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a b s t r a c t

When the explicitly correlated R12/F12 theories are applied in combination with smaller one-particle
orbital basis sets, the relaxation with respect to the one-particle limit basis becomes relevant. Starting
from a single reference Slater determinant in a given computational orbital basis, two ways of coping
with this effect within the coupled cluster R12 theory are compared. First is based on the full treatment
of the correlation factor including its formal one-particle component, the second is based on a separate
exponential expansion in terms of single excitations using a dual Hartree–Fock limit basis. Although,
from the computational point of view the first approach would be preferable, its accuracy performance
is somewhat worse. Using fixed one-particle basis set relaxed amplitudes in subsequent coupled cluster
solution may be recommended.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

It is well known that at the coalescence of two electrons the ex-
act many-electron wave function must exhibit cusps, i.e. discontin-
uous first derivatives with respect to the inter-electronic
coordinates [1]. However, the widely and most commonly used
(multi) Slater determinantal wave functions never fully satisfy this
condition. Even in the case of full configuration interaction such
wave function behavior can only be achieved with an unreachable
complete basis set. The convergence towards this limit is, never-
theless, extremely slow. In fact the error goes as ðLþ 1Þ�3 [2,3],
where L is the highest angular momentum function included in
the (main computational) orbital basis (OBS) that should be still
saturated for all included angular momenta. Alternatively, though
not free from complications, the dependence on the inter-elec-
tronic coordinate can be explicitly introduced into the wave func-
tion, i.e. one works with explicitly correlated wave functions [4,5].

It was the jubilant Werner Kutzelnigg who more than 20 years
ago showed that it was sufficient to introduce terms linear in r12 to
an orbital product expansion in order to achieve that the error goes
as ðLþ 1Þ�7 rather than ðLþ 1Þ�3 [6]. The latter work launched a
new stream in the treatment of the dynamical electron correlation,
since the idea provides an effective combination of the determi-
nantal approach with explicit inclusion of the short range electron
correlation. Approaches based on this idea are known as R12 meth-
ods. Their pioneering implementations came soon after by Klopper
ll rights reserved.
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and Kutzelnigg both in combination with low order perturbation or
configuration interaction (CI) based theories [7–11], later followed
by a generalization within the coupled cluster (CC) Ansatz [12–14]
and multi-reference CI [15,16].

In order to avoid calculation of difficult three- and four-electron
integrals constraints known as ‘‘the standard approximation” (SA)
were introduced [17] and implied that the theories were plausible
if the computational orbital basis set was saturated at the level of
3Locc, where Locc is the highest angular momentum function in-
volved in the space of occupied orbitals. This automatically means
that such a basis contains the Hartree–Fock limit one, and, the gen-
eralized Brillouin condition (GBC) holds. Consequently, no single
excitations to the space involving the complete orthogonal com-
plement to the OBS (CCBS) were relevant. In addition, the extended
Brillouin condition (EBC) was assumed, and the one-particle reso-
lution of identity was considered as fully describable in the OBS.

Smaller OBSs in the R12 calculations were enabled by a separate
description of the resolution of identity in terms of an extensive
auxiliary set [18]. Since then a lot of development has been accom-
plished in this field [18–46]. Among others, it was found that the
performance has been much improved if the linear r12 was in the
Ansatz replaced by an alternative correlation factor, in particular
the Slater type geminal suggested by Ten-no [25] proved to be
superior. Accordingly, with this more general correlation factor a
notation ‘‘F12” instead of ‘‘R12” has been often adopted in recent
works. We rely on R12 in this work, even though the consideration
below applies to a general correlation factor.

With turning to smaller OBSs, however, the assumption of GBC
becomes far from being plausible. Practically, it means that errors
introduced by the incompleteness of OBS at one-particle level be-
come relevant and this deficiency must be treated. Quite recently,

mailto:jozef.noga@fns.uniba.sk
http://www.sciencedirect.com/science/journal/03010104
http://www.elsevier.com/locate/chemphys


2 J. Noga, J. Šimunek / Chemical Physics 356 (2009) 1–6
this problem has been addressed but only treated at the level of
second order perturbation theory [36,37,40,45,47]. In the context
of the coupled cluster theory, two ways of coping with this prob-
lem are compared in the following.

