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In this work, we present a general formulation for the evaluation of many-electron integrals which
arise when traditional one particle expansions are augmented with explicitly correlated Gaussian
geminal functions. The integrand is expressed as a product of charge distributions, one for each elec-
tron, multiplied by one or more Gaussian geminal factors. Our formulation begins by focusing on
the quadratic form that arises in the general n-electron integral. Using the Rys polynomial method
for the evaluation of potential energy integrals, we derive a general formula for the evaluation of any
n-electron integral. This general expression contains four parameters ω, θ , v , and h, which can be
evaluated by an examination of the general quadratic form. Our analysis contains general expressions
for any n-electron integral over s-type functions as well as the recursion needed to build up arbitrary
angular momentum. The general recursion relation requires at most n + 1 terms for any n-electron
integral. To illustrate the general method, we develop explicit expressions for the evaluation of two,
three, and four particle electron repulsion integrals as well as two and three particle overlap and
nuclear attraction integrals. We conclude our exposition with a discussion of a preliminary compu-
tational implementation as well as general computational requirements. Implementation on parallel
computers is briefly discussed. © 2011 American Institute of Physics. [doi:10.1063/1.3600745]

I. INTRODUCTION

The quest for accurate solutions to the Schroedinger
equation has been an important part of quantum chemistry
throughout its history. The motivation for this is straight-
forward in that there are many questions in chemistry that
rely on accurate treatments of molecules and their interac-
tions. Furthermore, chemists continue to rely on accurate
calculations1, 2 in order to measure and assess the quality of
less reliable and computationally more expedient methods.
The traditional approach has been to rely on some variant of a
CI, CC or perturbation theory expansion. Unfortunately such
expansions are slow to converge, and this slow convergence
has been attributed to two factors. The first is the combinato-
rial dilemma whereby a full-CI for an n-electron problem and
N one-electron functions scales as N factorial. The second is
attributed to the slow convergence of the “partial wave expan-
sion,” where the energy converges as O(l−3) with maximum
orbital angular momentum l in the atomic orbital basis.

It has been known since the early days of quantum chem-
istry that a good representation of the cusp condition is neces-
sary for the very accurate evaluation of wave-functions and
the properties contained in them. Expansion of the wave-
function in terms of geminals with explicit linear inter-
electron dependence is known to provide a much more rapidly
convergent solution, as demonstrated by the historic compu-
tations by Hylleras for the Helium atom3, 4 and by James and
Coolidge for the hydrogen molecule,5 subsequently extended

a)Author to whom correspondence should be addressed. Electronic mail:
komornicki@us.ibm.com.

to the nano-Hartree level of accuracy in more modern appli-
cations of essentially their same methods.6–9

Fifty years ago Boys10 and Singer11 advocated the use
of Gaussian geminal functions in such expansions. Their pro-
posal was to use a Gaussian correlation factor of the form
exp(−αr2

12) rather than r12 in the trial wave-function. In the
past twenty five years, straightforward variational computa-
tions using such explicitly correlated Gaussian basis functions
have yielded many of the lowest Born Oppenheimer energies
available today (micro-Hartree or better) for ground and ex-
cited states of two-, three-, and four-electron systems12, 13 in-
cluding: the H2 molecule,14 H+

3 and HeH+ cations,15 H3,16

the Be atom,17 and the Helium dimer.18 The lowest varia-
tional energy to date of the carbon atom 3P ground state has
also recently been obtained using explicitly correlated Gaus-
sian geminals.19 The most computationally intensive aspect of
these computations is optimization of the thousands of non-
linear parameters.19 The history and current status of explic-
itly correlated Gaussian geminals in electronic structure the-
ory has recently been reviewed by Szalewicz and Jeziorski.20

The first application of explicitly correlated Gaussian ba-
sis functions to systems of more than four electrons was that
of Pan and King in the context of second-order Møller-Plesset
theory21, 22 reformulated a few years later by Adamowicz us-
ing explicitly correlated floating spherical Gaussians which
simplifies integral evaluation.23 The first-order pair correla-
tion function in MP-2 theory lies entirely in the infinite-
dimensional subspace spanned by binary products of Hartree
Fock virtual orbitals, i.e., the virt-virt space. This, the strong
orthogonality property, was satisfied by explicitly projecting

0021-9606/2011/134(24)/244115/19/$30.00 © 2011 American Institute of Physics134, 244115-1
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the occ-occ and occ-virt components out of each individ-
ual Gaussian geminal basis function. The occ-virt compo-
nents give rise to four-electron integrals which can be ex-
pressed in terms of two-electron overlap and two-electron
repulsion integrals. The number of such two-electron repul-
sion integrals scales as N 4 N 2

gem , where Ngem is the number
of geminal basis functions. Szalewicz24, 25 overcame this se-
rious computational bottleneck by variationally removing the
occ-virt component from the entire pair correlation function
rather than projecting it out of each individual geminal basis
function. The Szalewicz weak orthogonality MP-2 functional
requires the evaluation of two- and three-electron repulsion
integrals.

An attractive alternative to the use of Gaussian geminals
is the R12 method of Kutzelnigg and Klopper26–31 employ-
ing a linear r12 correlation factor which, unlike the Gaussian
factor, can satisfy exactly the electron correlation cusp condi-
tion. Essential to the outstanding success of the R12 method
has been the development of auxiliary orbital basis sets for
the resolution of the identity which avoids the need to evalu-
ate the numerous and difficult many-electron integrals. In the
past twenty years, the R12 method has found wide application
to highly accurate variational, coupled-cluster, and perturba-
tion theoretic computations for many-electron molecules, and
more recently has been generalized to F12 theory with corre-
lation factors other than r12, e.g., exp(−α r12).32, 33

The past decade has seen a significant resurgence of in-
terest in methods that incorporate explicit correlation into
the wave-function. In 1996 Persson and Taylor proposed34 a
novel way of using a few Gaussian geminals in atomic and
molecular calculations. A very attractive aspect of their work
avoids the optimization of non-linear parameters tradition-
ally employed in such calculations. Using only a few geminal
functions (from six to nine) they demonstrated the possibility
of recovering over 90% of the correlation energy with modest
basis sets.

More recent work35–42 by a number of authors has ex-
plored a variety of methods and models for explicit elec-
tron correlation. While an exact treatment in these methods
includes the explicit evaluation of many-electron (three and
four) integrals, most implementations consider the evalua-
tion of such integrals to be computationally prohibitive. Ex-
plicit evaluation of integrals involving Gaussian geminals43

has been proposed and implemented. However, virtually all
calculations to date have relied on the use of the resolution
of the identity in which three-electron integrals are expanded
in terms of sums of products of more easily computed two-
electron integrals.

Methods for the efficient evaluation of integrals over
contracted Gaussian functions have been advanced through-
out the computational history of quantum chemistry. While
the early work of Boys44 introduced the basic formulas for
a Gaussian function, modern methods are generally cast in
terms of one of three formulations. Most of these methods
however have been restricted to the evaluation of one and two-
electron integrals required in traditional orbital expansions.
The work of Obara and Saika45 develops recursions that build
up angular momentum for each electronic charge distribution
and relies on the incomplete Gamma function for the funda-

mental integrals. Several years earlier, an alternative method
was proposed by McMurchie and Davidson46 and relies on re-
cursions based on Hermite Gaussian functions. Lastly, King,
Rys and Dupuis suggested47–49 that integrals could be evalu-
ated by developing recursions based on orthogonal polynomi-
als. Final integrals are evaluated as a finite sum over the roots
and weights of such polynomials. While it has been suggested
that all three of these approaches may be formally mapped
onto each other, the use of these methods is largely dictated
by personal familiarity and computational preference.

The early work of Boys10 addressed the evaluation of
many-electron integrals and was intended for use in very
small chemical systems. In a similar vein in the 1960s Lester
and Krauss50, 51 proposed a set of complex formulas for use
in explicitly correlated wave functions. In more modern times
several groups have proposed formulations for many-electron
integrals. In the early 1990s Kozlowski and Adamowicz52

proposed a formulation for the evaluation of multi-center and
multi-particle integrals. Cencek and Rychlewski53 also pro-
vided a formulation for multi-particle integrals where the fo-
cus was on functions of zero angular momentum. More re-
cently Persson and Taylor suggested43 and implemented54 the
evaluation of modern three-electron integrals using the formu-
lation of McMurchie and Davidson. Most recently, Saito and
Suzuki55 have derived recursion formulas for the computa-
tion of many-electron integrals. Their formulation is based on
the work of Obara and Saika45 who had developed recursion
relations for two-electron integrals. Both McMurchie David-
son and Rys polynomial methods have been applied to the
evaluation of low angular momentum, four-particle integrals
in recent studies of non-Born Oppenheimer effects.56 In our
work, we offer a general formulation for the computation of
many-electron integrals. We use the methods of Rys polyno-
mials in order to derive general formulas for the evaluation of
arbitrary n-electron integrals, for both electron repulsion as
well as nuclear attraction. Using this general formulation, we
present explicit results for two, three and four electron inte-
grals. These include not only formulas for the λ = 0 case, but
also the recursions required to build up arbitrary angular mo-
mentum on any center. Our analysis shows that the general re-
cursion relation requires at most n + 1 terms for an n-electron
integral.

In effect, the one and two-electron operators are defined
by the values of quadrature roots and weights supplied by an
external routine. It follows that the entire computational ma-
chinery described in this paper is applicable without modifi-
cation, to the evaluation of integrals for other one and two-
electron potentials characterized by appropriate quadrature
roots and weights. In particular, these computer modules can
be used to evaluate the short-range perturbation potential en-
countered in a proposed perturbation approach to the electron
correlation cusp problem.57 The proposed method has been
shown to converge systematically for the helium atom, yield-
ing energies in error at the microHartree level using only the
first-order perturbation wave function, and at the nanoHartree
level using the second-order wave function. Applications of
the method to date58 have been restricted to single-center sys-
tems, largely due to the lack of efficient machinery for the
evaluation of many-center, many-electron integrals.
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Given the recent activity in this field, we believe that
an efficient formulation and implementation of many-electron
integral computation should prove quite useful, if for no other
reason than to test the validity of the various approximations
introduced to avoid their computation. As mentioned above
virtually all calculations to date on chemically interesting
molecules have been done with two approximations. The first
is the use of the weak orthogonality functional originally sug-
gested by Szalewicz, and the second is the use of the resolu-
tion of the identity in order to reduce the cost of integral eval-
uation. While formally the three-electron integrals required in
the evaluation of the correlation energy scale as N 6 the use
of RI methods also scales as N 6, albeit with a much smaller
prefactor.

