
Iterative perturbation calculations of ground and excited state energies from
multiconfigurational zeroth‐order wavefunctions
B. Huron, J. P. Malrieu, and P. Rancurel 
 
Citation: The Journal of Chemical Physics 58, 5745 (1973); doi: 10.1063/1.1679199 
View online: http://dx.doi.org/10.1063/1.1679199 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/58/12?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Exploration of zeroth-order wavefunctions and energies as a first step toward intramolecular symmetry-
adapted perturbation theory 
J. Chem. Phys. 140, 154107 (2014); 10.1063/1.4871116 
 
The calculation of excitation energies based on the relativistic two-component zeroth-order regular
approximation and time-dependent density-functional with full use of symmetry 
J. Chem. Phys. 122, 204103 (2005); 10.1063/1.1899143 
 
Bounds for the zeroth‐order exchange‐energy functional for atomic systems 
J. Chem. Phys. 105, 10493 (1996); 10.1063/1.472929 
 
A quasiparticle derivation of a zeroth‐order Hamiltonian for use in multiconfigurational perturbation
theories 
J. Chem. Phys. 98, 10102 (1993); 10.1063/1.464401 
 
Perturbation Treatment of the Helium Ground State with Correlation in Zeroth Order 
J. Chem. Phys. 49, 2547 (1968); 10.1063/1.1670452 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

150.203.123.149 On: Sun, 13 Dec 2015 23:56:03

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/701402136/x01/AIP-PT/JCP_ArticleDL_092315/AIP-2639_EIC_APL_Photonics_1640x440r2.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=B.+Huron&option1=author
http://scitation.aip.org/search?value1=J.+P.+Malrieu&option1=author
http://scitation.aip.org/search?value1=P.+Rancurel&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.1679199
http://scitation.aip.org/content/aip/journal/jcp/58/12?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/140/15/10.1063/1.4871116?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/140/15/10.1063/1.4871116?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/122/20/10.1063/1.1899143?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/122/20/10.1063/1.1899143?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/105/23/10.1063/1.472929?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/98/12/10.1063/1.464401?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/98/12/10.1063/1.464401?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/49/6/10.1063/1.1670452?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS VOLUME 58, NUMBER 12 15 JUNE 1973 

Iterative perturbation calculations of ground and excited state energies 
from multiconfigurational zeroth-order wave functions 

B. Huron 
Departement de Physique Stella ire, Observatoire de Meudon, 92 France 

J. P. Malrieu 
Laboratoire de Chimie Quantique, 13 rue P. et M. Curie, Paris 75, France 

P. Rancurel 
Departement de Radioastronomie Spatia/e, Observatoire de Meudon, 92 France 

(Received 30 July 1971) 

A method is proposed to calculate the effect of configuration interaction by a Rayleigh-Schriidinger 
perturbation expansion when starting from a multiconfigurational wavefunction. It is shown that a careless 
choice of H 0 may lead to absurd transition energies between two states, at the first orders of the 
perturbation, even when the perturbation converges for both states. A barycentric defintion of H 0 is 
proposed, which ensures the cancellation of common diagrams in the calculated transition energies. 
A practical iterative procedure is defined which allows a progressive improvement of the unperturbed 
wavefunction lIP; the CI matrix restricted to a subspace S of strongly interacting determinants is 
diagonalized. The desired eigenvector 1\10 of this matrix is perturbed by the determinants which do not 
belong to S . The most important determinants in 1\11 are added to S , etc. The energy thus obtained after 
the second-order correction is compared with the ordinary perturbation series where 1\10 is a single 
determinant. For the ground state, this procedure includes, besides the whole second-order correction, the 
most important terms of the third and fourth orders. The question of orthogonality of excited states is 
discussed. This technique, hereafter called CIPSI, has been tested on the ground and several excited states 
of H2, Ne, and MgO, showing both a rapid convergence of the calculated transition energy and the 
importance of correlation effects on transition energy. 

INTRODUCTION 

The use of a perturbation technique for the study 
of correlation corrections to various observables has 
been suggested almost immediately after the Hartree­
Fock approximation. l The many-body problem theo­
ries brought to this fundamental idea a set of powerful 
techniques-second quantization formalism, diagram­
matic representations-and very important results, 
among which one may quote essentially the superiority 
of the Rayleigh-Schrodinger over the Brillouin per­
turbation expansion,2 the linked cluster theorem,3 and 
various infinite summations of partial series.2.4 

These methods were initially applied to the electron 
gas and the nucleus. In a more or less elaborate way, 
they have been applied to the atom by Kirgnitz,5 
Kelly,6 and Tolmatchev,7 and some diatomic molecules 
by Grimaldi8 and Schulman and Kaufman9 for the 

for their speed and the interpretative nature of their 
results in terms of contributions of "physical" processes. 

At the present stage the method is essentially 
applied to the cases where the zeroth-order wave­
function is a single determinant. Some extensions of 
the method have been proposed by Sandarsu; and 
Tolmachevl6 to treat states with a zeroth-order wave­
function that must be represented as a linear com­
bination of degenerated determinants. It is actually 
possible to establish a simple diagrammatic representa­
tion of the perturbation series for an excited singlet 
(or triplet) state !/Ipq.l (or 3) built from a closed shell 
system <1>0 by a single excitation pq* (the asterisked 
orbitals represent virtual, vacant orbitals for the 
reference ground state <1>0): 

ground state energy calculation. The analogous ab initio This case is a case of spin degeneracy. The treatment 
calculations on polyatomic systems are rare,lO.n but of spatial full degeneracy does not present more 
these techniques have received several applications for difficulty. 
semiempirical calculations on polyatomic systems.l2 It is more difficult to treat the cases where one 
Analogous methods may be employed for the calcula- cannot find a satisfactory zeroth-order wavefunction 
tion of other ground state observables, especially mag- in the form of a single determinant or a linear com­
netic properties, transition probabilities, polarizabilities, bination of degenerate single determinants. This may 
and scattering properties (Kelly,13 Das,14 Sandarsl6). occur even for a "closed-shell" system when several 

The perturbative methods are especially attractive determinants interact strongly; one may quote as an 
5745 
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example the ground state of MgO for which the SCF 
calculation leads to several singly and doubly excited 
determinants with a low energy above the SCF <Po.17 
The same thing occurs for polyatomic systems when 
chemical bonds are broken in the course of a reaction 
or of a rotation.ls In such cases some excited de­
terminants 

<P= a;+a/aka/<PO 

have a large matrix element with <Po compared with 
the energy difference Eo- E<f>. Then if the ratio 
(<p I H I <PO)/(Ek+EZ-E;-Ej) is too large, the series 
diverge or converge too slowly to give significant and 
reliable results at the first orders. This is the field 
of applications of the multiconfiguration self-consistent 
methods (MCSCF). But in the present stage, the 
MCSCF methods applied to rather large molecules 
only include a small number of determinants and give 
a poor part of the correlation energy.19 Therefore it 
could be worthwhile to evaluate most of the remaining 
part of the correlation energy by a perturbational 
treatment on the MCSCF wavefunction. The first 
purpose of that paper is to propose and discuss a 
possible procedure to perform such a perturbation. 