2. Theory

Having a single reference determinant jUi, the R12 coupled
cluster (CC-R12) Ansatz [13] reads

jWi ¼ e
bTþbR jUi; ð1Þ

where jWi is the target – in the limit exact – wave function, bT is the
global excitation operator in the space describable by the OBS,
bT ¼Pn

1
bT n, and bR is a special operator related to the correlation fac-

tor F̂ðr12Þ. The latter is conveniently expressible in a second quan-
tized normal ordered form with respect to the reference as

bR ¼ bR1 þ bR2 ¼ ci
k
eRk

i þ
1
4

cij
kl
eRkl

ij ; ð2Þ

eRk
i ¼ Fkj

aj
~aa

i ¼ Fk
a~aa

i ; ð3Þ

eRkl
ij ¼

1
2

Fkl
ab

~aab
ij þ Fkl

ab
~aab

ij : ð4Þ

We use the same tensor notation convention as in Ref. [40] with
i, j, k, l and a, b denoting occupied and virtual spin-orbitals within
the OBS, respectively, whereas a, b are used to denote the CCBS.
Einstein summation convention is applied throughout the paper.

bR1 evidently disappears if the computational basis reaches the
Hartree–Fock limit. This can be to a great degree of accuracy
achieved for small molecular systems. In this spirit the early stage
R12 theories assumed the validity of GBC, i.e. that f a

i ¼ f i
a ¼ 0, with

f̂ being the Fock operator. If the SA assumptions are at least
approximately fulfilled, the bR1 could be safely disregarded. As fol-
lows from the preceding, the role of bR1 is related to the Hartree–
Fock relaxation from OBS to the Hartree–Fock limit basis. Such
one-particle basis set relaxation has to be treated when one wants
to go to smaller OBSs – a permanent desire of quantum chemists.

Instead of following the Ansatz of Eq. (1) with bR1, in terms of
CCBS, one can formally and with more variational freedom use a
different Ansatz for the one-particle relaxation. Due to the
Thouless theorem [48], an exact Hartree–Fock determinant (re-
lated to the same symmetry as the reference) is expressible as

jU1i ¼ e
bT 1þbT CCBS

1 jUi; ð5Þ

where

bT 1 ¼ ti
a
~aa

i ; bT CCBS
1 ¼ ti

a~aa
i : ð6Þ

Similarly as bR1, bT CCBS
1 in fact relies to an orthogonal complement

within the ‘‘mere” Hartree–Fock limit basis set instead of the full
CCBS. For simplicity and the purpose of this paper, we used more
general notation ‘‘CCBS”.

The form of bR1 can be understood as externally contracted bT CCBS
1

with individual excitations weighted by the pertinent values of the
integrals over the correlation factor. Unlike Ansatz of Eq. (6), that at
least in principle leads to an exact Hartree–Fock limit, the solution
with bR1 is dependent from the choice of the reference.

In our consideration, let us only focus to the Hartree–Fock (HF)
orbital relaxation, i.e. two- and more particle terms of bR and bT are
ignored. It is clear that Ansatz of Eq. (5) cannot be exactly realized,
but one can, approximately, use a finite complementary auxiliary
basis set (CABS) [24] that somehow approaches the HF limit, mak-
ing so the expansion of Eq. (6) realizable. On the other hand, with
the Ansatz using bR1, one can in principle arrive at a mathemati-
cally exact solution, though, even in the limit of CCBS this solution
is different from the aforementioned one. Such an ‘‘exact” solution
implies introducing three-particle integrals in the final equations.
Again, close to the ‘‘exact” solution can be accomplished by using
large enough CABS. We shall use the latter approximation, and,
in the following, a, b; . . . refer to CABS.

The aim of this paper is to compare the performance of both bR1

and bT CABS
1 based approaches when applied within the CC and/or

second order MP theories. The corresponding energies that reflect
the CCBS (or more precisely the CABS) relaxation are given by

ER1 ¼ hUje�
bT 1�bR1 bHe

bT 1þbR1 jUi; ð7Þ

ECABS ¼ hUje�
bT 1�bT CABS

1 bHe
bT 1þbT CABS

1 jUi; ð8Þ

while the pertinent amplitudes of bT 1, bR1 and bT 1, bT CABS
1 result from

0 ¼ hUj~ai
ae�
bT 1�bR1 bHe

bT 1þbR1 jUi; ð9Þ

0 ¼ hUjð eRyÞike�
bT 1�bR1 bHe

bT 1þbR1 jUi ð10Þ

and

0 ¼ hUj~ai
ae�
bT 1�bT CABS

1 bHe
bT 1þbT CABS

1 jUi; ð11Þ

0 ¼ hUj~ai
ae�
bT 1�bT CABS

1 bHe
bT 1þbT CABS

1 jUi; ð12Þ

respectively. Let us recall that such a CC approach is not variational,
hence ECABS may be different from an exact HF energy in the full
(unified) OBS + CABS basis. Explicit forms of Eqs. (7), (9) and (10)
can be easily extracted from our recent work [40], just by ignoring
bR2 or bT 2 containing terms. Explicit forms of Eqs. (8), (11) and (12)
are obvious from the conventional CC theory. Mere relaxation con-
tributions to the energies in Eqs. (7) and (8) will be denoted by ‘‘D”.

