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ABSTRACT: A formulation of MP2-R12 theory is presented leading to simplified
matrix elements in the R12 part. The resulting formulas are free from the integrals over
the commutator of the kinetic operator with inter-electronic distance, which means a
substantial decreasing of the computational demands. The use of an auxiliary basis set
for the resolution of identity is discussed. First results using the standard
approximation are compared with the former variants of MP2-R12 for CH2, CH4, NH3,
H2O, HF, CO, CH3OH, N2, and F2. The results show that the new formulation is not
only less demanding, but also preferred concerning the convergence properties toward
the basis set limit. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem 105: 929–936, 2005
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Introduction

I t has been known for about 75 years that in
order to achieve the proper behavior of the

wave function for inter-electronic distances close to
zero, one has to introduce the inter-electronic coor-
dinate r12 into the wave function expansions explic-
itly [1]. It is the improper description of the corre-
lation cusp [2] that causes frustratingly slow

convergence of the traditional configuration space
based wave function expansions with the size of the
employed one-electron basis set. The main practical
limitation related to direct inclusion and exact treat-
ment of r12 in the wave function is the occurrence of
many-electron integrals in the final working equa-
tions, which would make the calculations prohibi-
tive for most, but very small systems. Nevertheless,
several attempts to tackle this problem have been
made (for a review, see e.g., Refs. [3, 4]).

So far, the most practical explicitly correlated
approaches proved to be those based on the R12
theory that originates in the work of Kutzelnigg [5].
Taking the helium atom as an example, this author
showed that to satisfy the electron–electron cusp
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condition [2], and thus to enhance the convergence
of the calculated energy with respect to increasing
the basis set by functions with higher and higher
angular momenta (!), it was sufficient to extend the
usual (conventional) wave function expansion by
augmenting the reference determinant by a single
linear r12 term. Although such an ansatz would not
give rise to practical algorithms for many electron
systems either, later introduced constraints and ap-
proximations led to avoiding the need of evaluation
of the difficult three- and four-electron integrals [6].
Yet, the resulting R12 approaches provide, at least
formally, a much faster convergence with respect to
the highest angular momentum function included
in the computational basis set (L). Depending on
the approximation, the error is proportional to
(L!1)"5 or (L!1)"7, vs. (L!1)"3 for the conven-
tional wave function expansions in the configura-
tion space [6, 8].

Most closely related to the original work [5] is
the orbital-non-invariant MP2-R12 theory [8]. Soon
after, MP2-R12 was improved to its orbital invari-
ant formulation by Klopper [9]. The formulation
within the coupled cluster theory (CC-R12) [10–13]
resembles some features of the transcorrelated
Hamiltonian of Boys and Handy [14], though, with
a different correlation function, which led to more
practical method. CC-R12 in its CCSD(T)-R12 vari-
ant proved to be very accurate, and, with the given
orbital basis set, its computational complexity is
only slightly different from the conventional calcu-
lation [15].

Until recently, the R12 theories were formulated
in what is called “the standard approximation”
(SA) [6], which assumes that the finite spin orbital
space is closed under the Fock operator, i.e., assum-
ing not only the generalized Brillouin condition
(GBC)

fi
! " 0, (1)

but also the extended Brillouin condition (EBC)

fp
! " 0, (2)

where i and p denote occupied and arbitrary spin
orbitals within the finite computational basis, re-
spectively, whereas ! denotes orbitals from the or-
thogonal complement to the latter basis. At the
same time, SA assumes that the resolution of iden-
tity can be well represented within the given com-
putational basis set. The SA constraints imply that

this basis has to be saturated at least at the level of
3Locc, where Locc is the highest angular momentum
involved in the occupied spin orbitals.

Alternatively, one can use an auxiliary basis set
for the resolution of identity with the aim to
weaken this strong basis set requirement. This has
been implemented recently within the MP2-R12
theory, using diverse variants [16–20].

