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The configuration interaction CIPSI algorithm defines three classes of determinants of decreasing importance: the most
important ones ( < 100) are generators. the mean class { = 10%) is treated variationally or to the fourth order. while the less
important ones ( = 10%) are treated to the second order only. The accuracy of the result is studied as a function of the borders
between the classes in the case of H,O (double-zeta basis set). where the exact solution is known. and for the nearly degeneraie

CN™ problem.

1. Introduction

Since full configuration interaction (Cl) is not
achievable for molecules involving many electrons
and/or large basis sets, quantum chemists are
forced to use approximate schemes, such as irun-
cations to a certain level of excitation [single +
double CI for instance (SDCI)), fréezing of some
MOs. cluster expansions. etc. In order to avoid
incorrect dependence of truncated CIs on the
number of particles. one may follow the perturba-
tive approach which treats the correlation poten-
tial as a perturbation operator. This way. opened a
long time ago by Meller and Plesset [1]. leads to
the important results of the many-body perturba-
tion theory (linked cluster theorem [2.3], diagram-
matic representations {2.3]). However, its conver-
gence rests upon the quality of the zeroth-order
wavefunctions. and while the expansion may be
convergent from the ground state Hartree—Fock
determinant in most cases, the convergence may
be slow, and may disappear for excited states. In
many cases near degeneracy between important
configurations requires the use of a multiconfig-
urational zeroth-order wavefunction or zeroth-
order space. One may use the quasi-degenerate
perturbation theory [4-8] (QDPT) in one of its
numerous versions. which leads to the perturbative
construction of an effective hamiltonian. For ac-

tual CI problems this approach is poorly conver-
gent since it faces the recurrent problem of the
so-called intruder states™ (see for instance. refs.
[9.10]). An alternative solution consists in perturb-
ing a multiconfigurational wavefunction resulting
from a preliminary variational treatment of the CI
matrix reduced to the most important determ-
nants. This 1s the wayv followed bv Whitten and
Hackmever {11} or by the CIPSI algorithm
[10.12.13). The latter approach (which has been
widely used for ground and excited state studies.
see, for instance. refs. [14-18]) consists in an itera-
tive selection of a first class of determinants {S}.
the weight of which in the exact wavefunction ¥,
1s larger than a certain threshold 7

@, belongs 1o {S} if K, |® >,

This first class of determinanis is treated varia-
tionally

Pi= 5 10438yl o
KN{S}
PoHPWOY =€) (2)

the resulting multiconfigurational wavefunction

‘I”g = y‘ Cnl\'q)l\'

)

A

is then perturbed to the second order by the other
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determinants which do not belong to {S)

> (ESIH|D, )

0 o
retsy En—E

(3

In practice the definition of {S} is iterative: start-
ing from an initial guess of {S) one selects the
most important determinants of the first-order
correction to the wavefunction. At the kth itera-
tion if the first-order coefficient of @, is larger
than *

(EoH|D,)
AE >

@, is added to {S) and the process may be re-
peated by decreasing n* to n**! <9*. In such a
case there is no a priori selection of the multirefer-
ence space (S}, the quality of which is progres-
sively increased.

The present paper (i) first presents an improved
version of the CIPSI algorithm. by introducing an
intermediate class of determinants which is treated
to a higher order of perturbation, (i) tests the
convergence of the CIPSI algorithm on two well-
defined problems. The first one concerns the
ground state energy of the water molecule calcu-
lated in a double-zeta basis set for which the exact
solution has been reached recently by Saxe et al.
[19]. As a second example the CN* ('=3IT)
lowest states have been treated since this is a
highly degenerate problem [20-22], already studied
by several authors using different CI schemes.

This new version of the CIPSI algorithm pre-
sents common features with the MRD CI scheme
of Buenker and Peyerimhoff [23] which has been
used with success in spectroscopic studies [24-27]
and potential surfaces analysis [28]. Differences
between the two methods will be discussed in
section 8.

2. The improved (three classes) CIPSI algorithm

In its original version [12], the accuracy of the
CIPSI algorithm can only be improved by enlarg-
ing the zeroth-order subspace {S). Referring to eq.
(2) it is clear that as the number n_ of determi-
nants belonging to S increases, the number of
generated determinants in the second-order expan-

sion increases rapidly, since

(P H|®,)= Y G, (Px|H|D,), 4)

Ke(S)

when a determinant @, is included in {S} it brings
all its doubly substituted determinants @,. The
number of determinants generated in the perturba-
tion expansion in principle should increase as
n nt.n?, where n,. and n_ are the number of
occupled and virtual MOs, respectively. For each
new determinant @, one must calculate all
(P, |H|P,) in order to test whether @, has not
already been considered and to calculate
(¥, |H|D,>. thus the computation time should
increase as "gf":—)c"%' As a consequence »n_; must
keep limited values (= 40-200 determinants) for
most of the problems. Then the accuracy of the
method is limited by the very low order of per-
turbation to which the other determinants are
treated.

As an improvement. one may define a third
{(intermediate) class of determinants {M), the
weight of which in the wavefunction appears to be
smaller than those of the generators belonging to
{S) but larger than a second threshold =

D e(S), if n<K¥|P)
&, e{M}. if T<K¥|DD<n.
@, e(S). if K¥PDd<T.

