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The accuracy of the fixed-node diffusion quantum Monte Carlo~FN-DQMC! method is compared
to the coupled cluster method CCSD~T!. For a test set of 20 small molecules and 17 reactions the
electronic contribution to the reaction enthalpy is calculated with the FN-DQMC method using the
nodes of a Slater determinant calculated at the HF/cc-pVTZ level. By comparison with reference
reaction enthalpies the FN-DQMC method is shown to be more accurate than the CCSD~T!/
cc-pVDZ method and almost as accurate as CCSD~T!/cc-pVTZ. The deviation from the reference
data is comparable to the CCSD~T!/cc-pVTZ deviation, but, with only two exceptions, of opposite
sign. © 2001 American Institute of Physics.@DOI: 10.1063/1.1394757#

I. INTRODUCTION

In most ab initio electron structure methods, the elec-
tronic wave function is constructed from determinants of or-
bitals, whereas in the diffusion quantum Monte Carlo
method ~DQMC! it is sampled with a stochastic process.
This quantum simulation allows an evaluation of the electron
correlation because the fully dimensional Schro¨dinger equa-
tion is treated directly. In this respect, the DQMC method is
an explicitly correlated electron structure method, and, in-
deed, more than 90% of the electron correlation energy are
easily obtained with this method. Since DQMC scales favor-
ably with the system size like most Monte Carlo methods,
the method is promising for accurate correlated calculations
of larger molecules.

There are many variants of the quantum Monte Carlo
method.1–5 The fixed-node diffusion quantum Monte Carlo
method~FN-DQMC!, which is employed in this article, of-
fers a trade-off between efficiency and accuracy. While it is
more accurate than the variational quantum Monte Carlo
method it is less accurate, but considerably more efficient
than released-node variants of QMC.6,7,8 FN-DQMC
achieves its efficiency through the fixed-node approx-
imation9 which leads to a systematic error, the node location
error. Since the correlation treatment is exact, i.e., the full CI,
complete basis set limit is calculated, the node location error
results from an additional boundary condition for the elec-
tronic Hamiltonian; the nodes of aguide functionCG are
imposed on the DQMC random walk. Although the node
location error is small compared to the correlation energy it
is not insignificant in terms of chemical accuracy. In a pre-
vious paper,10 one of the authors found node location errors
of about 15 mEh for the first-row atoms and hydrides when
using the nodes of HF wave functions. It was also found that
node location errors cancel to a large extent when energy
differences such as dissociation energies were calculated.
Due to this cancellation the dissociation energies for the

first-row hydrides could be calculated in agreement with
experimental data.10 Similarly, Morosi, Mella, and
Bressanini were able to obtain excellent electron affinities.11

This cancellation is the basis of the recent success of the
FN-DQMC method for larger molecules and clusters.12–17

In this article, we assess the accuracy of the DQMC
method with Hartree–Fock nodes~DQMC/HF! based on the
correlation consistent cc-pVTZ basis set by Dunning18 using
a test set of reactions where the electronic contribution to the
reaction enthalpies have been calculated previously for a
range ofab initio methods.19 Most previous DQMC calcula-
tions have either employed pseudopotentials, even for first-
row atoms, or basis sets with Slater-type orbitals. In an all-
electron DQMC calculation, the missing electron-nucleus-
cusp of contracted Gaussian basis functions leads to a strong
increase of the variance. We propose a method to modify the
contracted Gaussian basis function close to the nucleus in
order to introduce a proper electron–nucleus cusp. With this
slight modification, we are able to use directly HF or MC-
SCF wave functions with standard basis sets in FN-DQMC
calculations. Since the node location error is completely de-
termined by theab initio wave function we use the abbrevia-
tion DQMC/HF/cc-pVTZ for a fixed-node DQMC calcula-
tion with nodes of a HF/cc-pVTZ Slater determinant
imposed on the random walk.

II. METHOD

The diffusion quantum Monte Carlo method20 is used as
in previous work10,8,2and will be discussed here only briefly.
The method is based on the projection of the ground state
with the operator,

C~r ,t!5e2tHC~r ,0!, with H52 1
2 ¹21V~r !. ~1!