In this work we present the MP2-R12 from a
different perspective, within the second quantized
formalism with normal ordering with respect to the
reference. We do not apply any a priori approxima-
tions in order to evaluate the necessary matrix ele-
ments. Instead, we formulate the theory exactly
(using a complete basis) and apply approximations
to the final matrix elements. As a result, it turns out
that, unlike in the previous formulations, the inte-
grals over the commutator of the kinetic operator
with r12 are not needed. At the level of MP2-R12,
this means a computational acceleration by a factor
of at least two. First, we formulate the theory and
derive the matrix elements using auxiliary basis set
for the resolution of identity. We briefly discuss the
minimum requirements for the auxiliary set. In the
last section, we have tested this alternative ap-
proach using the standard approximation.

Theory

In the following we will denote occupied orbitals
as i, j, . . . , o; virtual spin orbitals within the com-
putational basis as a, b, c; and arbitrary spin orbitals
within the computational basis as p, q, r, s. Greek
letters #, $, %, & denote any spin orbitals within the
complete basis, and !, ', (, the spin orbitals from
the complete basis that are outside the final com-
putational one. (Note that in the early formulation
[6, 11], the Greek letters !, ', . . . denoted spin
orbitals within the full virtual space.) The basis set
is assumed to be orthonormal. We will use a tensor
notation for the integrals over any n-body operator
ôn,

o#1· · ·#n

$1· · ·$n " ##1 · · · #n!ôn!$1 · · · $n$, (3)

as well as for integral products. Einstein summation
convention is considered throughout, i.e., summa-
tions run over all indices that do not appear on both
sides of the equations.

Let !%$ be our reference determinant (Fermi vac-
uum). We will work with normal ordered n-body
replacement operators
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ã#1#2· · ·#n

$1$2· · ·$n " &ã$1$2· · ·$n

#1#2· · ·#n'† " (a$1
† a$2

† · · · a$n
† a#n · · · a#2a#1),

(4)

where a$
† and a# are the creation and annihilation

operators, respectively. The braces in Eq. (4) denote
the normal order with respect to !%$. Accordingly,
the normal ordered Hamiltonian is given as

ĤN " Ĥ ) #%!Ĥ!%$ " F̂N * ŴN, (5)

F̂N " f#
$ã$

# " &h#
$ * g! #i

$i'ã$
#, (6)

ŴN " 1
4 g! #$

%&ã%&
#$, (7)

where ĥ is the usual one-electron Hamiltonian, f̂ the
Fock operator, and ĝ * r12

"1. For our purpose (vide
infra), it will be useful to rewrite f̂ through different
contributions as

f̂ " t̂ * v̂ * ĵ ) k̂, (8)

with t̂ the kinetic energy operator, v̂ the nuclear
potential, and ĵ and k̂ being the Coulomb and ex-
change operators. Greek letters in Eqs. (6) and (7)
emphasize that the second-quantized Hamiltonian
is exact if it is defined in terms of a complete basis
set. Similarly, the operator of inter-electronic coor-
dinates in normal ordered form reads

r̂N " "
p+q

rpq ) #%$ "
p,q

rpq$%% " 1
4 r!%&

#$ã#$
%& * r!%i

#i ã#
%. (9)

Action of r̂N on !%$ yields

r̂N!%$ " &1
4 r!ab

ij ãij
ab * 1

4 r!!'
ij ãij

!' * 1
2 r!a'

ij ãij
a' * r!aj

ij ãi
a

* r!!j
ij ãi

!'!%$, (10)

where we have used the fact that only terms with
excitation operators survive. The terms that do not
contain Greek indices obviously involve substi-
tuted determinants —single and double excita-
tions— used to expand the wave function in the
conventional configuration space. Hence, it is desir-
able to outproject these contributions.

We can introduce particular pseudo-excitation
operators for what can be called r12 double excita-
tions or r12 single excitations [12]

R̃ij
kl " ãij

kl&1
2 r!!'

kl ãkl
!' * r!a'

kl ãkl
a'', (11)

R̃i
k " ãi

kr!!j
kj ãk

!. (12)

Further, one can associate these operators with sca-
lar amplitudes (ckl

ij , ck
i ) and define a global r12-exci-

tation operator

R̂ " R̂1 * R̂2*ck
iR̃i

k!1
4 ckl

ijR̃ij
kl. (13)

