[ - Tt 2] 

- 2Pa V(R~I) - Rg»11 (Rg) - Rg»" 

X fdtt2(m+2)eXp[-Tt2] , (210) 

(211) 

(212) 

as well as from Eqs. (128), (134), and the transformation of 
the variable U l 2 to t [Eq. (147)]. As t-.t, the factors in 
braces in Eqs. (209) and (210) become positive and nega­
tive infinity, respectively, while the other factors in the inte­
grands remain positive finite, so that these integrals diverge. 
When one employs a less accurate quadrature, with few qua­
drature nodes near t = 1, the sum-of-values scheme might 
give reasonable values for the initial integrals. However, 
with a more accurate quadrature having many nodes near 
t = 1 as well as in other regions within O..;;t..;; 1, the scheme 
will fail to give more accurate values owing to the divergent 
factors. On the contrary, the "sum-of-expressions" scheme 
works well because the divergent factors become identically 
unity in the summed expression. In this particular case of 
~ 1.tV' the initial integrals can be calculated by using the re­
currence formulas for (:lg + Ill:) [Eq. (142)] and the ini­
tial integrals for the electron repulsion integrals [Eq. 
(144)]. Thus in this sum-of-expressions scheme, no diver­
gence difficulty arises. 

In general, any numerical calculations based on recur­
rence relations are advised to check whether recursively cal­
culated values become less accurate due to the amplification 
of the original errors of the initial value. If the recurrence 
relation is used a large number of times, and/or if quite accu­
rate final values are required, it would be safe to check the 
stability of the recurrence relation mathematically.24 In the 
usual ab initio calculations, however, the recurrence rela­
tions for the molecular integrals are used a moderate number 
of times, for instance, eight times for the electron repulsion 

integral (dxydxy,dxydxy) (m), and a relative error of 10- 10 for 
the final value appears to be achieved in double-precision 
computation. Therefore, in these calculations it would be 
sufficient to check the evaluated values rather than the sta­
bility ofthe relation. In the calculation ofthe electron repul­
sion integrals over s, p, and d functions with initial integrals 
having a relative error of 10- 15

,13 we have encountered no 
problem. Although about the same accuracy is expected tor 
other molecular integrals, it is recommended to check the 
accumulated error in the following cases: (1) the recursive 
calculations are initiated with less accurate values of initial 
integrals and/or (2) much higher angular momentum func­
tions are employed in the molecular integrals, which re­
quires much more than ten times of the utilization of the 
recurrence relations. 

Finally a comment is in order on a relation among the 
derivative indices W) in the basic and the auxiliary basic 
integrals. The translational invariance of these integrals al­
lows us to find the relation, for instance, for the ABTEl's: 

N(I) N(2) 

L (:Wl + Ill:) + L (:IJ2) + Ill:) = O. (214) 
i=1 i=1 

This relation is of use in reducing the number of terms in the 
recurrence formulas, as is shown in the reduction of the for­
mulas for the kinetic energy integrals in the Appendix. 

IV. CONCLUDING REMARKS 

In this paper we have introduced basic one- and two­
electron integrals, and have shown how general one- and 
two-electron molecular integrals over Cartesian Gaussian 
functions can be expressed in terms of the basic integrals, 
how the recurrence relations satisfied by the basic integrals 
can be derived, and how these relations can be reduced to 
recurrence formulas for the target molecular integrals. The 
present formulation of molecular integrals is applicable ( 1 ) 
to the integrals with any spatial operators in the nonrelativis­
tic form of the relativistic Hamiltonian, (2) to those includ­
ing the kernel exp [ik • f] of the Fourier transform in their 
integrands, (3) to those with any arbitrarily defined spatial 
operators as far as they can be expressed in terms of the basic 
integrals, and (4) to any order of their derivatives with re­
spect to the function centers. This formulation allows an 
efficient recursive computation of molecular integrals. The 
present method is, therefore, expected to be of general use for 
a further extension of ab initio theoretical studies of molecu­
lar systems. 
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APPENDIX 

Recurrence formulas for basic one-electron Integrals 

By the use of Eq. (84), the recurrence formulas for the 
derivatives of the overlap one-electron integrals (DOOEl's) 
can be reduced from Eqs. (10 1) and (105) to 

1 N 
[nj + IJ.l:] = (Rz - Rj)J.l [:1 +- INJ.l(n;)[n; -1J.l:] 

2Z ;=1 

and 

N t; 
+ I -{NJ.l (I; ) [:1; - IJ.l ] 