Solution at the second order perturbation theory is not unique.
Depending on the Hamiltonian partitioning one can or does not
need to consider the coupling between the OBS and CABS spaces
[36]. Let us restrict ourselves to references for which the Brillouin
condition is fulfilled within the OBS space. In addition, and without
loss of generality, we can assume that the Fock matrix is diagonal-
ized separately in OBS and CABS spaces. Then, the energy contribu-
tions of Eqs. (7) and (8) restricted to second order read

DEð2ÞR1
¼ f a

i Fj
aðcð1ÞÞ

i
j; ð13Þ

DEð2ÞCABS ¼ f a
i ðtð1ÞÞ

i
a: ð14Þ

The aforementioned coupling can only be introduced in the
determination of the first order ðcð1ÞÞij amplitudes via the system
of coupled linear equations

0 ¼ ðf a
a � f i

i Þðtð1ÞÞ
i
a þ f a

a Fk
aðcð1ÞÞ

i
k; ð15Þ
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k Fl
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k f i
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k f a
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i
a; ð16Þ

or for ðtð1ÞÞia via

0 ¼ ðf a
a � f i

i Þðtð1ÞÞ
i
a þ f a

a ðtð1ÞÞ
i
a; ð17Þ

0 ¼ ðf a
a � f i

i Þðtð1ÞÞ
i
a þ f a

a ðtð1ÞÞ
i
a: ð18Þ

Here, the f i
a ¼ f a

i block of the Fock matrix is always treated as
the perturbation. If f a

a block is also treated as a perturbation the
couplings disappear from the first order wave function. Contribut-
ing to the second order wave function, they only impact the third
order energies. Second order energies reflecting the OBS–CABS
coupling will be in the Tables denoted by ‘‘ðcÞ”, otherwise by
‘‘ðncÞ”. Very recently, the Hartree–Fock corrections based essen-
tially on Eqs. (14), (17) and (18) have been suggested in combina-
tion with a simple but fairly efficient approximate CCSD(T)-F12
approach [37], and implemented also for open shell systems at
the second order level [45].

Alternatively, the OBS–CABS coupling in Eqs. (17) and (18) can
be effectively considered using semicanonical orbitals [50] that



Table 1
Definitions of the main orbital basis sets (OBS). The complementary auxiliary basis
sets (CABS) are defined as complements to OBS within the aug-cc-pCV5Z sets. N
denotes the number of basis functions in the pertinent set.

OBS (non-H/H) Description NOBS NCABS

2s1p=1s ð14s8p=5sÞ ! ½2s1p=1s�a 5/1 176/79
3s2p1d=2s1p ½2s1p=1s� þ ð1s1p1d=1s1pÞb 14/5 167/75
4s3p2d=3s2p ½2s1p=1s� þ ð2s2p2d=2s2pÞb 23/9 158/71
5s4p3d=4s3p ½2s1p=1s� þ ð3s3p3d=3s3pÞb 32/13 149/67
6s5p4d=5s4p ½2s1p=1s� þ ð4s4p4d=4s4pÞb 41/17 140/63
6s5p4d3f=5s4p3d ½2s1p=1s� þ ð4s4p4d3f=4s4p3dÞc 62/32 119/48
cc-pV5Z ½2s1p=1s� þ ð4s4p4d3f 2g1h=4s4p3d2f 1gÞ 91/55 90/25
aug-cc-pCV5Zd ½2s1p=1s� þ ð9s9p8d6f 4g2h=5s5p4d3f 2gÞ 181/80

a First contracted functions from cc-pV5Z [51].
b nsnpnd=nsnp uncontracted functions from cc-pV5Z with highest exponents.
c 3f=3d sets added from cc-pV5Z.
d Reference basis set.

Table 2
One-particle basis set relaxed energies and their contributions (in Eh) for F� . Basis sets
are defined in Table 1, while only the sp sets need to be considered. Reference aug-cc-
pCV5Z energy is �99.459263 Eh.