C(r ,t) provides a formal solution of the time-dependent
Schrödinger equation in imaginary time (t5 i t ),

]C~r ,t!

]t
5

1

2
¹2C~r ,t!2V~r !C~r ,t!, ~2!
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which is a generalized diffusion equation. The propagation of
C(r ,t) in imaginary time is achieved with a stochastic pro-
cess by simulating the diffusion. After long simulation time
C(r ,t) converges exponentially fast toward the exact
ground state wave function which is seen when expanding
C(r ,t) in terms of the eigenfunctionsF i of H,

C~r ,t!5(
i

aie
2tEiF i . ~3!

The efficiency of DQMC is improved substantially with
importance sampling by introducing aguide functionCG

that ‘‘guides’’ the random walk toward regions whereCG is
large. The energy is calculated as

E05 lim
t→`

^FGuHe2tHFG&

^FGue2tHFG&
, ~4!

which is evaluated stochastically with the mixed estimator as
a weighted average of local energy,22

Eloc~r !5
HFG~r !

FG~r !
. ~5!

Due to the required antisymmetry, the electronic ground
state wave function has 3n21-dimensional nodal hypersur-
faces forn electrons. An approximation to the true ground
state is obtained when the nodes ofCG are imposed on the
random walk resulting in the fixed-node approximation
~FN-DQMC!.9 Mathematically, the simulation now solves
the Schro¨dinger equation with the nodes ofCG as an addi-
tional boundary condition. It can be shown that the resulting
fixed-node energy is variational:E0

~FN!>E0 .23 The error

DEnode5E0
~FN!2E0 ~6!

is known as thenode location error. If CG satisfies the Pauli
principle so will the FN-DQMC solutionC0 .

Particularly efficient guide functions are of the form,

CG5eUFab initio , ~7!

whereFab initio is a single determinant~HF! or multideter-
minant @e.g., MCSCF or PNO-CI~Ref. 21!# wave function
obtained from a precedingab initio calculation andeU a
correlation function. Obviously, the node location error de-
pends only onF. eU is a ‘‘Jastrow’’ term depending explic-
itly on the electron–electron distancesr i j ,

U5U~$r i j %!, ~8!

in order to satisfy the electron cusp condition. AlthoughE0
~FN!

is independent of the choice for the correlation function the
Jastrow term is indispensible because it removes the
electron–electron singularities in the local energyEloc . As in
previous work, the correlation functioneU is of the
Boys/Handy24 type

Uai j5(
k

Na

cka~ r̄ ai
l kar̄ a j

mka1 r̄ a j
l kar̄ ai

mka! r̄ i j
nka, ~9!

wherea and i, j refer to the nuclei and the electrons, respec-
tively, and wherer̄ is defined byr̄ 5r /(11br). This func-

tion was introduced into QMC by Schmidt and Moskowitz.25

The parameters ofU are optimized by variance minimization
with Monte Carlo methods.26

The node location error is about 0.015Eh for the atoms
C, N, O, F, and their hydrides whenF is a HF wave function
calculated with a sufficiently large STO basis set. It has been
shown in a previous paper that the node location error can-
cels to a large extent when calculating energy differences
such as dissociation energies or electron affinities.10,11 For
larger systems, it is desirable to employ standard Gaussian
basis sets which would allow to use the wave functions from
a standardab initio calculation asFab initio in the guide
functionFG . In all-electron DQMC-calculations Gauss-type
orbitals lead to diverging local energies for electrons at the
nucleus because the GTOs do not satisfy the electron–
nucleus cusp condition. This problem does not arise when
pseudopotentials replace the core electrons. This approach is
used by Mitas, Grossman, and co-workers who have been
able to carry out impressive calculations for large molecules
with pseudopotential-DQMC.12–15 In previous all-electron
calculations on C8, C10, and C20 we used a combined STO-
GTO basis set we denoted ‘‘S-31G** ’’ where the contracted
1s function of the standard 6-31G** basis set is replaced by
one STO for DQMC and a 10 GTO contraction fitted to the
STO for theab initio calculations.

