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The configuration interaction CIPSI algorithm dcfincs three classes of dctsrminants of dccrcasing imPorr:mst: ~hr mew 

important Ones ( < 100) are generators. the mean class ( = IO-‘) is treated variarionally or to Ihe burth order. uhilc rhc Ir’>> 
imporcnnt ones ( = IO’) are treawd to the second order only. The accumcy of the result is studied ac 9 function of rhr horders 

between the classes in the cast of H,O (double-zeta basis set). xbherr the rxtct ~olmion is known. nnd for rhe ncxrly dcgcncrxe 

CN + problem. 

1. Introduction 

Since full configuration interaction (CI) is not 
achievable for molecules involving many electrons 
and/or large basis sets, quantum chemists are 
forced to use approximate schemes. such as rrun- 
cations to a certain level of excitation [single + 
double CI for instance (SDCI)]. freezing of some 
MOs. cluster expansions. etc. In order to avoid 
incorrect dependence of truncated CIs on the 
number of particles. one may follow the perturba- 
tive approach which treats the correlation poten- 
tial as a perturbation operator. This way. opened a 
long time ago by Mailer and Plesset [l]. leads to 
the important results of the many-body perturba- 
tion theory (Iinked cIuster theorem [2.3], diagram- 
matic representations [2.3]). However. its conver- 
gence rests upon the quality of the zeroth-order 
wavefunctions. and while the expansion may be 
convergent from the ground state Hartree-Fock 
determinant in most cases. the convergence may 
be slow, and may disappear for excited states. In 
many cases near degeneracy between important 
configurations requires the use of a multiconfig- 
urational zeroth-order wavefunction or zeroth- 
order space. One may use the quasi-degenerate 
perturbation theory [4-S] (QDPT) in one of its 
numerous versions. which leads to the perturbative 
construction of an effective hamiltonian. For ac- 

tual CI problems this approach is poorly conver- 
gent since it faces the recurrent problem of the 
so-called “intruder states” (see for instance_ rsfs. 
[9.10]). An alternative solution consists in perturb- 
ing a multiconfigurational wavefunction resulting 
from a preliminary variational treatment of the CI 
matrix reduced to the mosr important dctermi- 
nants. This is the \vay follolved b_v Whitten and 
Hackmeyer [l lj or by the CIPSI algorirhm 
[ 10.12.13]. The latter approach (lvhich has been 
widely used for ground and cscired state studies. 
see. for instance. refs. [ 14. IS]) consists in an itera- 
tive selection of a first class of determinanrs (S). 
the lveight of Lvhich in the exact Lvavefunction q,,, 
is larger than a certain threshold 71 

QK belongs to (S) if I(*,&)I > 71- 

This first class of determinants is treated maria- 
tionally 

?v= c I@,>i@^-I- (1) 
K<S> 

qsHP,l~:) = z!,:‘l\k,::). (2) 

the resulting multiconfigurational wavefunction 

*#Z=CC,,*,@, 
K 

is then perturbed to the second order by the other 

0301-0104/83/0000-0000/%03.00 0 1983 North-Holland 



determinants which do not belong to {S) 

(3) 

In practice the definition of {S) is iterative: start- 
ing from an initial guess of (5) one seIects the 
most important determinants of the first-order 
correction to the wavefunction. At the k th itera- 
tion if the first-order coefficient of @, is larger 
than 7jh 

@, is added to (S) and the process may be re- 
peated by decreasing # to q’+’ c #_ In such a 
case there is no a priori selection of the multirefer- 
ence space {S}. the quality of which is progres- 
sively increased. 

The present paper(i) first presents an improved 
version of the CIPSI algorithm. by introducing an 
intermediate class of determinants which is treated 
to a higher order of perturbation, (ii) tests the 
convergence of the CIPSI algorithm on two well- 
defined problems. The first one concerns the 
ground state energy of the water molecule calcu- 
lated in a doubIe-zeta basis set for which the exact 
solution has been reached recently by Saxe et al. 
[ 191. As a second example the CN + (‘Z+?J7) 
lowest states have been treated since this is a 
highly degenerate problem [20-221. already studied 
by several authors using different CI schemes. 

This new version of the CIPSl algorithm pre- 
sents common features with the MRD CI scheme 
of Buenker and Peyerimhoff [23] which has been 
used with success in spectroscopic studies 124-271 
and potential surfaces analysis 1281. Differences 
between the two methods will be discussed in 
section 8. 

2. The improved (three classes) CIPSI algorithm 

In its original version [12], the accuracy of the 
CIPSI algorithm can only be improved by enlarg- 
ing the zeroth-order subspace (S). Referring to eq. 
(2) it is clear that as the number tzcf of determi- 
nants belonging to S increases. the number of 
generated determinants in the second-order expan- 

sion increases rapidly. since 

(\k,,WI@,) = c c,nK(@A-lwb)~ (4) 
A-C(S) 

when a determinant @,,. is included in {S) it brings 
all its doubly substituted determinants @,. The 
number of determinants generated in the perturba- 
tion expansion in principle should increase as 
II,,&~z~, where )I~,~ and )I,. are the number of 
occupied and virtuaI MOs, respectively. For each 
new determinant 0, one must calculate all 
(@,lHI@,) in order to test whether a, has not 
already been considered and to calculate 
(*,,,IHI@,)_ thus the computation time should 
increase as &n~,n~.. As a consequence tlcr must 
keep limited values (= 40-200 determinants) for 
most of the problems. Then the accuracy of the 
method is limited by the very low order of per- 
turbation to which the other determinants are 
treated. 