OBS

J. Noga, J. Šimunek / Chemical Physics 356 (2009) 1–6 3
diagonalize the virtual–virtual block of the Fock matrix in the uni-
fied OBS + CABS space. This simple correction has been used in the
dual basis second order Møller–Plesset (MP) theory [49].

Ansatz of bR defined by Eq. (2) leads to methods that provide re-
sults invariant with respect to rotations among occupied orbitals.
Provided the leading term of the correlation factor is r12, it follows
from the cusp relations [1] that when the OBS approaches the com-
plete limit the c-amplitude matrix related to bR2 approaches 1=2
times the unit matrix for the singlet part, and 1=4 times the unit
matrix for the triplet part, i. e. becomes diagonal. Correspondingly,
with final OBSs one can assume (or force) diagonal amplitude
matrices and ~R operators in Eq. (2), but let the variational flexibil-
ity to the amplitudes. In fact, such an Ansatz has been used in the
early development, but it leads to approaches that are not orbital
invariant. On the other hand, this Ansatz results in a computation-
ally much more favorable algorithms and also the numerical stabil-
ity of the solved system of equations is better, in general. Hence, its
use is still actual, especially when combined with localized orbi-
tals. Accordingly, in the following section, we shall also show re-
sults using the diagonal restriction on bR1. Those are labeled by
‘‘ðdÞ”.

Though seemingly Eqs. (15) and (16) are somewhat more com-
plicated than Eqs. (17) and (18), the computational demands with-
in the full MP2-R12 are approximately the same. This is due to the
fact that Fk

a can be calculated as a byproduct in MP2-R12 steps re-
lated to bR2. In both approaches, construction of the CABS–CABS
block of the Fock matrix is computationally most expensive, but
this block is in parts used in (non-approximated) MP2-R12, any-
way. Two-electron repulsion integrals with two CABS functions in-
volved are needed in this case.

In the CCSD-R12 treatment beyond the second order, integrals
involving three CABS functions are needed. With bT CABS

1 relaxation,
these integrals are used whenever the amplitudes of bT CABS

1 are up-
dated, i.e. usually in each iteration. In fact, if bT CABS

1 would be used
without further restrictions in CCSD-R12, only a limited overall
computational saving with respect to the full CCSD-R12 calculation
using larger basis set would be gained.

With bR1 the situation is more favorable, since the c-amplitudes
do not contain indices of CABS. Mere amplitude independent ma-
trix elements Fk

a; Fa
k contained in bR1 are contracted via the CABS

index. Hence, one can in principle precalculate effective intermedi-
ate matrices [40], so that integrals involving three CABS indices are
only needed in a single step. On the other hand, in most general
case of CCSD-R12, these precalculated matrices may bear up to
eight indices of OBS, even though mostly involving occupied orbi-
tals. Density fitting or Cholesky decomposition techniques are
needed to reduce the unpleasant scaling. From this point of view
the bR1 based approach leads to more effective algorithm.

Significant savings in CCSD-R12 would be accomplished if
either bR1 or bT CABS

1 are precalculated via resolving the one-particle
basis set relaxation as here and using the resulting amplitudes
fixed in the subsequent full CCSD-R12 treatment. Present work
should contribute to exploring the potential of such
implementations.
3s2p 4s3p 5s4p 6s5p

EOBS �99.369070 �99.380042 �99.412976 �99.455426
ER1 �99.447262 �99.453417 �99.457525 �99.456787
ECABS �99.469268 �99.466625 �99.462779 �99.459320
DEð2ÞR1

ðncÞ �0.048496 �0.034129 �0.009546 �0.000816
DEð2ÞR1

ðnc; dÞ �0.047275 �0.034150 �0.009465 �0.000814
DEð2ÞR1

ðcÞ �0.092436 �0.082767 �0.038603 �0.001163
DEð2ÞR1

ðc; dÞ �0.091326 �0.082573 �0.038773 �0.001166
DER1 �0.078192 �0.073375 �0.044548 �0.001361
DER1 ðdÞ �0.077532 �0.073265 �0.044778 �0.001365
DEð2ÞCABSðncÞ �0.056508 �0.034956 �0.011493 �0.001704
DEð2ÞCABSðcÞ �0.111556 �0.093135 �0.041382 �0.002682
DECABS �0.100197 �0.086583 �0.049802 �0.003894
3. Results and discussion

The aforementioned approaches treating the one-particle basis
set deficiency were tested for F� and a set of seven small molecules
including CH2ð1A1Þ, NH3, H2O, HF, CO, N2, and F2. Geometries have
been taken as in Ref. [40].