While this approach is efficient, it is desirable to use
standard basis sets in DQMC. This can be achieved by modi-
fying the 1s function of the basis set only near the nucleus
such that the electron–nucleus cusp condition is fulfilled. In
our method, we interpolate from the contracted 1s basis
function to a Slater-type function near the nucleus. This way
the effect on the energy is considerably smaller than the re-
placement of the 1s function by an STO. The cusp correc-
tionis easily implemented because the radial parts of the ba-
sis functions are implemented with cubic splines.

In Fig. 1 the cusp correction is depicted for the 1s basis
function of the carbon atom in the cc-pVTZ basis set. While
it is seen that a cusp correction for radii smaller than 0.005
bohr is sufficient to remove the problem of diverging local
energies for electrons near the nucleus we found that such a
cusp correction does not reduce the variance of the process
significantly. Thus, the efficiency of such a cusp-corrected
basis is considerably inferior to the previously used mixed
STO/GTO basis in DQMC calculations. The reason can be
seen in Fig. 2 where the second derivative of the contracted
1s basis function and of the cusp-corrected function is
shown. The fluctuations are significant in the range up to 0.1
bohr resulting in corresponding fluctuations of the local en-
ergy which in turn cause the steep increase of the variance
compared to a STO basis. The contribution of the actual cusp
correction is very small due ther 2 factor in the volume ele-
ment.

The construction of the cusp-corrected function is as fol-
lows: The parameters of a Slater-type functionae2ar1c are
fitted to the contracted function with a least-squares minimi-
zation in the ranger ,0.2 bohr, wherec is at least an order
of magnitude smaller thana. By allowing a nonzeroc the fit
is significantly improved. Due to the strong fluctuations of
the second derivative of the contracted 1s function, special
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attention must be payed to its correction. In order to guaran-
tee continuity in the second derivative it is possible to switch
from the contracted function to the Slater function only at
certain radiir corr ~see Fig. 2!. We found it necessary to fur-
ther smooth the connection of the two functions by inserting
an interpolating polynomial in a very small interval of length
0.001 bohr atr corr before the 1s function. In order to achieve
differentiability in the second derivative we start with the
construction of the interpolating polynomial of the second
derivative. A cubic polynomial is chosen whose parameters
are determined by requiring continuity and differentiability
at the ends of the interval. The polynomials for the first de-
rivative and the function itself are obtained by integration
under the condition of continuity and differentiability again
at both ends of the interval. This condition requires a slight
modification for the Slater-type function which becomes by
integration of the second derivative,

f Slater~r !5ae2ar1b8r 1c8. ~10!

For small intervals theb8 and c8 parameters deviate negli-
gibly from 0 andc and guarantee differentiability for the
cusp-corrected function. The final function and its two de-

rivatives are replaced by cubic splines and used in this form
for the local energy evaluation. We use 4000 nonequally
spaced spline points obtained from a mapping of the interval
@0, 1# onto @0,̀ # with the function xi5a ih/(12 ih), i
50,...,n21, whereh51/n anda50.1.

Since the 2s function also lacks a correct electron-
nucleus cusp, we constructed cusp-corrected 2s functions
analogously. The radial part of the 2s function of the cc-
pVTZ basis set is negative atr 50. Therefore, the same form
of the Slater-type function can be used with a negative value
for a. The 2s correction is of minor importance, but it leads
to a further reduction of the variance.

In Table I the reduction of the variance is demonstrated
for the carbon atom. The guide function is the product of the
HF/cc-pVTZ Slater determinant with different correction ra-
dii r corr in the 1s and 2s function and the same nine-term
Jastrow term of the Schmidt/Moskowitz type.25 The actual
values for the correction radii are due to the continuity re-
quirement in the second derivative~see Fig. 2!.

The reduction of the variance is not the only effect of the
cusp correction. For actual FN-DQMC calculations it may be
even more important that the time step error is greatly re-
duced by introducing the cusp correction in the form sug-
gested here. The time step error for the C atom guide func-
tion with uncorrected 1s cc-pVTZ functions is so large that
we have not been able to extrapolate savely tot→0. Instead,
we employed the variational QMC~VQMC! method to cal-
culate the energy differenceDE between the uncorrected
function and the corrected function withr corr50.115 bohr.
Using VQMC, we obtainDE50.1(3) mEh , i.e., no devia-

FIG. 1. Cusp correction~solid line! for the carbon 1s cc-pVTZ contracted
basis function~dashed line! with a correction radiusr corr50.115 bohr.

