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a b s t r a c t

In 1985 Kutzelnigg showed that a large percentage of the electron correlation energy for helium can be
recovered using a single explicitly correlated basis function, chosen to fit the cusp at the correlation hole.
In particular the simple wave function W ¼ ð1þ 1

2 r12ÞU returned more than 80% of the correlation energy.
In this paper we return to Kutzelnigg’s simple ansatz and remove the conventional double excitations in
explicitly correlated CC2 theory (denoted as CCS(F12)), applying all established developments in modern
F12 theory, such as replacing linear r12 with f(r12) = exp(�cr12) and the use of auxiliary basis sets for the
standard RI approximation in R12 theory. Analysing different approximations we show that in general
the CCS(F12) approach yields 80–95% of the CC2 correlation energy, which is astonishingly large consid-
ering the small number and restricted form of the geminal basis functions.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In 1985 Kutzelnigg published his landmark paper ‘‘r12-Depen-
dent terms in the wave function as closed sums of partial wave
amplitudes for large l” [1]. Through his lucid analysis for helium
Kutzelnigg understood that a large percentage of the electron cor-
relation energy can be recovered from a single term, linear in r12,
the interelectronic separation, chosen to fit the cusp at the bottom
of the correlation hole [2–4]. Kutzelnigg performed calculations on
the ground state of helium at the levels of second order perturba-
tion theory using the 1/Z-expansion and configuration interaction
(CI) theory. He found that the simple wave function expansion

W ¼ ð1þ 1
2

r12ÞU; ð1Þ

U ¼ e�fðr1þr2Þ½ab� ba�; ð2Þ

returned more than 80% of the correlation energy (here defined as
Eexact � hU j Ĥ j Ui). The optimised exponent f for the orbital re-
mained close to that of the bare nuclear Hamiltonian (BN). He pro-
ceeded to expand the wave function as

W ¼ ð1þ 1
2

r12ÞUþ v ð3Þ

using a partial wave expansion for v and found that for second or-
der perturbation theory the energy increments Eð2Þl go asymptoti-
cally as l�8, in contrast to l�4 for conventional partial wave
expansions where the 1

2 r12U term is absent. This remarkable accel-
eration in the rate of convergence was shown to result directly from
ll rights reserved.

e (D.P. Tew).
the explicit representation of the linear r12 nature of the correlation
cusp, for which the partial wave expansion in conventional calcula-
tions converges extremely slowly. The generalisation of these ideas
to many-electron systems followed quickly. For example, in the
MP2-R12 method the first order pair functions jliji, the response
of the Hartree–Fock orbital pair j/i/ji to the introduction of correla-
tion, are expanded as

j liji ¼
X

k6l

ckl
ij Q̂ 12r12 j /k/li þ

X

a6b

tab
ij j /a/bi: ð4Þ

In addition to the conventional expansion in virtual orbital pairs
j/a/bi, a small set of geminal basis functions Q̂12r12 j /k/li is used,
where /k/l are occupied Hartree–Fock orbitals. Q̂ 12 is the strong
orthogonality projector that ensures that the usual Slater–Condon
rules apply to the geminal basis. The coefficients ckl

ij can either be
optimised or fixed according to the cusp conditions (in a spin-
adapted basis cij

ij ¼ 1
2 or 1

4 for singlet and triplet pairs, respectively,
all other terms ckl

ij ¼ 0). First MP2-R12 calculations for molecules
were reported in 1987 [5] and pilot CI-R12 calculations were pub-
lished in 1991 [6]. By 1995, integral direct CCSD(T)-R12 calcula-
tions were possible [7]. Recently, many new developments in
R12 theory have appeared such as the introduction of a dedicated
auxiliary basis for Kutzelnigg’s resolution of the identity method
for the efficient evaluation of many-electron integrals [8], density
fitting approximations for the efficient evaluation of the various
two-electron integrals [9], and general functions of r12 instead of
linear r12 [10]. These advances, particularly the replacement of
r12 with f ðr12Þ ¼ ð1� e�cr12 Þ=c ¼ r12 þ Oðr2

12Þ, have paved the way
for highly efficient explicitly correlated coupled-cluster methods
that return chemical accuracy using only triple-f quality basis sets
[11–17]. It is, however, remarkable that Kutzelnigg’s paper in 1985
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still embodies all the ideas central to modern R12 theory. In this
article we return to the pioneering work of Kutzelnigg and ask
the question ‘‘How well does the ansatz ð1þ 1

2 f ðr12ÞÞUHF perform
when generalised to molecules?”