The same problem of course exists for most of the 
excited states. Most of the excited states wavefunc­
tions represented by a linear combination of deter­
minants with the same space part-say a singly 
excited configuration <ppq.-present near degeneracy 
with other singly excited states <p ... or with low-lying 
doubly excited configurations. For instance the inter­
action of the first 1M/"* singlet configuration in the 
ethylene molecule is strongly mixed with the lowest 
qq* singlet configuration.20 Our second purpose is to 
find a procedure to calculate the nearly degenerate 
excited state energies by a perturbation calculation 
of the correlation effects after a preliminary varia­
tional mixture of the strongly interacting configura­
tions. This paper discusses the difficulty in obtaining 
significant transition energies at the first orders of 
perturbation for large systems by perturbing two 
states which are approximated by linear combinations 
of nearly degenerate determinants, and suggests a defi­
nition of the unperturbed Hamiltonian Ho for which 
the cancellation of common diagrams in the transition 
energy2I still occurs. 

I. CHOICE OF THE UNPERTURBED 
HAMILTONIAN 

A. Definitions of the Unperturbed Hamiltonian for the 
Nondegenerate Cases 

To define the unperturbed Hamiltonian Ho as the 
Hartree-Fock operator for the considered n-electron 
systems in a state <Po, one uses 

where 

h(i) = -tV'2(i) + T(i) + L:Jj(i) -Kj(i) 
j 

is the mono electronic HF operator and C is a con­
stant. Then <Po and all the other determinants built 
from the eigenvectors of h(i), 

(2) 

are eigenvectors of Ho. The constant C is often chosen 
to satisfy the following relationships: 

Eo= (<Po I H I <Po), 

(3) 

(4) 

where H is the exact Hamiltonian. Then in the second 
quantization formalism Bo may be written as 

Ho= .L: E;a;+a;+C. 
; 

(5) 

The fundamental results of the many-body perturba­
tion theory (definition of the diagrammatic series, 
linked cluster theorem, •.. ) are only valid if the un­
perturbed Hamiltonian is a simple sum of monoelec­
tronic operators. We call this partition of the total 
Hamiltonianl Moller-Plesset. 

Another important result appears with such a defi­
nition of Bo, namely the cancellation of common 
diagrams in the calculation of transition energies.2l 

Let us suppose that one is interested in the energy 
difference between a closed-shell ground state <Po and 
a singly excited, S.= 1, triplet state which may be 
represented as a first approximation by the single 
determinant, 

(6) 

These two states, both eigenvectors of B o, may be 
perturbed by the "correlation operator" V = H -Ho. 
Although these two states do not define the same 
vacuum state, most of the diagrams of the energy 
(all those which do not imply the monoelectronic 
functions p and q* involved in the zeroth-order de­
scription of the transition process I <Po~ I <Ppq.») are 
identical in both series and cancel in the calculation 
of the transition energy. 

It had been noticed from the beginning by Brueck­
ner2 that certain kinds of ladder diagrams may be 
summed up at all orders of the perturbation series 
and that this summation simply leads to a new defi­
nition of the denominators in the perturbation series. 
If Er is the eigenvalue of Bo corresponding to any 
determinant <PI~<PO, 

(7) 

Ho=Eh(i)+C, 
i 

(1) then, the denominator (Et,-Er) becomes (0 I H I 0)­
(I I B I 1). This procedure, which significantly im-
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MULTICONFIGURATIONAL WAVEFUNCTIONS 5747 

proves the order results, has been widely used by 
Kelly on the atom.13 This procedure is simply equiva­
lent to a different partition of the total Hamiltonian H 
into a diagonal unperturbed Hamiltonian Ho' and 
a zero-diagonal perturbation operator V',22 i.e., H = 
Ho'+V', 

Ho' ! <l>r)= (<I>r ! H ! <l>r) ! <l>r)= E/ ! <l>r) 

(<I>r!V'!<I>r)=O. (8) 

Ho' has the same set of eigenvectors as Ho, but dif­
ferent eigenvalues, and is no longer a sum of mono­
electric operators. This partition, which may be called 
Epstein-Nesbet according to its earlier applications,23 
is widely used now,lO but the diagrammatic expansion 
and the related results are not valid in this Ho' per­
turbation series. It is worthwhile to come back to the 
Ho series and its properties before summing up the 
diagrams which give the corresponding results in the 
Ho' series. 

B. Change of the CI Basis Set for the Nearly 
Degenerate Case 

In our case, we do not want to treat as a perturba­
tion the direct interaction between a certain number 
of determinants belonging to a given subspace S of 
the total vectorial space of the N electron deter­
minants. When all these determinants have the same 
energy (full degeneracy), the classical treatments for 
degenerate systems hold. 

At the end of the MCSCF procedure, for instance, 
one performs a diagonalization of a CI matrice limited 
to a set S of determinants. It gives a set of vectors, 
linear combinations of these determinants, but the 
virtual orbitals obtained also allow building of de-

S T 

<<I>k! H ! <l>L> <<I>k! H! <l>p 

<<I>LI HI<I>L> 

<<1>1 I HI <l>p 

terminants outside of S. Even if we do not perform 
a variational optimization of the MO's, our procedure 
will imply a preliminary diagonalization of the CI 
restricted to the subspace S of strong interaction. 
If p. is the projector on the subspace S, one seeks 
the eigenvectors of P.HP., 

(9) 

The eigenvalues 8m of this limited CI are the mean 
value energies of the linear combinations of deter­
minants ! y,m), 

(10) 

This diagonalization of P.HP. leads to a unitary 
change of the basis of the vectorial space S, from 
the <l>k'S to the Y,m'S; the "complete" basis set of de­
terminants may be transformed into another "com­
plete" basis set, built from the Y,m in the subspace S 
and from the unchanged determinants <l>r in the sub­
space T complementary to S. If C. is the unitary 
matrix allowing the transformation from the <l>kE S 
into the Y,m, 

(11) 

the final transformation C=C.®IT of the basis set 
may be visualized as follows: 

Cs 
S,<I>~m, 

IT 
T, <I>~<I>r, 

and the Hamiltonian constructed in this new basis 
possesses a diagonal bloc in the subspace S. 

S T 

changed 
0 matrix 

elements 

Em 

C .. ---------
unchanged 

matrix 
elements 
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If the subspace S has been correctly chosen, no 
near degeneracy appears between the lowest eigen­
vectors I/;m and any other vector of the new basis set, 
since (I/;m 1 H lI/;n)=O for all I/;n belonging to S, and 
8".- (~i 1 H 1 ~i) is very large if S includes enough 
vectors. For instance S may include all singly excited 
determinants of a given symmetry. The lowest energy 
eigenvectors of P.HP. are then well separated from 
the lowest doubly excited determinants. Then one 
may take the lowest vectors Vtm as unperturbed zeroth­
order wavefunction I/;°=I/;m as proposed by Gershgorn 
and Shavitt.24 In this new basis the main problem 
is the choice of the Ho Hamiltonian. 

C. Inadequacy of a Generalized Epstein-Nesbet 
Definition of Ho 

One might try, as a natural procedure, to extend 
the Epstein-Nesbet partition defined previously, 

Ho' 1 I/;m)=8".1 I/;m), 

Ho' 1 ~I)= (~ll H 1 ~I) 1 ~I), 

(12) 

if IE T. (13) 

This is the solution adopted by Gershgorn and Shavitt.24 

We want to demonstrate here that such a definition 
of Ho' would lead to absurd results on large enough 
systems. 