Our work is divided into several sections. In order to
make our exposition easier to follow, we develop a general
integral formulation based on charge distributions, rather than
individual atom centered orbitals. Only in the end are we con-
cerned about using the traditional transfer relations in order to
compute integrals with atom centered basis functions. All of
these are done for uncontracted sets of functions. The prob-
lem of contracting functions, or transforming them to alter-
native representations is not treated here. Some of our spe-
cific cases have required extensive algebraic manipulations
which we have solved using a well known symbolic algebra
program59 MAPLE.

Section II discusses the concepts of orbitals, geminals,
charge distributions, and properties of Rys polynomials and
introduces the M and K matrices and other notation used
throughout this paper. Once geminal couplings are intro-
duced, overlaps between charge distributions no longer factor
into one-electron products. We develop the concepts of two-
and three-electron overlap integrals in Sec. III, where we have
found that the simple treatment of overlap integrals, albeit in-
cluding a geminal coupling, offers a very convenient didactic
tool for the further development of more complicated inte-
grals. These provide a very convenient framework in which to
consider general electron repulsion integrals which we treat
in Sec. IV. It is in this section that our most general frame-
work is developed that allows us to treat any set of charge
distributions that is bound by some combination of Coulom-
bic and geminal coupling. We use this general framework to
treat the well known case of a two-electron repulsion integral
in Sec. V. Our treatment allows us to introduce a geminal cou-
pling into this traditional integral. In the limit of the geminal

coupling going to zero, the new expression reduces to the well
known case. Section VI treats the case of the three-electron
integrals. Having developed this formalism for two and three-
electron integrals we next treat the four-electron integral case
in Sec. VII. Here, we consider three types of such integrals.
For all cases, simple expressions are presented for the zero-
order integral over s type functions as well as the coefficients
for the recursions required to build up angular momentum for
each electron. We finally consider the nuclear attraction in-
tegrals in Sec. VIII. The reader should note that the kinetic
energy integral, for which the charge distribution concept is
not appropriate, is not treated in this paper.

In the concluding section, we discuss in detail the com-
putational consequences of our approach and indicate that
our approach should be very efficient and applicable to many
chemically interesting molecular systems that have been in-
accessible by previously employed methods.

II. PRELIMINARY CONCEPTS

A. Orbitals, geminals, and charge distributions

A primitive Gaussian orbital is the product of a pre-
exponential factor and a Gaussian factor, both expressed with
respect to the same center,

φa(!1) = (x1 − Xa)λx1 (y1 − Ya)λy1 (z1 − Za)λz1

× exp
(
− αa r2

1a

)
. (1)

Here !1 is the triple of (λx1, λy1, λz1) indices, (x1, y1, z1) are
Cartesian coordinates of electron 1, (Xa, Ya, Za) are the co-
ordinates of the orbital center, and αa is the exponential pa-
rameter. For an orbital, the sum l of the three λ values is gen-
erally referred to as the angular momentum of that function.
A primitive Gaussian geminal is the following function of an
inter-electron distance:

η(1, 2) = exp
(
− σ r2

12

)
. (2)

Note that no center and no λ-type indices are associated with
a geminal function. We make frequent use of the well known
Gaussian product rule that expresses the product of two Gaus-
sians as another Gaussian located at their center of mass, la-
beled p in Eqs. (3)–(5),

exp
(
− αa r2

1a

)
exp

(
− αb r2

1b

)
= Kab exp

(
− αr2

1p

)
, (3)

where

α = αa + αb, X p = (αa Xa + αb Xb)
αa + αb

,

Kab = exp (−D),

D = αaαb

αa + αb
R2

ab, Yp = (αaYa + αbYb)
αa + αb

,

r2
1p = (x1 − X p)2 + (y1 − Yp)2 + (z1 − Z p)2, Z p = (αa Za + αb Zb)

αa + αb
.

(4)
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TABLE I. Charge distribution function parameters.

Electron Pre-exponential Exponential Gaussian
label center label parameter center label

1 A α p
2 B β q
3 C γ r
4 D δ s

A product of two orbitals, both functions of the same
electron, can be expressed as a finite linear combination of
charge distribution basis functions, χ . These are products of
pre-exponential and Gaussian factors whose centers generally
differ,

χp(!1) = (x1 − X A)λx1 (y1 − YA)λy1 (z1 − Z A)λz1

× exp
(
− αr2

1p

)
. (5)

The pre-exponential factor is expanded about center A,
usually chosen to be an orbital center. The Gaussian factor is
located at the center of mass of the orbital pair.

All integral formulas derived in this paper are expressed
in terms of χ -type functions rather than orbital products. The
integrand of a molecular integral contains a product of charge
distribution functions, one for each electron, a multiplicative
operator, and one or more geminal factors. Since three λ-type
indices specify a χ factor, 3n indices specify an n-electron in-
tegral. Parameters in the n different χ -functions are denoted
using the notation in Table I. We denote the exponential gem-
inal parameters as follows: σ couples electron 1 with 2, ρ

couples electron 2 with 3, and τ couples electron 3 with 1,
when n =3, or 3 with 4, when n =4.

B. Rys quadrature and Gaussian transform

The theory of orthogonal polynomials implies that if
P(t2) is a polynomial of degree less than 2N in the variable
t2 then the following integration formula applies exactly,

∫ 1

0
dt P(t2) e−h t2 =

N∑

α=1

Wα Px
(
t2
α

)
Py

(
t2
α

)
Pz

(
t2
α

)
, (6)

where Wα and tα are known functions of h, and P(t2) is the
product of Cartesian factors. In particular, tα is the αth pos-
itive zero of the N th Rys polynomial. It is well known that
traditional nuclear-attraction and electron-repulsion integrals
over primitive Gaussian orbitals can be reduced to such one-
dimensional integrals. In this paper, we extend the analysis
to many-electron, potential energy integrals over products of
geminals and charge distribution functions and show, not sur-
prisingly, that they too reduce to integrals of the form given in
Eq. (6). In our analysis, as in the original development of the
Rys quadrature method,48 operators for the electron–nuclear
and electron–electron electrostatic interactions are expressed
as Gaussian transforms,

1
rµν

= 2√
π

∫ ∞

0
exp

(
− u2r2

µν

)
du. (7)

Thus, the general, n-particle, electron repulsion integral can
be expressed as follows:

〈∣∣r−1
µν

∣∣〉 = 2√
π

∫ ∞

0
du

〈∣∣ exp
(
− u2 r2

µν

)∣∣〉. (8)

Equations (7) and (8) can be generalized to treat other oper-
ators, but that is beyond the scope of this paper. Note that a
charge density distribution function is separable into a prod-
uct of three Cartesian factors,

χp(!1) = χxp(λx1; x1) χyp(λy1; y1) χzp(λz1; z1),

χxp(λx1; x1) = (x1 − X A)λx1 exp[−α (x1 − X p)2],

χyp(λy1; y1) = (y1 − YA)λy1 exp[−α (y1 − Yp)2],

χzp(λz1; z1) = (z1 − Z A)λz1 exp[−α (z1 − Z p)2].

(9)

Geminals are similarly separable,

η(1, 2) = ηx (x1, x2) ηy(y1, y2) ηz(z1, z2),

ηx (x1, x2) = exp[−σ (x1 − x2)2],

ηy(y1, y2) = exp[−σ (y1 − y2)2],

ηz(z1, z2) = exp[−σ (z1 − z2)2].

(10)

It follows immediately that a product of charge distribu-
tion functions and geminals separates into a product of three
Cartesian factors, gx , gy , and gz . The integral of this product
of charge distribution functions and geminals similarly sep-
arates into a product of three integrals, Gx , G y , and Gz . By
the same token, the integrand on the right hand side of Eq. (8)
separates into a product of u-dependent Gx , G y , and Gz fac-
tors. These Gx integrals, which play a key role in our analysis,
are defined and further discussed in Sec. II C.

C. The Gx integral

All integrals discussed in this paper require evaluation of
the following n-dimensional integral, where n is the number
of electrons:

Gx (!x ) =
∫

· · ·
∫ ∞

−∞
gx (!x ; x) dx,

gx (!x ; x) = exp[−Qx (x)]
∏

k=1,n

(xk − Xk)λxk , (11)

!x = (λx1, λx2, · · · , λxn).

Here x is a vector of x coordinates of the n-electrons, and
dx = dx1 · · · dxn is the n-dimensional volume element. The
squared terms in the various exponential factors are collected
together to form Qx (x),

Qx (x) = α (x1 − X p)2 + β (x2 − Xq )2 · · ·

+ σ (x1 − x2)2 + · · · (12)

Thus, Qx (x) is a quadratic form in the x coordinates. It is
convenient to collect terms as follows:

Qx (x) = x† Mx − 2F†
x x + cx , (13)
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where cx is the quadratic form evaluated at the origin of the
coordinate system:

cx = α X2
p + β X2

q + · · · (14)

Elements of the M matrix are obtained simply by inspection
of the quadratic form Q(x). Numerous examples are given
later in this paper. Comparing Eqs. (12) and (13) reveals that
Fx is a column vector formed from the x-coordinates of the
Gaussian centers in the n different charge distribution func-
tions. We define X to be a similar vector of x-coordinates of
expansion centers of pre-exponential factors in Eq. (11),

X =

⎛

⎜⎜⎝

X A

X B

· · ·

⎞

⎟⎟⎠ , Fx =

⎛

⎜⎜⎝

α X p

β Xq

· · ·

⎞

⎟⎟⎠ . (15)

The matrices M and K (its inverse) are real and symmetric. A
necessary and sufficient condition for convergence of the Gx

integral is that M be positive definite. A sufficient condition
is that the exponential parameters of all charge distribution
functions, α,β, . . ., be positive, and the exponential parame-
ters of all geminals, σ, ρ, · · ·, be non-negative. Then no terms
on the right hand side of Eq. (12) are negative, and Qx (x) is
everywhere non-negative. In any case, Qx (x) has its minimum
value at xmin where

K = M−1,

xmin = KFx ,

Qx (xmin) = cx − F†
x KFx .