Let us recall that at the second order many body
perturbation theory level with Møller–Plesset split-
ting of the Hamiltonian (MP2-R12) the contribution
from R̂ is completely decoupled from the usual
(conventional) contribution, i.e.,

EMP2-R12 " EMP2 * ER12
&2' , (14)

where

ER12
&2' " #%!ŴNR̂&1'!%$*1

4 V! ij
klckl

ij . (15)

R(1) is the first-order contribution to R̂ [11]. In the
present study, we restrict ourselves to closed-shell
RHF reference. Consequently, R̂(1) - R̂2

(1). Because
we shall only deal with the first-order wave func-
tion, we use ckl

ij(1)
- ckl

ij . In Eq. (15)

V! ij
kl " #%!ŴNR̃ij

kl!%$. (16)

Using the fact that

"
!

" "
#

) "
p

, (17)

one easily gets

V! ij
kl " 1

2 g! ij
!'r!!'

kl * g! ij
!br!!b

kl " 1
2 g! ij

#$r!#$
kl ) g! ij

#qr!#q
kl

* 1
2 g! ij

pqr!pq
kl * g! ij

#br!#b
kl ) g! ij

pbr!pb
kl . (18)

The first term of the right-hand side gives (gr)ij
kl *

+i
k+j

l " +i
l+j

k * +! ij
kl. In an exact treatment, the second

and fourth terms give rise to three electron inte-
grals. This is avoided within the “standard approx-
imation” by replacing the summation over # (the
resolution of identity) by the summation over the
actual set of molecular spin orbitals. Instead, one
can approximate the resolution of identity by an
auxiliary set as first implemented by Klopper and
Samson [16] with a slightly different ansatz for R̂.
An equivalent ansatz as here was used by Valeev
[20] and quite recently as well by Fliegl et al. [21]. In
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the following discussion, we shall denote the aux-
iliary set by p., q., etc. At the same time, we auto-
matically assume that the main computational basis
is a subset of the auxiliary one, which is highly
recommended [20]. Part of the auxiliary basis that
forms an orthogonal complement to the computa-
tional one will be denoted by p/, q/, and so on.
Equation (18) then reads

V! ij
kl "

aux
+ij

kl ) g! ij
mq/r!mq/

kl ) 1
2 g! ij

pqr!pq
kl . (19)

From this result, it is easily seen that, at least for
atoms, the second term vanishes due to symmetry
reasons if the computational basis is saturated at
the level of 3Locc.

The coefficients ckl
ij from Eq. (15) can be calcu-

lated from the set of equations [11]:

#%!&R̃kl
ij '†F̂NR̂&1'!%$ * #%!&R̃kl

ij '†ŴN!%$ " 0, (20)

more explicitly given as

1
2 B! ij

mncmn
kl ) 1

2 X! ij
mn&cmn

ol fo
k * cmn

ko fo
l ' * &V! ij

kl'† " 0. (21)

The first term originates from the virtual–virtual
block of F̂N and the second term from the occupied–
occupied one. Matrix elements

X! ij
kl " #%!&R̃kl

ij '†R̃ij
kl!%$, (22)

are evaluated in a similar manner as V in Eqs. (18)
and (19), leading to

X! ij
kl " 1

2 r! ij
!'r!!'

kl * r! ij
!br!!b

kl

"
aux

&r2'ij
kl ) r!ij

mq/r!mq/
kl ) 1

2 r!ij
pqr!pq

kl (23)

Evaluation of matrix elements

B! ij
kl " #%!&R̃kl

ij '†& fa
cãc

a * fa
(ã(

a * f!
c !̃c

! * f!
(!̃(

!'R̃ij
kl!%$, (24)

is more difficult. Earlier derivations were based on
a tricky way of using the commutator [f̂, r12] and a
priori assuming the GBC. This led to final formulas
that involved integrals over [t̂, r12] in both the stan-
dard approximation “R12-A” and “R12-B” variants
[6], as well as within the mentioned auxiliary basis
set approximations [16, 18–20]. If we do not apply
any a priori approximations and simply use the
relation Eq. (17), we get

B! ij
kl " r! ij

!'f!
(r!('

kl * r! ij
!bf!