Let us consider a model problem of (n+2) mole­
cules of hydrogen, two of them interacting strongly, 
the others being far apart from each other. This 
problem is, of course, the limiting case of any mo­
lecular problem where the interaction between the 
two-electron bonds is considered as negligible. Then, 
if tPi is the lowest molecular orbital for each molecule i, 
for instance an SCF localized MO, the ground state 
determinant of the (n+2) electron system may be 
written 

~o = 1 4>tiPl· •• tPniPntPn+liPn+ltPn+2iPn+2 I. ( 14) 

Let us consider on the other hand a triplet S.= 1 
excited state built from singly excited determinants 
on the two last, strongly interacting molecules, n+ 1 
and n+2. 

This expression may be transformed into 

One may consider two locally excited triplets, 

~1 = 1 4>tiPltPniPntPn+1tPn+l*tPn+2iPn+2 1 

and 

where tPn+1* and tPn+2* are, for instance, the lowest 
vacant MO's localized on the molecules n+ 1 and n+ 2. 
The CI between these two determinants defining S 
will lead to two eigenvectors 1/;1 and 1/;2 and two eigen­
values 81 and 82. Let us assume that the two mole­
cules are in a symmetrical position; let us call E the 
mean value energy relative to ~1 and ~2, 

E-Eo= (~11 H-Eo 1 ~1)= (~21 H-Eo 1 ~2) 

(16) 

and b the interaction matrix element, 

b= (~11 H I~) 

= (tPn+l*(l)tPn+2(2) 1 (1/1"12) 1 tPn+2*(l)tPn+l(2». (17) 

Then 
1/;1= (~I+~)/V2, 

1/;2= (~I-~)/v'2. (18) 

Let us perturb successively the three wavefunctions 
~o, 1/;1, and 1/;2 to the second order in energy. For ~o 
one will find the interaction with all the diexcited 
determinants, and the leading terms will come from 
the diexcitations from the n isolated two-electron 
systems. 

Let us call 

the diexcited determinant, 

{ ·:'»~a+, .. +, .. ,", 0>. (19) 

Then the second-order correlation energy resulting 
from the diexcitations from the molecule i is given by 

(20) 

ei,02=.L.L (tPitPi 1 1"12-1 1 tPi.tP, .• )2 [A ji* i~_*)l-I. 
i* i'* '"'"'""\ i . J (21) 

The total second-order energy is equal to 

eo2= L ei,02+do= nei,02+do, 
i 

where do is a correction resulting from the excitations on molecules n+1 and n+2. All the intermolecular di­
excitations involving the molecules i= 1-n give zero corrections if the n molecules are separated enough. 
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Now let us perturb 1/11 or 1/12. We must consider all the triexcited configurations obtained from 1/11 or 1/12 by 
diexcitations on the systems i, 

J(n+l)a* 

\(n+l)/l 
: ')~a+, .. +, .. "" 1 ~), 

':'»~a+, .. +, ... "" I .. ), 
'h= J(n+2)* i 

\(n+2)/l i 

(1/111 H I <l>a)= (<1>11 H I <l>a)/V1= (cp,cp, I T12-11 CPi..q,i")/V1, 

(1/121 H I 'h)= (~I H I <l>b)/V1= (cp,cp, I T12-1 1 cp,ocp".)/V1, (22) 

where ex and fJ subscripts indicate ex and fJ spins. 
The corresponding energy denominators appearing in the second-order perturbation corrections are 

t:.E' = (1/11 I H 11/11)- (<I>a I H I <l>a)= (1/11 \ H \ 1/11)- (<I>b H \ <l>b). (23) 

Using the general formulas for single determinant transition energies,25 and neglecting the Coulombic integrals 
between different systems, one obtains 

(~, 1 H 1 ~,)_(".I H I ... )~~i: i'*) -b. 
i 

(24) 

The excitations 

on <1>1 and ~ lead to a second-order correction on 1/11, 

ed= L L (cp.t/>; I T12-1 \ cp,..q",.) ~ [~.* i~'_*)_ bJ1, (25) 
i* i'* i 

as all the denominators appearing in ei,12 are larger 
(in absolute value) than the corresponding quantities 
in ei.02, \ ei.12 \ < I ei,021. On the contrary in e,,22, cor­
responding to the perturbation of 1/12, the denominators 
are 

and \ eli \ > \ eM2 \. Let us make a closure approxi­
mation on the diexcitation energies 

(
i* i*) 

t:.E =!:.E 
i i 

or assume that only one diexcitation is efficient for 
each system i. Then 

ed= ed(l-b/ !:.E)-1, 

e;,22 = ei.o2(1-b/ !:.E)-i. (26) 

Now summing the contributions of all the systems i, 
one gets as total second-order correction for 1/11, 

e12= L ed+d1=neo2(1-b/ t:.E)-1+d1, 
i 

and for 1/12, 

where d1 and d2 are some specific corrections arising 
from excitations on the systems n+ 1 and n+ 2. Then 
the second-order correction to the transition energy is 
equal to 

f?r12= e12-eo2= d1-do+nei.o2[(1-b/ t:.E)-1-1], 

eTl2r..Jd1-do+nei.o2b/ !:.E, 

ed~~- do-nedb/!:.E. (28) 

As b is supposed to be positive and t:.E and eo2 are 
negative, the second-order correction to the transition 
energy of the lowest state 1/11 increases proportionally 
to n, number of noninteracting systems, while the 
second-order correction to the second transition energy 
(of 1/12) diminishes linearly with n. For large enough n, 
one will get negative transition energies toward 1/12! 
This result is, of course, meaningless; the n molecules 
we introduced artificially at infinite distances should 
not influence the transition energy on the system 
(n+ 1, n+ 2). The n dependency of the transition 
energy is due to the choice of the denominators, i.e., 
to a bad choice of Ho. 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to

IP:  150.203.123.149 On: Sun, 13 Dec 2015 23:56:03



5750 HURON, MALRIEU, AND RANCUREL 
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triplet state H 2 
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U 

I 
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0.41 ----------------,----------

I) 

0.2 

ESCF = 0.0 
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X 1[. 
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0.15 

I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
it 

0.01 

Om 
5_8 __ 48 

0,05 O. 
FIG. 1. Evolution of the second-order corrected energies of the 

X 12:.+, b 32:", and E, F 12:.+ states of H2 as a function of '1 (ampli­
tude of the largest coefficient in +1). The exact solution is for '1=0. 
The "SCF" energies are the energies of the ¥ wavefunctions 
built with the minimal number of determinants to get the sym­
metry properties, using the SCF MO's of the ground state prob­
lem. All energies are in atomic units. The numbers on the curves 
represent the number of determinants in ¥ for the considered cal­
culation. 

This example is a very simple model demonstrating 
that at a given (low) order of perturbation a bad choice 
of Ho may lead to absurd results on the transition energies 
between two states, even when the perturbation expansion 
converges for both states. Our model problem is not as 
artificial as it might seem; one may consider a more 
realistic problem, for instance the treatment of the 
transition energy of a butadiene molecule substituted 
by a long saturated chain, starting from localized 
molecular orbitals. The 11'11'* excited state zeroth-order 
wavefunction may be written as a linear combination 
of singly 11'11'* excited states. The development follows 
the same features as our model problem; the only 
changes concern the introduction of the interbond 
diexcitations and some Coulomb integrals J'lra between 
the 11' MO's and distant (J' orbitals. The same con­
clusion holds for the same problem when one uses 11' 

delocalized MO's, if the excited state zeroth-order 
wavefunction results from the CI of the two 11'11'* 
excited states of the same symmetry 1/11 = A (11'2~3*) + 
JL(1I'1~l). 