As an improvement. one may define a third 
(intermediate) class of determinants {M), the 
weight of which in the wavefunction appears to be 
smaller than those of the generators belonging to 
{S} but larger than a second threshold T 

Qi, E {S), if 17 < I(*l@p,X 

@, E {W. if -r~l(*i@,)1~7j. 

@, E {S>. if I( *)@,)I -= 7. 

This improved CIPSI method is now characterized 
by two parameters (T. 11). the former version corre- 
sponding to the particular case (7 = q_ q)_ The 
intermediate class {M) may be treated to a higher 
order of perturbation theory than the lower one 
{s}, or may be treated variationally. For instance. 
one may go to the fourth order in {S + M). 

If one defines a zeroth-order energy E,f for the 
zeroth-order wavefunction *,E resulting from the 
preliminary diagonalization of P, HP, 

<(I) = E(O) _ EO “1 m “l ’ (6) 

0) 



(11) 
The final energy will be approximated by adding 

the second-order effect of the determinants 1 be- 

longing to {s) 

c;,;_‘, = c Pt!lHI@,,)’ 

fE{S) E,;-EE,o - 
(13) 

The process may be viewed as a differential rnulti- 
ple perturbation expansion in powers of various 
operators. defined by 

v, = c (@#w,>l\k,>(~l 
(.={S) 

+ c (~lwKPJ)(@Kl. (14) 
J.IiE(61) 

%= c c (@II~I@JI)I@I)(@JL (16) 
JEjS+rtf) J=(S) 

and pictured in fig. 1. The process consists in 

perturbing I’, to the fourth order and IT2 to the 
second order (y; would only occur first through 
L/~ItJ2 or V,r/,l/ contributions)_ One may perturb 
V, to infinite orders as \vell. i.e. diagonalize {S + 
AI}. In such a case 

4, = c!:;.,-, M; + l !,;?,,,;- (17) 

with 

p<s_.,,; = c I@K)(@K!. (1s) 
KE{s-.v; 

P ~s_.,,;H~:,_.,,~I~!~:!s-.,,;) = ~,,,.~.s~~,;/~l:~~!~~.~\~:~~ 

(19) 

In practice z,,,., “I is calculated as the difference 

The computation time of the second-order per- 
turbation correction remains proportional to 
IZ~~IZ&I~~. and the diagonalization of {S i 31) re- 
qUires a the prOportiona to (?Z,i + II,,,)’ if II,,, iS 

the nun~ber of determinant of the middle-class 
(M}. One may hope that an equivalent accuracy 
maq- be achieved in the three-class procedure with 
a smaller number of generators. i.e. starting with 
121-y generators and treating VxiatiOndly a( II>:’ + 

II,,,) matrix (with a large enough value for tt,,z) \vill 
give as accurate a result as the second-order per- 
turbation from J(..’ generators \\Gth ~1:: X=- JZ:‘~‘. 

Speaking in terms of thresholds. one may hope 
that the three-class procedure Lvill allo~v us LO use 

larser values of 7~ by considering a small enough 

value for the threshold T. Of course one must find 

Fig. I. PrirGrioning of the Cl mstris. 



ZI balance between the two time-consuming steps 
(second-order perturbation and diagonalization) 
limiting both the size of the diagonalized matrix 
and the length of the second-order expansion. 

3. Size dependence 

Of course the diagonalization of the (S + IV> 
matrix introduces some spurious normalization ef- 
fects resulting in a bad Iv dependence [3]. One may 
apply one of the corrections which intend to cancel 
the normalization effects and ensure the correct iV 
dependence. (For a discussion of the A’ depen- 
dence of multireference Cl techniques see ref. [ 131.) 
One may use either Davidson’s correction [30] 
multiplying E!,~,‘~+,,,) - c!,y.\ by 2 - (C,:)‘. where 
C,: is the coefficient of the zeroth-order wavefunc- 
tion +z in the eigenvector of P,J-T .,,, HP,,, .,,,. by 
(C,:)-’ (Siegbahn’s correction [31]), or by [l - 
(C,f)‘]- ’ (Silver-Davidson’s correction [32]). 