For the purpose of this study the OBS + CABS basis does not
need to be very close to the Hartree–Fock limit, since the unified
OBS + CABS basis set serves as a reference basis for the Hartree–
Fock energies. We have thus chosen aug-cc-pCV5Z [51–53] as
our reference from which subsets defined in Table 1 have been
used as OBSs. For curiosity, we went even to very small OBSs at
the level of minimal bases which would hardly be reliable in highly
accurate calculations. Nevertheless, the results may provide useful
information to be used in treating large molecular systems with
alternative approaches.

Although the OBSs with the given sizes are by far not optimal,
we have a well defined reference space and no functions need be
removed due to the linear dependencies in the unified basis set.

At the end of this section, results for a larger test example rep-
resented by the uracil molecule (C4H4N2 O2) with aug-cc-pV5Z ref-
erence basis are given.

In all calculations the linear r12 correlation factor was
considered.

For F� only the sp sets are relevant to the ground state Hartree–
Fock energy, hence we have separated these results in Table 2. A
difference of 0.1 Eh between the HF energy with 3s2p and with
the reference basis set reflects how much the occupied orbitals
are changed from neutral atom to the anion. Since the basis was
optimized on atoms, for them already the 2s1p provides HF ener-
gies closely approaching the full reference limit, so that their inclu-
sion into this study was irrelevant.

Total relaxed energies for the hydrates and N2, CO, F2 are given
in Tables 3 and 4, respectively. Individual contributions are col-
lected in Tables 5 and 6.

As expected, the fully relaxed ECABS energies with either OBS are
very close to the Hartree–Fock reference. Even with the smallest
minimal or DZ quality OBSs these relaxed energies are within
10 mEh of the reference values, while the unrelaxed OBS energies



Table 3
One-particle basis set relaxed energies (in Eh) for NH3, H2O, CH2 and HF. Basis sets are
defined in Table 1.

OBS EOBS ER1 ECABS

H2O
2s1p=1s �75.913515 �76.025814 �76.071700
3s2p1d=2s1p �75.999522 �76.030217 �76.069060
4s3p2d=3s2p �76.025713 �76.046092 �76.067662
5s4p3d=4s3p �76.051292 �76.060046 �76.067402
6s5p4d=5s4p �76.065308 �76.066022 �76.067332
6s5p4d3f=5s4p3d �76.066981 �76.067101 �76.067318
cc-pV5Z �76.067076 �76.067197 �76.067318
aug-cc-pCV5Z �76.067318

NH3

2s1p=1s �56.060632 �56.191566 �56.228744
3s2p1d=2s1p �56.159262 �56.198241 �56.225955
4s3p2d=3s2p �56.183322 �56.209095 �56.225012
5s4p3d=4s3p �56.208918 �56.219967 �56.224864
6s5p4d=5s4p �56.223447 �56.224139 �56.224887
6s5p4d3f=5s4p3d �56.224613 �56.224702 �56.224880
cc-pV5Z �56.224727 �56.224801 �56.224880
aug-cc-pCV5Z �56.224880

CH2

2s1p=1s �38.778221 �38.885185 �38.900165
3s2p1d=2s1p �38.843448 �38.879523 �38.896958
4s3p2d=3s2p �38.867865 �38.891187 �38.896153
5s4p3d=4s3p �38.883748 �38.894069 �38.895973
6s5p4d=5s4p �38.895369 �38.895661 �38.895973
6s5p4d3f=5s4p3d �38.895832 �38.895854 �38.895971
cc-pV5Z �38.895876 �38.895901 �38.895971
aug-cc-pCV5Z �38.895971

HF
2s1p=1s �99.968265 �100.035160 �100.074878
3s2p1d=2s1p �100.026633 �100.039037 �100.072160
4s3p2d=3s2p �100.045042 �100.054764 �100.070993
5s4p3d=4s3p �100.060769 �100.064630 �100.070728
6s5p4d=5s4p �100.069075 �100.069493 �100.070649
6s5p4d3f=5s4p3d �100.070428 �100.070493 �100.070638
cc-pV5Z �100.070488 �100.070563 �100.070638
aug-cc-pCV5Z �100.070638

Table 4
One-particle basis set relaxed energies (in Eh) for N2, F2 and CO. Basis sets are defined
in Table 1.