D. Definition and Properties of the "Barycentric" Ho 

Therefore it is impossible to use the Epstein-N esbet 
definition of the unperturbed Hamiltonian Ho for the 

calculation of the transition energy between two states 
when one of the states is represented at the zeroth 
order by a linear combination of nondegenerate de­
terminants. 

Let us come back then to the Moller-Plesset defi­
nition of Ho. Let us write 

where Ho is the classical HF n-electron Hamiltonian. 
The new eigenvalue corresponding to 1/Im, Em' is the 
barycenter of the single determinant eigenvalues 
for 1/Im, 

8m' = (1/Im I H 11/Im)=.L Cm,8~i I Ho I ~i), 
i€S 

since Ho is diagonal in the basis of determinants. 
Then one may demonstrate that the processes which 
are possible on two different zeroth-order states (even 
when they are linear combinations of determinants) 
cancel in the calculation of the transition energy be­
tween the two states, and the absurd result previously 
noticed with the Epstein-N esbet definition of Ho no 
longer occurs. 

Let us consider for instance a nondegenerate ground 
state approximation ~o and a zeroth-order wavefunc­

-tion 1/Im for an excited state, 

11/Im)=.L em,l I I). 
'ES 

Let us consider a diexcitation process lJ+, which may 
act on ~o and all the configurations ~l belonging to S, 
without giving zero. Then if lJ+=ai+aj+aZak, the cor-

--i-T-----T-----T-----T------

E T i E_'SCF" = 1.83972 1.80 
I 
I 
I 

: 
: 

lowest iSlnglet \ state Ne 
I 
I 17 18 i 11/------

~ 

1.60 

1,40 

_______________ ~_--I...--- __ -..6----_--

E. • = 1.23314 " 120 SCF I • 
I 

3 I 

lowest triplet 0 state Ne ~O_32 
1.0 

__ • __ I ____ ------J. __ ---,_---'-_____ ~ __ · __ 

E SCF = 0 0 i 0.0 
I 

ground state Ne ! 
:1 4 10~_ 
~--- -0.2 

IJ 0.08 0.06 0.04 0.02 O. 

FIG. 2. Detailed evolution of the second-order corrected energy 
of the X 12:.+ state of H2 as a function of '1. 
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TABLE I. Convergence of the iterative perturbational process for the ground state of H2 (all energies in atomic units). 

nef" I 2 4 5 8 13 21 

EDb 0.0 -0.005340 -0.017593 -0.025167 -0.032769 -0.037509 -0.040032 

ETo -0.042911 -0.044268 -0.044501 -0.043925 -0.043333 -0.043083 -0.042897 

% of Eoo .. d 100.26 103.43 103.98 102.63 101. 25 100.67 100.23 

7/" 0.0811 0.07731 0.0766 0.04167 0.02199 0.01572 0.00996 

I-S01 0.01698 0.012866 0.006967 0.004310 0.002161 0.001236 0.000467 

I-S1c 0.000631 0.000485 0.000215 0.000086 0.000041 0.000018 0.000008 

~h 0.9967 0.9890 0.9859 0.9847 0.9840 0.9830 

(lug, 10' .. ) (lUg, lu .. ) h ( -0.0811) -0.0803 -0.1044 -0.0994 -0.0950 -0.0911 -0.0920 

(lUg, 10' .. ) (lUg, ~uu) h ( -0.0662) ( -0.0773) -0.0740 -0.0794 -0.0769 -0.0753 -0.0775 

(lUg, 20' .. ) (lUg, ~uu) h ( -0.0687) ( -0.0650) ( -0.0766) -0.0739 -0.0707 -0.0735 -0.0733 

(lUg, 211' .. ) (lUg, 2 ..... ) h ( -0.0455) ( -0.0447) ( -0.0428) ( -0.0416) -0.0398 -0.0393 -0.0400 

(lUg, 2ug) (lUg, 2Ug)h ( -0.0394) ( -0.0376) ( -0.0390) ( -0.0370) -0.0346 -0.0360 -0.0341 

(lUg, 3ug) (lUg, 3ug) h ( -0.0290) ( -0.0273) ( -0.0240) ( -0.0226) ( -0.0219) -0.0224 -0.0230 

• Number of determinants included in '1'0. 
b Energy of '1'0 with respect to the SCF energy. 
C Second-order corrected energy: ET=ED+€" 
d Percent of the correlation energy obtained at this step. 
• " absolute value of the largest coefficient in '1'1. 
I So is the scalar product of '1'0 with '1' •• , the exact eigenvector in the basis. 
c SI is the scalar product of the normalized first-order corrected wavefunction ('1'0+'1'1 I '1' .. ). 
h Coefficients of the most important determinants in '1'0 and in '1'1 (in parentheses). The determinants are represented by hole-particle pair products. 

48 

-0.042796 

-0.042796 
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-0.0445 4 
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21 
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/13 
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0.040 0.020 
I) 

0.0 

FIG. 3. Evolution of the second-order corrected energies of the 
IS ground state, lowest D triplet state, and lowest IS singlet 
excited state of Ne atoms as a function of '1/. Same comments as 
for Fig. 1. 

responding second-order energy correction for the 
wavefunction <1>0 is 

E02= (~'~j /1/rl2/ ~kC/>I)2j (Ek+EI-Ei-Ej) = a2
/ t:.E. (29) 

When IJ+ acts on a configuration I belonging to S, 
it leads to a configuration / J)= IJ+ / I), which does 
not belong to S. Otherwise IJ+ acting on / J) would 
give zero, 

IJ+ / J)=IJ+IJ+ / 1)=0. (30) 

Therefore one may consider the second-order energy 
correction corresponding to Vtm. This correction in­
volves the following contribution: 

Em2= LCm81 / H / IJ+I)2j(em'-EJ ) , 
I 

Em2= LCmI2a2/[em'- (E1-t:.E)], (31) 
I 

since EJ = E1 - t:.E, due to the monoelectronic char­
acter of Ho outside of S. (Bm'-E1) should be small 
compared to t:.E, since Bm' lies among the E1. Then, 
performing a limited development, one obtains 

Em2 = (a2/ t:.E) (L CmI2!1+[(Bm'-E1) / t:.E]1-1), 
I 

E",~(a2/ t:.E) !1-[(Bm'- L CmI2E1)/ t:.E]I+0(4) , 
I 

(32) 

where 0(4) represents a fourth-order contribution. 
The definition of em' leads to 

Em2= (a2/ t:.E) +O( 4) = E02+0( 4). (33) 

In other words the processes which are possible on 
all the determinants appearing in two states Vti 
and Vtj lead to equal contributions and cancel in the 
transition energy calculation. The absurd n depend­
ency of the transition energy that we had noticed in 
our model for the Epstein-Nesbet definition of Ho no 
longer occurs. This result also holds for higher-order 
processes in V, and this generalizes the cancellation 

of common diagrams previously noticed for the tran­
sition energies between nondegenerated determinants.21 

However, this cancellation is not rigorous in general 
since it is based on a limited expansion. It would 
occur exactly if the determinants of the subspace S 
were degenerate, for instance in an excitonic treat­
ment of a regular system using localized monoelec­
tronic wavefunctions. 