(16)

Let G◦
x denote the Gx integral with all λ indices equal to zero,

G◦
x ≡ Gx (0) =

∫
· · ·

∫
exp[−Qx (x)] dx. (17)

To evaluate G◦
x , apply a unitary transformation which diago-

nalizes M and thus separates Qx (x) into a sum of one-electron
terms,

Qx (x) = cx +
n∑

i=1

(
m̄i x̄2

i − 2 f̄i x̄i
)
. (18)

Here m̄i is the i th eigenvalue of M, while f̄i and x̄i are the
corresponding elements of the transformed Fx and x vec-
tors. Then G◦

x becomes exp(−cx ) times a product of n one–
dimensional integrals each with the following form:

∫ ∞

−∞
exp(−m̄ x̄2 + 2 f̄ x̄) dx̄ =

√
π

m̄
exp

(
f̄ 2

m̄

)
. (19)

Transforming back to the original coordinate system yields
the useful result

G◦
x =

√
πn

det(M)
exp(−cx + F†

x KFx ). (20)

Eq. (16) implies that the exponent in Eq. (20) is negative if
Qx (x) is everywhere positive.

Given the value of G◦
x , the general Gx (!x ) integral can be

evaluated by recursion. The recurrence relation derives from
the fact that gx → 0 as xk → ±∞ for any electron. Thus,

∫
· · ·

∫ ∞

−∞

(
∂gx

∂xk

)
dx = 0. (21)

The partial derivative with respect to the x coordinate of elec-
tron k is

(
∂gx (!x ; x)

∂xk

)
= λxk gx (λx1, · · · , λxk − 1, · · · , λxn; x)

− 2 gx (!x ; x) (Mx − Fx )k . (22)

The first term in Eq. (22) comes from differentiating the pre-
exponential factor in Eq. (11), and the second term from dif-
ferentiating the exponential factor using Eq. (23) below. Since
the first term vanishes when λxk = 0, we are free to define gx

and Gx to be zero if any of its λ indices are negative. Differ-
entiating Eq. (13) with respect to electron coordinates gives

∇Qx (x) = 2 (Mx − Fx ). (23)

Substituting Eq. (22) into Eq. (21) and making the substitu-
tion,

(Mx − Fx ) = M(x − X) + (MX − Fx ), (24)

yields after integration a linear set of equations relating Gx

integrals with raised and lowered indices,
n∑

j=1

Mk j Gx (λx1, · · · , λx j + 1, · · · , λxn)

= (λxk/2) Gx (λx1, · · · , λxk − 1, · · · , λxn)

− Gx (!x ) (MX − Fx )k . (25)

When expressed in matrix notation this system of linear equa-
tions is

MGx
(
!+

x

)
= Lx Gx

(
!−

x

)
− Gx (!x ) (MX − Fx ), (26)

where Gx (!+
x ) is an n-dimensional vector of Gx integrals

with one raised index,

Gx (!+
x ) =

⎛

⎜⎝
Gx (λx1 + 1, λx2, · · ·)
Gx (λx1, λx2 + 1, · · ·)

· · ·

⎞

⎟⎠ , (27)

and Gx (!−
x ) is an n-dimensional vector of Gx integrals with

one lowered index,

Gx (!−
x ) =

⎛

⎜⎝

Gx (λx1 − 1, λx2, · · ·)
Gx (λx1, λx2 − 1, · · ·)

· · ·

⎞

⎟⎠ . (28)

The Lx matrix is diagonal with kth diagonal element equal
to λxk/2. Recall that the kth element of the Gx (!−

x ) vector
is zero if λxk = 0. Solving Eq. (26) for Gx (!+

x ) yields the
desired recurrence relation

Gx
(
!+

x

)
= KLx Gx

(
!−

x

)
+ Gx (!x ) Tx , (29)

where

Tx = KFx − X. (30)

The reader should note that the right-hand side of Eq. (29)
is a matrix-vector product plus the product of a scalar times
a vector, as the quantity Gx (!x ) is a scalar; furthermore, the
elements of Tx are independent of the values of the λ indices.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
130.56.64.29 On: Mon, 30 Nov 2015 08:02:49

Pierre-Francois Loos



244115-6 A. Komornicki and H. King J. Chem. Phys. 134, 244115 (2011)

The principal results of our analysis are contained in Eqs.
(20) and (29). These contain general expressions for any n-
electron integral over s-type functions as well as the recursion
needed to build up to arbitrary angular momentum. Note that
the general recursion relation requires at most n + 1 terms
for an n-electron integral. To evaluate any given Gx (!x ), first
compute G◦

x using Eq. (20), then systematically build up to
higher !x indices by repeated application of Eq. (29). Each
iteration increments a λxk index by one unit. Note that G◦

x
is a common factor in all Gx (!x ) integrals generated in this
way, and it may be convenient to explicitly separate out this
common G◦

x factor. In Sec. IV, for example, Px denotes the
ratio Gx/G◦

x .
When applying this method to the evaluation of any

given class of integrals, the relevant parameters are those in
Eq. (11) and Eq. (13); namely, the M matrix, the X and Fx

vectors, and the cx constant. Inspection of the quadratic form,
Qx , reveals that geminal parameters enter only through the
M matrix. They make no contribution to X, Fx , or cx , so the
parameters that distinguish one type of n-electron integral
from another are those derived from M, namely, det(M)
and K.

III. OVERLAP INTEGRALS

A. Two-electron overlap integrals

The two-electron overlap integral is a six-dimensional in-
tegral over a product of two primitive charge distribution basis
functions and a geminal factor,

S2(!1,!2, σ )

=
∫

· · ·
∫ ∞

−∞
dτ1 dτ2 χp(!1) χq (!2) exp

(
− σr2

12

)
. (31)

A diagrammatic representation23 of this integral in which
charge distribution functions are represented by circles and
geminals by solid lines is shown in Fig. 1. This integral can
be evaluated using the methods and notation of Sec. II C:

S2(!1,!2, σ ) = Gx (!x ) G y(!y) Gz(!z),

gx (!x , x) = (x1 − X A)λx1 (x2 − X B)λx2 exp[−Qx (x)],

Qx (x) = α(x1−X p)2 + β(x2 − Xq )2+σ (x1−x2)2.

(32)

Here, we adopt the notation M◦ and K◦ to distinguish these
matrices from corresponding u2-dependent matrices encoun-
tered in Sec. IV:

1 p

α

2 q

β

σ

FIG. 1. A diagrammatic representation of an overlap integral between two
charge distributions, coupled by a Gaussian geminal factor, σ . Charge distri-
butions are represented by circles, geminal coupling by a solid line.

M◦ =
(

α + σ −σ

−σ β + σ

)
,

(33)

K◦ = 1
det(M◦)

(
β + σ σ

σ α + σ

)
,

det(M◦) = ω,

ω = αβ + σ (α + β),

cx = α X2
p + β X2

q .

(34)

The exponent in Eq. (20) becomes

vx = cx − F†
x K◦Fx ,

vx =
(

αβσ

ω

)
(X p − Xq )2.

(35)

The general relation, Eq. (29), becomes a pair of three-term
recursion formulas,

Gx (λ1+1, λ2) = (λ1/2) K11 Gx (λ1 − 1, λ2)

+ (λ2/2) K12 Gx (λ1, λ2−1)+Tx1 Gx (λ1, λ2),

Gx (λ1, λ2 + 1) = (λ1/2) K21 Gx (λ1 − 1, λ2)

+ (λ2/2) K22 Gx (λ1, λ2−1)+Tx2 Gx (λ1, λ2),

(36)

and Eq. (30) becomes

Tx1 = K11 α X p + K12 β Xq − X A,

Tx2 = K21 α X p + K22 β Xq − X B .
(37)

When all λ-type indices are zero the overlap integral is

S2(0, 0, σ ) = G◦
x G◦

y G◦
z =

(
π2

ω

)3/2

exp(−v), (38)

where

v = vx + vy + vz = αβσ

ω
R2

pq . (39)

If σ is set to zero, v vanishes and S2(!1,!2, 0) becomes
the product of overlap integrals of the two uncoupled charge
distribution functions. For any given positive value of σ , the
value of S2(0, 0, 0) decreases monotonically to zero with in-
creasing separation of the two charge distributions, and for
any given separation decreases monotonically to zero with in-
creasing σ . This is one aspect of the general principle that
geminal couplings are short range.

B. Three-electron overlap integrals

The three-electron overlap integral is a nine-dimensional
integral over a product of three primitive charge distribution
basis functions, and two geminal factors represented by the
diagram in Fig. 2,

S3(!1,!2,!3, σ, ρ)

=
∫

· · ·
∫ ∞

−∞
dτ1 dτ2 dτ3 χp(!1) χq (!2) χr (!3)

× exp
(
− σr2

12

)
exp

(
− ρr2

23

)
. (40)
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Proceeding as for the two-electron overlap integral,

S3(!1,!2,!3, σ, ρ) = Gx (!x ) G y(!y) Gz(!z),

gx (!x , x) = (x1−X A)λx1 (x2−X B)λx2 (x3−XC )λx3 exp[−Qx (x)],

Qx (x) =α(x1−X p)2+β(x2 − Xq )2+ γ (x3−Xr )2+σ (x1 − x2)2 + ρ(x2 − x3)2.

(41)

It follows that

M◦ =

⎛

⎜⎝
α + σ −σ 0

−σ β + σ + ρ −ρ

0 −ρ γ + ρ

⎞

⎟⎠ , (42)

K◦ = 1
det(M◦)

⎛

⎜⎝

(β + σ )(γ + ρ) + γρ (γ + ρ)σ σρ

(γ + ρ)σ (α + σ )(γ + ρ) (α + σ )ρ

σρ (α + σ )ρ (α + σ )(β + ρ) + ασ

⎞

⎟⎠ , (43)

det(M◦) = ω,

ω = (α + σ )(γ + ρ)β + (α + σ )γρ + (γ + ρ)ασ,

cx = α X2
p + β X2

q + γ X2
r . (44)

The exponential part in Eq. (20) is arrived at through straight-
forward, but rather lengthy, algebraic manipulation,

vx = cx − F†
x K◦Fx = αβσ (γ + ρ)

ω
(X p − Xq )2

+ γβρ(α + σ )
ω

(Xr − Xq )2 + αγσρ

ω
(X p − Xr )2. (45)

In this case, the general relation Eq. (29), becomes a set of
three, four–term recursion equations.
For example, the following equation raises the λx1 index:

Gx (λ1 + 1, λ2, λ3) = (λ1/2) K11 Gx (λ1 − 1, λ2, λ3)

+ (λ2/2) K12 Gx (λ1, λ2 − 1, λ3)

+ (λ3/2) K13 Gx (λ1, λ2, λ3 − 1)

+ Tx1 Gx (λ1, λ2, λ3), (46)

Tx1 = K11 α X p + K12 β Xq + K13 γ Xr − X A. (47)

1 p

α

2 q

β

σ

3 r

γ
ρ

FIG. 2. A diagrammatic representation of a three-electron overlap integral,
where charge distributions are coupled by two Gaussian geminal factors, σ
and ρ. Charge distributions are represented by circles, geminal couplings by
solid lines.