There is clearly a huge redundancy between the terms
1
2 f ðr12ÞUHF and v and it should be possible to exploit this redun-
dancy to further improve upon the current R12 methods. We are
particularly interested to investigate the sensitivity of this ansatz
on the function f(r12). These questions are additionally motivated
by a comparison of R12 theory with GGn theories [18–21], where
the first order pair functions are expanded as

j liji ¼
X

p6q

X

v
cpq;v

ij fvðr12Þ j /p/qi; ð5Þ

which includes the conventional expansion if the set of fv(r12) in-
cludes fv(r12) = 1. According to Kutzelnigg’s analysis, this expansion
should also be dominated by just a few geminal terms, those that
are common to both the GGn and the R12 expansions. In GGn calcu-
lations, however, this is not evident due to the use of the weak
orthogonality functional.

This article is organised as follows: In Section 2 we repeat Kut-
zelnigg’s CI calculations for the ground state of helium, replacing
linear r12 with ð1� e�cr12 Þ=c. In Sections 3–5 we present coupled-
cluster calculations for molecules using only the explicitly corre-
lated geminal basis to expand the pair excitations.

2. CI-R12 calculations on parahelium

Before turning to molecules, it is instructive first to revisit Kut-
zelnigg’s original calculations on helium. Here we report varia-
tional calculations on the ground state of parahelium using wave
functions of the form

W ¼ ð1þ c f ðr12ÞÞU; ð6Þ

U ¼ /ðr1Þ/ðr2Þ
1ffiffiffi
2
p ½ab� ba�; ð7Þ

/ ¼
Xn

i¼0

Cirie�fr : ð8Þ

Kutzelnigg presented calculations choosing c f ðr12Þ ¼ 1
2 r12 and

/ = e�fr (i.e. n = 0). f was chosen to correspond to either the bare
nuclear orbital (f = 2), or optimised to give the best reference U
or the best function ð1þ 1

2 r12ÞU. We are interested in how sensitive
his conclusions are to the correlation factor c f(r12) and to the ref-
erence U. We present results for three functions f(r12), namely r12,
ð1� e�r12 Þ and ð1� e�cr12 Þ=c, with c variationally determined and
the coefficient c is chosen to either be 1

2, or to be variationally
optimised.

We also investigate two choices of /, the bare nuclear orbital or
the HF orbital.

In Table 1 we present the energies of the 12 wave functions of
the form (1 + c f(r12))U. Eref ¼ hU j Ĥ j Ui, Ecorr denotes the correla-
tion energy E � Eref and the error is defined as Eexact � E. The ener-
gies Ecorr correspond to what Kutzelnigg called the overhead for an
R12 calculation. From our calculations we see that combining 1

2 r12
Table 1
Energies of parahelium (�lEh) from wave functions of the form (1 + c f12)U.

U Eref c r12

Ecorr Error

BN 2,750,000.0 1
2 126,582.3 27,142.1
opt 127,125.1 26,599.2

HF 2,861,680.0 1
2 �12,678.2 54,722.6
opt 18,938.5 23,105.9

Eexact = 2,903,724.4.
with the HF reference for U results in a poor wave function. This is
because the correlation factor r12 acts to expand the wave function,
spoiling the approximately correct extent of UHF. If one reduces the
coefficient from 0.50 to 0.16, the error is halved. Alternatively,
shrinking the orbital to that of the bare nucleus also halves the
error.