If one uses the perturbation expansion in (S + 
M) the same defect appears. As well-known from 
the single reference case (perturbation of a single 
determinant). the unlinked bubble diagrams in the 
third-order cancel with c(I){ *(“]9t’)) and the 
fodrth-order ones cancel with contribution from 
--c~“((~~‘~~~“‘) + (9”‘19”‘)). On the con- 
irary. most of the positive quantity -E(“(@‘) 
19”‘) should cancel with unlinked corrections in 
the fourth-order general summation which in- 
volves higher levels of excitations. outside of {S + 
M). To correct this defect. one may be tempted to 
disregard c(‘)(9r’~]!J’k”‘) i.e. replace c!,&+d,) by 

cft31 (4) 
,,I .(.S-c .%,) = l rrr.(S i ,r, ) + c!,5.!5, c rk,‘,:.‘,, I KY!\, > _ (20) 

However, <!z_!,, ( ~,!r!,,]*,!r&) also involves some 
contributions which do not cancel and generate 
the so-called exclusion principle violating linked 
diagrams the contribution of which is positive at 
this order. Therefore if one uses c!,~_~s+a,r one 
should get an upper bond to the energy, while if 
one uses c‘!,$$, .,,, the resulting energy may go 
below the exact one. 

4. Choice of H, 

The definition of the unperturbed hamiltonians 
H0 remains rather arbitrary f33]. Four definitions 

have been proposed previously. derived from the 
case of a single determinant zeroth-order wave- 
function for which two basic N,, may be proposed. 
For the single determinants outside of (S). one 
may use either the Moller-Plesset definition [l] 
(hereafter labelled MP) 

or the Epstein-Nesbet definition 134.351 (hereafter 
labelled EN) 

f&3@,) = (@,Ifw%N@,)- (22) 

For the subspace {S} one may use either the 
eigenvalues of &-HP,. 

H,]\k,lp’) = •~~)]*#!p’). 

or a barycentric definition. 

(23) 

fw5!9 = C mmmx~, I*!!). 
( 

(24) 
KE{S) 1 

where N, may be the Moller-Plesset or Epstein- 
Nesbet zeroth-order hamiltonians for the single 
determinant cases. The barycentric Ho has been 
shown j12] to satisfy the physical separability 
criterion up to the fourth order, namely it ensures 
that if one treats two non-interacting subsystems 
A and B as a supersystem (at infinite distance for 
instance). the excitations on system B have no 
influence on the transition energies of system A. 
This would not be necessarily the case when the 
eigenvalues of PsHPs are taken as zeroth-order 
energies of the multiconfigurational wavefunctions 
belonging to {S}. 

5. Summary of the various estimates of the energ 

One may summarize the various evaluations of 
the energy which appeared in the preceding discus- 
sion and which have been actually calculated in 
the numerical tests. 
Variational values 

E!,:)( T,(T = 7)). variational energy obtained from 
the diagonalization of P,HP,, mean energy of Y&t. 
Ps selecting all determinants which have a compo- 
nent larger than T. 
cj,I))(r, 17). variational energy obtained from the 



dingonalization of P,S+.,,jHPtS+ ,,,). where Af 
selects all the determinants having a component 
lower than T and larger than 77. 
Cormwd cariurional value 

E!,:‘~“( T. q) = CR,< T, q)/[C,!( T. q)]‘. is the David- 
son-Siegbahn corrected variational energy. C,! 
being the weight of ]\kt > in the wavefunction 
resulting from the diagonalization of F’,s+.,,, 

XHpt.s+,,,- 
Vuriurion + perrwbarion final energies 

“‘E,~“. given by eq. (12). with the MP definition 
of H” for the determinants outside of(S). and the 
corresponding barycentric definition [cf. eq. (22)] 
of the zeroth-order energy for the multiconfigura- 
tional functions ‘k; E (S}. 
“‘~5,:“. given by eq. (12). with the EN definition 
of Ha for the determinants outside of {S) and 
E” = (‘k”lHl?P’) for the multiconfigurational 
functions q, E {S} (i.e. the eigenvalues of &,.kiF’s). 

(J,~C."lP =(-vglP + &e.‘,;:‘” 
,,I ( ,,,..r1 I 

*k’““‘P *,tl”,:“’ 
. . >- (25) 

c4,Ec_“” 
,,I 

,cd,~“N + l ;,(2_‘$” q,k”‘“” q,k’l)“’ 
,,, . ( ,,,..\I I rr,..\f >- (26) 

to correct the preceding values in order to get a 
correct size consistance of the energy. 

Ev”tP = Eto) 
,,I ,,1.{s+.lf) + ~!:.!Y. (27) 

[cf. eqs. (13) and (19)] adding the second-order MP 
correction by the determinants belonging to (s) to 

(0) 
~,,,.{Si.\l}’ 

E,;,- = E!,~&.,,, + E!,;_;!-. (28) 

adding the second-order EN correction by the 
determinants belonging to (s) to l j,~.&_.,,~_ 

E,;5'DS-"" = •!~~~~.,,)+~!,~.~;:t~. (29) 

E,;;Ds-'x = c~~~~!& -+ e!,f!Fs, (30) 

replace the variational eigenvalue l j,F&+.,,, by its 
Davidson-Siegbahn corrected estimate in the pre- 
ceding expressions. 