Analogous equations build up angular momentum on centers
B and C . When all λ-type indices are zero the three-electron
overlap integral is

S3(0, 0, 0, σ ) = G◦
x G◦

y G◦
z =

(
π3

ω

)3/2

exp(−v), (48)

where v is

v = αβσ (γ + ρ)
ω

R2
pq + γβρ(α + σ )

ω
R2

rq + αγσρ

ω
R2

pr .

(49)

In the limit of ρ going to zero, the above overlap inte-
gral reduces to a product of a one-electron integral (with a
charge distribution involving γ ) and the two-electron integral
expressed in Eq. (38). Furthermore, the exponential parame-
ter v , in Eq. (49) equals that in Eq. (39) when ρ is set to zero,
and is greater than that in Eq. (39) for all positive ρ and γ .
This inequality can be shown by detailed algebra, but more
easily simply by recalling Eq. (16) and noting that Qx (x) in
Eq. (41) is never less than Qx (x) in Eq. (32) and therefore it is
never less than Qx (xmin) in Eq. (32). Thus, adding a geminal
to the integrand has the effect of reducing its value, and the
combined effect of two geminals is greater than that of either
one by itself.

IV. ELECTRON REPULSION INTEGRALS, CONCEPTS,
AND METHODS

Various classes of two-, three-, and four-electron repul-
sion integrals are discussed individually in later sections of
this paper. All have a common structure. The present section
describes this structure and shows how it can be exploited.
Let the general, n-particle, electron repulsion integral be ex-
pressed as the integral in Eq. (8) whose integrand separates
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TABLE II. Various quantities that arise in the analysis of electron repulsion
integrals, and whether they are or are not invariant with respect to changing
electron labels in the Coulomb operator.

Dependent M K θ h bi j Kh H ξ Tx P(t2)
Independent M◦ K◦ ω v ai j Fx X X◦ R◦

k

into a product of three Cartesian factors,
〈∣∣ exp

(
− u2 r2

µν

)∣∣〉 = Gx (!x , u2) G y(!y, u2) Gz(!z, u2).

(50)
The Gx factor is an implicit function of X, M, Fx , and cx ,
as discussed in Sec. II C. The notation in Eq. (50) has been
modified to emphasize the dependence of Gx on u2. The op-
erator in Eq. (50) contributes a term u2 (xµ − xν)2 to Qx (x).
Inspection of Eqs. (12) and (13) shows that u2 makes a pos-
itive contribution to diagonal elements Mµµ and Mνν , and a
negative contribution to off-diagonal elements Mµν and Mνµ.
See for example, Eq. (94) in Sec. VI. By definition, M◦ is ob-
tained from M by setting u2 =0. It is shown in Appendix A
that the determinant of M is a linear function of u2, so from
any given M we can extract three parameters, ω, θ , and ξ , by
expressing the determinant as follows:

det(M) = ω + θ u2

= θ (ξ + u2),

det(M◦) = ω,

ξ = ω

θ
.

(51)

The value of ω is independent of which pair of electrons in-
teract through the Coulomb operator. On the other hand, θ ,
M, and many other quantities, do exhibit such operator de-
pendence. When the appropriate particle labels are thought
to be obvious from the context we use the simple notation,
θ , M, etc., as in Eq. (51) above. Otherwise, notation such as
θµν and M(µ, ν) is employed to explicitly exhibit the parti-
cle labels in the relevant Coulomb operator. Table II indicates
which quantities do, and which do not, depend upon electron
labels, µ and ν. All are independent of λ indices.

Recall that K is the inverse of M. Similarly, K◦ is defined
to be the inverse of M◦. It is shown in Appendix A that the el-
ements of these inverse matrices can be expressed as follows:

K ◦
i j = ai j

ω
,

Ki j = ai j + bi j u2

ω + θ u2
.

(52)

The ai j and bi j elements are independent of u2, and like
Ki j itself, are symmetric with respect to exchange of indices,
ai j =a ji and bi j =b ji , and are non-negative. We state without
proof, that for any i = 1, 2, · · · , n these elements satisfy the
following relationships:

biµ = biν, (53)

and

ai1 α + ai2 β + ai3 γ + · · · = ω,

bi1 α + bi2 β + bi3 γ + · · · = θµν .
(54)

Equation (52) provides an entirely satisfactory representation
of the K matrix for numerical applications of the recursion
relations.

For formal analysis, however, it is useful to re-express
G◦

x (u2) as a function of a new variable t2, defined and dis-
cussed below. In particular, we show that the many-electron
integral, like the more familiar two-electron repulsion inte-
gral, reduces to an integral over a Polynomial in the variable
t2. This result is summarized in Eq. (79), which is the working
equation for the evaluation of all electron repulsion integrals
considered in this paper.

Substitute Eq. (51) into the general expression, Eq. (20),
for the zero-index Gx integral,

G◦
x (u2) =

√
πn

θ
(ξ + u2)−1/2 exp

(
−cx + F†

x KFx
)
. (55)

Define a new integration variable, t ,

t = u
(ξ + u2)1/2

, dt = ξ

(ξ + u2)3/2
du. (56)

Integration limits, u =0→∞, correspond to t =0→1. Using
Eq. (56), the factor of 2/

√
π and the differential du in

Eq. (8) can be combined with the pre-exponential factor
in Eq. (55) and with identical factors from G y and Gz to give
the following quantity which appears in the general n-particle,
electron repulsion integral:

2√
π

[√
πn

θ
(ξ + u2)−1/2

]3

du = 2 π (3n−1)/2

ω
√

θ
dt. (57)

Eq. (56) together with ω=θξ imply the following identity,
which is valid for any a and b:

a + b u2

ω + θ u2
= a

ω
+

(
b
θ

− a
ω

)
t2. (58)

Equations. (52) and (58) imply that K is a linear function of
t2,

K = K◦ + t2 Kh, (59)

where Kh is a symmetric n-by-n matrix with elements,

(Kh)i j = bi j

θ
− ai j

ω
. (60)

Eq. (59) implies that the exponent in Eq. (55) is also a linear
function of t2,

cx − F†
x KFx = vx + hx t2, (61)

where

vx = cx − F†
x K◦ Fx , (62)

hx = −F†
x KhFx . (63)

The vx parameter in Eq. (62) has the same value as vx in the
corresponding overlap integral. The hx parameter in Eq. (63)
is non-negative. This can be proven using Eqs. (16) and (61)
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which imply that vx is the minimum value of Qx when u2 is
zero, and that vx + hx is the minimum value when u2 reaches
infinity. The minimum value of Qx will certainly not decrease
upon addition of the u2 (xµ − xν)2 term, so vx + hx is cer-
tainly not less than vx . It is possible however, that hx is zero.
For example, when all centers p, q, r, · · · lie in the x = 0
plane then cx =0 and Fx =0, in which case vx =hx =0.

In principle, computation of the key parameter, hx , is a
straightforward algebraic exercise involving small matrices
and vectors. One can analytically invert M to get K, K◦, and
Kh . Then hx can be obtained from Fx and Kh using Eq. (63).
Performing these steps is relatively easy for two-electron inte-
grals, but becomes increasingly tedious with increasing num-
ber of electrons and provides little insight into the resulting
value of hx . Thus, we are motivated to look for simplifica-
tions. It is shown in Appendix B that Kh is a matrix of rank 1
with negative eigenvalue that can be expressed as follows:

Kh = −
(

1
ωθ

)
H H†, (64)

where θ and ω are given by Eq. (51), and H is a column vector
generated from columns µ and ν of the K◦ matrix,

H = ω K◦ V. (65)

Here V is a column vector with elements Vµ =1, Vν =−1,
and all other elements zero. Substituting Eq. (64) into Eq. (63)
shows that hx is proportional to the square of the dot product
of the H and Fx vectors,

hx =
(

1
ωθ

)
(H† Fx )2. (66)

This expression for the hx parameter is itself useful for com-
putation, but we feel that one can better appreciate the mag-
nitude of hx by relating it to the R◦ centers defined below.
Substituting Eq. (65) into the vector dot product formula, re-
calling that K◦ is a symmetric matrix, and noting the particu-
larly simple form of the V vector gives

H† Fx = ω V† K◦ Fx = ω [(K◦ Fx)µ − (K◦ Fx)ν]. (67)

This result suggests that we construct a column vector X◦,
defined to be the following matrix-vector product:

X◦ ≡ K◦ Fx . (68)

The vector dot product in Eq. (66) can be expressed in terms
of the difference between two particular elements of this vec-
tor,

H† Fx = ω
(
X◦

µ − X◦
ν

)
. (69)

Thus, we find it useful to define a set of new position vectors,
R◦

k , one for each of the n-electrons,

R◦
k = X◦

k i + Y ◦
k j + Z◦

k k. (70)

The x-type Cartesian coordinate of R◦
k is taken from row k of

the X◦ vector. Similarly, Y ◦
k and Z◦

k are taken from row k of
the K◦ Fy and K◦ Fz vectors, respectively. If all geminal pa-
rameters are zero, σ = ρ = τ · · · = 0, then X◦ reduces to X in
Eq. (15), and R◦

k reduces to the Gaussian center of the charge
distribution for electron k, labeled p q r · · · in Table I. If dis-
tinct centers p and q are coupled by a Gaussian geminal with

parameter σ , then their R◦ centers are displaced toward one
another, the magnitude of the displacement increasing with
increasing σ . The R◦ centers are properties of the charge dis-
tribution functions and geminals, independent of the Coulomb
operator. In fact, they appear in expressions for matrix ele-
ments of various other operators as well, See for example,
Eqs. (16), (30), and (47). Note that Eq. (47), when expressed
in this notation, becomes Tx1 = X◦

1 − X A, which applies to
overlap integrals. Later in this paper, the R◦ centers will reap-
pear in formulas for nuclear attraction integrals. Substituting
the above results into Eq. (66) gives the final expression for
the h parameter

h = hx + hy + hz = ξ
∣∣R◦

µ − R◦
ν

∣∣2
. (71)