The situation for the exponential correlation factor is some-
what different. In combination with the bare nucleus reference,
ð1þ 1

2 ð1� e�r12 ÞÞ gives a relatively poor correlation energy. By vir-
tue of the exponential decay, this correlation factor does not ex-
pand the wave function to the same extent as linear r12 and the
wave function is too contracted. However, the wave function
ð1þ 1

2 ð1� e�r12 ÞÞUHF represents a significant improvement over
the original choice of ð1þ 1

2 r12ÞUBN, reducing the error by 25%.
The best correlation energy is obtained by using the HF reference
with the exponential correlation factor and optimising c and c,
but these parameters remain close to 1

2 and 1, respectively. Final-
ly, we note that this wave function recovers 64% of the correla-
tion energy (defined as E � Eref). Although this value is much
less than the 80% reported by Kutzelnigg, this apparent discrep-
ancy only arises due to the differing Eref that are used to define
the correlation energy. Using the definition E � EHF, the wave
function ð1þ 1

2 r12ÞUBN recovers only 35% of the correlation en-
ergy. Seen in this light, the 64% obtained by F12 is an impressive
improvement.

3. Explicitly correlated coupled-cluster theory

To generalise Kutzelnigg’s simple ansatz for molecules we adopt
the framework of explicitly correlated coupled-cluster theory. In
the normal explicitly correlated ansatz the conventional wave
function expansion is augmented with additional R12 double exci-
tations. The new excitations are intended to improve the wave
function predominantly in the short range region around the elec-
tron–electron cusp, while the conventional excitations are kept to
describe the overall wave function. Here, we discard the conven-
tional double excitations, using only the explicitly correlated gem-
inal basis to expand the doubles. The single excitations are
expanded using virtual orbitals in the usual way. Our selected cou-
pled-cluster model is CC2 [22].

3.1. The CCS(F12) model

The CCS(F12) model is analogous to the CC2 model but the con-
ventional double excitations are replaced with R12 double excita-
tions. The CCS(F12) wave function is

j CCi ¼ expðT̂Þ j HFi; ð9Þ

where the reference state is the Hartree–Fock wave function and

T̂ ¼ T̂1 þ T̂20 : ð10Þ

For a closed-shell reference state the excitation operators are:

T̂1 ¼
X

ai

ta
i Eai; ð11Þ
1� e�r12 ð1� e�cr12 Þ=c

Ecorr Error Ecorr Error

98,904.1 54,820.3 117,112.5 36,611.9
100,134.6 53,589.8 129,310.3 24,414.1

22,023.7 20,020.8 26,016.4 16,028.0
27,028.5 15,015.9 27,061.8 14,982.6



Table 2
Geometries of the investigated molecules. The molecules C2H2 through H2O2 are used
to test the performance of CCS(F12) with respect to chemical reactions. All distances
are provided in Ångstrom, the angles in degrees.

Molecule Ref. Dist. 1 Dist. 2 Angle 1 Angle 2

BeH2 a 1.3348 180.000
CH2 b 1.1080 102.064
HF a 0.9006
F2 b 1.4091
N2 b 1.0988
CO b 1.1302
C2Hþ3 c (class.)
NO+ d 1.0941
BeO d 1.3685
C2 d 1.2675
O3 e 1.2720 116.800
CN+ d 1.1993
BN f 1.2830
C2H2 b 1.2122 1.0617 180.000
C2H4 b 1.3332 1.0810 121.326 117.347
CH4 b 1.0862
CO2 b 1.1703
H2 b 0.7374
H2O b 0.9614 104.109
H2O2 b 1.4538 0.9668 99.604 112.553

a
TURBOMOLE-Testsuite, b Ref. [51], c Ref. [47], d Ref. [50], e Ref. [48], f Ref. [49].
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T̂20 ¼
X

abij

tab
ij EaiEbj: ð12Þ

We have used the usual convention that i,j,. . . denote occupied
and a,b,. . . unoccupied (virtual) orbitals. The indices a,b,. . . are used
to denote orbitals of a complementary subspace (vide infra). The
CCS(F12) equations are:

E ¼ hHFjĤð1þ 1
2

T̂2
1 þ T̂20 ÞjHFi; ð13Þ

0 ¼ hl1j~F þ ~/þ ½~/; T̂20 �jHFi; ð14Þ
0 ¼ hl20 j½F̂; T̂20 � þ ~/jHFi; ð15Þ

with the usual definitions for the projection manifolds [23–25]. F̂
refers to the Fock-operator, Ĥ the Hamiltonian and /̂ the fluctuation
potential:

Ĥ ¼ F̂ þ /̂: ð16Þ

The tilde indicates T̂1-transformed quantities

~A ¼ e�T̂1 ÂeT̂1 : ð17Þ

In Eq. (15) the Fock operator is not T̂1-transformed because the
generalised Brillouin condition (GBC) is applied [26]. The CCS(F12)
ansatz should be compared to the CC2 equations which are entirely
identical except that T20 is replaced by T2.

3.2. The explicitly correlated pairs

The operator T̂20 contains a particular form of double excita-
tions, which are denoted R12 excitations. The detailed properties
of these excitations are:

tab
ij ¼

X

kl

ckl
ij wab

kl ; ð18Þ

wab
kl ¼ h/a/bjQ̂ 12f ðr12Þj/k/li: ð19Þ

The ckl
ij are the R12 amplitudes that are to be determined. Q̂12

ensures that the new excitations are strongly orthogonal on the
Hartree–Fock reference state [27].

Q̂ 12 ¼ ð1� Ô1Þð1� Ô2Þ: ð20Þ

This is known as ansatz 2 in R12 theory [8]. When both conven-
tional doubles and R12 excitations are present, as for example in
CC2-F12 [23], it is preferable to also project out the virtual pairs
[24,28] (see also Refs. [29,30]):

Q̂ 12 ¼ ð1� Ô1Þð1� Ô2Þð1� V̂1V̂2Þ: ð21Þ

Ô ¼
P

k j kihk j is the projection operator onto the occupied Har-
tree–Fock spin orbitals, V̂ ¼

P
a j aiha j is the projection operator

onto the virtual orbitals. Since no conventional doubles are present
in CCS(F12), Eq. (20) is used.

Slater-type geminals (STGs), where f(r12) = exp(�cr12), were
introduced into R12 perturbation theory by Ten-no in 2004 [10],
and various authors have implemented these functions and as-
sessed their performance [31–40], not only at the level of MP2 the-
ory but also at the coupled-cluster level [11–17], or in multi-
reference perturbation theory [41]. As a general rule, at least quin-
tuple-f quality results are obtained in a triple-f basis when using
STGs (vide supra). In the present work, we use STG-nG contracted
two-electron Gaussian basis functions with the coefficients and
exponents taken from Ref. [33]:

f ðr12Þ ¼
Xn

i¼1

ci expð�xir2
12Þ � expð�cr12Þ: ð22Þ

Other correlation factors have also been investigated [33], e.g.

f ðr12Þ ¼ r12; ð23Þ
f ðr12Þ ¼ r12e�cr12 ; ð24Þ
f ðr12Þ ¼ r12erfcðcr12Þ: ð25Þ

In our work we will re-investigate the different choices because
in the absence of the conventional double excitations the explicitly
correlated double excitations have to describe not only the short
range region around the cusp but have to provide also the long-
range behaviour.

Having decided on the form of f(r12), the F12 amplitudes have to
be determined. In the literature different possibilities are known.
In the framework of the variationally optimised method (varopt),
a full optimisation of all R12 amplitudes ckl

ij is performed, as pro-
posed in Ref. [42]. This method is invariant with respect to rota-
tions among the occupied orbitals. The same holds true when
restricting the (spin-adapted) amplitude matrices to the diagonal
excitations cij

ij and determining the amplitudes by the rational-gen-
erator approach of Ten-no, (fixed) [43], which was formulated for
coupled-cluster theory in Ref. [12]. In this work we compare both
options since the fixed approach does not suffer from a geminal ba-
sis-set superposition error [35].