In practice we have followed a third procedure, 
intermediate between the Epstein-N esbet and Moller­
Plesset definition of Ho for the multiconfigurational 
case. For the vectorial space T, Ho is defined by the 
Epstein-Nesbet partition. The eigenvalues of Ho asso­
ciated with the vectors Vtm are taken as the bary­
centric values relative to the single determinant 
energies in the Epstein-N esbet definition em" = 
L1cmI2HII, (HII= (<1>1 I H / <1>1 ». This definition in­
troduces in the second-order corrections the large 
terms of the third-order corrections which imply the 
J ij Coulomb integrals 

i j 
~ ./ 

./ '\. 
i j 

in the ladder diagrams. The cancellation of the com­
mon diagrams in the transition energy does not occur 
as rigorously but it still happens approximately. If Vt", 
is a combination of say two singly excited, S.= 1, 
determinants, then em"'""-Ei+Ej'O-J;j.. If Eo= 
(cpo / H / <1>0) is taken as the standard zero of energies, 
the triplet excited determinants obtained by a double 
excitation a+moana+p.an on Vtm have eigenvalues given 
by the general formula, 

E1 = (<1>1 / H I <1>1) 

= LEc( -1)n+ L L(Jcd-Kcd) (_1)nc+nd, (34) 
c d 

where c and d are holes (nc = 1) or particles (nc = 0) 
characterizing the state <1>1 and n their occupation 
number,26 

em"-E1= (Bm'-E;') + L(J-K) -L(J'-K'), (35) 

where L(J-K) and L(J'-K') represent two sum­
mations over the same number of Coulombic and 
exchange integrals. These two summations approxi­
mately cancel, and the cancellation of common dia­
grams in the transition energy is still satisfied. As an 
example one may see that in our model problem 
[(n+2) H2 molecules far apart], the cancellation of 
the diexcitations' effects on <1>0 and Vt1 still occurs 
rigorously. 

In a qualitative way, one may say that the absurd 
n dependency of the transition energy in the general­
ized Epstein-Nesbet definition of HO comes from the 
following disymmetry. 
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TABLE II. Convergence of the iterative perturbational process for the E, F singlet lI:/ state of H2 

(all energies in atomic units). 

ncf 2 3 6 15 48 

ED" 0.52219 0.50050 0.48905 0.45404 0.47909 
ET" 0.48287 0.48045 0.47893 0.47888 0.47909 
% of Eeorr" 91.22 96.84 100.37 100.48 100.00 
'I" 0.17865 0.08121 0.02106 0.01683 0 
I-So" 0.0316 0.0133 0.0078 0.0013 0 
I-SI" 0.0033 0.0028 0.00019 0.00007 0 
SOlb 0.0219 0.0388 0.0089 0.0015 0 
(lu.,2ug)" 0.7070 0.6950 0.6889 0.6886 0.6847 
(lug, 2ug) (Io-g, 20-g) " (0.1786) 0.1820 0.1790 0.1890 0.1892 
(lug, 2u,,) (lng, 20-.)" ( -0.0730) ( -0.0812) -0.0956 -0.0989 -0.0968 
(lug, lu,,) (Io-g, 20-.)" (-0.0626) ( -0.0593) -0.0676 -0.0637 -0.0686 
(lug, 2uu) (Io-g, 30-,,)" (0.0162) (0.0173) (0.0211) 0.0208 0.0208 
<1>0" (0.0) (0.0163) ( -0.0206) -0.0193 -0.0294 
(lug, 1.".,,) (lo-g, Ii-u) " (0.0276) (0.0191) (0.0191) 0.0182 0.0239 

" See corresponding footnotes a-h in Table I. 
b Scalar product of the normalized perturbed wavefunction '1'0+'1'1 with the exact wavefunction of the ground state. 

HO involves the nondiagonal Hamiltonian matrix 
elements between the determinants of the subspace S, 
while the corresponding interaction of the highly ex­
cited states ~r outside of S are not included. To 
restore the cancellation of common diagrams in tran­
sition energies, we have built a zeroth-order Hamil­
tonian Ho' which does not imply the matrix elements 
between the determinants of the subspace S. 

The choice of Ho recently proposed by Adams26 is 
still worse. The eigenvalues of Ho are the eigenvalues 
of P.HP. in S and the sum of the mono electronic 
energies outside of S. In the case where S is the 
ground state single determinant, the energy denomi­
nators relative to a diexcitation 

are 

Eo'-Er= Ei+Ek-Ej-EI-C= Eo-C-Er, 

where C is the sum of electronic repulsions in the 
ground state. This number increases at least as N 
(the number of particles of the systems) and e2 (the 
second-order energy correction) tend towards a con­
stant instead of increasing as N. One obtains the 
meaningless corrections of the Brillouin-Wigner series 
noticed a long time ago by Brueckner.2 In the case 
where S implies several determinants, El is still larger 
and the second-order correction still lower. 

On the contrary the definition proposed by Silver­
stone27 for Eo in the case of full degeneracy is identical 
with our definition in this peculiar case. Since we 
only calculated the second-order correction energy, 
the definition of Ho for the other eigenfunctions of 
the subspace S has not been studied carefully, but 

the definition of Ho suggested by Silverstone might 
be useful for the nearly degenerate case. 

II. DESCRIPTION OF THE METHOD 

A. Definition of a Practical Iterative Procedure for the 
Construction of 1/Irno 

The multiconfigurational zeroth-order wavefunction 
1/Imo for the state m may be determined by an iterative 
procedure selecting the most important determinants 
to include in 1/Imo. One starts from the single deter­
minant, or the evident linear combination of degen­
erate determinants which is supposed to represent 
the usual single particle approximation for 1/Imo. Let us 
call 1/ImO(0) this wavefunction, the upper index in pa­
rentheses indicating the step of the iterative process; 
for a closed-shell ground state problem, it will be, for 
instance, the SCF determinant. This wavefunction is 
perturbed to the first order, and the most important 
components in first-order correction to the wavefunc­
tion 1/Im1(0) are selected for this state m at this first 
stage. These configurations are added to those of 
1/ImO(0) and one gets thus a subspace S.,. (I) of dimension 
ncjm(l). The diagonalization of H restricted to the 
subspace Sm(l) gives a new zeroth-order approximation 
1/ImO(I) to the wavefunction of the state m. This func­
tion is again perturbed to the first-order by the de­
terminants outside of Sm(1), giving a new first-order 
wavefunction 1/1.,.1(1): again, the selection of the most 
important coefficients in 1/Im1(l) allows an extension of 
Sm(l) to Sm(2) which has a larger dimension ncjm(2). 

The process is iterated until one reaches a stable 
result and/or the practical/financial limits of the 
computer. In practice the computer program is built 
according to the diagrammatic and second quantiza-
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TABLE III. Convergence of the iterative perturbational process for the ground state of Ne 
(all energies in atomic units) . 

ncj" 4 

ED" 0.0 -0.017572 

ET" -0.211791 -0.204340 

.,," 0.04474 0.03351 

<1>0" 1 0.997046 

(2pz, 3pz) (2p", 3pz) " ( -0.04474) -0.04434 

(2pz, 3pz) (2P., 3P.)· ( -0.03587) (-0.03351) 

(2s, 3s) (2px, 3pz) " ( -0.02555) ( -0.02543) 

(2pz, 3px) (2pg, 3P.)· ( -0.03151) (-0.02836) 

(2pz, 3pz) " O. (0.000573) 

(2s, 3s) (28,38)" ( -0.02124) ( -0.02123) 

(2px, 4pz) (2pz, 4pz) " ( -0.01515) ( -0.01479) 

(2pz, 3pz) (2pz, 4pz) " ( -0.01405) (-0.01540) 

(2pz, 3s)(2pz, 38)" ( -0.01372) (-0.01291) 

• See corresponding footnotes a-h in Table I. 

tion formalism, the excited configuration being defined 
by their holes and particles with respect to the self­
consistent ground state <Po. When the states <PI be­
longing to S are defined, the states <PJ outside of S 
which interact with 1/10 are generated in a systematic 
way, by the action of all products a,+a/akaZ and 
a,+aj on the determinants <PI belonging to S. Then 
one establishes the matrix elements between <P J 

and 1/10, 

(<PJ I H I 1/10)= E Ck(<PJ I H I <Pk) (36) 
kdJ 

by calculating all the matrix elements (<PJ I H I <PK) 
in a hole-particle formalism. 