Here, µ and ν label the electrons in the Coulomb operator,
ξ = ω/θµν , and R2

µν denotes the square of the distance be-
tween the pair of R◦ centers associated with this pair of elec-
trons. The vx parameter is conveniently expressed in terms of
the dot-product of vectors Fx and X◦,

vx = cx − F†
x X◦,

v = vx + vy + vz .
(72)

It is useful to introduce Px ≡Gx/G◦
x . The value of Px de-

pends upon the index vector, !x , and the u2 variable. Recall
that t2 and u2 are equivalent variables related by t2 = u2/(ξ
+ u2). It is more convenient to regard Px as an explicit func-
tion of t2 rather than of u2. So in this notation Gx becomes

Gx (!x , u2) = G◦
x (u2) Px (!x , t2). (73)

The analogue of Eq. (17) is

Px (0, t2) = 1, (74)

and the analogue of Eq. (29) is

Px
(
!+

x

)
= KLx Px

(
!−

x

)
+ Px (!x ) Tx . (75)

Here, Px (!+
x ) and Px (!−

x ) are n-dimensional vectors of Px el-
ements, with one raised or lowered index, respectively, given
by Eqs. (27) and (28) with Px in place of Gx . Let ℓx denote
the sum of x-type lambda indices,

ℓx =
n∑

k=1

λxk . (76)

We now proceed to prove that Px (λx , t2) is a polynomial of
degree ℓx in the variable t2. Proof follows by induction. Equa-
tion (74) establishes this polynomial property in the special
case ℓx =0. Equation (75) can be manipulated to show that if
the polynomial property holds for all Px with ℓx ≤ ℓ◦ then it
also holds for ℓx =ℓ◦+1. First, substitute Eqs. (59) and (64)
into (30) to show that Tx is a linear combination of three vec-
tors each of which is itself independent of t2:

Tx = X◦ − X + t2 Txh,

Txh = Kh Fx

= −
(

H†Fx

θω

)
H

= −
(

X◦
µ − X◦

ν

θµν

)
H. (77)
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The Txh vector is non-vanishing if hx is non-zero. Now substi-
tute Eq. (59) and Eq. (77) into Eq. (75) and note that Px (!+

x )
is given as a sum of four vectors,

Px (!+
x ) = K◦ Lx Px (!−

x ) + t2 Kh Lx Px (!−
x )

+Px (!x , t2) (X◦ − X) + t2 Px (!x , t2) Txh .

(78)

Let ℓ◦ be the sum of indices for a particular !x in Eq. (78),
and assume that the polynomial property holds for all !x with
ℓ(!x ) ≤ ℓ◦. Then the first term on the right of Eq. (78) is a
vector whose elements are polynomials of degree ℓ◦ − 1, the
second and third terms consist of polynomials of degree ℓ◦,
and the fourth term is a vector of polynomials of degree ℓ◦ +
1. Thus, we have established that the elements of Px (!+

x ) are
polynomials of degree ℓ(!x ) + 1. The argument breaks down
if hx =0. Further analysis shows that in those special cases
when hx vanishes, Px (!x , t2) is a polynomial of degree zero
for all !x .

We conclude that the n-electron repulsion integral over
products of primitive charge distribution functions and gemi-
nals reduces to

〈∣∣r−1
µν

∣∣〉 = 2 π (3n−1)/2

ω
√

θ
e−v

∫ 1

0
dt P(t2) e−h t2

, (79)

where ω and θ are given by Eq. (51), h by Eq. (63) or Eq.
(71), v by Eq. (62) or Eq. (72), and P(t2) is the product of
Cartesian factors,

P(t2) = Px (!x , t2) Py(!y, t2) Pz(!z, t2), (80)

where Px (!x , t2) is a polynomial in the variable t2 of degree
ℓx evaluated by recursion using Eqs. (74) and (75), and the
integral is evaluated by Eq. (6). Elements of the Tx vector are
given by Eq. (30) or Eq. (77).

The electron repulsion integral is closely related to the
overlap integral over the same charge distribution and geminal
functions. The resemblance becomes more apparent when the
overlap integral is expressed as follows:

⟨|⟩ =
(

πn

ω

)3/2

e−v P(0). (81)

The numerical values of ω and v in Eq. (79) are the same as
those in Eq. (81). This illustrates the general principle that ω

and v are characteristics of the charge distribution and gemi-
nal factors in the integrand, independent of the operator. The
P(0) factor in Eq. (81) is the constant term in the polynomial,
P(t2) in Eq. (79).

V. TWO-ELECTRON REPULSION INTEGRALS

A diagrammatic representation of an electron repulsion
integral over a pair of charge distribution functions and a gem-
inal is shown in Fig. 3,

I2(!1,!2, σ )

=
∫

· · ·
∫ ∞

−∞
dτ1 dτ2 χp(1) χq (2)

1
r12

exp
(
− σ r2

12

)
. (82)

Using the methods of Sec. IV to evaluate I2 shows more
strength than the enemy requires, but let us follow through the
steps in detail to illustrate the method. Note that the diagram
in Fig. 3 resembles that in Fig. 1 but with a dotted line rep-
resenting Coulombic interaction, in addition to the solid line,
representing geminal coupling. By the same token, formulas
for Qx , M, det(M), K, and, Gx resemble the corresponding
formulas given for the overlap integral in Sec. III A, but with
σ everywhere replaced by σ + u2. In particular, the inverse of
M is

K = 1
det(M)

(
β + σ + u2 σ + u2

σ + u2 α + σ + u2

)
. (83)

The K◦ matrix is obtained from K by setting u2 to zero. The
determinant of the M matrix is

det(M) = αβ + σ (α + β) + u2 (α + β). (84)

Values of the ai j and bi j in Eq. (52) can be obtained by in-
spection of Eq. (83) The parametrization given in Eq. (51)
combined with the above result yields

ω = αβ + σ (α + β),

θ = α + β,

ξ = αβ

α + β
+ σ.

(85)

Elements of the Kh matrix are given by Eq. (60) ,

Kh = 1
ω θ

(
−β2 αβ

αβ −α2

)
. (86)

Equations (62) and (63) give

v = αβσ

ω
R2

pq , (87)

h = (αβ)2

ω θ
R2

pq . (88)

Note that Eq. (87) agrees with Eq. (39).
Substituting the various results above into Eq. (79)

yields the following expression for the two-electron repulsion
integral,

I2(!1,!2, σ )=2 π5/2

ω
√

θ
exp

[−αβσ

ω
R2

pq

] ∫ 1

0
P(t2) e−h t2

dt.

(89)
The polynomial factors are generated by recursion using
Eqs. (74) and (75), which reduce to a pair of three-term re-
currence relations resembling Eq. (36) with Px replacing Gx

in those formulas. Using Eq. (30) and the above results for

1 p

α

2 q

β

σ

FIG. 3. A diagrammatic representation of a two-electron repulsion integral,
where charge distributions are coupled by a Gaussian geminal factor, σ .
Charge distributions are represented by circles, the geminal coupling by a
solid lines and the Coulombic repulsion by a dotted line.
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the elements of the K matrix yields the two elements of the
Tx vector,

Tx1 = (β + σ + u2)
det(M)

α Xp + (σ + u2)
det(M)

β Xq − XA,

Tx2 = (σ + u2)
det(M)

α X p + (α + σ + u2)
det(M)

β Xq − X B .

(90)

When σ is set to zero, I2 reduces to the familiar result:

I2(!1,!2, 0) = 2 π5/2

αβ
√

α + β

∫ 1

0
P(t2) e−h t2

dt, (91)

where,

h = αβ

α + β
R2

pq . (92)

VI. THREE-ELECTRON REPULSION INTEGRALS

A diagrammatic representation of an electron repulsion
integral over a product of three charge distribution functions
and three geminals is shown in Fig. 4,

I3(!1,!2,!3, σ, ρ, τ )

=
∫

· · ·
∫ ∞

−∞
dτ1 dτ2 dτ3 χp(1) χq (2) χr (3)

× 1
rµν

exp(−σ r2
12 − ρ r2

23 − τ r2
13). (93)

For the case r−1
µν = r−1

12 the M matrix is

M(1, 2) =

⎛

⎝
α + σ + u2 + τ −σ − u2 −τ

−σ − u2 β + σ + u2 + ρ −ρ

−τ −ρ γ + ρ + τ

⎞

⎠.

(94)

The parametrization of the determinant given by Eq. (51)
yields

ω = αβγ + αβ(ρ + τ ) + βγ (τ + σ ) + αγ (ρ + σ )

+ (α + β + γ )(σρ + ρτ + τσ ) (95)

and θ = θ12. Similarly, one obtains θµν for each of the three
possible Coulombic operators,

1 p

α

2 q

β

σ

3 r

γ

τ ρ

FIG. 4. A diagrammatic representation of the most general three-electron re-
pulsion integral. Charge distributions are represented by circles, the geminal
couplings by a solid lines, and the Coulombic repulsion by a dotted line.

θ12 = (α + β + γ )(ρ + τ ) + (α + β)γ ,

θ13 = (α + β + γ )(σ + ρ) + (γ + α)β,

θ23 = (α + β + γ )(τ + σ ) + (β + γ )α.

(96)

Elements of the inverse matrix, K, are given by Eq. (52) where
ω and θ are given above and the ai j and bi j values are given
in Table III. The R◦

k centers are given by Eq. (68),

R◦
1 = α a11

ω
Rp + β a12

ω
Rq + γ a13

ω
Rr ,

R◦
2 = α a21

ω
Rp + β a22

ω
Rq + γ a23

ω
Rr ,

R◦
3 = α a31

ω
Rp + β a32

ω
Rq + γ a33

ω
Rr .

(97)

Note that the coefficients of the R vectors given above obey
the sum rules stated in Eq. (54). The ai j and bi j in Table III
are also used to generate the K matrix for use in the recursion
relations in Eqs. (74) and (75).

Making the appropriate substitutions in Eq. (62) and per-
forming some lengthy algebraic manipulations yields the v
parameter in Eq. (79),

v = αγ [τ (β + σ + ρ) + σρ]
ω

R2
pr

+ βγ [ρ(α + σ + τ ) + στ ]
ω

R2
qr

+ αβ[σ (γ + ρ + τ ) + ρτ ]
ω

R2
pq . (98)

Similarly the h parameter can be obtained from Eq. (97) and
Eq. (71).