4. Computational details

In this work we perform CC2, CC2-F12 and CCS(F12) calcula-
tions on a test set of small molecules. The molecules and structures
used are summarised in Table 2. All calculations were performed
with the frozen core approximation. Hence, we have used the
aug-cc-pVXZ basis sets of Dunning and co-workers [44,45], de-
noted as aVXZ. All explicitly correlated calculations were per-
formed using standard approximation B and a dedicated
complementary auxiliary basis set (CABS) [28]. If not otherwise
indicated the correlation factor used was a Slater-type geminal ex-
pressed in six Gaussian-type geminals (STG-6G) [33]. When basis
sets of triple-f quality and larger are used for F12 calculations,
the influence of CABS is rather small. Even using aVDZ orbital basis
as CABS gives correlation energies that differ from the true value
by at most one or two millihartrees. Unless otherwise indicated,
we have used the aVDZ CABS for all calculations. In some cases
for the varopt approach, it was necessary to use a larger CABS
due to the occurrence of negative eigenvalues in the Fock matrix
elements involving F12 functions.
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5. Results and discussion

This section is organised as follows: First the CCS(F12) and CC2
basis set limits are compared, followed by a series of studies inves-
tigating the influence of the various parameters in the F12 wave
function. We also compare the CCS(F12) and CC2 methods for rel-
ative energies.

5.1. Basis set limits of CCS(F12) and CC2

The basis set limits of the CCS(F12) and CC2 methods for the
molecules in our test set are given in Table 3. To obtain the
CCS(F12) limit we have used the varopt formulation in combina-
tion with a STG correlation factor and optimised the exponents c
to give the most negative correlation energies. Our investigations
revealed that for CCS(F12) the same optimal exponent c was ob-
tained independent of the size of the basis set (triple- or quadru-
ple-f quality). Therefore the exponent copt was optimised at the
triple-f level and was used without re-optimisation in calculations
using larger orbital basis sets. The CC2 limits were computed with
the CC2-F12 model, using STG-6G with an exponent of c = 1.3 a�1

0 ,
fixed amplitudes and the aV5Z orbital basis. It can be seen that the
obtained varopt CCS(F12) correlation energy amounts to between
80% and 95% of the CC2 limit. This is comparable to the percentage
of the basis set limit recovered in conventional calculations using a
aVTZ basis, which is typically 90%. For the two electron system H2,
97% of the CC2 limit is recovered. These percentages are astonish-
ingly large, particularly when compared to the 65% computed for
helium in Section 2. These results show that Kutzelnigg’s simple
ansatz performs extremely well for molecules, provided that an
optimised non-linear correlation factor f(r12) is used.

In Table 3 we also compare CCS(F12) calculations using the
aVTZ and aVQZ basis sets. It is clearly seen that the results are al-
most converged for the triple-f orbital basis. Differences between
small and large orbital basis sets are mainly based on single exci-
tations and a truncated (i.e. finite) CABS. The reason for this rapid
convergence is the choice of the explicitly correlated pairs
Q12f(r12)/i/j which take into account the occupied orbitals only.
Hence, we expect a convergence behaviour similar to that of Har-
Table 3
CCS(F12)/aVTZ and CCS(F12)/aVQZ correlation energies compared to basis set limit
CC2 values in mEh.

Molecule DCCS(F12)