(r!(b
kl * r! ij

a'fa
(r!('

kl * r! ij
!'f!

c r! c'
kl

* r! ij
a'fa

cr! c'
kl (25)

" r! ij
#$f#

%r!%$
kl (26)

! r!ij
#bf#

%r!%b
kl ) r!ij

#qf#
%r!%q

kl (27)

! r!ij
p$fp

rr!r$
kl ) r!ij

a$fa
rr!r$

kl ) r!ij
p$fp

cr!c$
kl * r!ij

a$fa
cr!c$

kl (28)

" r!ij
p$fp

%r!%$
kl * r!ij

a$fa
%r!%$

kl ) r!ij
#$f#

r r!r$
kl * r!ij

#$f#
cr!c$

kl (29)

! r!ij
pqfp

%r!%q
kl ) r!ij

aqfa
%r!%q

kl * r!ij
#qf#

r r!rq
kl ) r!ij

#qf#
cr!cq

kl (30)

" r!ij
pbfp

%r!%b
kl ) r!ij

#bf#
r r!rb

kl * r!ij
pbfp

rr!rb
kl (31)

" r!ij
pqfp

rr!rq
kl * r!ij

pqfp
cr!cq

kl * r!ij
aqfa

rr!rq
kl ) r!ij

aqfa
cr!cq

kl . (32)

Realizing that

""
p,r

r!ij
pqfp

rr!rq
kl " ""

m,n

r!ij
mqfm

n r!nq
kl ) "

m,c

r!ij
mqfm

c r!cq
kl ) "

a,c

r!ij
aqfa

rr!rq
kl ,

(33)

the contributions from (32) are reduced to the fol-
lowing term:

&32': "r!ij
mqfm

n r!nq
kl . (34)

Further simplifications of similar kind yield

&27': "r!ij
#mf#

%r!%m
kl (35)

&28' * &34': !r!ij
m'fm

n r!n'
kl (36)

&29' * &30': "r!ij
m'fm

%r!%'
kl ) r!ij

#'f#
mr!m'

kl (37)

&31': "r!ij
pbfp

(r!(b
kl ) r!ij

!bf!
r r!rb

kl ) r!ij
pbfp

rr!rb
kl . (38)

Term (26) can be rewritten as

r! ij
#$f#

%r!%$
kl " #ij!r12f̂r12!kl$

" #ij!1
2 0r12, 0 f̂, r1211!kl$ * 1

2 #ij!0 f̂, r12
2 1!!kl$. (39)

For all the parts of f̂ that commute with r12 (i.e., v̂
and ĵ), the first term on the right-hand side clearly
disappears. For the kinetic energy operator, one can
use the identity

#ij!1
2 0r120 t̂, r1211!kl$ " +! ij

kl. (40)
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Hence, for (f̂ ! k̂) we have

r! ij
#$& f * k'#

%r!%$
kl " +! ij

kl * #ij!1
2 0r12

2 , & f̂ * k̂'1!!kl$

" +! ij
kl * 1

2 0&r2'ij
#l& f * k'#

k * &r2'ij
k$& f * k'$

l 1

* 1
2 0& f * k'i

%&r2'%j
kl * & f * k'j

&&r2'i&
kl1. (41)

Using (35)–(41) and replacing the summations
over the complete set by an auxiliary basis set re-
sults in

B! ij
kl "

aux
+ij

kl * 1
2 0&r2'ij

p.l& f * k'p.
k * &r2'ij

kp.& f * k'p.
l * h.c.1

) r!ij
p.q.kp.

r.r!r.q.
kl ) r!ij

p.mfp.
r.r!r.m

kl * r!ij
mq/fm

n r!nq/
kl ) r!ij

pbfp
rr!rb

kl

) &r!ij
mq/fm

p.r!p.q/
kl * r!ij

p/bfp/
q r!qb

kl * h.c.', (42)

where h.c. means hermitian conjugates of the terms
explicitly given within the brackets and parenthe-
ses.

Besides using the auxiliary basis set instead of
the complete basis, no approximation has been ap-
plied. We can now analyze individual contributions
and discuss the requirements for the auxiliary basis
set. As previously [6], these considerations will be
exactly valid for atoms, although computational
experience during the last decade proved them for
molecules as well.