FIG. 2. Cusp correction~solid line! for the second derivative of the carbon
1s cc-pVTZ contracted basis function~dashed line! with a correction radius
r corr50.115 bohr.

FIG. 3. Time step error for the carbon atom with different cusp correction
radii r 50.035 ~dotted line!, r 50.080 ~dashed line!, and r 50.115 bohr
~solid line!.

TABLE I. Variance reduction for different correction radii~in bohr!. Carbon
atom with cc-pVTZ basis set and nine-term Jastrow function.

r corr Var

0.000 50.0
0.035 1.9
0.080 0.94
0.115 0.78
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tion of statistical significance is found. The increase of the
time step error is possibly caused by the fluctuation of the
drift near the nucleus due to the contraction~Fig. 3!.

III. RESULTS AND CONCLUSION

With the new cusp correction procedure, we are now
able to employ directlyab initio wave functions obtained
with standard methods and standard basis sets in FN-DQMC
calculations. Assuming sufficiently small time steps the re-
maining node location error depends only on the nodes of

this wave function. In this paper, we assess the accuracy of
the DQMC/HF/cc-pVTZ method where the nodes are taken
from a HF wave function calculated with the cc-pVTZ basis
set. We use a test set of 20 molecules and 17 reactions that
has been used previously by Klopperet al. for a similar
purpose.19 Klopper et al. use this test set to investigate their
highly accurate CCSD~T!-R12 method. We compare our re-
sults with the reference reaction enthalpies compiled in this
paper and the CCSD~T! results obtained with the cc-pVDZ
and cc-pVTZ basis sets.

Since geometry optimizations with DQMC are at this
time not competitive with standard methods the procedure
used here is the combination of geometry optimization on the
MP2/cc-pVTZ level and a subsequent DQMC/HF/cc-pVTZ
single point calculation. For molecules too large for the
MP2/cc-pVTZ optimization this method would be replaced
by a DFT optimization using a hybrid gradient corrected
functional such as B3LYP.

In Table II the total energies calculated with the DQMC/
HF/cc-pVTZ method are listed for the 20 molecules of the
reaction test set suggested by Klopperet al.19 The time step
used in these calculations ist50.005 a.u. leading to time
step error of about 3 mEh , e.g., for the water molecule. We
found that the time step error cancels when calculating en-
ergy differences. A few reactions have been repeated with a
time step oft50.002 a.u. and only statistically insignificant
changes were found. The CCSD~T! energies in Table II are
taken from Klopperet al.19 These energies are obtained at
geometries optimized with the CCSD~T!/cc-pCVQZ method
and all electrons correlated. In FN-DQMC all electrons are
naturally correlated while in the CCSD~T! results in Table II
only the valence electrons are correlated which explains in
part the considerably lower total DQMC energies for all mol-
ecules considered here.

Using these data, the electronic contribution to the reac-

TABLE II. Total energies inEh calculated with DQMC/HF/cc-pVTZ com-
pared to CCSD~T!/cc-p-VXZ, X5D,T.

FN-DQMC

CCSD~T!a

cc-pVTZ cc-pVDZ

H2 21.1739~1! 21.1723 21.1634
CH2 239.1165~3! 239.0614 239.0220
CH4 240.5005~3! 240.4381 240.3868
NH3 256.5485~4! 256.4732 256.4020
H2O 276.4207~2! 276.3322 276.2410
C2H2 277.3110~4! 277.1876 277.1092
C2H4 278.5644~3! 278.4388 278.3544
HNC 293.3737~3! 293.2513 293.1632
HCN 293.3987~4! 293.2751 293.1884
HF 2100.4466~3! 2100.3379 2100.2275
N2 2109.5046~3! 2109.3739 2109.2753
N2H2 2110.6054~5! 2110.4780 2110.3670
CO 2113.2877~4! 2113.1555 2113.0544
H2CO 2114.4739~4! 2114.3338 2114.2183
HNO 2130.4371~4! 2130.2984 2130.1710
H2O2 2151.5213~3! 2151.3586 2151.1937
HOF 2175.5120~4! 2175.3343 2175.1519
CO2 2188.5429~4! 2188.3271 2188.1475
F2 2199.4841~4! 2199.2961 2199.0975
O3 2225.3410~4! 2225.1326 2224.9091

aCCSD~T! results from Klopperet al. ~Ref. 19!.