;=1 Z 
(AI) 

[:lj +lJ.l] =2tj [nj +1J.l:] -NJ.l(nj )[nj -lJ.l:]' (A2) 

respectively, where the superscript 1 is omitted for simpli­
city. The omission will be made for other formulas in this 
section as far as no confusion would take place. The 
DOOEI's over s-type Cartesian Gaussian functions become 

[{O}:{O}] = Y (A3) 

by the use ofEq. (106) and the following relation: 

t'2'~'~'(1_0) 
1T Z(l) Z(2J 

1T 1T 

Z(1)Z(2J/tI2 + (Z(1J + Z(2J) - Z(1) 

(t12- oo,t?)-+O). (A4) 

With no integration exponent (!!2 I = 1), such as in the ki­
netic energy integrals, the above formulas can be readily re-

N 

duced to those for the BOEI's. In contrast, for !!2 I t= 1 we 
have to use the auxiliary integrals. Formally the auxiliary 
DOOEI's (ADOOEI's) are obtained from the correspond­
ing two-electron integrals and !!2 A defined by Eq. (85) as 

[ {n}:{I}:mw m(1),m(2J,M] 

= !!2 A [012, {n}, {0(2J}:{I}, {0(2J}:m 12,m(l),m(2J,M1 

= [{n}:{I} 1 X {!!2 AP(m12,m(1),m(2J,M)}. (A5) 

Here, however, all of the integration indices except for Mare 
not necessary in the case of one-electron integrals. This is 
because at positive infinity of t12' the factor 0 becomes iden­
tically unity, and the factors 1J~k) and 1J~~) (k = 1,2) identi­
cally vanish, therefore the index m 12 (the power of 0) can be 
set always to zero, and the indices m~~) (the power of 1J~k» 
and m~~) (the power of 1J~~» are to be taken into account 
only when m~~) = m~~) = O. Thus we have 

I7l P( (1) (2) M} _ {P(O,O(1),O(2),M) 
;:L A m 12,m ,m, - 0 

(m(k) = 0) 

(m(k)t=O) . 

(A6) 

Then [{n}:{I}:OI2,O(1),0(2),M] of Eq. (A5) denoted as 
[{n}:{I}:M] becomes 

[ {n}:{I}:Ml 

~ [{n}:{I}] IT {(~)MUU IT (tutv)MUV}. 
u=G+I Z v=G+I Z (v>u) 

(A7) 

With the aid of Eq. (A6), Eq. (124) can be rewritten 

+ I {NJ.l{lu) [:Iu -1J.l:Muu + 1] -NJ.l{lj) [:Ij -1J.l:Muu + 1]}, (A8) 
u=G+I 

where the doubly bracketted integrals denote 
N 

<::> = [::] - I [::Muu + 1]. 
u=G+I 

In combination with Eq. (A8), Eq. (130) is found to reduce to 

N 

[:Ig + IJ.l:] =2tg(RG -Rg)J.l[::] -2tg I (RG -Ru}J.l[::Muu + 1] 
u=G+I 

The recurrence formula with respect to lu finally takes the form 
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N 

[:Iu + 11':] = 2t G (RG - Ru ) I' [ : :M uu + 1] + L Np (ni ) [ni - 11' : :M uu + 1] - Np (nil) [nu - 11' : : ] 
i=1 

G 

+ 2 L t gNp (lg) [:lg - Ip:Muu + 1] - 2tGNp Ou) [:Iu - Ip:Muu + 1] 
g=1 

N 

+2 L (Rv-Ru)p[::Muv+ l ] 
v=G+ 1 

N 

+ 2 L {Np Ov) [:Iv -lp:Muv + I] - NI' (lu) [:Iu -lp:Muv + 1]}, (All) 
v=G+ 1 

where the off-diagonal indices Muv are involved in the last 
two terms. The integrals over s-type Cartesian Gaussian 
functions become 

[ {O}:{O}:M] 

(t )3/2 N { (t ) = y G ~ II 'If _u ,tG(RG - Ru )2,Muu 
Z u=G+I Z 

X IT 'If(tutv ,(Ru - Rv )2,Muv)}. (AI2) 
v=G+I Z 

(v> u) 

The definition of the auxiliary basic one-electron integrals 
(ABOEI's) is 

({n}:{I}:M) = gAg I [{n}:{I}:M]. (A13) 