6. Numerical calculations 

6. I. H,O iu u double zeru basis set 

Since the exact solution of this problem is known 
[19]. the results may be expressed in terms of 

absolute energy errors. The exact correlation en- 
ergy is -0. I4SO3 au. the (single + dnubIe)CI error 
is 0.00855 au (when corrected by the Davidson 
formula), while the (single-double-triple-quadru- 
ple)Ci is only in error by 0.00026 au. 

Sixteen calculations have been performed corrc- 
sponding to krarious values of the tlvo threshold 
parameters (77 and 7). The characteristics of these 
calculations are reported in table 1. The first col- 
umns of tables I-5 correspond to the original 
two-class CIPSI algorithm (T = 1). no middle class). 
As previously discussed [IO]. the MP values slo~vly 
converge by upper values xv&n the size of(S) (i.e. 
the quality of the lvavefunction) is increased. but 
the error remains important when S2 determinants 
are involved in {S}. The EN values converge from 
belo\v. but the excellent agreement obtained from 
the largest {.S> subspace diagonalizations is cer- 
tainly partly fortuitous. 

The zeroth-order subspace {S) progrcssivsl_v in- 
cludes the most important doubly excited detcrmi- 
nants. The best zeroth-order lvavcfunction con- 
tributes for = 56% of the total correlation energy_ 
The size of the {S i M> matrices as reported in 
table 1 remains very limited. but quite surpris- 
ingly. the energy obtained from these limited CIs. 
involving the most important quadruple escita- 

1) :=T) T = 0.01 T = 0.007 T = 0.0005 
(original 

CIPSI) 

0.060 0.11EO’ 0.03171 0.01075 0.00929 

1.0 0.963 0.959 O.YjY 

(1) (135) (201) (113) 

0.040 O.lllRl 0.03364 0.00961 0.00610 

1.0 0.97.: 0.968 0.967 

(10) (112) (X3) (657) 
0.0’5 0.09500 0.03-u-a O.oOSh6 0.00~9-1 

1.0 O.YSO 0.976 0.975 

(21) (139) (371) (79s) 

0.015 0.06375 0.03%x 0.00s 1 Y 0.00430 

1.0 0.990 O.YSS 0.9s 

(SZ) (143) (103) (1129) 



Table 2 

Energy error on the correlation energy of H,O. as estimated from the pcrturbative estimates ‘J’E”“’ (MP) and ‘J’E”” (EN) (au) [4] 

9 T=q 7=0.01 T = 0.002 T = 0.0005 

MP EN MP EN MP EN hlP EN 

0.060 0.00855 -0.03523 0.00938 0.003 10 0.00975 0.00754 0.00977 0.0075x 
0.040 0.01253 -0.01350 0.00726 0.00209 0.00666 0.00490 0.00525 0.00324 

0.025 0.01191 - 0.00509 0.00496 0.00014 0.005 18 0.00502 0.00394 0.00272 

0.015 0.00900 - 0.00060 0.00422 - O.OOCI52 0.00324 0.00230 0.00265 0.00 1 s4 

tions. quickly goes below the canonical SDCI re- order values for the treatment of {S + M) are 
sult (cf. the errors for -r = 0.0005. when T) = 0.040, almost identical to the diagonalization results. 
0.025 or 0.015). This first result illustrates the This statement appears clearly by comparing 
interest of using a rationally chosen multiconfig- tables 2 and 4. Table 4 reports the results of JZl.h’P 
urational zeroth-order wavefunction, followed by a (respectively EN) [cq_ (27). respectively (ZS)] ad- 
rational selection of the most important determi- ding the second-order effect of {s) to the eigenval- 
nants. as compared to an a priori truncation of the ues of {S + M}. Table 5 includes the Davidson- 
CI matrix in terms of excitation levels. The CIPSI Siegbahn correction to avoid the normalization 
process may be viewed as a progressive selection defect of the diagonalization of {S + AZ> [eqs. (29) 
of the most important perturbation contributions. and (30)]. The error is drastically reduced by a 

In table 2. the middle-class {M) effect is taken factor of one third in the MP treatment, and the 
into account to fourth order [eq. (12)]. the re- Epstein-Nesbet values are in a fascinating agree- 
mainder {s} being treated to second order only. ment with the exact result. The comparison be- 
For the best calculations (‘I = 0.025. 0.015. I = tween figs. 2 and 3 illustrates the efficiency of the 
0.002 or O.OOOS), the error is about one half to one Davidson-Siegbahn correction in this multirefer- 
fourth of the SDCI error. As expected the Ep- ence case. However. the agreement with the exact 
stein-Nesbet definition of Ho gives better values. energy cannot be attributed only to this (de)nor- 
and the normalization defect makes the error posi- malization correction since the error on the David- 
tive_ When one tries to eliminate this normaliza- son corrected SDCI (0.00169 au) is much larger 
tion defect by adding the c2(+k(“]\k(‘)) term [cf. than the present errors for r = 0.005. For this last 
eq. (20)], the error (cf. table 3) is reduced to one value. the error is not larger than the SDTQ CI 
fourth to one tenth of the SDCI error, and may one (resulting from the diagonalization of a 17 x 

become negative. The difference between the MP lo3 configurations matrix), at a much smaller 
and EN results essentially comes from the second- computational effort. This agreement shows the 
order treatment of the remainder {s}. The fourth- advantage of the CIPSI hierarchical selection of 