Each of these integrals is invariant with respect to per-
muting electron labels since this is tantamount to simply re-
naming the integration variables. This permutation symmetry
can be expressed in terms of the following parameter array.
The first column contains an electron label; other entries in
the row are labels of parameters associated with that electron,

⎛

⎝
1 A p α ρ

2 B q β τ

3 C r γ σ

⎞

⎠ . (99)

The expressions for the ω and v parameters are invariant with
respect to all six row permutations of this parameter array.
Many of the rather complicated expressions above simplify
when one or more geminal parameters are zero. We report
simplified formulas for two special cases designated Type I or
Type II.

A. Three-electron repulsion: Type I

In the Type I integral, electron pairs 2,3 and 1,3
are geminal-coupled and the 1,2 pair interact through the
Coulomb operator. This is commonly called the three-electron
cyclic integral,

I3(!1,!2,!3, ρ, τ )

=
∫

· · ·
∫ ∞

−∞
dτ1 dτ2 dτ3 χp(1) χq (2) χr (3)

× 1
r12

exp
(
− ρr2

23 − τr2
13

)
. (100)
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TABLE III. K matrix elements for the three-electron integral in Eq. (93).

bi j for designated operator

i j ai j r−1
12 r−1

13 r−1
23

1 1 (γ + τ )(β + σ ) + ρ(γ + τ + β + σ ) γ + ρ + τ β + σ + ρ β + γ + σ + τ

2 2 (α + σ )(γ + ρ) + τ (α + σ + γ + ρ) γ + ρ + τ α + γ + σ + ρ α + σ + τ

3 3 (β + ρ)(α + τ ) + σ (β + ρ + α + τ ) α + β + ρ + τ β + σ + ρ α + σ + τ

2 1 σ (γ + ρ + τ ) + ρτ γ + ρ + τ σ + ρ σ + τ

3 1 τ (β + σ + ρ) + σρ ρ + τ β + σ + ρ σ + τ

3 2 ρ(α + σ + τ ) + στ ρ + τ σ + ρ α + σ + τ

Setting σ to zero in Eqs. (93)–(97) gives

ω = αβ(γ+ρ + τ ) + γ (αρ+βτ ) + (α + β + γ ) ρτ,

θ = (α + β)(γ + ρ + τ ) + γ (ρ + τ ).
(101)

The expression for the v parameter simplifies somewhat to

v = αγ τ (β + ρ)
ω

R2
pr + βγρ(α + τ )

ω
R2

qr + αβρτ

ω
R2

pq .

(102)

Elements of the K matrix are given by Eq. (52) with the ai j

and bi j given in Table III with σ set to zero. The argument
to the Rys Polynomials, h, is given by (71) with R◦

1 and R◦
2

given by Eq. (97). The elements of the T vector required for
the recursion relations are given by Eq. (30):

Tx1 = K11α X p + K12β Xq + K13γ Xr −X A,

Tx2 = K21α X p + K22β Xq + K23γ Xr −X B,

Tx3 = K31α X p + K32β Xq + K33γ Xr −XC .

(103)

B. Three-electron repulsion: Type II

Electron pair 2,3 is geminal-coupled and the 1,2 pair in-
teract through the Coulomb operator in the Type II integral,

I3(!1,!2,!3, ρ)

=
∫

· · ·
∫ ∞

−∞
dτ1 dτ2 dτ3 χp(1) χq (2) χr (3)

1
r12

exp
(
−ρr2

23

)
.

(104)

The Type II integral can be considered to be the τ =0 special
case of Type I. Setting σ =τ =0 in Eqs. (93)–(97) gives

ω = α[β(γ + ρ) + γρ],

θ = (α + β)(γ + ρ) + γρ,

v = βγρ

β(γ + ρ) + γρ
R2

qr .

(105)

Elements of the K matrix are given by Eq. (52) with the ai j

and bi j given in Table III with σ and τ set to zero. The argu-
ment to the Rys Polynomials, h, is given by Eq. (71) with R◦

1
and R◦

2 given by Eq. (97),

h = ω

θ

∣∣R◦
1 − R◦

2

∣∣2
, (106)

where

R◦
1 = Rp,

R◦
2 = α β(γ + ρ)

ω
Rq + αγρ

ω
Rr .

(107)

VII. FOUR-ELECTRON REPULSION INTEGRALS

In this section, we consider four-electron integrals con-
taining two geminal couplings and one Coulombic coupling.
The three cases, designated Type I, II, III, are shown in
Figs. 5–7. All are evaluated using Eq. (79) with n = 4, and
all become identical when ρ is set to zero. In that limiting
case the four-electron integral is equal to the product of a
one–electron overlap integral on center s and a type II three-
electron repulsion integral with geminal coupling parameter
σ . This is clearly evident in all of the following expressions
below:

Type I

I4(λ1, λ2, λ3, λ4, σ, ρ)

=
∫ +∞

−∞
dτ1 dτ2 dτ3 dτ4 χ (1) χ (2) χ (3) χ (4)

× 1
r12

exp
[
− σr2

23 − ρr2
14

]
, (108)

1 p

α

2 q

β

4 s

δ
ρ

3 r

γ

σ

FIG. 5. A diagrammatic representation of the T ypeI four-electron repulsion
integral. Charge distributions are represented by circles, the geminal cou-
plings by a solid lines, and the Coulombic repulsion by a dotted line.
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1 p

α

2 q

β

3 r

γ
σ

4 s

δ
ρ

FIG. 6. A diagrammatic representation of the T ypeI I four-electron repul-
sion integral. Charge distributions are represented by circles, the geminal cou-
plings by a solid lines, and the Coulombic repulsion by a dotted line.

Type II

I4(λ1, λ2, λ3, λ4, σ, ρ)

=
∫ +∞

−∞
dτ1 dτ2 dτ3 dτ4 χ (1) χ (2) χ (3) χ (4)

× 1
r12

exp
[
− σr2

23 − ρr2
24

]
, (109)

Type III

I4(λ1, λ2, λ3, λ4, σ, ρ)

=
∫ +∞

−∞
dτ1 dτ2 dτ3 dτ4 χ (1) χ (2) χ (3) χ (4)

× 1
r12

exp
[
− σr2

23 − ρr2
34

]
. (110)

The M matrices are,
Type I

M =

⎛

⎜⎜⎜⎝

α + u2 + ρ −u2 0 −ρ

−u2 β + u2 + σ −σ 0

0 −σ γ + σ 0
−ρ 0 0 δ + ρ

⎞

⎟⎟⎟⎠
,

(111)

1 p

α

2 q

β

3 r

γ

σ

4 s

δ

ρ

FIG. 7. A diagrammatic representation of the T ypeI I I four-electron repul-
sion integral. Charge distributions are represented by circles, the geminal cou-
plings by a solid lines, and the Coulombic repulsion by a dotted line.

TABLE IV. Reduced variables for four–particle K matrices.

Type I Type II Type III

ᾱ α + δ ρ̄ α α

β̄ β + γ σ̄ β + γ σ̄ + δ ρ̄ β + γ σ̄ + δ σ̄ ρ̄

σ̄
σ

γ + σ

σ

γ + σ

σ

γ + σ + δ ρ̄

ρ̄
ρ

δ + ρ

ρ

δ + ρ

ρ

δ + ρ

Type II

M =

⎛

⎜⎜⎜⎝

α + u2 −u2 0 0

−u2 β + u2 + σ + ρ −σ −ρ

0 −σ γ + σ 0

0 −ρ 0 δ + ρ

⎞

⎟⎟⎟⎠
,

(112)
Type III

M =

⎛

⎜⎜⎜⎝

α + u2 −u2 0 0

−u2 β + u2 + σ −σ 0

0 −σ γ + σ + ρ −ρ

0 0 −ρ δ + ρ

⎞

⎟⎟⎟⎠
.

(113)

It is convenient to introduce the reduced variables defined
in Table IV. In all three cases ᾱ and β̄ reduce to α and β,
respectively, in the limit of zero σ and ρ.

As usual, the determinant of the M matrix is expressed as

det(M) = ω + u2 θ, (114)

Types I and II

ω = (δ + ρ)(γ + σ ) ᾱβ̄,

θ = (δ + ρ)(γ + σ ) (ᾱ + β̄),
(115)

Type III

ω = (δ + ρ)(γ + σ + δ ρ̄) ᾱβ̄,

θ = (δ + ρ)(γ + σ + δ ρ̄) (ᾱ + β̄).
(116)

In all three cases the ξ parameter in Eq. (71) is

ξ = ω

θ
= ᾱ β̄

ᾱ + β̄
. (117)

Elements of the K matrices are given in Table V. Set-
ting u2 = 0 yields matrix elements of K◦. Note that com-
mon factors in the numerators and denominators of Eq. (52)
have been removed. The h parameter in Eq. (79) is given by
Eq. (71) with R◦

1 and R◦
2 centers given by Eq. (68) and

Eq. (70). Explicit expressions are reported below as
Type I

R◦
1 = α

ᾱ
Rp + ρ̄δ

ᾱ
Rs,

R◦
2 = β

β̄
Rq + σ̄ γ

β̄
Rr ,

(118)
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TABLE V. Elements of four–particle K and K◦ matrices.

Type I Type II Type III

K11
β̄ + u2

(ᾱ + β̄)u2 + ᾱβ̄

β̄ + u2

(ᾱ + β̄)u2 + ᾱβ̄

β̄ + u2

(ᾱ + β̄)u2 + ᾱβ̄

K21
u2

(ᾱ + β̄)u2 + ᾱβ̄

u2

(ᾱ + β̄)u2 + ᾱβ̄

u2

(ᾱ + β̄)u2 + ᾱβ̄

K22
ᾱ + u2

(ᾱ + β̄)u2 + ᾱβ̄

ᾱ + u2

(ᾱ + β̄)u2 + ᾱβ̄

ᾱ + u2

(ᾱ + β̄)u2 + ᾱβ̄

K31 σ̄ K21 σ̄ K21 σ̄ K21

K32 σ̄ K22 σ̄ K22 σ̄ K22

K33 σ̄ K32 + 1
γ + σ

σ̄ K32 + 1
γ + σ

σ̄ K32 + 1
γ + σ + δ ρ̄

K41 ρ̄ K11 ρ̄ K21 ρ̄ K31

K42 ρ̄ K21 ρ̄ K22 ρ̄ K32

K43 ρ̄ K31 ρ̄ K32 ρ̄ K33

K44 ρ̄ K41 + 1
δ + ρ

ρ̄ K42 + 1
δ + ρ

ρ̄ K43 + 1
δ + ρ

Type II

R◦
1 = Rp,

R◦
2 = β

β̄
Rq + σ̄ γ

β̄
Rr + ρ̄δ

β̄
Rs,

(119)

Type III

R◦
1 = Rp,

R◦
2 = β

β̄
Rq + σ̄ γ

β̄
Rr + σ̄ ρ̄δ

β̄
Rs .

