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To account for unlinked-cluster effects at the multireference level, we propose a generalization (MR ACPF) of the “coupled- 
pair functional” (CPF) Comparison with full CI results for BeH2, HrO, CHx, Or and the five lowest-lying ‘A, states of CH$ , 
shows the superiority of MR ACPF over MR CI(SD) and MR LCCM. Large-scale calculations for F2 (up to a [7s5p3d2flg] 
CGTO basis set and 6 references) show better convergence to the experimental D, values on basis set and reference space exten- 
sion than does MR CI( SD). 

1. Introduction 

Single and multiple reference (MR) CI( SD) tech- 
niques have some important advantages which ac- 
count for their widespread use. The method obeys 
the variation principle and it is the availability of ef- 
ficient program systems [ l-51, including those for 
gradient calculations [ 6-91, that allows applications 
to systems of chemical interest. The basic shortcom- 
ing of CI(SD) techniques is the lack of size exten- 
sivity [ 10-121. This problem appears to be of less 
importance in MR CI(SD) if the number of elec- 
trons correlated is not too large. MR (CI) treat- 
ments of first-row diatomics, with around 10 
references (and extended basis sets), apparently do 
not point to size-extensivity problems [ 13,141. It may 
be expected, however, that size extensivity will be a 
problem with a larger number of electrons, e.g. in 
transition metal complexes, even at the MR CI (SD) 
level [ 151. Various techniques to include multiple 
substitution corrections - to achieve size extensivity 
on the CI( SD) level - have proved useful at the sin- 
gle reference level [ 16-201. The MR case appears to 
be less well explored [ 2 1,221, although this field is 
under intensive investigation at present [ 23,241. 

In this article we propose a very simple modifi- 
cation of the MR CI (SD) method in order to achieve 
size extensivity. Our procedure is based on an energy 

functional - having a close analogy to the “coupled- 
pair functional” (CPF) method [ 19,201 - and is 
easily implemented into existing programs, thus tak- 
ing advantage of the efficiency of these algorithms. 

2. Theory 

Let Y0 denote the normalized zeroth-order wave- 
function of single or MR type, 

Y0 = c G#r (1) 
r 

and Yy, the (extra) correlation function which arises 
from (a priori) all possible single and double sub- 
stitutions of orbitals in the reference CSFs and which 
is required to be orthogonal to Yyo, 

(YyolYY,)=O. (2) 

We then consider the correlation energy functional 
FJ Y,] (with respect to EO) 

<~o+~cI~-EoI~~,+~c) 
FcLycl:= 1 +g,( Yy,I Yu,) +ge( Y,I Ye> ’ (3) 

K3~=<~Y,I~I~o), (4) 

where Y, is decomposed into two mutually orthog- 
onal parts 
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Y,=Y,+Y,. (5) 

Yy, includes all CSFs which have the same orbital oc- 
cupation as the references, outside the active space 
(including references under the constraint of eq. (2)) 
and Y’, includes the remaining CSFs. F, from eq. (3) 
is identical to the (extra) correlation energy func- 
tional of MR CI( SD) for the special choice g,=g,= 1. 
Since the effect of ( Yy, ) Yu,) in the denominator of 
F, is cancelled to a large extent by energy contri- 
butions of higher excitations - the neglect of which 
causes non-size extensivity - it is tempting to rectify 
this shortcoming by a proper choice of g, and g,, i.e. 

g,, &G 1. 
Let us first consider the case where Yy, vanishes or 

is neglected. Size extensivity requires setting &a l/n, 
where n denotes the number of electrons correlated. 
For a proof consider a single-reference description of 
a supersystem of rn identical, non-interacting sub- 
systems (at mutually infinite distances). Size exten- 
sivity on the zeroth-order level implies 

E,,= f E6” , 
I= I 

where i= 1, . . . . m labels the identical subsystems and 
I denotes the antisymmetrizer in an otherwise ob- 
vious nomenclature. We consider a total correlation 
function which includes intrasystem correlation only, 

Yy,= f d Yp fl yp , 
r=l ( jri > 

(8) 

The functional F“,, eq. (3), is then size extensive in 
the sense 

Fc[ Y,] = f Fp’[ Y:‘)] , (9) 
,=I 

if and only if g,cc llncc Urn, independent of the ac- 
tual form of Y:‘) . 