The range of the integration index M in the initial integrals 
({O}:{O}:M) necessary to calculate the target integrals 
({n}:{I}:O) is 

N N N 

0< L Muu + L Muv< L (Inil + Ilil), (A14) 
u=G+I ll,v=G+I i=1 

(u<v) 

N N 

0< L Muv< L Ilu I· (A15) 
Il,V = G + 1 u = G + 1 

As in the two-electron integrals [cf. Eq. (214) ], the transla­
tional invariance of the integrals leads to the relation for the 
derivative indices, such as 

N 

L (:Ii + 11') =0 (A16) 
i=1 

for the BOEI's. 
The recurrence formulas for the AEF-DOOEI's and 

AEF-ADOOEI's take the same forms with those for 
DOOEI's [Eqs. (AI) and (A2)] and ADOOEI's [Eqs. 
(A8), (AW), and (All)], respectively, except for the addi­
tional terms. The additional terms in these recurrence for­
mulas are 

(A17) 

(AI8) 

(AI9) 

(A21) 

The initial integrals for the AEF-DOOEI's and AEF­
ADOOEI's are 

[k;ql{O}:{O}] = F(k;q) [{O}:{O}]t 

= F(k;q) [{O}:{O} ]exp[lk( Rz + ~~)], 

[k;ql{O}:{O}:M] 

= F(k;q) [{O}:{O}:M]t 

= F(k;q) [{O}:{O}:M] 

[ 
tG ( ik)]. ~ tu R Xexp lk- RG +-- +lk L.J - u' 
Z 4tG u=G+I Z 

(A22) 

(A23) 

where the daggered integrals are defined by Eqs. (A3) and 
(AI2) with yt [Eq. (175)], y~ [Eq. (176)], R~ [Eq. 
(174)] instead of Y, Y G' and R G , respectively. 

The recurrence formula for the kinetic energy integrals, 
for instance, 

(A24) 

can be readily obtained by noting that the summand in Eq. 
(A24) satisfies the following recurrence relation: 

Owing to the translational invariance [Eq. (A16)], the last 
term in Eq. (A25) can be rewritten as a sum of the overlap 
integrals: 
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Then one can finally obtain the formula given in our pre­
vious paper. 13 

The molecular integral necessary for the calculation of 
the diamagnetic contribution to the nuclear spin-spin cou­
pling constanf5 involves two integration exponents. The op­
erator g ;'v for the molecular integral is 

a2 

= f!2 I 9'(r - Rc;Oc'u~) aRc;.aRdv 

X9'(r - Rd;Od'U~), (A27) 

with 

L
oo Loo 4 

f!21 = duc dud -, 
o 0 1r 

(A2S) 

and the auxiliary molecular integral becomes 

(oa Ig;.v Inb ) (M) = (oa,ob,Oc,Od:Oa,Ob,lc;.,ldv:M) 

= f!2 I [oa,ob,Oc,Od:Oa,Ob,lcA ,ldv :M], 
(A29) 

where M is a 2 X 2 matrix 

M = [Mcc M Cd ]. (A30) 
o Mdd 

Equation (AS) provides us with the recurrence formula for 
the molecular integrals with respect to the angular momen­
tum na' 

(Oa + 11'::) = (RG - Ra)1' (::) - (RG - R c ),. (: :Mcc + 1) - (RG - Rd )1' (: :Mdd + 1) 

I + -- L NI' (n/H:o/ -11'::> + 8pA (:lcA -ll':Mcc + I) + 8,.v(:ldv -ll':Mdd + I) 
2tG /=a,b 

(A31) 

with 

<::> = (::) - (: :Mcc + I) - (: :Mdd + I). (A32) 

The initial integral is 

(Oa,Ob,Oc,Od:Oa,Ob,Oc,Od:M ) 

4 roo roo (t )3/2 
= -:; Y G Jo dUe Jo dUd ; 

( 
U;U~ 2) Xff -Z,(Re -Rd) ,Mcd , (A33) 

and can be evaluated by quadrature.25 According to Eq. 
(All), the values of the derivative indices can be increased. 
For the increase from (lc,ld ) = (Oc,Od) to (l cA ,Od), e.g., 

(:lc;.,Od:) = 2tG(RG - Rc);. (:Oc,Od:Mcc + I) 

+ L N;.(o/)(ol -l;.:Oc,Od:M cc + 1). 
;=a,b 

(A34) 
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