The terms in brackets and the first term in pa-
rentheses vanish as soon as p. is of higher angular
momentum than Locc, second term in parentheses
vanishes for p. with ! + L and r!ij

mq/ disappear for q/
with ! + 3Locc. The L-expansion for the remaining
contribution from r!ij

p.q.kp.
r.r!r.q.

kl formally does not ter-
minate, but the truncation error goes as (L.!1)"7,
where L. is the highest ! included in the auxiliary
set. It follows that one needs an auxiliary set satu-
rated at least at the level of 3Locc or L, depending on
which is higher. If one wants to use the standard
approximation and does not want to use a special
auxiliary set, the same is required for the computa-
tional basis. We have used such an approach in our
preliminary test calculations presented in the next
section. We shall refer to it as approximation R12-C.

Test Calculations

The new approach has been tested for a set of
molecules including CH2, CH4, NH3, H2O, HF, CO,
CH3OH, N2, and F2. Except for CH3OH, the molec-

ular calculations were carried out at geometries
optimized at the CCSD(T)/cc-pCVQZ level [22].
The calculations for CH3OH were performed using
the frozen core MP2/ccpVTZ optimized geometry
[23] (antiperiplanar conformation). We employed
recently constructed R12-suited basis sets of
9s6p4d3f for hydrogen [24] and 19s14p8d6f4g3h [25]
for other atoms. To see the convergence behavior
toward the basis set limit, we have also used sub-
sets of the latter bases, step by step skipping the
highest angular momentum functions. All electrons
have been correlated, except for methanol, when
the 1s electrons on C and O were not involved in the
correlation treatment.

Total energies with both standard approxima-
tions B and C are given in Table I. It is seen that the
differences between R12/B and R12/C values de-
crease with the larger basis set, as expected from
the theoretical analysis. Quite encouraging is the
fact that the results with the new approach C seem
to converge faster to the basis set limit than those
with R12/B.

Figure 1 provides an overall statistical picture on
the energies given in Table I. Here, normal distri-
butions of relative deviations from the estimated
limits are depicted. The energy limit was taken as a
sum of Hartree–Fock (HF) energy with the largest
basis set and a two-point extrapolation of the cor-
relation energy from the g/f and h/f results, assum-
ing an (L!1)"7 dependence. Since the HF results
were still not at the limit, we have taken total en-
ergy deviations, although relative to the correlation
energy extrapolations. L values were taken from the
heavier atoms. Of course, there are other ways to
estimate the energy limits, but for our purpose this
was not so important since we can compare the
convergence behavior of the two methods with re-
spect to any reference.

The whole range of errors in Figure 1 is within
0.4%, which means that the differences are fairly
small. Nevertheless, smaller intervals between the
peaks for MP2-R12/C show a slightly faster con-
vergence toward the limit values than it is for
R12/B. Figure 2 depicts the mean relative errors
(2! r) of the MP2-R12 energies as functions of (L!
1)"7. Perfect linearity for R12/B is fully in accord
with the theoretical dependence. The R12/C depen-
dence is close to linear in that scale, too, although
not as perfectly. A smaller slope and slip at g/f
indicate little faster convergence than 3(L!1)"7.
Extrapolations for L 3 4 differ by about 0.03%,
which is acceptable. Recall that for R12/C, the ex-
trapolated value has actually been set to zero; thus,
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what has to be seriously considered are merely the
differences.

In Table II, individual contributions to the MP2-
R12 correlation energy for variants R12/A, R12/B,
and R12/C are given. MP2-R12/A, whose error
goes as 3(L!1)"5 [6, 9], is known usually to over-
shoot the correlation energy, and the limit is usually
achieved from below, whereas with R12/B the sit-
uation is opposite. Interestingly, for our set of mol-
ecules, the variant R12/C provided ER12

(2) values be-

TABLE I ______________________________________
Total energies at MP2-R12 level using standard
approximations B and C.*