copt DaVTZ aVQZ %c DCC2Limit

BeH2 0.50 �64.416 �64.492 95.9 �67.259
CH2 0.55 �142.768 �142.887 91.3 �156.550
HF 0.85 �275.012 �273.981 85.5 �320.518
F2 0.80 �523.508a �523.375b 84.6 �618.709
N2 0.60 �370.434a �370.266b 86.6 �427.552
CO 0.65 �350.296a �350.172b 85.1 �411.414
C2Hþ3 0.60 �286.131a �286.405 90.0 �318.298
NO+ 0.65 �400.493a �400.279b 83.8 �477.653
BeO 0.60 �286.422a �286.382b 79.0 �362.346
C2 0.40 �380.353a �380.339b 92.4 �411.489
O3 0.65 �756.153a �755.921b 82.7 �914.165
CN+ 0.40 �379.356a �379.222b 79.8 �475.431
BN 0.40 �320.348a �320.210b 78.9 �405.844
C2H2 0.55 �315.188 �315.325 90.0 �350.526
C2H4 0.60 �344.859a �344.835b 91.8 �375.738
CH4 0.60 �204.839 �205.030 93.1 �220.195
CO2 0.65 �599.295a �599.203b 85.3 �702.214
H2 0.50 �33.376 �33.368 97.2 �34.329
H2O 0.75 �263.385 �263.068 86.9 �302.710
H2O2 0.70 �497.592a �497.584b 86.3 �576.333

a CABS increased to aVQZ.
b CABS increased to aVTZ.
c DCCSðF12Þ

DCC2Limit � 100.
tree–Fock with respect to increasing basis sets, namely ‘‘almost”
convergency for triple-f basis sets. This is indeed observed. How-
ever, this geminal basis is far from being complete. Up to 20% of
the correlation energy is unaccounted for. The reason for this is
also due to the choice of the explicitly correlated pairs. In order
to recover the remaining correlation using geminal functions only,
one possibility is to extend the geminal basis to cover the complete
space the conventional pairs act on. The explicitly correlated pairs
then take the form Q12f(r12)/p/q, where p and q denote both occu-
pied and virtual orbitals. This was introduced earlier to describe
excited states [46] as well as in the GGn methods [18–21]. In Ref.
[46] test calculations are carried out for ground state energies,
but both the use of ansatz 1 and the inclusion of the conventional
double excitations did not indicate the need of this extension to
ground state theory.

5.2. Variationally optimised vs. fixed amplitudes

Kutzelnigg’s original idea was to fix the F12 amplitudes accord-
ing to the cusp conditions. In this section we compare the CCS(F12)
correlation energies computed using the fixed and varopt formula-
tions, where the amplitudes are optimised. CCS(F12)/aVTZ results
for the fixed amplitude method are shown in Table 4 and are also
given as a percentage of the CCS(F12)/aVTZ-varopt values, which
are in Table 3. The exponent c was optimised for each molecule
and both methods independently. In general we found that the dif-
ferences in the optimised c’s are very small. Although the varopt
method always performs slightly better than the fixed amplitudes
approximation, the latter performs surprisingly well, yielding in al-
most all cases 92–99% of the varopt method. This result is remark-
able for two reasons. Firstly, when the amplitudes are held fixed
the correlated wave function contains a single variational parame-
ter c for the double excitations. Secondly, the explicitly correlated
pairs are chosen such that the short range r12 dependence is de-
scribed, with relatively little reference to longer-range correlation
effects. This is perhaps an indication that long-range correlation,
particularly that which cannot be described using a spherically
symmetric correlation factor, is poorly represented in both the
fixed and varopt approaches and is the dominant contribution to
Table 4
Optimised CCS(F12) Slater-type geminal exponents copt for different molecules using
the fixed method. The exponent was optimised for the varopt and fix approaches
independently. The resolution of the optimisation was 0.05 a�1

0 . The correlation
energies are provided in mEh. Larger CABS have to be used for the varopt method if the
B matrix of R12 theory has negative eigenvalues.

Molecule copt DCCS(F12) %a

BeH2 0.60 �63.775 99.0
CH2 0.65 �139.938 98.0
HF 0.90 �266.148 96.8
F2 0.90 �495.511 94.7
N2 0.70 �352.884 95.3
CO 0.75 �335.547 95.8
C2Hþ3 0.65 �275.538 96.3
NO+ 0.70 �379.881 94.9
BeO 0.70 �276.529 96.5
C2 0.65 �283.717 74.6
O3 0.75 �697.165 92.2
CN+ 0.50 �357.388 94.2
BN 0.55 �304.870 95.2
C2H2 0.65 �301.215 95.6
C2H4 0.65 �333.212 96.6
CH4 0.65 �199.836 97.6
CO2 0.75 �572.820 95.6
H2 0.65 �33.162 99.4
H2O 0.80 �255.100 96.9
H2O2 0.80 �476.369 95.7

a CCSðF12Þ½copt ;fixed�
CCSðF12Þ½copt ;varopt� � 100.
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Fig. 2. CCS(F12) aVTZ correlation energies for the C2 molecule for a wide range of c
in mEh using the fixed and varopt approach.