The same determinants <PJ outside of S may be 
generated several times from different determinants 
belonging to S, for instance from <PK and <PL. We 
avoid the accumulation of identical contributions in 
the second-order energy correction by the following 
process. When one builds a determinant <PJ from a 
determinant <PL, one rejects the corresponding cor­
rection if <PJ interacts with at least one of the pre­
viously considered determinants <PK, K<L, of S. This 
test is not time consuming since the matrix elements 
(<PJ I H I <PK) have to be calculated. 

This procedure should allow a rational and pro­
gressive construction of the zeroth-order wavefunction 
1/10 for any state m, which becomes better and better 
when the dimension of Sm increases. Therefore the 
method will be called hereafter CIPSI (configuration 
interaction by perturbation with multiconfigurational 
zeroth-order wavefunction selected by iterative proc­
ess). The adequacy of 1/ImO(n) and Sm(n) in the per-

10 22 41 115 

-0.035693 -0.060082 -0.083039 -0.098953 

-0.198096 -0.194204 -0.187715 -0.183120 

0.02526 0.02094 0.01258 0.00445 

0.994571 0.992702 0.990807 0.989539 

-0.04052 -0.03752 -0.03973 -0.03656 

-0.03130 -0.02778 -0.02778 -0.02610 

( -0.02526) -0.02295 -0.02324 -0.02073 

( -0.02345) -0.02040 -0.02011 -0.01952 

(0.01181) (0.01723) 0.01086 0.00881 

( -0.02123) ( -0.02094) -0.01939 -0.01773 

( -0.01480) ( -0.01481) -0.01442 -0.01320 

( -0.01462) ( -0.01403) -0.01363 -0.01209 

( -0.01299) ( -0.01421) -0.01207 -0.01296 

turbation at the stage n of the iterative procedure 
may be tested by considering the values 1/m(n) of the 
largest coefficient in wml(n). Hereafter 1/m(n) will be 
called the criterion of adequacy of the zeroth-order 
wavefunction to the perturbation at the stage n. This 
procedure is superior to a selection which keeps all 
the determinants which are closest in energy to the 
zeroth-order determinant. One often includes in the 
CI calculation of a ground state the singly and low­
lying doubly excited states, but singly excited de­
terminants do not interact with the SCF ground 
state <Po (Brillouin's theorem) and the low-lying 
doubly excited may have smaller interactions with <Po 
and therefore smaller coefficients in the perturbed 
wavefunction than high-energy doubly excited de­
terminants. 

The eigenvalue 8m (n) associated with 1/ImO(n) after the 
diagonalization of H restricted to Sm (n) is equal to 
the first-order corrected energy, according to our 
definition of the perturbation expansion in the pre­
ceding section, 

(37) 

EmO(n) being the barycentric energy associated with 
1/ImO(n). When ncjm(n) increases with n, the energy 
Em (n) should tend towards the exact eigenvalue of H. 

For instance in the ground state problem we get an 
increasing part of the correlation energy. On the 
contrary the second-order perturbation energy cor­
rection Em

2(n) arising from determinants interacting 
more weakly with 1/Imo will decrease towards zero when 
ncjm(n) tends towards the total number of determinants. 
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The energy of the calculated level is then calculated as perturbed Hamiltonian avoids these difficulties, even 

Of course, in practice, except for very small prob­
lems in limited basis set, the largest part of the cor­
relation energy remains obtained from E2, S repre­
senting only a small part of the total vectorial space. 

It is interesting here to note the three main dif­
ferences between our method and the method pre­
viously suggested by Gershgorn and Shavitt,24 who 
perturb the ground state wavefunction 1/10 resulting 
from the diagonalization of the CI matrix restricted 
to the ground state and the k lowest (doubly) excited 
determinants. 

Our method allows a less arbitrary construction 
of 1/Imo since the most important components of 1/Im 
are progressively introduced. Thus a small number of 
determinants in S should be sufficient to reach the 
same degree of accuracy. 

Our method is more general and allows the treat­
ment of excited states as well as of the ground state. 

The Gershgorn and Shavitt procedure is based on 
a generalized Epstein-Nesbet partition of the Hamil­
tonian and therefore should lead to the absurd con­
sequences of the noncancellation of common diagrams 
in transition energies, while our definition of the un-

on large systems. 

B. Comparison of the Proposed Procedure with the 
Usual Perturbation Expansion from a 

Single Determinant 1/10 

Our process is limited to the second-order in energy, 
and it is hoped that it should give reliable results in 
cases where the usual perturbation expansion from a 
single determinant wavefunction 1/10 would certainly 
diverge or give meaningless first-order corrections. 
Nevertheless, it may be interesting from a theoretical 
point of view to interpret our second-order result 
after the diagonalization of a rather large CI, in 
terms of secondo, third-, fourth-order contributions 
of the usual RS perturbation expansion from a single 
determinant 1/10. Let us suppose, for instance, that we 
are interested in a nondegenerate SCF ground state <1>0. 

In the classical Rayleigh-Schrodinger procedure, 
assuming a choice of HO which ensures E01=0, the 
second-order correction, 

E2= I: [1(<1>0 1 H 1 <l>r )12/ (Eo- Er)], (39) 
1 

implies the interaction between <1>0 and all the doubly 
excited determinants <l>r. The third-order correction, 

E03= L L (<1>0 1 V 1 <l>r )(<I>r I V 1 <l>J )(<I>J 1 V 1 <1>0) , 
1 J (Eo-Er)(Eo-EJ) 

(40) 

represents the interaction between the doubly excited determinants of 1/101 while 

E04= _Eij2(1/Io1 11/101)+ I: I: I: (<1>01 VI <1>1 )(<I>r 1 VI <l>J )(<I>J 1 vi <l>K)(<I>K 1 VI <1>0) 
I J K (Eo-Er) (Eo-EJ) (Eo-EK) 

( 41) 

involves interactions of the diexcited configurations with the singly, doubly, triply, and quadruply excited 
configurations. 