Table 3 

Energy error on the correlation energy of H1O. as estimated from the corrected permrbative estimates [eqs. (25) (MP) and (26) (EN)] 

(au) 

rl 7=7J 

MP EN 

7 = 0.01 

MP EN 

T = 0.002 7 = 0.0005 

MP EN MP EN 

0.060 0.00855 - 0.03523 0.00512 - 0.00748 0.00407 -0.00618 0.00402 - 0.00628 

0.040 0.01253 -0.01350 0.00542 -0.00190 0.00389 - 0.00097 0.00239 - 0.00278 

0.025 0.01191 - 0.00509 0.00420 -0.00135 0.00369 0.00215 0.00239 - 0.00026 

0.015 0.00900 - 0.00060 0.00406 - 0.00080 0.00266 0.00130 0.0020 1 0.00072 



? T-=7) T = 0.01 ? = 0.002 

MP EN MP EN htP ES 

0.060 0.00855 - 0.03523 0.00870 0.0010R O.OOS63 O.OUR5 I 
0.040 0.01253 -0.01350 0.0072 1 0.002R5 0.00644 0.00601 

0.025 0.01191 - 0.00509 0.005 10 0.00027 0.005 17 0.00166 

0.015 0.00900 - 0.00060 0.00426 - 0.00053 0.003’7 0.0025 1 

7 = o.ulJo5 

.\I I’ ES 

u.nus63 0.00X60 
O.UO5U3 O.OOJ94 

0.003SS 0.00373 

0.00’65 0.00215 

determinants_ Since the Davidson-Siegbahn cor- 
rected results of eqs. (29) and (30) are much better 
and more stable than the corrected fourth-order 
values of eqs. (19) and (20). the purely perturba- 
tive treatment of {S + JV> will not be discussed for 
the CN + problem. 

grounds (same r and 7) thresholds) tend to give a 
constant splitting of -0.020 au. between the two 
states (in favour of -III). 

6-Z The CA’ _ near degeneruq problem 

The calculation is performed in a (double-zeta 
+ polarization) basis set proposed by Bruna et al. 
[Z I] and for their suggested R, values. Our calcula- 
tion differs from the basis of their MRD CI treat- 
ment (reported extensively in ref. [21]) by the lack 
of f functions in the middle of the bond and the 
use of five components for d functions. In that 
problem, the SCF calculations predict the ‘II to be 
lower in energy than the ‘Z- configuration by 
= 0.1 au. 

Tables 7 and S reproduce the total cner@rs 
according to eqs. (29) and (30) (second-order cor- 
rection b_v the remrtinder {s) added to the David- 
son-Siegbahn corrected eigenvalue of {S i Jff) 
Lvhich appeared to give the most reliable values 
from the test study of H,O. From the lov.~st right 
corner of this table the Moller-Plesset values seem 
to converge from above and the Epstein-Nesbet 
values seem to converge from belolv. There is still 
some important difference (= 0.009 au) bet\veen 
these tlvo estimates_ the Epstein-Nesbet one cer- 
tainly being more reliable. 

Table 6 gives the main characteristics of the 
calculations. 7 and n values, size of the multirefer- 
ence space and of the {S + M) matrices, zeroth- 
order energies, and eigenvalues of {S + IV)_ The 
zero of energy is taken as the ‘Z+ SCF determi- 
nant energy (- 91.6265 au). One may notice that 
the {S + AI} diagonalizations selected on the same 

The calculation of exact energies is usually less 
important than the knowledge of energy varia- 
tions. from one geometry to another or from one 
stats to another. The most important question in 
this precise problem is the energy difference be- 
tween the ‘S- and the ‘II states. Table 9 gives the 

E( - IV-) - E(‘I7) enerov difference as a function of Z. 
n and T for both definitions of the perturbation 
expansion The uncerraintv in the energy dif- 
ference seems to be significantly less than the 
fluctuation of the energy of each state_ In vie\\- of 

Table 5 

Energy error on the correiakm energy of H,O. as calculstcd from sqs. (29) (Lip) and (30) (EN) (including lkvidson correction) (au) 

r) r=lj T = 0.01 T = 0.002 : = 0.0005 

MP EN hlP EN X1P ES SIP EX 

0.060 0.00855 - 0.03523 0.00436 - O.OOC6 0.00’8 1 0.00’6S 0.00273 0.00270 
0.040 0.0 1253 - 0.01350 0.00397 - 0.0003s 0.001ss O.OOllS 0.000 1’) 0.0000s 
0.025 0.01191 - 0.00509 0.00177 - 0.00206 0.00165 0.00119 O.UOOlh O.OUOO1 

0.015 0.00900 - 0.00060 0.00309 -0.00171 0.00111 0.00036 0.0003 1 O.OOOll 



/, _-___ 
,’ 

.- -. ; = ;gj 
---_9=0.025 
- q =0.015 

Fig. 2. Convergence of the CIPSI algorithm for the H,O ground 
slale correlation energy. The reference energy corresponds to 
the exact calculation in the same basis set (ref. [19]). The 
parameters 9 and + correspond to the selection thresholds for 
the primary (S) and inwrmediare (Al) spaces. For a given 
value of 7. rhe upper (respectively lower) curve corresponds to 

the Moller-Plessel [eq. (27)] (respectively Epstein-Nesbtt: eq. 