Table 5
Frozen-core varopt CCS(F12) aVTZ correlation energies for the HF molecule using
different correlation factors. The best result obtained with the STG-6G approach is
�275.012 mEh (compare previous tables).

f(r12) c

r12 � �194.510

e�cr12 0.2 �232.274
0.4 �257.499
0.6 �270.475
0.8 �274.884
1.0 �273.670
1.2 �268.843
1.4 �261.616

r12e�cr12 0.2 �264.958
0.4 �267.164
0.6 �205.494
0.8 �126.788
1.0 �74.807
1.2 �54.395
1.4 �53.573

r12erfc(cr12) 0.2 �270.644
0.4 �131.651
0.6 �50.914
0.8 �57.898
1.0 �89.155
1.2 �114.661
1.4 �127.044
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the deviation between the basis set limits of the CCS(F12) and CC2
methods.

The only case we have observed where fixed performs signifi-
cantly worse than varopt is that of the C2 molecule, where the var-
opt-fixed discrepancy is 25% (96.636 mEh). This is also reflected in
the optimised STG exponents. Whereas in almost all other cases
the optimised c did not change much when switching from the
varopt to the fixed method, this is not true for the C2 molecule
and the exponent increases dramatically from 0.40 to 0.65 a�1

0 . Sur-
prisingly, although a similar situation occurs for the BN molecule
the fixed description of this molecule is in line with the other
molecules.

5.3. c-dependence

The optimised STG exponent for the varopt formulation of
CCS(F12) yields an average of 0.7 a�1

0 , which is clearly smaller com-
pared to the established STG exponent 1.3 a�1

0 in explicitly corre-
lated calculations such as MP2-F12 and CCSD(F12). The geminal
basis functions are therefore longer range. In this section we inves-
tigate the c-dependence, i.e. how the correlation energies decrease
if c moves away from the optimum value. The results of CCS(F12)/
aVTZ calculations for the molecules HF and C2 are shown in Figs. 1
and 2, respectively. For the HF molecule the varopt method seems
to be quite insensitive to a wide range of c whereas the fixed
amplitudes show a strong c-dependence. For the C2 molecule both
the varopt and fixed methods show a similar pronounced depen-
dence. Comparing HF with C2, the fixed amplitudes approach for
C2 shows a less pronounced c-dependence than HF, but on the
other hand the varopt results for C2 are more sensitive to a poorly
chosen exponent than HF. In general it is obvious that the results
depend more strongly on the exponent c than in methods that
use both explicitly correlated and conventional excitations.

5.4. Influence of the correlation factor

The sensitivity of the CCS(F12) method to the choice of correla-
tion factor is also of interest. In Section 2 we have illustrated that
the STG is a significant improvement over linear r12 in CI calcula-
tions for helium. Here we investigate a number of previously con-
sidered alternative correlation factors [33]. Results for CCS(F12)/
aVTZ calculations on the molecule HF are collated in Table 5. First
we investigated the original R12 ansatz, choosing the correlation
factor to be linear in the interelectronic distance f(r12) = r12. Just
as for the CI calculations on the helium atom, this approach per-
forms fairly poorly for molecules in the framework of CCS(F12).
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Fig. 1. CCS(F12) aVTZ correlation energies for the HF molecule for a wide range of c
in mEh using the fixed and varopt approach.
The linear correlation factor was introduced to fit the short range
around the electron–electron cusp and introduces incorrect med-
ium to long-range behaviour of the wave function. We have also
investigated f(r12) = r12exp(�cr12) (RSTG) and f(r12) = r12erfc(cr12)
for a range of c. Neither of these correlation factors improve upon
the STG, although similar correlation energies may be obtained if c
is properly optimised. The optimum values of c for both of these
functions are much smaller than that of the STG, which is expected
from a comparison of the quadratic and cubic r12 terms in the Tay-
lor expansions. In general we may tentatively conclude that the
long-range tails of these correlation factors do not improve the
description of the correlation in CCS(F12) calculations, but rather
worsen it. The Slater-type correlation factor continues to be the
best choice of all investigated correlation factors.