Since only singles and doubles are explicitly in- 
cluded in y/i’) and in Yy,, it is natural to require that 
two-electron systems and, by means of eqs. (6)-(9), 
supersystems of identical non-interacting pair sys- 
tems are described correctly. This leads to our final 
choice 

g,= 2/n . (10) 

Consider now a more general case, where Y,#O 
and the reference space is of the CAS type. Double 
(single) replacements from Yy, which only involve 
active orbitals then never give rise to cluster correc- 
tions since a combination with any other double 
(single) replacement from Y,, is already contained 
in the CI. This requires setting g,= 1 since cluster 
corrections are not necessary. The situation is more 
complicated for non-US cases, where a proper 
choice for g, may be difficult. However, in our ex- 
perience one is usually close to the CAS case and we 
recommend always setting g,= 1. With this choice 
one is on the safe side, i.e. the corresponding cluster 
corrections are slightly underestimated. 

Size extensivity, eq. (9)) does not hold in general 
since Yy, includes doubles involving singles of dif- 
ferent subsystems e g ~4$(‘)#*) which are not in- . . s S’, 
eluded in eq. ( 8). ‘These terms may cause a violation 
of eq. (9) in fourth-order perturbation theory at most 
but vanish exactly in special cases, e.g. if the !J’f) are 
of closed-shell SCF type. Eq. (9) is also violated for 
non-identical subsystems. The discrepancies again 
occur in fourth order but cancel to a large extent. 

It should be noted that Fc, eq. (3)) has the same 
invariance properties with respect to unitary trans- 
formations of external and/or internal MOs as the 
corresponding CI functional. 

3. Relations to other methods 

) If one evaluates Fc, eq. (3), for the MR CI( SD 
wavefunction ” Yy,, one gets 

~~[“‘Y,]=“‘E,[1+(1-2/n)(“‘Y=lC’YY,) 

+~(llY~ll’)1 I (11 

where “EC denotes the MR CI( SD) correlation en- 
ergy. The rhs of eq. (11) is a Davidson-type 
[ 16,2 1,221 correction for ‘%?$ including Pople’s fac- 
tor 1-2/n [ll]. 

A rigorous way to account for cluster corrections 
is provided by MR coupled-cluster (MR CC) theory 
[25]; however, this leads to rather complicated 
equations. An approximation which considerably 
simplifies matters is the linearized version (MR 
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LCCM) [ 261 of MR CC. MR LCCM corresponds in 
fact to the choice g,=g,=O, together with the total 
neglect of Yy,. Linearized versions of CC methods 
usually tend to overestimate the effect of higher ex- 
citations [ 261, although contributions arising from 
Yy, are neglected. 

The present approach is closely related to the sin- 
gle reference CPF method [ 19,201, which achieves 
size extensivity by means of individual partial nor- 
malization denominators. The CPF approach is dif- 
ficult to generalize to the MR case since electron pairs 
are no longer unambiguously defined. The func- 
tional F,, eq. (3), can be obtained from the CPF if 
the individual partial denominators are replaced by 
a single averaged partial denominator (eq. (3) has 
in fact been discussed in ref. [ 191 for the special case 
of identical non-interacting pair systems). 

4. Variation of Fcie[ YJ 

Variation of FJ Y,], eq. (3), under the constraint 
of eq. (2) leads to the following equations for Y,: 

a=Q(H-Eo-E,G)(YYo+YY,)=O, (12) 

Q=l-l~o><YoI, (13) 

J%=FJ Ycl 7 (14) 

G=g,P+g,(l-0 , (15) 

where P is the projector onto the subspace on which 
Yy, is defined 

PYc= Yy, . (16) 

Although eq. (12) is very similar to the CI equations 
it is in general neither an eigenvalue problem, as for 
the CI case (g,=g,= I), nor a linear system, as for 
CEPA(0) (ga=ge=O). 

We note in passing that the functional F,[ YJ , eq. 
(3), reduces to the well-known transition energy 
formula 

J%=F,[ Ycl= (Yo IHI y,> (17) 

provided eq. ( 12) is fulfilled. The n-particle reduced 
density matrix YACpF within the ACPF formalism is 
given by [ 191 

YACPF= (1 -aMY, +w[ Yo + Y,l I (18) 

l+<~cl~c> 
‘= l+(Y,]G]Y,> ’ 

(19) 

where y[ ] is the density matrix evaluated with the 
wavefunction in brackets. F,, eq. (3), is bounded 
from below by “E&gc, where “EC is the lowest ei- 
genvalue of the H-E,, matrix (see ref. [ 191). 