Let us suppose that S has included the most important So(1) doubly excited determinants in 1/101• The diago­
nalization of H restricted to So(l) implies a part of the second-order, third-order, etc., corrections, characteristic 
of the interaction between the ground state and the most important doubly excited determinants. The new 
zeroth-order wavefunction 1/100(1) takes approximately the form 

1/IoO(1)~<I>O+ I: [(<1>0 1 VI <l>r )<I>r/ (Eo-Er)], (42) 
r.80(1) 

where the summation over I is restricted to the doubly excited configurations belonging to S. Then the second­
order correction in our procedure 

E02(1) = I: (1/100(1) I V I <I> J )2 ~ I: (<1>0 I V I <I> J )2 
J$So(l) (Eo(l)-Er) J (Eo(l)-EJ) 

+ L E 2 (<1>0 I V I <l>r )(<1>1 I V I <l>J )(<I>J I V I <1>0) 
1.8 J~8 (Eo(l)-E1) (Eo(l)-EJ) 

+ L E L (<1>0 I V I <1>1 )(<1>1 I V I <l>J )(<I>J I V I <l>K )(<I>K I V I <1>0). (43) 
1.8 J~8 K.8 (Eo(l)-Er) (Eo(l)-EJ) (Eo(l)-EK) 
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TABLE IV. Convergence of the iterative perturbational process for the lowest'S singlet excited state of Ne 
(all energies in atomic units) . 

ncf" 6 

ED" 1.83972 
ET'" 1.37327 
1/" -0.08718 
(2pz, 3pz) " 0.408248 
(2pz, 3pz) (2pz, 3pz) " ( -0.08718) 
(2s, 3s)" ( -0.08705) 
(2pz, 3pz) (2P., 3P.) " ( -0.07260) 
<1>0" (0.0) 
(2pz, 3pz) (2P., 3P.) " ( -0.06573) 
(2pz, 4pz) " ( -0.02806) 

" See corresponding footnotes a-h in Table I. 

The first summation of Eq. (43) gives the part of 
the classical eo2 which was not already given by the 
diagonalization of H restricted to S. The second term 
is a part of the classical SO(I) third-order correction, 
representing the interaction between the important 
(~L) and less important (~J) doubly excited con­
figuration. The only lacking third-order terms repre­
sent the interaction between the doubly excited 
determinants which have weak coefficients in 1/101• The 
process therefore selects the large third-order terms 
of the classical expansion. 

The third term in Eq. (43) gives fourth-order 
corrections in the classical expansion, representing the 
interaction of the most important doubly excited con­
figurations with singly, doubly, triply, and quadruply 
excited determinants. One may notice that this con­
tribution includes some fourth-order unlinked terms.2 

These unlinked contributions cancel the effect of the 
normalization of 1/10, (,0, the energy of the multiconfigura­
tional 1/10 wavefunction, actually involves the terms 
-e2(1/I1 11/11

) which cancel with unlinked terms in the 
triple summation of Eq. (43). As will be seen in the 
numerical applications, some singly or triply excited 
determinants appear in diagonalized subspace S, when 
the process is iterated far enough. These determinants 
would not appear in 1/101 in the classical expansion, 
but in 1/102• In such a case E01 includes some fourth­
order energy corrections and 1/101 implies up to 5 times 
excited determinants. 

The first-order wavefunction 1/11 obtained from the 
multiconfigurational 1/10 contains some quadriexcited 
configurations, which are obtained from the most 
important diexcited configurations. Then the most 
important quadriexcited configurations necessarily ap­
pear in 1/1' with a correct coefficient since the quadri­
excited determinants coefficients in the classical second­
order wavefunction are the products of the diexcited 
determinant coefficient in the classical first-order wave­
function 1/11.28 

C. Representation of the Excited States 

No specific problem occurs for the calculation of the 
excited states which are the lowest states of their 

11 17 18 

1.75679 1. 71793 1. 72148 
1.43889 1.47419 1.47220 

-0.06268 -0.05459 -0.02957 
0.396088 0.393043 0.395581 

-0.11419 -0.091398 -0.08771 
-0.09890 -0.095836 -0.09615 

( -0.06268) -0.07032 -0.06757 
(0.0) ( -0.05459) -0.04452 

( -0.05141) ( -0.04123) ( -0.02957) 
( -0.02934) ( -0.02902) ( -0.02875) 

symmetry. If the excited state is not the lowest of 
its symmetry, one must consider the problem of its 
orthogonality with the ground state. Two procedures 
may be suggested. 

One may calculate independently the excited state 
by the same procedure as the ground state, totally 
ignoring the orthogonality problem between 1/Irno for 
the excited state at a given level of accuracy and the 
corresponding 1/10° wavefunction for the ground state. 
Anyway, the procedure should tend towards the exact 
wavefunctions and energies and there is no risk of 
falling down on the lower state. The scalar product 
between the 1/10 wavefunctions for the two states, 
(1/Imo I 1/10°), may be calculated then and gives an idea 
about the accuracy of the wavefunction. 

One may, on the contrary, work simultaneously on 
two (or more) states of the same symmetry 1/Im and 1/In 
selecting S as the union of the two subspaces Sm 
and Sn relative to the two states and the same degree 
of accuracy '1/ on the perturbed coefficients. Then the 
diagonalization of S= SmU Sn gives orthogonal zeroth­
order approximations 1/Imo and 1/Ino. The first-order 
perturbed wavefunctions are also orthogonal as dem­
onstrated by Cohen and Dalgarno,29 

(1/Imo+1/Im1 11/1no+1/In1)=0, 

and these functions may be used in the calculations 
of transition moment between 1/Im and 1/In, since for 
the calculation of this quantity one must use orthogo­
nal wavefunctions. 

A less symmetrical procedure would consist of per­
turbing a wavefunction if;mo which has been previously 
orthogonalized by a Schmidt procedure to the already 
calculated wavefunction if;mo for the lowest state. 

III. NUMERICAL EXAMPLES 

Three typical problems have been chosen to test 
the CIPSI method. 

The hydrogen molecule (two electrons) for which 
the exact solution in the basis, and even the absolute 
exact solution, are available; 

The neon atom (10 electrons); 
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The MgO molecule (20 electrons) for which im­
portant correlation effects seem to appear in the 
transition energies, since the HF-calculated energies 
do not allow the interpretation of the experimental 
spectrum. 

Several states have been calculated for each of these 
systems. The chosen basis set for the H2 molecule 
was a 16 Slater-type AO's basis set, built from the 
basis of Weiss, McLean, and Y oshiminilo and 2P1r 
AO's with a 0.45 Slater exponent. The calculation 
was made for a 2 a.u. internuclear distance. 

For the neon atom, we used the double-zeta basis 
set obtained by Bagus,31 from a minimization of the 
SCF ground state energy; it is not studied to obtain 
good correlation and transition energies, but we have 
not improved it, since our purpose, mainly methodo­
logical, was to study the way to approach the exact 
solution in a given basis set. 

For the MgO molecule, the basis is a double-zeta 
basis set proposed by Clementi32 for the Mg and 0 
atoms. The internuclear distance is 3.3 a.u. 

Tables I and II report the results for the X l~g+ 
and E, F l~g+ states of H2; Fig. 1 also includes the 
energy concerning the b 3~u state. The E, F l~g+ state 
has been chosen because, being of the same symmetry 
as the ground state, its attainment may present special 
difficulties, in our method, and because it is known 
as requiring a multiconfigurational representation. 

In Tables III and IV, the results are reported for 
the lSO and the first singlet state of the same sym­
metry; Fig. 2 also includes the energy results for the 
lowest 31)0 state. 

In these tables and figures, 7J represents the "cri­
terion of adequacy of 'Ill," i.e., the largest coefficient 
in ~l (in abso!ute value). Figures 3 and 4 give the 
detaIled evolutIOn of the ground state energies for H2 
and Ne when 7J decreases. The results for the four 
lowest states of MgO (i.e., X l~+, 31r, A l1r, and 3~) 
are reported in Fig. 5. A more detailed discussion of 
the transition energies of MgO is given elsewhere.33 

For the H2 ground state, the classical second-order 
energy correction (with the Epstein-Nesbet denomi-

1 
E 5 Ne 

T 0 
a.u. 