(28)) partition. 

Fig. 3. Same quantities as in fig. 2 when the Davidson-Sieg- 

bahn correction is applied to the variational result. eqs. (29) 
and (30). 

Table 6 
Characteristics of lhe CN * calculations. For each value of IJ and T. one finds the variarional energy <I:!_ .,,, (in au). rhe wzigbt of e,$, 
in the corresponding eigenvector. and the size of the (S + bI) Cl matrix. The SCF’(‘Xl ) energy ( -91.6265 au) is taken as zero of 

energy 

1) ‘3’ 1 3n 

r=v T = 0.01 T = 0.005 7 = 0.0035 7=p 5 = 0.01 5 = 0.005 T = 0.0035 

0.15 -0.0501 
I.0 

(4) 
0.055 - 0.1473 

I.0 

(76) 
0.035 -0.1770 

1.0 

(40) 
-0.1923 

I.0 

(75) 

-0.2515 
0.866 

(282) 
- 0.2470 

0.95 1 

(246) 
- 0.2483 

0.966 

(246) 
- 0.2476 

0.975 

(231) 

- 0.2997 -0.3169 
0.867 0.867 

(771) (1210) 
-0.3001 - 0.3242 

0.941 0.935 

(675) (1185) 
- 0.3034 - 0.3260 

0.953 0.949 

(676) (I 171) 
- 0.3027 - 0.3253 
0.961 0.956 

(661) (I 163) 

0.15 0.1043 
I.0 

(1) 
0.075 -0.161 

1.0 

(12) 
0.030 -0.1867 

1.0 

(29) 
0.025 - 0.2088 

1.0 

(45) 

-0.1968 - 0.3262 
0.907 0.903 

(254) (707) 
- 0.273 1 -0.3281 

0.944 0.935 
(216) (671) 

- 0.2720 - 0.326 1 
0.961 0.950 

(212) (640) 
- 0.2707 - 0.3250 

0.973 0.960 

(199) (617) 

-0.3419 
0.903 

(1047) 
- 0.3463 

0.93 1 
(1045) 

- 0.3462 
0.946 

(1047) 
- 0.3456 

0.955 
(1022) 



Table 7 

I\-+ energy estimates from eqs. (29) MP and (30) EN. including Ihe Davidson-Sieghahn cnrrcc~cd variarional cntxgiss and MI’ ;~d 
EN second-order contribution (au) 

‘) 7=q 7 = 0.01 T = 0.005 5 = 0.0035 

MP EN MP EN X11’ ES 51 I’ ES 

0.15 - 92.0378 - 92.1860 - 92.0545 - 92.079 1 - 92.0526 - YXlhW - Y7.05 1 S - 92.0599 
0.075 - 92.0326 -92.1043 - 92.0106 - 92.0637 - 92.0426 - Y2.056_3 -92.015x - 91.0553 

0.035 - 92.0354 - 92.0692 - 92.0425 - 92.0600 - 92.0172 - 92.059Y - Y’.OlSO - 92.057-l 

0.025 - 92.0364 - 92.0642 - 92.0422 - 92.06 19 - 92.0462 - 92.05S7 - 9x471 - 92.0566 

the four best calculations (last two values of 9 and 
T) one finds that the energy difference lies between 
0.009 and 0.003 au (i.e. 0.3 and 0.1 eV) the lowest 
state being the ‘17 state. 

Two calculations on the same system have been 
performed with the MRD CI method. Bruna et al. 
1361 using a basis set similar to ours also suggest 
that E(‘.X’)> ECII) by 0.05 eV. Adding f func- 
tions in the basis (see ref. [21]) seems to favour the 
‘Z+ state which is found to be the stablest state by 
0.1 eV. The result obtained in ref. [22] with the 
CAS SCF method is difficult to compare since it 
uses a set of two d functions in each atom. 

Table 8 

-‘II energy estimates from eqs. (29) (MP) and (30) (EN) (au) 

7. Discussion 

The proposed algorithm implies three levels of 
approximation: 
- progressive choice of a multireference zrroth- 
order variational \vavefunction. which does not 
necessarily give an important part of the corre- 
lation energy but allolvs us to include the most 
important changes of the \vavefunction. which are 
likely to slow down the convergence of the per- 
turbation expansion. and to reach the most im- 
portant triple and quadruple excited configura- 
tions. This zeroth-order wavefunction ma>: include 
up to 200 determinants. 