5. Numerical details 

Consider trial vectors YLr), ,u= 1, . . . . k, orthogonal 
to Y,, as generated by some single vector iteration 
procedure, up to the kth iteration. We determine an 
improved solution, Pi”), of eq. (12)) by the linear 
variation method 

which leads to (compare eqs. (3), (12) and (15)) 

(A-E,S)a= -b, (21) 

Apu:= (Yip) IH-E. 1 Yy!“‘) 7 (22) 

Ec:=Fc[ @‘,I , (23) 

S,:=(Yu!“‘IGlYu!“‘} > (24) 

b,,:= ( Y,, IHI YZp)) . (25) 

After each iteration we solve eq. (2 1) by a 
Newton-Raphson procedure to obtain EC and the 
optimal a . (k) The set {YAP)} is (in our program ver- 
sion) generated by a first-order update: 

r,r’ E R l$R 

H,‘=(gliIHIQ)I) 9 (28) 

where the tirst summation runs over the references 
and the second over the remaining CSFs. This par- 
titioning of H can be considered as a generalization 
of the one introduced by Epstein and Nesbet [ 27,281 
to the multireference case. The first trial function 
Y!‘) is simply obtained by formally setting YZ ~0. 

Note that the linear space spanned by the { YyS”) }, 
eq. (26), is the same as that obtained if the Y Sk) were 
generated by a straightforward extension of 
Davidson’s [ 291 method for solving large eigenvalue 
problems. However, in Davidson’s algorithm cr(“) is 
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the residual vector of the best linear combination of 
trial vectors and the !J’$) are forced to be mutually 
orthogonal, which requires additional operations, 
avoided in our method. If YL’Q converges too slowly 
to the solution of eq. (12) or even diverges, then the 
set {Yip)} becomes approximately linearly depen- 
dent. In this case it is necessary to switch to the above- 
mentioned generalization of Davidson’s method 
which is numerically much more stable. 

6. Applications 

For the sake of clarity we define the nomenclature 
used in this work to specify the various methods used: 

(i) MR ACPF: Yy,, EC obtained from optimization 
of the functional F,, eq. (3), 

(ii) MR CI(SD): as MR ACPF, but g,=g,=l, 
(iii) MR CEPA( 0): as MR ACPF, but g, =g, = 0, 
(iv) MR LCCM: as MR CEPA( 0) with Yy,=O. 
The necessary modifications of an MR CI(SD) 

program system have been implemented in the Co- 
lumbus system of programs [ 3,301. The method to 
be used is specified by input parameters. 

The first applications concern first-row diatomics 
treated at the single reference level. The sole purpose 
of these tests of the new method was to determine 
whether the use of a single “averaged” denominator 
has any appreciable influence. The ACPF results are 

compared with the CPF results, since the individual 
denominators of CPF are certainly better justified. 
We computed R, and D, (computed as 

A& = 2&0, -E,,J of CO, 02, N2 and F2 within the 
2d 1 f basis sets described in ref. [ 3 11. The energy dif- 
ferences AE=EcpF- EAcpF, at R,, were found to be 
in the range A,?= OS-l.0 mhartree for CO to N2 
(ascending in this order) but L(E=3.6 mhartree in 
the case of F2. The deviations between R, and DC, 
AJ! =R,ACPF-RzPF, &=D~CPF-D~PF are insig- 

n&ant for NZ, CO and O2 (A&=0.002 a0 and 
U$ = 0.04 eV at most). On the basis of the very close 
agreement between CPF and ACPF one would pre- 
fer ACPF since this method is technically much sim- 
pler. Deviations are more pronounced for Fz 
(A&=0.046 ao,AD,=O.ll eV), whichisinfact the 
only system showing near-degeneracy effects. The 
MC SCF-2 coefficient of the 30: -+ 3oi excitation is 
~~0.261 at Rz2.672 ao. This example shows the 
limitations of ACPF: Y,, should include all “near-de- 
generacy effects” such that the “electron pairs” cor- 
related can be treated on an equal footing, i.e. by an 
averaged denominator. 

In tables 1-5 we compare the present MR ACPF 
and some other MR methods with full-C1 (FCI) for 
the BeH, [ 261, Hz0 [ 321, CH2 [ 331 and 02 [ 341 
ground states. The MR ACPF energies are closer to 
the FCI values than the variational MR CI( SD) with 
the exception of BeH, geometry 1, where both meth- 

Table I 
Czv insertion of Be into H1. Energy differences in mhartree from the full-C1 value in hartree. 10 CGTO basis set, geometries and reference 
CSFs as in ref. [ 261 

