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A scheme for imposing the electron-nuclear cusp condition in molecular quantum Monte Carlo �QMC�
calculations using Gaussian basis functions is presented. While the constraints proposed by Ma et al. �J. Chem.
Phys. 122, 224322 �2005�� have been used, in our scheme the basis functions are modified instead of the
molecular orbitals. This method can also be directly applied to density matrix-based QMC calculations whose
effort scales linearly for calculating the local energy �J. Kussmann et al., Phys. Rev. B 75, 165107 �2007��.
Furthermore, virtually no additional computational effort in the evaluation of the local energy arises within
QMC calculations.
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I. INTRODUCTION

Quantum Monte Carlo �QMC�1–6 methods have been dis-
cussed as promising alternatives to expensive post-Hartree-
Fock methods in the field of quantum chemistry. While pro-
viding CCSD�T� accuracy,7 QMC methods also provide a
relatively soft asymptotical scaling behavior with system size
of O�N3� for a fixed number of sampling steps. Here, it has
to be stressed that the overall scaling behavior is composed
of different steps: for example, within the widely used
single-electron move algorithm, the prefactor of the cubi-
cally scaling update procedure of the matrix of cofactors is
rather small,6 so that a quadratic scaling �O�N2�� will domi-
nate the computational effort over a wide range of system
sizes. Furthermore, the number of sampling steps increases
linearly with the system size for attaining a given statistical
error bar, which increases the scaling order by 1. Recent
developments based on localized molecular orbitals8–11 and
also on the N-particle density matrix �N-PDM QMC�12 can
reduce the computational effort to asymptotically linear
�O�N�� for calculating the local energy.

Within QMC calculations, the expectation value of the
energy is determined as the average over a large number of
electronic configurations R,

�E� = L−1�
i=1

L

EL�Ri� , �1�

with EL�R�=�T −1
�R�Ĥ�T�R� as the local energy, which is

calculated with a trial wave function �T, and the number of
sampling steps L. QMC methods are intrinsically stochastic,
i.e., the results exhibit a statistical error which is proportional
to the square root of the variance of the mean value ��2� and
to the inverse square root of the number of sampling steps
�1/�L�. As it will be briefly described in the following, the
statistical error strongly depends on the quality of the pro-
vided trial wave function �T. In general, trial functions of
Slater-Jastrow type are used which are given as a product of
a single Slater determinant � from a self-consistent field
�SCF� calculation and a correlation factor eU,

�T = �eU, �2�

or in terms of the N-particle trial density,12

�N
T = �Ne2U. �3�

Since most ab initio packages use Gaussian-type basis func-
tions ��, the one-electron orbitals do not account correctly
for the electron-nuclear cusp13 if an electron approaches the
nucleus. When the electron-nuclear distance r goes to zero,
the potential energy diverges as −Z /r. For a real eigenstate of

the Hamiltonian Ĥ, the total energy is constant within the
whole configuration space, i.e., independent of the value of r.
Therefore, the kinetic energy has to diverge with r→0 into
the opposite direction in order to compensate for the poten-
tial energy. However, as a result of using Gaussian-type
functions, the kinetic energy for r→0 is finite and therefore

the local energy EL=�T −1
Ĥ�T diverges �EL→−��. These

instabilities at the nuclei lead to a large variance in the re-
sulting mean value and so to a slow convergence of the sam-
pling process.

Ma et al.14 proposed a simple scheme for adding electron-
nuclear cusps to one-electron molecular orbitals �MOs�
�i�r�. They replaced the part of the MO close to the nuclei
within a cusp-correction radius rc by an exponential function
which fulfills Kato’s cusp condition and ensures a well-
behaved local energy. Their results have shown that this ap-
proach significantly reduces the variance �2 and also slightly
lowers the resulting variational energy, while the computa-
tional effort is raised by a few percent only.

Within our N-PDM QMC algorithm,12 the scheme of Ma
et al.14 could also be used by explicitly constructing the one-
particle density matrix elements ��r ;r�� from the MOs �i�r�,

��r;r�� = �
i�occ

�i�r��i
*�r�� . �4�

However, since canonical MOs are usually delocalized over
the complete nuclear frame, this construction of the density
matrices would scale cubically with system size �O�N3��.