OBS EOBS ER1 ECABS

N2

2s1p �108.745422 �108.962687 �109.006655
3s2p1d �108.805204 �108.929266 �109.000412
4s3p2d �108.925731 �108.980878 �108.993982
5s4p3d �108.969697 �108.979572 �108.992969
6s5p4d �108.988980 �108.992713 �108.992953
6s5p4d3f �108.992317 �108.992732 �108.992925
cc-pV5Z �108.992678 �108.992810 �108.992924
aug-cc-pCV5Z �108.992924

F2

2s1p �198.730424 �198.761767 �198.774238
3s2p1d �198.732897 �198.763276 �198.774169
4s3p2d �198.744539 �198.771047 �198.773621
5s4p3d �198.761174 �198.767379 �198.773183
6s5p4d �198.769090 �198.772326 �198.773138
6s5p4d3f �198.772615 �198.772799 �198.773097
cc-pV5Z �198.772819 �198.772865 �198.773096
aug-cc-pCV5Z �198.773096

CO
2s1p �112.566460 �112.749311 �112.802372
3s2p1d �112.639024 �112.733403 �112.796155
4s3p2d �112.733631 �112.775110 �112.791394
5s4p3d �112.775025 �112.780798 �112.790666
6s5p4d �112.787094 �112.790270 �112.790667
6s5p4d3f �112.790252 �112.790459 �112.790641
cc-pV5Z �112.790533 �112.790553 �112.790640
aug-cc-pCV5Z �112.790640
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differ by more than a 100 mEh. Deviations of the CC relaxed ener-
gies from the reference ones are largest for the diatomics with tri-
ple bonds and the anion, whereas the differences are much smaller
for the investigated hydrates and F2. Non-variational nature of the
CC approach allows, however, that the relaxed energies are below
the ‘‘exact” variational limit – the HF energy with the reference ba-
sis. With the increasing OBS, the relaxed CC energies converge to
this limit, somewhat surprisingly, from below. On the other hand,
such a behavior might be related to the pertinent choice of the ref-
erence basis and its splitting. Based merely on these results, any
generalization of the trends would be premature.

Computationally much less demanding approach with bR1 does
not provide energies so close to the reference ones; but still about
80% of the relaxation effects is recovered even for the smallest
OBSs. Contrary to the previous case, by increasing the OBS size
the reference values are approached from above, although, not al-
ways smoothly. Paradoxically, with more extensive OBSs when the
relaxation effects are very small, the relative performance of the
bR1 based approach is somewhat deteriorated, apparently due to
the lack of variational freedom that is needed to recover the tiny
contributions accurately.

From the pragmatic point of view, one would appreciate accu-
rate second order corrections. Indeed, the overall performance is
fairly good and, this major contribution usually covers about 90%
of the total HF relaxation when the bT CABS

1 approach is used, but
the coupling between the OBS and CABS space must be included.
Such a result is, of course, not surprising. Knizia and Werner have
demonstrated this on a larger set of molecules, including also prop-
erties such as ionization potentials and electron affinities [45] for
the OBS of aug-cc-pVTZ quality.

Paradoxically, with smaller basis sets, the second order may,
and often provides a seemingly more accurate relaxation correc-
tions than the full CC treatment. Such a behavior is, however,
hardly a priori predictable. In extreme cases, such as for F� or N2

with smaller OBS, the second order correction is even more over-
shot than the fully CC relaxed ECABS value.

Relative to the bT CABS
1 counterparts, at the second order level, the

bR1 based results mimic the situation for the fully relaxed ones, i. e.
the corrections are significantly lower. As expected, also here the
OBS–CABS coupling is essential.

Non-invariant diagonal bR1 approach removes the long range
excitations. Indeed, its performance was best for the F� anion,
when all the excitations are localized on a single atom, and the cal-
culated relaxation energies differed by a small fraction of mEh

from their invariant counterparts. For brevity, in Tables 5 and 6
we only show the final non-invariant bR1 based relaxation energies,
since the trends were the same at the second order level. Here one
sees that the diagonal approach may fail badly, especially with
smaller OBS.

Table 7 with the results for the much larger uracil molecule just
confirm the aforementioned trends.
4. Conclusions

This study has been aimed at a comparison of two approaches
to correct for the Hartree–Fock relaxation effects that arise when
the explicitly correlated R12 based approaches start from reference
determinantal wave functions determined by using basis sets that
are not close to the Hartree–Fock limit.