10 

4 

0.04 om 

41 

22 

0.D2 

115 

-0.19 

-0.20 

-0.21 

r) 

0.01 0.0 

Mg 0 

-0.33 

-0.35 

-0.37 

-0.39 

0,15 0.10 0,05 
I) 

0,0 

FIG. 5. Evolution of the four lowest states of MgO as a function 
of .,. The" SCF" energies, which could not be represented in this 
figure, were, respectively, 0.0 for X 1l:+, 0.01328 for 3"',0.04384 for 
A 1"., and -0.02496 for 32;+. 

nators) from the single determinant 'Ill gives 100.2% 
of the correlation energy in the basis. This result 
compares very well with the analogous result obtained 
by Schulmann and Kaufman9 in a larger basis set 
of Gaussian orbitals. However in that case, the agree­
ment with the exact solution may be somewhat for­
tuitous, since the zeroth-order wavefunction with four 
determinants gives after perturbation 104% of the 
correlation energy in the basis. This fact demon­
strates that cancellations occur between large third­
order terms. However, it appears that in that case 
at least it is better to perturb a wavefunction 1/10 
including only a few determinants than to perform 
a CI with the most important excited configurations 
(compare in Table I the results ET for ncf = 2, with 
the results ED for ncf= 21), 

The ground state energy of the Ne atom behaves 
differently, the energy growing up when 7J decreases. 
This is due to the progressive inclusion of large third­
order terms in the perturbed energy. Let us consider 
for instance cf>o and the two sets of most important 
determinants, namely 

and 

01>1 = (3Pz 3Pz) 
2pz 2pz 

%=(3Pz 3PY) 
2pz 2p1I 

(and equivalents) 

(and equivalents). 

FIG. 4. Detailed evolution of the second-order corrected energies The third order includes the interactions 
of the ground state of Ne atom as a function of.,. (cf>o I V I cf>1)(cf>l I V I %)(01)2 I V I 01>0)/ /lElA&. 
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visualized by the ring diagram 

3PYO~~:············· 

0
·········· 3px 

3p, •• ~~: ••••••••••••••••••••••••• 

Then 

(<1>01 VI <1>1)= (2p.,3px, 2p.,3px) =a, 

(<1>01 VI <1>1)= (<1>11 V 1 ~)= (2px3p"" 2py3Pll) =b, 

and the corresponding third-order correction is equal 
to alr/ AE111&. Since a is positive, this contribution 
is positive. Such third-order positive corrections be­
tween (n= 2-m= 3)2 diexcited states are very nu­
merous and are progressively included in our process. 
Such a phenomenon occurs in N2 as noticed by Gri­
maldi36 and in conjugated molecules with double and 
triple bonds.35 This phenomenon also explains the 
increase in the curves of MgO (Fig. 5). The variations 
in the correlation energies are at most of the order 
of 10%. 

As far as we know, these perturbation techniques 
had not been applied before to excited states. Our 
results show that the perturbation techniques are able 
to give reasonable results for excited states. Some 
interactions occur with singly and doubly excited con­
figurations which lie close in energy to the perturbed 
determinants, and the perturbation convergence may 
be slower than for the ground state, the value of 'T/ 

for the first iterations being much larger. But the 
inclusion of a small number of determinants in ¥ for 
the excited state gives the same type of accuracy as 
for the ground state with a single determinant ¥. 
One may see from Figs. 1, 2, and 5 that the energies 
of the different states vary in a parallel way when 
the 'T/ values are comparable, the resulting transition 
energy being more stable than the energy of each 
state. 

The importance of the inclusion of correlation 
effects in transition energies appears clearly from the 
case of the X l~g + -+B 3~u transition of H2, where the 
correlation energy is much smaller in the triplet state 
than in the ground state, and from the case of MgO 
where the correlated energies give a good agreement 
with the experimental spectrum while the single de­
terminant spectrum was completely off.33,36 

The "generalized Epstein-Nesbet" definition of Ho 
(see Sec. I) has been tested for H2• It gives a much 
slower convergence of the process, especially for the 
excited states. 

Concerning the wavefunctions, the overlap of ¥ 
and ¥+w1 (normalized) with the exact wavefunction 

\{lex has been calculated for H2. Again it appears more 
worthwhile to perturb a wavefunction WO with only 
a few determinants than to diagonalize a CI matrix 
truncated to the most important determinants (see 
lines 1-50 and 1- 51 of Tables I and II). In the case 
of Ne with a 41-determinant \{IO wavefunction, 20000 
interacting determinants of the correct symmetry have 
been included in \{II. In Mg-O for ncf= 16, 130000 
determinants were included in \{II. 

We have reported in Tables I-IV, the values of 
the most important coefficients in ¥ and (or) '1'1, 
for the various iterations, in order to give an idea 
about the stability of the components of the wave­
function. The coefficients of the determinants which 
appear in '1'1 from the first iteration are rather stable 
from one iteration to the other. One may notice that 
some determinants, which only appear in qr2(0) when 
one builds ¥(O) from the minimal number of deter­
minants [smallest ncf(O) value], appear soon to be 
more important than the other determinants of wl(O) 

and are included in ¥ after some iterations. For 
instance the ground state determinant <1>0 appears 
rapidly with a correct order of magnitude in the 
E, F l~g+ state of H2. Similarly the singly excited con­
figurations (2px-+3px) appear quite rapidly in the 
ground state wavefunction of the Ne ground state. 
The ground state wavefunction of MgO also has an 
important component on the singly excited (60"-+70") 
determinant.33 The process seems able to give the 
important components of '1'2(0). 

IV. CONCLUSION 

The method presented in Sec. I allows us to per­
turb a multiconfigurational wavefunction to take into 
account its interaction with the determinants which 
are not included in ¥. We have demonstrated that 
the usual careless choices of the unperturbed Hamil­
tonian Ho may lead to meaningless second-order cor­
rected transition energies between two states '1'1 and 
'1'2, even when the Rayleigh-Schrodinger perturbation 
expansion converges for both states. A proper defini­
tion of Ho has been proposed, which ensures the can­
cellation of common diagrams in transition energies. 
Contrary to the previous analogous treatments, the 
method is valid for excited states. The practical 
iterative CIPSI procedure has been proposed in Sec. II 
to build better and better ¥ zeroth-order wavefunc­
tions, choosing progressively the most important de­
terminants. It has been shown that the method takes 
into account the main interactions appearing in the 
usual third- and fourth-order energy corrections of 
the RS series from a single determinant wavefunction. 

In Sec. III of this paper, we have presented some 
tests of the method. The convergence of this method 
has been studied on the ground state and several 
excited states of H2 for which the exact solutions in 
the basis were available. Several states of Ne have 
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also been studied. One obtains a rapid stabilization 
of the results. But the main aim of this work was 
to establish a reliable theoretical procedure for the 
calculation of transition energies on molecules for 
which the single particle model gives poor results. 
In particular the method has been applied to the 
controversial problem of Mg-Q, for which the HF-

calculated energies do not allow the interpretation 
of the experimental spectrum. The method presented 
here gives correctly the feature of this spectrum.33 

The various examples show the importance of diff­
erential correlation effects on transition energies. Fur­
ther work will be devoted to spectroscopic problems 
appearing in solar and stellar physics. 
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