T ?-=I) T = 0.01 i = 0.005 7 = 0.0035 

MP EN MP EN .ilP EX UP ES 

0.15 - 92.05 16 - 92.1497 - 92.0600 - 92.0779 - 91.0605 - 92.06S7 . - 91.0605 - 92.0655 

0.075 - 92.0406 - 92.0778 - 92.0560 - 92.0736 - 97.0591 - 92.0677 - 92.0601 - 92.066’ 

0.035 - 92.0403 - 92.07 12 - 92.0525 - 92.0653 - 92.0556 - YLOMO - Y’.O56S - 92.0626 

0.025 - 92.0380 - 92.05S9 - 9’.04S7 - 92.063 - 92.0537 - 92.0620 - 92.0556 -92.0615 

Table 9 

Energy difference between the two nearly degenerate siaws [ .&(I\‘- - ) E(-‘17)] from cqs. (29) (XlP) and (30) (ES) (JU) 

7) ==I) T = 0.01 5 = 0.005 : = 0.0035 

MP EN hlP EN hlP ES UP ES 

0.15 0.0138 0.0383 0.0055 -0.0012 0.0079 0.0037 0.087 0.0056 

0.075 0.080 0.0265 0.0154 0.0099 0.016s 0.01i-I 0.0116 0.0109 

0.035 0.049 0.0020 0.0097 o.OOs3 0.0054 O.OO-ll OJJUSS 0.0052 

0.025 0.0016 - 0.0053 0.0065 0.0014 0.0075 0.0033 0.001: 1 0.0049 



- selection of the most important determinants 
obtained through single and double substitution 
on the multiconfigurational zeroth-order wave- 
function. and diagonalization of the resulting ma- 
trix, which may have the size of 1 to 5 x 10” 
determinants. 
- the other singly and doubly substituted determi- 

nants are treated by a second-order perturbation. 
Their number may be huge ( IOh) but the low order 
of perturbation allows a rapid calculation. 

These three levels of approximation define 
clearly the main difficultirs of the procedure. One 
may hope that starting from a refined zeroth-order 

wavefunction. the perturbation expansion is rap- 
idly convergent (as appears from the fact that the 
fourth-order corrected energy does not differ from 
the variational value in (S + M)). However, the 
{S + M) variational treatment introduces a first 
error which is due to the normalization of the 
wavefunction. This error may be corrected through 
the Davidson-Siegbahn formulas. which appear to 
be very efficient for this multireference case. in 
view of the H,O test. Then the second-order treat- 
ment of the remainder introduces a last and more 
important error. It is likely that e’2)X’p is un- 
derestimated, while etZbEh’ may be slightly over- 
estimated. 

The error on l (‘rxip and er2rEN may be evaluated 
by considering two successive iterations T-, > -K~ for 
a given value of q_ Then some determinants. which 
were treated in a perturbative mode in the first 
iteration are treated variationally in the second 
one. and from the comparison of the variational 
and perturbative corrections 

[e(Qms( 7, q,) + e(O)DS( 7, 7J2)] 

x [c’” (T.11,)-f’2’(T.~II!)]-‘=x. (3’1) 

one may try to obtain the Ah” and X”” correction 
parameters which should allow us to correct the 
last perturbation correction and guess some im- 
proved estimate (7 --, 0), closer to the exact solu- 
tion_ Such an analysis has been performed and we 
obtained 

Ah’P = 1.05 f 0.02, 

hE” = 0.95 p 0.04, for ‘Z+; 

xb’P = 1.07 & 0.03, 

h”” = 0.96 + 0.03. for ‘II: 

when applied to the best calculations. these correc- 
tions suggest (in au) 

E(-‘II) = -92.0601 (MP) or -92.0587 (EN). 

E(‘S+)= -92.0514 (MP) or -92.0521 (EN)_ 

AE = 0.0087 (MP) or 0.0066 (EN). 

The discrepancy between the MP and EN absolute 
values of each state is of course reduced and the 
energy difference between the two states is some- 
what stabilized with respect to our previous esti- 
rn-ates. This procedure may be thought as an at- 
tempt to reach the final variational DC1 from a 
given multireference space. i.e. the limit T = 0 for a 
given value of q_ This is an alternative solution 
along the way followed by the MRD Cl scheme 
(at its first extrapolation step)_ 

As another extrapolation technique. one may 
consider the surface E =f( T. q) and rather than 
finding the f(0. 9) limiting curve which requires a 
further extrapolation for q+ 0. one may try to 
find directly an estimate of E( 7 = 0. n = 0). from 
the few points calculated on the surface. Consider- 
ing two calculations which imply a consistent im- 
provement in T and 7. i.e. two calculations (7,. n,) 
and (T?. q2) such that 

they belong to a line T = aq which goes through 
the origin ~=q = 0. Then assuming a constant 
energy variation along this line one may try to 
estimate E( T = 0. q = 0) from the best calculation 
72. q, and the local slope of the energy curve 

E(O.O)=E(T,.~,)+ 
~(TG?d-~b,.l,) 

72 - 71 
72- 

(32) 

This may be done independently on both the MP 
and EN surfaces, the agreement between the two 
independent estimates gives an indication upon 
the reliability of the extrapolation procedure_ When 
applied to the CN’ problem, this procedure gives: 

E(311) = -92.0556 (MP) or -92.0553 (EN), 

E('H') = -92.0480 (MP) or -92.0484 (EN), 

AE=0.0076(MP)orO.O069(EN). 