(120)

The v parameter in Eq. (79), computed using Eq. (62),
is reported below. Recall that v depends on the geminal cou-
plings but not on the Coulombic coupling, thus v is the same
as that for the corresponding overlap integral. In the type I in-
tegral v is the sum of two terms each resembling Eq. (39). For
the type II and III integrals v resembles that in Eq. (49) with
centers labeled as in Table I,

Type I

v = α δ ρ̄

ᾱ
R2

ps + β γ σ̄

β̄
R2

qr , (121)

Type II

v = βγ σ̄

β̄
R2

qr + βδ ρ̄

β̄
R2

qs + γ δ σ̄ ρ̄

β̄
R2

rs, (122)

Type III

v = βγ σ ′

γ̄
R2

qr + δγ ρ̄

γ̄
R2

rs + βδσ ′ρ̄

γ̄
R2

qs, (123)

where

σ ′ = σ

β + σ
, (124)

and

γ̄ = γ + β σ ′ + δ ρ̄. (125)

Here, γ̄ and σ ′ for type III are analogous to β̄ and σ̄ for type
II in the sense that center r with parameter γ in Fig. 7 is anal-
ogous to center q with parameter β in Fig. 6.

Angular momenta on centers A, B, C , or D are built, as
usual, using Eqs. (74) and Eq. (75). The elements of the T
vector are given by Eq. (30). For example, the recurrence re-
lation for building up angular momentum on center A is

Px (λ1 + 1, λ2, λ3, λ4) = (λ1/2)K11 P(λ1 − 1, λ2, λ3, λ4)

+ (λ2/2)K12 P(λ1, λ2 − 1, λ3, λ4)

+ (λ3/2)K13 P(λ1, λ2, λ3 − 1, λ4)

+ (λ4/2)K14 P(λ1, λ2, λ3, λ4 − 1)

+ Tx1 P(λ1, λ2, λ3, λ4),

(126)

where

Tx1 = K11 α X p + K12 β Xq + K13 γ Xr + K14 δ Xs − X A.

(127)

VIII. NUCLEAR ATTRACTION INTEGRALS

An n-electron nuclear attraction integral has the form of
the corresponding n-electron repulsion integral and can be
evaluated using very nearly the same computer code. The in-
tegral formula can be easily derived making use of the previ-
ously derived expression for the appropriate (n+1)-electron
repulsion integral. Consider the integral for electron µ (µ = 1
· · · n) interacting with electron n+1, where electron n+1 is
in a spherical Gaussian charge distribution on center RN with
Gaussian exponential parameter γ . The spherical Gaussian re-
duces to a point charge in the γ → ∞ limit. Similarly, one
obtains the integral for electron µ interacting with a point
dipole, or higher multipole moment, by building up angular
momentum on center RN using the usual recurrence relations.
We illustrate the method by deriving the two-electron nuclear
attraction integral from the three-electron repulsion integral
discussed in Sec. VI.

Consider the three-electron repulsion integral described
in Fig. 4, but with the dotted line, representing Coulombic in-
teraction, connecting electrons one and three rather than one
and two. Set geminal coupling parameters ρ and τ to zero
and build up angular momentum on centers p and q, but not
on center r . The resulting integral, described in Fig. 8, is that

1 p

α

2 q

β

σ

3 N

γ

FIG. 8. A diagrammatic representation of a three-electron repulsion integral
with one geminal coupling, which reduces to the two-electron nuclear attrac-
tion integral with µ = 1 in the γ → ∞ limit.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
130.56.64.29 On: Mon, 30 Nov 2015 08:02:49

Pierre-Francois Loos




244115-15 Evaluation of n-electron integrals J. Chem. Phys. 134, 244115 (2011)

for geminal-coupled charge distributions on centers p and q
interacting with a spherical Gaussian charge distribution on
center r . This center is relabeled center N in Fig. 8 in antic-
ipation of Rr becoming the nuclear position RN . The three-
electron integral Eq. (93) is rescaled by a factor of (γ /π )3/2

corresponding to a spherical Gaussian charge distribution at
center RN with unit charge. The rescaled three-electron re-
pulsion integral becomes the two-electron nuclear attraction
integral in the γ → ∞ limit,

〈∣∣r−1
µN

∣∣〉 = lim
γ→∞

(γ

π

)3/2
I3(!1,!2, 0, σ, 0, 0). (128)

The analysis below shows that this reduces to

〈∣∣r−1
µN

∣∣〉 = 2 π5/2

ω
√

θµ

e−v
∫ 1

0
dt P(t) e−h t2

, (129)

with parameters

ω = αβ + σ (α + β),

θ1 = β + σ,

θ2 = α + σ,

v = αβσ

ω
R2

pq ,

h = ω

θµ

∣∣R◦
µ − RN

∣∣2
,

(130)

and the following R◦
µ position vectors:

R◦
1 = α(β + σ )

ω
Rp + βσ

ω
Rq ,

R◦
2 = ασ

ω
Rp + β(α + σ )

ω
Rq .

(131)

The M matrix for the three-electron repulsion integral with
µ = 1 described in Fig. 8 is

M =

⎛

⎝
α + σ + u2 −σ −u2

−σ β + σ 0
−u2 0 γ + u2

⎞

⎠ . (132)

The determinant is

det M = γ (ω + θ1 u2) + ω u2. (133)

The inverse matrix is

K = 1
det(M)

⎛

⎜⎝

θ1(γ + u2) σ (γ + u2) θ1 u2

σ (γ+u2) (γ+u2)θ2+γ u2 σ u2

θ1 u2 σ u2 ω + θ1 u2

⎞

⎟⎠ .

(134)

In the γ → ∞ limit K reduces to a two-by-two matrix,

K = 1
(ω + θ1 u2)

(
θ1 σ

σ θ2 + u2

)
, when µ = 1, γ = ∞.

(135)
This is the appropriate K matrix for generating Px using Eqs.
(74) and (75) and Eq. (37), or alternatively, for generating
the Gx elements using Eq. (29) and Eq. (30). Similarly, when
electron 2 interacts with the nuclear charge the appropriate K

matrix is

K = 1
(ω + θ2 u2)

(
θ1 + u2 σ

σ θ2

)
, when µ = 2, γ = ∞.

(136)
Let ω̄ and θ̄ denote the parameters in Sec. VI to distin-

guish them from ω and θ in Eq. (130). Setting τ = ρ = 0 in
Eq. (95) and Eq. (96) gives

ω̄ = γω, (137)

θ̄ = γ θµ + ω, (138)

in agreement with Eq. (51) and Eq. (133). In the limit γ → ∞
the ratio, ξ = ω̄/θ̄ becomes

lim
γ→∞

ξ = ω

θu
. (139)

The R◦ centers in Eq. (97) reduce to those in Eq. (131), and
the first factor in Eq. (79) multiplied by the scale factor in
Eq. (128) becomes

lim
γ→∞

(γ

π

)3/2 2 π4

ω̄
√

θ̄
= 2 π5/2

ω
√

θµ

, (140)

in agreement with Eq. (129). Substituting Eq. (135) into
Eq. (36) and Eq. (37) yields the requisite recursion formulas.
For example the elements for the Tx vector become

Tx1 = 1
(ω + θ1u2)

(θ1αX p + σβ Xq ) − X A,

Tx2 = 1
(ω + θ1u2)

(σαX p + (θ2 + u2)β Xq ) − X B,

(141)

when µ = 1.
The general n-electron nuclear attraction integral is

〈∣∣r−1
µN

∣∣〉 = 2 π (3n−1)/2

ω
√

θµ

e−v
∫ 1

0
dt P(t2) e−h t2

, (142)

where ω and v have the same values as for the corresponding
n-electron overlap integral, and θµ and h depend upon µ, i.e.,
depend upon which of the n electrons interacts with the nu-
clear charge. Note that h is the only parameter that depends
explicitly upon the nuclear position, but the relevant values of
u2 (corresponding to tα in Eq. (6)) in the K matrix are func-
tions of h, and thus implicitly dependent on RN . Finally, we
note that in the limit of σ going to zero this integral reduces
to the well known one-electron integral once the charge dis-
tribution for electron two is scaled appropriately.

IX. COMPUTATIONAL DISCUSSION

While the exposition in Secs. V–VIII offers all of the
components necessary for the evaluation of each of the re-
spective integrals, it is by no means complete. Several key
ingredients are missing. First of all our development is based
on charge distributions, and not on orbitals. All of our final
expressions need to be modified by the inclusion of the Kab

factors present in Eq. (4). We have also postponed the inclu-
sion of the horizontal recursions required to transform inte-
grals based on charge distributions, to those based on atom
centered orbitals. Lastly, the evaluation of many-electron in-
tegrals over basis functions of arbitrary angular momentum
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requires us to comment on a compact and efficient evaluation
of the Rys roots and weights for a vector of arguments.

A. Rys roots and weights

The original implementation of Rys polynomials48 was
only focused on the evaluation of one and two-electron in-
tegrals. For any n-electron integral, composed of orbitals of
angular momentum l the number of Rys roots and weights
required is nl + 1. For two electron integrals, the formula
becomes 2l + 1, and for three electron integrals it becomes
3l + 1. In order to avoid the repetitive computation of the
higher order roots and weights for large numbers of argu-
ments, we have adopted a very efficient method that con-
sists of the following components. Using previously devel-
oped routines,47 we have evaluated the roots and weights, (in
quadruple precision) for arguments ranging from less than
zero, up to approximately 100. We have done this for Rys
polynomials ranging from one up to seventeen. This raw data
allows anyone to evaluate two–electron integrals with orbitals
of angular momentum up to an l value of eight, three–electron
integrals with orbitals up to an l value of five, and four–
electron integrals with orbitals of l value of four. The accuracy
of this raw data was checked using the formulas in the origi-
nal paper47 and was found to be accurate to twenty significant
figures for the lower roots while the values of the higher roots
were found to be consistent up to 14 significant figures for the
highest Rys polynomials.