TABLE III. Electronic contribution to the reaction enthalpiesDHe ~in kJ mol21! from experiments and from DQMC/HF/cc-pVTZ and CCSD~T!/cc-pVXZ,
X5D,T calculations with differencesDDHe to the experimental results.

Reaction
Expt
DHe

DQMC cc-pVTZ cc-pVDZ

DHe DDHe DHe DDHe DHe DDHe

CH2
a1H2→CH4 2544~2! 2552~2! 28 2537 7 2529 15

C2H21H2→C2H4 2203~2! 2209~2! 26 2207 24 2215 212
C2H213H2→2CH4 2446~2! 2442~2! 4 2451 25 2457 211

N2H2→N21H2 2174b 2192~2! 218 2179 25 2188 214
CO1H2→H2CO 221~1! 232~2! 211 216 5 21 20
N213H2→2NH3 2164~1! 2186~2! 222 2146 18 2101 63

F21H2→2HF 2563~1! 2618~2! 255 2545 18 2510 53
O313H2→3H2O 2933~2! 21050~2! 2117 2912 21 2850 83

H2CO12H2→CH41H2O 2251~1! 2262~2! 211 2241 10 2217 34
H2O21H2→2H2O 2365~2! 2384~2! 219 2351 14 2328 37
CO13H2→CH41H2O 2272~1! 2294~2! 222 2257 15 2218 54

HCN13H2→CH41NH3 2320~3! 2338~2! 218 2313 7 2289 31
HNO12H2→H2O1NH3 2444~1! 2485~2! 241 2427 17 2381 63

HNC→HCN 264b 266~2! 22 263 1 266 22
H2O1F2→HOF1HF 2129~4! 2141~2! 212 2115 14 2107 22

CO214H2→2H2O1CH4 2244~1! 2272~2! 228 2226 18 2178 66
2CH2

a→C2H4 2844~3! 2871~2! 227 2830 14 2815 29

aSinglet ã 1A1 state of methylene.
bCCSD~T!-R12 energies used instead of experimental energies~Ref. 19!.
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tion enthalpies can be calculated for the whole test set. In
Table III the DQMC results are compared with the non rela-
tivistic reference data obtained from experimental 0 K en-
thalpies corrected for vibrational and relativistic
contributions27,19,28and with the CCSD~T! enthalpies calcu-
lated from the molecular energies. Both the calculated reac-
tion enthalpies and their differences to the respective refer-
ence energies are listed in Table III. By inspection it is seen
that the DQMC/HF/cc-pVTZ energies deviate less from the
reference data than the CCSD~T!/cc-pVDZ energies but
more than the CCSD~T!/cc-pVTZ values. All three methods
have the largest deviations for the reaction with ozone, and
FN-DQMC fails here completely. This failure was antici-
pated because ozone is the only molecule in the set with
significant contribution of nondynamical correlation to the
energy. Both methods, CCSD~T! and DQMC/HF are single
reference methods that should be used only with great care
for molecules with nondynamical correlation contribution. In
the case of DQMC, the remedy is easy; the HF Slater deter-
minant should be replaced by a MCSCF wave function that
catches the nondynamical correlation part while DQMC
evaluates the dynamical part. DQMC/MCSCF has been used
previously for a variety of atoms and molecules.22,29,30

Since all reactions have been written as exothermic re-
action it is obvious from Table III that the deviations from
the reference data are not statistical. While CCSD~T!/cc-
pVTZ almost in all cases underestimates the exothermicity
DQMC/HF/cc-pVTZ overestimates the exothermicity by
about the same amount.

In conclusion, we find the DQMC/HF/cc-pVTZ method
capable of predicting the reaction energies in a series of re-
actions of small molecules with an accuracy almost as good
as the CCSD~T!/cc-VTZ method and better than the
CCSD~T!/cc-pVDZ method. While the scaling of these
methods with the system size is liken7, the DQMC method
scales only liken3 to n4.
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