Having such a reference, the first approach follows the R12 An-
satz when the basis set incompleteness is treated via inclusion of
terms linearly depending on the inter-electronic coordinate (or
more generally a related correlation factor). Within the second
quantized formalism with normal ordering related to the refer-
ence, the deficiency of the orbital basis at the one-particle level



Table 5
Energy contributions (in mEh) for NH3, H2O, CH2 and HF. Basis sets are defined in Table 1.

OBS DEð2ÞR1
ðncÞ DEð2ÞR1

ðcÞ DER1 DER1 ðdÞ DEð2ÞCABSðncÞ DEð2ÞCABSðcÞ DECABS

H2O
2s1p=1s �91.368 �92.589 �112.298 �68.972 �133.943 �136.495 �158.185
3s2p1d=2s1p �16.314 �25.229 �30.695 �25.295 �46.507 �63.148 �69.538
4s3p2d=3s2p �8.659 �17.240 �20.379 �16.981 �26.629 �36.742 �41.950
5s4p3d=4s3p �2.343 �7.074 �8.754 �7.755 �6.806 �13.248 �16.110
6s5p4d=5s4p �0.596 �0.656 �0.714 �0.502 �1.733 �1.822 �2.024
6s5p4d3f=5s4p3d �0.072 �0.101 �0.120 �0.115 �0.223 �0.281 �0.337
cc-pV5Z �0.065 �0.099 �0.121 �0.125 �0.133 �0.192 �0.242

NH3

2s1p=1s �99.212 �101.137 �130.933 �109.883 �140.298 �143.437 �168.111
3s2p1d=2s1p �21.082 �30.607 �38.979 �37.121 �44.566 �59.415 �66.694
4s3p2d=3s2p �14.693 �21.290 �25.773 �27.757 �27.420 �36.167 �41.690
5s4p3d=4s3p �2.871 �8.793 �11.049 �11.674 �6.723 �12.855 �15.946
6s5p4d=5s4p �0.585 �0.644 �0.693 �0.586 �1.246 �1.302 �1.440
6s5p4d3f=5s4p3d �0.059 �0.078 �0.088 �0.080 �0.191 �0.230 �0.266
cc-pV5Z �0.039 �0.060 �0.073 �0.055 �0.086 �0.123 �0.152

CH2

2s1p=1s �84.211 �86.260 �106.964 �81.777 �104.544 �106.394 �121.944
3s2p1d=2s1p �22.095 �29.669 �36.074 �32.362 �34.123 �46.626 �53.510
4s3p2d=3s2p �16.136 �20.349 �23.321 �17.496 �19.433 �24.680 �28.288
5s4p3d=4s3p �3.289 �8.405 �10.321 �8.815 �4.891 �9.883 �12.225
6s5p4d=5s4p �0.242 �0.265 �0.292 �0.243 �0.501 �0.540 �0.604
6s5p4d3f=5s4p3d �0.015 �0.019 �0.022 �0.016 �0.097 �0.117 �0.139
cc-pV5Z �0.016 �0.021 �0.025 �0.015 �0.058 �0.076 �0.095

HF
2s1p=1s �57.924 �58.308 �66.895 �11.085 �94.064 �95.585 �106.613
3s2p1d=2s1p �5.279 �11.146 �12.404 �4.283 �31.350 �42.844 �45.528
4s3p2d=3s2p �2.834 �8.592 �9.723 �3.824 �17.215 �23.564 �25.951
5s4p3d=4s3p �1.113 �3.234 �3.861 �1.894 �4.463 �8.499 �9.959
6s5p4d=5s4p �0.347 �0.380 �0.418 �0.172 �1.371 �1.429 �1.574
6s5p4d3f=5s4p3d �0.039 �0.055 �0.065 �0.060 �0.143 �0.178 �0.210
cc-pV5Z �0.044 �0.062 �0.075 �0.076 �0.091 �0.122 �0.150
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is reflected via appearance of a formal one-particle part of the cor-
relation factor operator bR1.

Second approach is based on a separate treatment of the one-
particle basis set relaxation via utilization of the Thouless theorem,
i.e. through an exponential type expansion involving (conven-
tional) single excitation operator into the space spanned by a Har-
Table 6
Energy contributions (in mEh) for N2, F2 and CO. Basis sets are defined in Table 1.