In order to ensure a linear-scaling behavior for the density
matrix-based QMC schemes, we propose in this work a
modification of the scheme of Ma et al.14 Instead of correct-
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ing for the cusps at the MO level, we replace the s-type basis
functions �� by an exponential function within a radius rc
around the nucleus. In this way, we are able to employ this
correction within the linear-scaling density matrix formula-
tion of QMC,12 where MOs are entirely avoided. Further-
more, no additional computational effort is introduced by
this approach since the basis functions are represented by
cubic splines. Note that this scheme can of course also be
used within MO-based QMC calculations.

After reconsidering Kato’s cusp condition in terms of the
density matrix, we describe our modified cusp-correction al-
gorithm in detail and finally present illustrative calculations.

II. ELECTRON-NUCLEAR CUSP CONDITION FOR THE
N-PARTICLE DENSITY MATRIX

Considering a nucleus of charge Z at the origin and an
electron at r, the cusp condition of Kato13 requires that the
N-particle wave function � depends linearly on the electron-
nuclear distance r in the limit r→0,

	 ����
�r



r=0

= − Z���r=0, �5�

with ��� as the spherical average of the wave function. Re-
formulating this in terms of the N-particle density matrix
gives

	 ���N�R;R���R�=R

�r



r=0
= − Z��N�R��r=0, �6�

where R and R� represent all electronic variables. Note that
the standard convention from density matrix theory is used,15

i.e., the differential operator only acts on R and after this
operation R� is replaced with R. Similar to an SCF wave
function, the N-particle density matrix is given by a determi-
nant of a matrix containing Fock-Dirac density matrix values
��r ;r��.12,15 Thus, it is sufficient to impose the cusp condi-
tion upon the one-particle density:

	 ����r;r���r�=r

�r



r=0
= − Z���0�� , �7�

where ��0� is the value for r=0. The one-particle density
matrix ��r ;r�� is constructed using the SCF density matrix
P,

��r;r�� = �
�	

P�	���r��	�r�� . �8�

Similar to Ma et al.,14 we split the density into a part arising
from s-type basis functions centered on the corresponding
nucleus ��̃� and the rest of the density �
�,

��r;r�� = �̃�r;r�� + 
�r;r��

= �
��

�̃���r��
	

P��	�	�r�� + �
��

����r��
	

P��	�	�r�� ,

�9�

where �� denotes s-type basis functions centered on the
given nucleus and �� all other basis functions. The cusp

condition is fulfilled if the one-particle density function �̃�r�
obeys Eq. �10�,

	 ���̃�r;r���r�=r

�r



r=0
= − Z��̃�0� + 
�0�� . �10�

As in Ref. 14, we use the latter equation as the basis for the
cusp correction. Note that Eq. �10� similarly holds for the
one-particle reduced density matrix ��r ;r��, i.e., for arbitrary
values of r�, since only the derivative with respect to r oc-
curs in Eq. �10�.

III. CUSP-CORRECTION ALGORITHM

Instead of replacing �̃�r� inside a given radius rc analo-
gous to Ref. 14, we replace a part of the s-type functions ���.
In order to facilitate comparability with the work of Ma et
al.,14 we use their notations, but note that the formulas in our
work correspond to basis functions. Inside the radius rc,
whose determination is described later in the text, we replace
the basis functions by

�̃���r� = C�� + sgn�����0��exp„p���r�… = C�� + R���r� ,

�11�

with

p���r� = �0
�� + �1

��r + �2
��r2 + �3

��r3 + �4
��r4, �12�

and C�� as a shift to ensure that ��̃���r�−C��� is of one sign
within rc. Since the exponential term has the sign of the
function sgn�����0��, shifting by C�� enables us to describe a
node within the correction radius rc. The constraints to de-
termine the coefficients in Eq. �11� are the same as those
proposed by Ma et al.,14 i.e., the basis functions have to be

continuous at rc �X1
��, X2

��, and X3
�� in Eqs. �13�, �14�, and

�15�� and the cusp condition in Eq. �10� has to be fulfilled

�X4
�� in Eq. �16��. The last degree of freedom is used to

ensure that the local energy is well behaved �X5
�� in Eq. �17��

which is described below.