Geometry 

1 2 3 

FCI ” - 15.62288 - 15.60292 - 15.62496 

MC SCF 53.31 64.35 66.68 
MR CI(SD) 0.84 2.01 3.08 
MR CI(SD)+Dav. h, -2.31 -3.22 -3.24 
MR CEPA(0) -3.28 4.30 c’ -5.50 
MR LCCM -2.62 -2.40 -5.50 
MR ACPF d, -0.90 - 0.90 -0.53 

a’ From ref. [26]. 
” MR CI( SD) with Davidson correction [ 161 as proposed by Bruna et al. [ 2 11. 
c, Saddle point with respect to variation of Yf, due to near degeneracy of the 3a, and lb2 orbitals. Minimization of F, leads to E,= -co 

and ]I yc]] =UJ. 
d, n=4, since the correlation energy of the orbital pair la,-la, had a value of only about -2 mhartree (in thegiven basis). 
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Table 2 
Hz0 with symmetrically stretched bonds. Energy differences in mhartree from the full-C1 value in hartree. Geometries and DZP basis 
set as described in ref. [ 321 

d(O-H) 

lSR, 

FCI ” -16.25662 -76.07141 -75.95227 

MC SCF-12 b, 161.91 146.63 128.56 
MR CI(SD)-12 4.98 4.53 3.71 
MRCI(SD)+Dav. ‘I -1.36 -1.33 -0.70 
MR LCCM-12 -1.27 -0.59 0.02 
MR ACPF-12 d, -0.12 -0.22 0.18 

MC SCF-55 ” 126.75 118.27 112.36 
MR CI(SD)-55 2.52 2.04 1.75 
MR CI(SD)-55+Dav. ‘) -1.18 -1.54 - 1.46 
MR LCCM-55 -1.15 -1.43 - 1.31 
MR ACPF-55 d’ -0.40 -0.79 -0.78 

a1 From ref. [ 321. b, CAS with 3a,, 4a,, lb2 and 2bz orbitals active. ‘I See table 1, footnote b. 
d, n= 8, since the la, orbital was frozen in all correlation treatments. e, CAS as footnote b + lb, and Zb, orbitals active. 

Table 3 
CH2 ( X ‘A, ) , energy differences in mhartree from the full-C1 value of EFC, = - 39.027183 hanree [ 331. Geometry and DZP basis set as 
described in ref. [ 331. The la, orbital was obtained in the SCF calculation and not changed in subsequent MC SCF calculations. The la, 
electrons were not correlated. 

Number of 
references a’ 

1 
2 

56 

CAS SCF MRCI(SD) 

140.886 8.899 
119.564 5.092 
81.713 1.493 

MR CI( SD) 
+Davidson b, 

-0.038 
-0.492 
-1.177 

CPF 

2.066 

MR ACPF ” 

1.907 
1.187 

-0.395 

a’ Reference CSFs as in ref. [ 331, b, See table 1, footnote b. c, n = 6. 

Table 4 
Or comparison of differences of energies (in mhartree), equilibrium bond lengths (R,) and dissociation energies (D,) with respect to 
the full-C1 values [ 341. DZP basis set and reference CSFs as described in ref. [ 341. The lo,, la,, 20, and 2a, orbitals were frozen in the 
correlation treatments 

R (4 Me (a0) me (W 

2.25 2.30 2.35 100.0 

CAS SCF 143.250 143.169 143.005 107.885 - 0.004 -0.958 
MR CI(SD) 4.073 4.105 4.132 3.219 0.000 - 0.024 
MR CI(SD) + Dav. ” - 1.782 -1.811 - 1.836 -0.361 0.001 0.040 
MR LCCM -0.586 -0.579 -0.570 - 0.676 0.000 - 0.003 
MR ACPF b’ -0.654 -0.676 -0.695 0.362 -0.001 0.031 

FCI ” 0.875147 0.876947 0.876694 0.706685 2.318 4.637 

‘) See table 1, footnote b. b, n = 8. “Fromref. [34].Energies(hartree)aregivenas-(Et149). 

417 



Volume 143, number 5 CHEMICAL PHYSICS LETTERS 29 January 1988 

Table 5 
Fz, comparison of total energy E (at R,), equilibrium bond length R, and dissociation energy 0, obtained with MR CI(SD) and MR 
ACPF. The log and lo, orbitals were frozen and interacting space restrictions [3] were imposed. Experimental values [ 351 are R,=2.668 
aO, D,= 1.66 eV 

Basis a1 Property Number of references 

1 2 b’ 6 c’ 

MR CI( SD) d, A2dlf -(E+ 199) (hartree) 0.261582 0.281415 0.288334 
& (ao) 2.594 2.691 2.68 1 
De (ev) 0.45910.823 ‘) I.362 1.529 

B3d2flg -(E+l99) (hartree) 0.302303 0.322280 0.329826 
R, (a0) 2.581 2.611 2.668 
0, (eV) 0.510/0.913 r, I .456 1.638 