OBS DEð2ÞR1
ðncÞ DEð2ÞR1

ðcÞ DER1

N2

2s1p �221.687 �221.761 �217.265
3s2p1d �78.333 �116.276 �124.062
4s3p2d �41.416 �52.434 �55.148
5s4p3d �3.974 �8.311 �9.875
6s5p4d �3.152 �3.417 �3.733
6s5p4d3f �0.303 �0.370 �0.415
cc-pV5Z �0.080 �0.111 �0.131

F2

2s1p �29.086 �29.087 �31.343
3s2p1d �21.626 �27.482 �30.378
4s3p2d �13.996 �23.736 �26.509
5s4p3d �2.205 �5.330 �6.206
6s5p4d �2.850 �2.977 �3.236
6s5p4d3f �0.123 �0.168 �0.184
cc-pV5Z �0.020 �0.040 �0.046

CO
2s1p �181.000 �182.128 �182.852
3s2p1d �62.544 �89.489 �94.378
4s3p2d �31.851 �40.318 �41.479
5s4p3d �2.657 �4.862 �5.773
6s5p4d �2.723 �2.918 �3.176
6s5p4d3f �0.170 �0.194 �0.207
cc-pV5Z �0.014 �0.019 �0.020
tree–Fock limit basis. The practical solution in both cases is related
to an extended auxiliary one-particle basis set, instead of the
Hartree–Fock limit one.

The one-particle basis set relaxation has been treated via non-
variational coupled cluster (singles) approach that does not neces-
sarily lead to energies bond from above. However, the calculated
DER1 ðdÞ DEð2ÞCABSðncÞ DEð2ÞCABSðcÞ DECABS

�139.509 �270.969 �271.152 �261.233
�102.118 �119.486 �190.159 �195.208
�31.790 �46.257 �63.595 �68.251
�11.115 �12.452 �20.300 �23.272
�2.946 �3.440 �3.664 �3.973
�0.182 �0.478 �0.555 �0.608
�0.103 �0.157 �0.210 �0.246

�14.733 �39.710 �39.715 �43.814
�16.509 �29.864 �37.148 �41.271
�12.521 �16.104 �25.984 �29.082
�4.075 �6.694 �10.430 �12.009
�2.461 �3.573 �3.728 �4.048
�0.030 �0.333 �0.422 �0.481
�0.023 �0.148 �0.229 �0.277

�102.338 �233.003 �235.464 �235.912
�66.758 �101.810 �150.739 �157.131
�20.517 �39.675 �53.290 �57.763
�5.740 �8.820 �13.608 �15.641
�2.896 �3.172 �3.305 �3.573
�0.123 �0.338 �0.367 �0.389
�0.013 �0.085 �0.100 �0.108



Table 7
One-particle basis set relaxed energies and their contributions (in Eh) for Uracil. Main
orbital basis sets are defined in Table 1, while CABS in this case was constructed as the
complement to the OBS within the aug-cc-pV5Z basis.a

OBS 5s4p3d=4s3p 6s5p4d3f=5s4p3d

EOBS �412.588630 �412.653599
ER1 �412.619749 �412.654138
ECABS �412.655393 �412.655259
Ea

Ref : �412.655217 �412.655217

DEð2ÞR1
ðncÞ �0.011307 �0.000376

DEð2ÞR1
ðcÞ �0.026784 �0.000497

DER1 �0.031119 �0.000539

DEð2ÞCABSðncÞ �0.034348 �0.001379

DEð2ÞCABSðcÞ �0.058367 �0.001531
DECABS �0.066761 �0.001660

a Geometry N@N; reference energy: �412.655217 Eh taken from [54].
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values reflect the pure Hartree–Fock relaxation content within a
more general full CCSD-R12.

Our results show that with the first approach the convergence
with the increasing OBS towards the limit basis was achieved from
above, with the second approach from below. This approach with
‘‘conventional” single excitations to CABS leads to a faster conver-
gence since in principle the wave function Ansatz is exact, and the
deviations are caused just by the non-variational treatment.

In comparison with the fully relaxed counterparts, the second
order corrections are fairly accurate as soon as the OBS–CABS cou-
pling is included. Also the non-invariant diagonal bR1 approach is
generally unreliable.

Though, concerning the computational complexity the bR1

based approach would be preferable in the exact CCSD-R12 treat-
ment, its performance is somewhat worse in comparison with var-
iationally more flexible bT CABS

1 . Unlike bR1, however, in full CCSD-R12
treatment the latter requires involvement of two-electron integrals
bearing three CABS indices together with several matrix multipli-
cations involving CABS in each iteration, making so the bT CABS

1 relax-
ation in full CCSD-R12 treatment inattractive. CCSD-R12 using
fixed bR1 or bT CABS

1 after resolving the one-particle basis set relaxa-
tion may be an attractive and feasible alternative.
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