ln�����rc� − C��� = p���rc� = X1
��, �13�

1

R���rc�
� d�̃��

dr
�

rc

= p��
� �rc� = X2

��, �14�

1

R���rc�
� d2�̃��

dr2 �
rc

= p��
� �r� + �p��

� �rc��2 = X3
��, �15�

1

RP�
� d�̃�r;r��r�=r

dr
�

0
= p��

� �0� = − Z
�̃�0� + 
�0�

RP�
= X4

��,

�16�

ln��̃���0� − C��� = p���0� = X5
��, �17�

with
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RP� = �
��

R���0��
	

P��	�	�0� . �18�

It has to be stressed that Eqs. �13�–�17� exhibit the same

relationship between the constrains X1
��−X5

�� and the differ-
ent derivatives of the polynomial p�� as in the work of Ma et
al.14 Therefore, one obtains the same analytical solution for
the expansion coefficients ���:

�0
�� = X5

��, �19�

�1
�� = X4

��, �20�

�2
�� = 6

X1
��

rc
2 − 3

X2
��

rc
+

X3
��

2
− 3

X4
��

rc
− 6

X5
��

rc
2 −

X2
��2

2
, �21�

�3
�� = − 8

X1
��

rc
3 + 5

X2
��

rc
2 −

X3
��

rc
+ 3

X4
��

rc
2 + 8

X5
��

rc
3 +

X2
��2

rc
,

�22�

�4
�� = 3

X1
��

rc
4 − 2

X2
��

rc
3 +

X3
��

2rc
2 −

X4
��

rc
3 − 3

X5
��

rc
4 −

X2
��2

2rc
2 . �23�

Considering the definition of the one-particle density ma-
trix in Eq. �9�, it becomes clear that the constrain resulting

from the cusp condition in Eq. �10� forces all parameters �1
��

to be the same for all �̃��. This is due to the fact that one can

factor out RP� only if all parameters �1
�� are the same for all

�̃�� in the sum over �� in solving Eq. �16�.
To obtain the parameters, we start with an initial guess for

the basis functions ��̃���0�=����0�� and vary these values to
obtain a well-behaved effective one-electron energy,

EL
S�r� = �̃�r�−1ĥ�̃�r;r��r�=r

= �̃�r�−1−
1

2
�2 −

Zef f

r
��̃�r;r��r�=r

= −
1

2�̃�r�	�
��

� 2p��
�

r
+ p��

� �r� + �p��
� �r��2�

�R���r��
	

P��	�	�r�
 −
Zef f

r
. �24�

In order to ensure the cusp condition in Eq. �10�, the follow-
ing equation must hold:

lim
r→0

− 1

�̃�r��
��

p��
� �r�

r
R���r��

	

P��	�	�r� −
Zef f

r
=! 0. �25�

Considering the equations above, we obtain for the effective
charge Zef f in Eq. �24�

Z

r
	1 +


�0�
�̃�0�


=! 0 ⇒ Zef f = Z	1 +

�0�
�̃�0�


 . �26�

Similar to the work of Ma et al.,14 we now vary the values of
the basis functions at r=0 in order to minimize the square
deviation from the ideal energy curve EL

ideal:

EL
ideal

Z2 = 0 + 1r2 + 2r3 + 3r4 + 4r5 + 5r6 + 6r7 + 7r8,

�27�

with 1=3.258 19, 2=−15.0126, 3=33.7308, 4=
−42.8705, 5=31.2276, 6=−12.1316, and 7=1.946 92. 0
is chosen to ensure a continuous behavior of the local energy
at rc. Since there are, in general, more than only one s-type
basis function centered on the corresponding nucleus, one
has to use a multidimensional minimizer; in our current
implementation, we use the Broyden-Fletcher-Goldfarb-
Shanno algorithm.16 Note that the energy EL

S in Eq. �24� cor-
responds to the superposition of the effective local energies
EL

S��i� for the one-electron molecular orbital �i described in
Ref. 14:

EL
S = �

i�occ

�i
˜ −1ĥ�i

˜ = �
i�occ

EL
S��i�. �28�

Therefore, the use of EL
ideal of Ref. 14 within our scheme is

justified.
The radius rc is determined in the same way as proposed

by Ma et al.:14 Starting with rc=1/Z, the radius is reduced
until the square deviation is smaller than Z2 /50. For a dis-
cussion of the influence of rc on the variance as well as the
energy, see Ref. 14.

Illustrative calculations of our scheme are presented in the
final section of this work to show the performance of our
cusp-correction approach.

IV. RESULTS

In this section, first exemplary calculations similar to
those of Ref. 14 are presented. In all calculations, a medium-
size Pople basis set �6-31G�d�� �Ref. 17� is used; the one-
particle density matrices P are obtained from Hartree-Fock
�HF� calculations with the Q-CHEM program package.18 The
automatic scheme as implemented in our package
QUANTUMMC �Ref. 19� is used, i.e., no further optimization
of the correction radius rc has been applied.