Basis EMP2-R12/B/Eh EMP2-R12/C/Eh 2B-C/mEh

CH4

f/p "40.488495 "40.489186 0.691
f/d "40.490235 "40.490807 0.572
g/d "40.490668 "40.490960 0.292
g/f "40.490836 "40.491027 0.191
h/d "40.490848 "40.491013 0.165
h/f "40.490937 "40.491040 0.103

CH2

f/p "39.104435 "39.104755 0.320
f/d "39.105281 "39.105543 0.262
g/d "39.105575 "39.105737 0.162
g/f "39.105664 "39.105805 0.141
h/d "39.105695 "39.105794 0.099
h/f "39.105748 "39.105813 0.065

HF
f/p "100.453719 "100.454236 0.517
f/d "100.454267 "100.454612 0.345
g/d "100.455015 "100.455192 0.177
g/f "100.455052 "100.455215 0.163
h/d "100.455225 "100.455345 0.120
h/f "100.455243 "100.455346 0.103

H2O
f/p "76.427276 "76.428101 0.825
f/d "76.428359 "76.428933 0.574
g/d "76.429014 "76.429325 0.311
g/f "76.429103 "76.429387 0.284
h/d "76.429254 "76.429486 0.232
h/f "76.429303 "76.429492 0.189

NH3

f/p "56.545369 "56.546069 0.700
f/d "56.546801 "56.547296 0.495
g/d "56.547297 "56.547592 0.295
g/f "56.547424 "56.547645 0.221
h/d "56.547492 "56.547701 0.209
h/f "56.547565 "56.547712 0.147

CH3OH
f/p "115.582945 "115.584993 2.048
f/d "115.584733 "115.586446 1.713
g/d "115.586078 "115.586932 0.854
g/f "115.586259 "115.586985 0.726
h/f "115.586601 "115.587017 0.416
N2

f "109.528333 "109.529139 0.806
g "109.529495 "109.529989 0.494
h "109.529782 "109.529995 0.213

CO
f "113.308794 "113.309789 0.995
g "113.310011 "113.310531 0.520
h "113.310338 "113.310532 0.194

F2

f "199.511819 "199.513307 1.488
g "199.513518 "199.513950 0.432
h "199.513909 "199.514114 0.205

* Subsets of 19s14p8d6f4g3h basis set for nonhydrogen at-
oms and 9s6p4d3f for hydrogen are employed up to the
angular momentum functions as indicated in the first column.

FIGURE 1. Normal distributions ,(2r) of the relative
errors (2r) of the MP2-R12 energies for CH2, CH4, NH3,
H2O, HF, CO, CH3OH, N2, and F2. Errors are with re-
spect to g/f–h/f two-point extrapolations of the correla-
tion energies as described in text.

FIGURE 2. Mean relative error (2! r) of the MP2-R12
energies as a function of (L!1)"7. Calculated for a set
of CH2, CH4, NH3, H2O, HF, CO, CH3OH, N2, and F2

molecules. Errors are with respect to g/f–h/f two-point
extrapolations of the correlation energies as described
in text.
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tween R12/A and R12/B. Consequently, the errors
were closer to zero.

Conclusions

Using the second quantization formalism for
MP2-R12 without a priori approximations, we have
arrived at an alternative expression for the final
matrix elements used in the calculation. Unlike in
previous derivations, it appears that integrals over
the commutator of the kinetic operator with the
operator of inter-electronic distance, [t̂, r12], are not
necessarily needed both within the standard ap-
proximation and within the auxiliary basis ap-
proach for the resolution of identity. This gives rise
to a substantial computational saving, since the per-
tinent integrals were not only demanding as such,
but due to the nonhermicity of the commutator, one
needed twice as many of them.

The new method, denoted as variant R12/C, has
been tested for a set of 9 molecules including CH2,
CH4, NH3, H2O, HF, CO, CH3OH, N2, and F2 using
the standard approximation. Our results indicate
that the convergence behavior toward the basis set
limit might be even more favorable than it was with
the former variant R12/B. Although these prelimi-
nary results are encouraging, more tests are neces-
sary to fully assess the approach. It appears to be a
challenging alternative together with the use of
auxiliary basis set at coupled cluster level. Work in
this direction is in progress.
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KEDŽUCH, MILKO, AND NOGA

936 VOL. 105, NO. 6