MR ACPF f, Afdlf - (E+ 199) (hartree) 0.308552 0.311223 0.312182 
K (00) 2.718 2.691 2.690 
D, (eV) 1.417 1.492 1.512 

B3d2flg - (E+ 199) (hartree) 0.352353 0.355393 0.356573 
R, (ao) 2.699 2.611 2.616 
0, (eV) 1.515 1.600 1.624 

‘i As specified in ref. [ 36 1, b)3a:lrt~ln: and lx~ln:3a~. 
” As in footnote b +3cr: lx: lnj30:2x:, all possible couplings, 
d1 Ref. [ 361 and this work. 
c, First value computed as 2E,,,, -E,,,, second value through comparison of&,,,,, with the energy obtained for an Fz supermolecule with 

asinglereference30~17t:lrt,43o: (‘X:). 
0 n=l4. 

ods are quite accurate (table 1). This is by no means 
a trivial result: cluster-corrected energies may easily 
show larger deviations from FCI than MR CI( SD), 
as demonstrated by MR LCCM for BeH2 at all ge- 
ometries considered (table 1). MR ACPF energies 
are generally closer to FCI than MR LCCM for BeH, 
(table 1) and Hz0 (table 2). MR LCCM and MR 
ACPF are of comparable accuracy for O2 (table 4)) 
with MR LCCM slightly better. The accuracy of MR 

LCCM is partly due to an error compensation, as 
mentioned above, which is very satisfactory for 02, 
but cannot always be relied upon, as is shown by the 
results for BeH, and H20. The MR ACPF energies 
are typically closer to FCI than the corresponding 
Davidson-corrected MR CI( SD) energies, only 
CH,( X ‘Al) is an exception (table 3). 

We next performed calculations for Fa with Y0 of 
single, double and sextuple reference type. The re- 

Table 6 
CH: (1-5 ‘AI ). Energy differences in mhartree from the full-C1 value in hat-tree. Basis set, geometry and reference space as specified in 
ref. [ 371 

State CAS SCF ” MR CI(SD) =I MR ACPF b, FCI ” II Yell d’ 

1 53.629 0.474 -0.236 -38.650312 0.153 
2 63.705 0.722 -0.650 -38.213539 0.201 
3 69.798 1.250 -1.138 -38.170071 0.429 
4 70.529 0.918 -0.751 -38.143006 0.323 
5 82.859 2.581 - 10.492 -38.040317 1.106 

a) Ref. [37] and this work. b’ n= 5. ‘) Ref. [37]. d, For MR ACPF. 
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sults, collected in table 5, show a gratifying conver- 
gence for the computed 0, and R, values on basis set 
and reference space extension and converge smoothly 
towards the experimental values. The MR ACPF re- 
sults for 0, display a much better convergence than 
MR CI(SD) on reference expansion, and two ref- 
erences - which allow for proper dissociation - ap- 
pear to be sufficient. The situation is similar to that 
for H20 (table 2) where 12 references are sufficient. 

The considerations presented so far are not re- 
stricted to ground states but also apply to excited 
states, see e.g. ref. [25]. Since FCI calculations are 
available for the five lowest-lying ‘A, states of 
CHZ [ 371 we have applied the MR ACPF to these 
cases for comparison. In our treatment we solve eq. 
(12) with Y,, as obtained from the MC SCF for the 
corresponding state. The results, table 6, show best 
agreement (FCI versus MR ACPF) for the ground 
state, 1 ‘A,, but MR ACPF is still slightly closer to 
FCI than MR CI(SD) for N ‘A,, N=2, 3, 4. MR 
ACPF breaks down for the highest state 5 2A,. How- 
ever, for this state one gets )I Yy, II= 1.106 which im- 
plies that Y,, is a poor zeroth-order approximation 
and MR ACPF should not be applied. For N=2, 3, 
4 we also find quite appreciable magnitudes for 11 Yell 
(as given in table 6; values from 0.201 to 0.429) and 
it is encouraging that the new method is stable under 
these circumstances. There is, in fact, a close cor- 
relation between II YJ and the accuracy of MR 
CI(SD) and MR ACPF, as expected. 

7. Conclusion 

Our approach to remedy the size-extensivity prob- 
lems of MR CI(SD) treatments is quite pragmatic 
and lacks the rigour of multiple-reference coupled- 
cluster theories. It has the advantage of great sim- 
plicity and is easily implemented in existing MR 
CI( SD) and corresponding gradient programs. This 
means that one can draw on the accumulated ex- 
perience and efficiency of MR CI(SD) programs, 
which at present supercede those of coupled-cluster 
methods. The results of an initial series of applica- 

tions, presented in this article, indicate that un- 
linked-cluster effects are reliably taken into account. 
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