5.5. Investigations on reactions

The next step is to investigate energy differences, i.e. reaction
energies. Results for the correlation contribution using the fro-



Table 6
Reaction energy contributions for different coupled-cluster methods and basis sets in
millihartrees. The CCS(F12) results are obtained using the aVTZ values from Table 4.

Method DCCS(F12) DCC2

fixed varopt aVDZ aVTZ aVQZ

C2H2 + H2 ? C2H4 1.17 3.71 12.65 8.50 7.37
H2O2 + H2 ? 2H2O 0.67 4.20 11.18 5.94 3.99
CH4 + 4H2O2 ? CO2 + 6H2O 1.90 15.60 7.31 10.24 8.21
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zen-core approximation are shown in Table 6. The CCS(F12) num-
bers were computed using the frozen-core aVTZ correlation ener-
gies from Tables 3 and4. The Hartree–Fock contributions are not
listed but must not be forgotten yielding negative reaction energies
in total. In the framework of this study we are only interested in
the loss of accuracy when going from CC2 to CCS(F12). Overall
the varopt results perform very poorly and the fixed values are even
worse. The CCS(F12) results clearly do not provide a homogenic
description of the correlation energy in molecules, in other words
the problem is that the CCS(F12) correlation energy amounts 85%
of the CC2 limit in the case of CO2 but 97% in the case of H2. In this
respect the presence of the conventional expansion for the double
excitations is a very important component of F12 methods for
chemical applications.

6. Summary and conclusions

Almost all of the key components of modern R12 methods can
be traced back to Kutzelnigg’s breakthrough paper in 1985. Not
only did he demonstrate that the rate of convergence to the basis
set limit is greatly accelerated if the correlation cusp is satisfied,
but he also solved the problem of the numerous, expensive
many-electron integrals that arise through use of an approximate
resolution of the identity. Moreover, Kutzelnigg found that for he-
lium, the simple wave function ð1þ 1

2 r12ÞU recovered more than
80% of the correlation energy (using the bare nuclear Hamiltonian
as the zeroth order operator). In this paper we have revisited Kut-
zelnigg’s simple ansatz, replacing linear r12 with the modern Sla-
ter-type correlation factor. We have asked the question ‘‘How
much of the correlation energy is recovered for molecules?” We
have therefore performed calculations at the CC2 level of theory,
replacing the conventional expansion in virtual orbital pairs with
the R12 geminal basis. Even though only occupied Hartree–Fock
orbitals are used in the geminal basis, 80–95% of the CC2 basis
set limit are obtained. This is astonishingly large, considering that
for linear r12 only around 60% is recovered. However, the propor-
tion of correlation energy recovered and the exponent c in the
geminal basis vary greatly between the molecules we have inves-
tigated. Nonetheless, our results clearly demonstrate the immense
redundancy between the conventional and geminal basis functions
in explicitly correlated calculations. Furthermore, it also indicates
that in GGn methods the geminal expansion should converge rap-
idly, provided that the strong orthogonality functional is used [27].
We postulate that for the development for future R12 methods it
may be possible to capitalise on the redundancy between the gem-
inal and conventional excitations and to construct smaller sets of
virtual orbitals, perhaps in the fashion of Almlöfs’ dual basis sets
[52], as proposed in Refs. [46,53]. On the other hand, the fact that
in R12 calculations 80 - 95% of the correlation energy is recovered
by the geminal basis alone clearly explains why it is possible to
achieve quintuple-f quality with only triple-f basis sets.
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