First, the behavior of the local energy of D-alanine
�C3H7O2N� is sampled for an electron “tunneling” the nitro-
gen atom of the molecule. Starting from an arbitrarily chosen
configuration, the electron with the smallest distance to the
nitrogen nucleus is chosen. The electron is then moved along
the vector connecting the initial electron and nuclear posi-
tions. The energy has been calculated for 1000 configura-
tions. The results are plotted in Fig. 1. As expected, the local
energy calculated with the uncorrected basis functions �full
line� diverges as the distance goes to zero. The cusp-
corrected basis functions, instead, yield a well-behaved local
energy over the whole range of values for r �dashed line�.
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The value of the local energy over a range of 15 000
sampling steps for D-alanine is shown in Fig. 2. A correlated
trial density has been used with a simple correlation factor of
Boys-Handy type20,21 to account for the electron-electron
correlation. As Fig. 2 shows, the uncorrected Gaussian-type
basis functions yield large negative values as a result from
configurations with electrons close to a nucleus �limr→0

−Z /r=−��. These extreme values almost completely vanish
when cusp-corrected basis functions are supplied and the
smaller variance is obvious in Fig. 2.

Finally, the results for several systems from the G1 set of
molecules22 are listed in Table I, which have been also stud-
ied in Ref. 14. All results are determined from 500 000 sam-
pling steps; the trial densities were completely uncorrelated,
i.e., no correlation factor was used. This means that the
electron-electron divergences still remain and the lowering
of the variance entirely results from the cusp correction of
the basis functions. As in Ref. 14, the variance �2 is signifi-
cantly lowered for all systems. Furthermore, the energy is
slightly lowered by the correction of the basis functions,

which can be seen for the results of, e.g., LiH or C2H6. The
presented results clearly show that our cusp-correction
scheme provides a similar improvement of the QMC results
as the original work of Ma et al.14

V. CONCLUSIONS

It has been shown that the modification of basis functions
allows us, in analogy to the work of Ma et al.,14 to account
for the electron-nuclear cusp condition in molecular many-
electron systems. For all test systems, the variance of the
energy is significantly reduced. Therefore, energies can be
obtained with small statistical errors by sampling less con-
figurations as compared to calculations using uncorrected,
Gaussian-type basis functions. Furthermore, the energy is
lowered as illustrated for several systems. In contrast to the
original scheme by Ma et al.,14 where the correction is intro-
duced to the molecular orbitals, the method presented in this
work enables an asymptotically linear-scaling behavior for

TABLE I. Comparison of VQMC energies �EVQMC� and variances ��2� for some test cases; in addition,
the HF energies are displayed �atomic units�. Calculations have been performed without correlation factors;
the HF-SCF wave function is represented within a 6-31G�d� basis. VQMC results have been obtained from
500 000 sample configurations.

Molecule EHF

Not cusp corrected Cusp corrected

EVQMC �2 EVQMC �2

LiH −7.9809 −7.980�1� 7.14�2� −7.9826�6� 1.76�1�
N2 −108.9354 −108.9�1� 390�8� −108.927�6� 25�1�
CO2 −187.6284 −187.60�1� 598�9� −187.635�9� 45�2�
SO2 −547.1579 −547.16�6� 5239�150� −547.16�1� 178�5�
CH3Cl −499.0929 −499.10�6� 7286�73� −499.10�1� 162�5�
C2H6 −79.2285 −79.22�1� 214�3� −79.237�5� 16.1�4�

FIG. 1. “Tunneling” of an electron through the nitrogen nucleus
in an alanine molecule. The local energy is shown vs the electron-
nuclear distance for uncorrected �full line� and corrected �broken
line� s-type basis functions.

FIG. 2. Fluctuation of the local energy of an alanine molecule
without �left� and with �right� cusp correction. The local energy is
plotted vs the corresponding sampling step. HF trial functions ex-
panded in a 6-31G�d� basis set have been used.
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the construction of the density within an N-PDM QMC
algorithm.12 Since the cusp-corrected basis functions are rep-
resented by cubic splines, our approach introduces no further
computational effort as compared to the use of conventional
basis functions. It has to be stressed that our cusp-correction
scheme can of course also be applied to MO-based QMC

calculations, although our scheme has been developed for a
density matrix-based framework.
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