These extrapolated values are somewhat higher (by 
= 0.0040 au) than the previous ones but they are 

surprisingly consistent, and the energy difference 
is confirmed to lie around 0.0070 au (0.2 eV) with 
an increased certitude_ The later extrapolation 
technique seems more reliable since it handles 
simultaneously T and 17. while the former one only 
deals with the dependence of the energy on the 
parameter -r. 

8. Comparison with MRD CI 

At this stage one may be tempted to compare 
our procedure with the improved MRD Cl scheme 
1211. which also handles three classes of determi- 
nants in a very similar way. Besides some dif- 
ferences in the relative sizes of (S) and (M}. the 
main differences concern: 

(i) The use of Brillouin-Wigner type of estimate 
c!!!F for the remainder (s} instead of the MP and \ 
EN Rayleigh-Schriidinger estimates e\zi5’*‘(or Es’_ 

(ii) The place where the Davidson correction is 
performed. The MRD CI method tries to make 
first an extrapolation procedure to guess the varia- 
tional result of the SD multireference Cl, de- 
termining X such that 

Then the Davidson correction is applied to this 
extrapolated value. (notice that at this stage the 
evaluation of Co becomes difficult. since it should 
be extrapolated; the fact that our extrapolated 
energies [E(‘II) = - 92.0555 au. E(‘X’) = 
-92.0482 au] are lower than the limits proposed 
in ref. [21], despite the use of a slightly larger basis 
set in ref. 1211. may be related to an underestima- 
tion of the Davidson correction for 7 = 0.) 

(iii) The quality of the zeroth-order wavefunc- 
tion is improved by enlarging {S) and the ex- 
trapolated and Davidson-corrected results are 
plotted as functions of the quality of the zeroth- 
order wavefunction (C”)’ = I(‘J’,zI\k,,)j’ which 
should tend toward 1 and a new extrapolation is 
performed for Co - 1. 

In the present procedure. we do prefer to apply 
the Davidson correction to the variational part 

only and we accept the uncertainty on the secnnd- 
order remainder. The previously defined extrapo- 
lated X correction [cq. (31)] for the second-order 
c(” valurs may bc prrformrd. or. preferably an 
extrapolation of the energy along a line T = a-r] 
(U -=x 1) [eq. (X?)]. but our objective is to resch first 
some stability in the results before further extrapo- 
lations. It actually appears from the four best 
calculations in table 7 that a certain stability (-z 
0.003 au. i-e- 0.1 eV:) has heen obtained for each 
state and that the energy ordering betlveen the t\vo 
states is not affected by the remaining uncertaint> 
(for a given choice of H,,): for instance. for the 
four best calculations. the highest estimate of 
E(‘II) (-92.054 au for MP. -92.061 au for EN) 
is always lo\vcr than the lowest estimate of E(.‘L‘-) 
(-92.049 for LIP. -92.069 for ES). lvithout any 
extrapolation or corrective factor. Our point of 
r&r is that a sufficient stahilitv of the results for 
small values of -i and q would be preferable to 
hardly controlled extrapolation techniques. Of 
course the energy stabilization of E( 7. q) in a 

certain region ( qI C 7~ < 71:_ 7, CT < 7:) of the 
parameters may be fortuitous. but such a local 
stabilization xvould prevent an\- reliable rstrapo- 
lntion as wsll. 

9. Conclusion 

The improved CIPSI algorithm proposed in the 
present wok defines three classes of determinants 
for each state: 

- the largest ones S(strong) are generators and 
define a multiconfigurational zeroth-order walx- 

function. which will be perturbed by allo\\-ing all 
single and double substitutions_ 

- the mean ones _~i(middle) (= 10’) are per- 
turbed to all orders. and the normalization defect 
is corrected through the Davidson-Skgbahn for- 
mulas. 

- the most numerous smallest ones (s) (= IO”) 
are only included through their second-order cor- 
rection. Two thrsshold parameters 77 and T dsfins 
the borders of the classes. and are progressively 
decreased for a rational selection of the classes and 
for a study of the stab&t_\- of the results. 

Several states may be calculated simulta- 



neously. provided that S = S, U S,. M = M, U M, 

-(M,uM,)nS and s=s,Us,-((s,Us,)n(M 

u S). 

The numerical tests of the exactly resolved H,O 
prohlern showed ;t very good convergence and 
accuracy (especially with the Epstein-Nesbet defi- 

nition of I-I,): the error is of the same order as 
from the SDTQ CI diagonalization at a much 
smaller computational expense. For the nearly de- 
generate CN’ problem. the process indicates -‘I7 
< ‘2’+. with a great stability the energy difference 

being between 0.1 and 0.3 eV. A direct extrapola- 
tion technique has been suggested to correct the 
second-order contributions. The proposed algo- 
rithm has been compared with the parent MRD 
Cl scheme which essentially differs by the fact that 

the Davidson correction is applied after a first 

extrapolation. and followed by a second extrapola- 

tion_ 
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