Our implementation reads these tables at the be-
ginning of a calculation and pre-computes a polynomial
expansion, in terms of finite differences, for either a three
or four point interpolation procedure. The procedure we have
adopted is a numerical interpolation found in standard texts
such as Abramowitz and Stegun60 and generally referred
to as the Everett formula. Asymptotically, for large values
of the argument Rys polynomials behave as scaled Hermite
polynomials.47 Using the MAPLE program,59 we have com-
puted asymptotic formulas for the roots and weights of Rys
polynomials through degree seventeen.

Given an input vector of arguments, our integral code
computes the roots and weights using these standard interpo-
lation formulas. The computational requirement here is very
modest. Only five floating point operations per root are re-
quired for the three point formula. Alternatively, eight floating
point operations are required for the four point formula.

Large values of the arguments require only a single mul-
tiplication for each weight, and a floating point division and
subtraction for each root. Our implementation is very efficient
and in contrast to the implementation done in a previous gen-
eration of computers does require some space for the tabu-
lated finite difference expansions. Modern computers, how-
ever, have much more memory than was available to scientists
forty years ago.

B. Outline of three-electron evaluation

For any of the integral classes considered we view the
evaluation of these integrals as driven by loops over charge

distributions. We provide below a brief outline of our view
for the implementation focused on three–electron integrals.
We consider it convenient to collect basis functions into what
we call groups. This follows the development of ANO’s by
Almløf and Taylor in their development of atomic natural
orbitals.61, 62 We define a group to consist of a set of primi-
tives with a common angular momentum, and a common cen-
ter. The product of two such groups forms a vector of pair
charge distributions. For each of these charge distributions we
compute the pair quantities given by Eq. (4).

The pair quantities are ultimately combined into sets of
sextet quantities that are used for the ultimate computation of
blocks of required integrals. Once these quantities are com-
bined with the expansion of the set of geminal functions, we
are able to compute the arguments to the Rys polynomials.
Computation of the Rys roots and weights is accomplished
by the procedure outlined above.

We next compute the elements of the K matrices and
the Tx, Ty, Tz vectors used in the recursions. For the three-
electron integrals the recursions produce three dimensional
integrals in each of the three Cartesian directions. Products
of integrals in the three Cartesian directions produce the
complete n-dimensional integrals. The reader should refer to
Eq. (50) in the text. The modern literature on the evaluation of
two–electron integrals contains extensive discussions of both
the horizontal as well as vertical recursions.63–66 Ultimately,
one can transform any integral involving charge distributions
to ones involving atom centered basis functions by employing
the well known relation

χx (m, n) = χx (m + 1, n − 1) + (Xi − X j ) χx (m, n − 1).

(143)

Analogous relations apply for the remaining two Cartesian
directions. Our development in terms of charge distributions
implies that the angular momentum of the charge distribution
is the sum of the angular momenta for the respective basis
functions. Application of the recursion relationships gener-
ates a χx (m, 0) where the largest value of m is the sum of the
angular momenta from the respective basis functions. These
transfer relations can be applied either to the three dimen-
sional integrals, or to the full nine-dimensional integrals. The
choice is a matter of computational implementation and pref-
erence. The three dimensional integrals are over primitives
and have not been summed over the Rys roots. It has been ar-
gued that there is an advantage to postpone such a transforma-
tion until the full nine-dimensional integrals are available and
the sum over Rys roots is completed. These can also be con-
tracted beforehand, thereby saving significant computational
effort in certain cases. Once contracted integrals are computed
they should be available for any implementation that can use
them.

X. CONCLUSIONS

Historically, the computation of many-electron integrals
has been considered a daunting task given the rather high scal-
ing requirements that such computations impose, but we find
reasons to adopt a more sanguine attitude. Our development
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has been very general and our specific examples show that
such computations should be considered a natural extension
of traditional two-electron computations. Traditionally cal-
culations that involve explicit inter-electron functions have
been limited to rather small chemical systems. There is re-
cent activity which shows interest in the application of gem-
inal functions in variational calculations on larger chemical
systems, and for a wider range of physical effects. The group
of Hammes-Schiffer has recently proposed the use of gem-
inal correlation factors in electron-proton correlation to in-
vestigate non-adiabatic effects.56 Most recently, Varganov and
Martinez have proposed the use of geminal-augmented multi
reference based variational calculations for larger chemical
systems.67 These applications require the computation of both
three and four electron integrals. There is also interest in the
investigation molecular motion in these systems which would
require the energy gradients of the potential energy with
respect to nuclear coordinates. Our exposition allows for a
very natural extension to the computation of such derivatives.

Experience with single particle expansions has shown
that while the formal scaling of two electron integral com-
putations behaves as the fourth power of the number of basis
functions, application of realistic cutoffs to such computations
reduces the power scaling to less than 2.5. The use of such
computations in direct methods reduces the computational re-
quirements even further, as implementations screen not only
the magnitude of the integrals, but also the magnitude of the
effective density matrices that multiply such integrals.

Our exposition shows that a careful implementation
should be easily vectorizable, and very scalable. Furthermore,
it is well known that a description of cusp condition is a
relatively short range phenomenon. Applying such reasoning
to many-electron integrals suggests that pre-screening should
eliminate the computation of most integrals where charge dis-
tributions contain centers with a distance of more than one or
two bond lengths. The Kab factors in each pair function of-
ten is on the order of 10−3. In two electron computations, the
product of such charge distributions mandates that the integral
survives. For the case of many-electron integrals there will
be three or four such factors multiplied by the e−v factor in
Eq. (79). We expect that many of these integrals can be ne-
glected.

Finally, we consider that an efficient implementation
should scale to many processors in a distributed memory
environment. The work to compute each set of blocks of
multi-electron integrals is totally independent, obviating the
need for any communication during most of the computa-
tion. For the variational calculations mentioned above, the re-
duced quantities such as the Fock like matrices can be assem-
bled only at the end of the computation. Further comments
about implementation and numerical results of sample com-
putations are available as supplementary material.68
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APPENDIX A: ELEMENTS OF THE K MATRIX

Let M◦ be an n-by-n real, symmetric matrix with deter-
minant ω > 0 whose elements are independent of the variable
u, and K◦ its inverse. Let M′ be the n-by-n matrix with only
four non-zero elements,

M ′
µµ = M ′

νν = 1,

M ′
µν = M ′

νµ = −1.
(A1)

Here (µ, ν) is any specified pair of distinct indices, 1 ≤ µ

< ν ≤ n. Matrix M is the following linear combination:

M = M◦ + u2 M′, (A2)

and K is its inverse. U is an n-by-n unitary matrix whose el-
ements are those of an identity matrix, Ui j = δi j , except for
the following four elements:

Uµµ = Uνν = 1/
√

2,

Uµν = −Uνµ = 1/
√

2.
(A3)

The notation A and Â denotes a pair of matrices related by a
unitary transformation,

Â = U† AU,

A = U Â U†,
(A4)

where U is the particular unitary matrix in Eq. (A3) and A is
any n-by-n matrix. It follows that M̂′ has just one non-zero
matrix element,

M̂ ′
µµ = 2. (A5)

Thus M̂ and M̂◦ differ only in this one matrix element,

M̂µµ = M̂◦
µµ + 2 u2. (A6)

Since det(M) = det(M̂), and since u2 occurs in one and only
one element of M̂, it follows that the determinant of M is a
linear function of the variable u2,

det(M) = ω + u2 θ, (A7)

where θ is twice the cofactor of M̂µµ.
The i j th element of K̂ ≡ M̂−1 is the cofactor of M̂i j di-

vided by det(M̂). Since u2 appears in one and only one el-
ement of M̂, any cofactor of M̂ is a linear function of the
variable u2. Thus, elements of K̂ are functions of u with the
following form:

K̂i j = âi j + u2 b̂i j

ω + u2 θ
. (A8)

This form is preserved under unitary transformation, so ele-
ments of K are

Ki j = ai j + u2 bi j

ω + u2 θ
. (A9)
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Since K reduces to K◦ in the u → 0 limit, and ω > 0, ele-
ments of K◦ are

K ◦
i j = ai j

ω
. (A10)

APPENDIX B: PROPERTIES OF THE K MATRIX

The identity Eq. (58) and Eq. (A8) imply that K̂ is linear
in the variable t2

K̂ = K̂◦ + t2 K̂h, (B1)

where K̂h is a real, symmetric n-by-n matrix. The analysis be-
low establishes that K̂h has one and only one non-zero eigen-
vector, i.e., is of rank 1, and that to within an arbitrary nor-
malization factor, this eigenvector is simply column µ of the
K̂◦ matrix.

By definition, K̂ is the inverse of M̂, so

I = K̂ M̂

= (K̂◦ + t2 K̂h)(M̂◦ + u2 M̂′)

= K̂◦ M̂◦ + t2K̂h M̂◦ + u2K̂◦ M̂′ + t2 u2K̂hM̂′. (B2)

The first term on the right is itself the identity matrix, so the
three remaining terms must cancel one another. Multiplying
the sum of these three terms by (ξ + u2) and using the identity

(ξ + u2) t2 = u2 (B3)

yields

0 = u2 K̂h M̂◦ + (ξ + u2) u2 K̂◦ M̂′ + u4 K̂h M̂′. (B4)

This result is valid for all values of u, so the coefficients of u2

and u4 must vanish individually. It follows that

K̂h M̂◦ = −ξ K̂◦ M̂′, (B5)

K̂h = −ξ K̂◦ M̂′ K̂◦. (B6)

Recall that M̂′ has just a single non-zero matrix element,

M ′
i j = 2 δiµ δµj . (B7)

Making this substitution in Eq. (B6) and performing the ma-
trix multiplications yields

(K̂h)i j = −2 ξ K̂ ◦
iµ K̂ ◦

µj . (B8)

Define column vector Ĥ,

Ĥ ≡
√

2 ω K̂◦
µ, (B9)

where Âµ denotes column µ of an arbitrary matrix A. The K̂h

matrix is conveniently expressed in terms of the Ĥ vector,

K̂h = −(ωθ )−1 Ĥ Ĥ†. (B10)

Eq. (A4) implies that

Kh = UK̂h U†

= −(ωθ )−1(UĤ)(UĤ)†.
(B11)

Define column vector H,

H ≡ UĤ

=
√

2 ω (UK̂◦)µ

=
√

2 ω (K◦ U)µ
= ω K◦ V,

(B12)

where vector V is proportional to column µ of the U matrix,

V =
√

2 Uµ. (B13)

Note that V has just two non-zero elements, Vµ =1, and Vν

= −1. The central results of this analysis are

Kh = −(ωθ )−1 H H†,

H = ω
(
K◦

µ − K◦
ν

)
.

(B14)
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