This improved CIPSI method is now characterized
by two parameters (7. n). the former version corre-
sponding to the particular case (7=7. 7). The
intermediate class { M} may be treated to a higher
order of perturbation theory than the lower one
{s), or may be treated variationally. For instance.
one may go to the fourth order in {S + M).

If one defines a zeroth-order energy E° for the

n

zeroth-order wavefunction ¥ resulting from the

m

preliminary diagonalization of P¢HPg

04 ety e2) (3) 4
E, ae5y=E,, T € +Enl.(.\l)+Em.(.lkl)—*-efn_zs-i-.&l}’
(5)
where

(Y _ _(0y_ po
€m = € E

o (6)
(") Z ( mlHld) )2

n:_( il)
Is{Af) E'n Eo

, (7
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The final energy will be approximated by adding
the second-order effect of the determinants I be-
longing to {5}

12, (10)

(E2] = 3 ) )
'Enx 6:n 1S+ A1) + EIH s (1-)

€(2)=__ Z ( mlqu) >-‘ (13)
mr_s 1ets) E _EI()

n

The process may be viewed as a differential multi-
ple perturbation expansion in powers of various
operators, defined by

Y. (B, (Y)

1¢S5}

+ 2

J.Ke(AM}

MDD MRS 71 4[N AHIC AR (15)

1e{S) 1&{s)

(B |V [P D, ) (Dl (14)

)

Va= 2 X (DWVINP, Dl (16)

Jeis+ M)y I€({s)

and pictured in fig. 1. The process consists in
perturbing V| to the fourth order and ¥V, to the
second order (V; would only occur first through
V.V, or V V.. contributions). One may perturb
V, to infinite orders as well. i.e. diagonalize {S +
AM}. In such a case

— (O 2
Em - Em.(S-r.il:-_*_e:n!:\;* (17)
with
st-.u;'_‘ Z I(Dx)(@x!- (18)
Ke{S~\1;

P{Sv.\[;HP S~ ml m\s-_\:;> =

m S-wi!l m’?o‘l‘)
(19)

In practice €';! is calculated as the difference
A= e — e
The computation time of the second-order per-

turbation correction remains proportional 1o
nzni.nt, and the diagonalization of (S + Af) re-
quires a time proportional to (n.;+ n,,)" if n,_ is
the number of determinant of the middle-class
{Aa1}. One may hope that an equivalent accuracy
may be achieved in the three-class praocedure with
a smaller number of generators. i.e. starting with
n''? generators and treating variationally a(n‘“ +

n,,.) matrix (with a large enough value for 1,,) will
give as accurate a result as the second-order per-
turbation from »{3' generators with ni3' > n'h.
Speaking in terms of thresholds. one may hope
that the three-class procedure will allow us to use
larger values of 7 by considering a small enough

value for the threshold 7. Of course one must find

{st i
f“‘\\

.

Fig. I. Parttoning of the CI matrix.
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a balunce between the two time-consuming steps
(second-order perturbation and diagonalization)
limiting both the size of the diagonalized matrix
and the length of the second-order expansion.

3. Size dependence

Of course the diagonalization of the {§ + M)
matrix introduces some spurious normalization ef-
fects resulting in a bad N dependence [3]. One may
apply one of the corrections which intend to cancel
the normalization effects and ensure the correct N
dependence. (For a discussion of the N depen-
dence of multireference CI techniques see ref. [13].)
One may use either Davidson’s correction [30]
multiplying €'}, o, — €0k by 2 —-(C))?. where
C? is the coefficient of the zeroth-order wavefunc-
tion ¥ in the eigenvector of P 4 \HPs, s,- bY
(C,ff =2 (Siegbahn's correction [31]), or by [1 —
(C%)*17 ! (Silver—Davidson’s correction [32]).

If one uses the perturbation expansion in {S +
M} the same defect appears. As well-known from
the single reference case (perturbation of a single
determinant). the unlinked bubble diagrams in the
third-order cancel with e"( ¥ ¥y and the
fourth-order ones cancel with contribution from
— MNP VEDY + (P2 PDY). On the con-
irary. most of the positive quantity —e‘>(¥!
[¥"’y should cancel with unlinked corrections in
the fourth-order general summation which in-
volves higher levels of excitations, outside of (S +
M }. To correct this defect. one may be tempted to
disregard € 7w | ¥y je. replace €}, u, by

") ) 2) (N ()
€S+ an = m.(s+.u>+€n. V16 25VIL AT (20)

However, €2, (¥, ¥ also involves some
contributions which do not cancel and generate
the so-called exclusion principle violating linked
diagrams the contribution of which is positive at
this order. Therefore if one uses €\l ., one
should get an upper bond to the energy, while if
one uses € '), the resulting energy may go
below the exact one.

4. Choice of H,

The definition of the unperturbed hamiltonians
H, remains rather arbitrary {33]. Four definitions

have been proposed previously. derived from the
case of a single determinant zeroth-order wave-
function for which two basic H, may be proposed.
For the single determinants outside of {S). one
may use either the Moller—Plesset definition [1]
(hereafter labelled MP)

HY*I2,) = (L eara ). (21)

or the Epstein—Nesbet definition [34.35] (hereafter
labelied EN)

Hy N9, = (O,| H|® )P, ). (22)
For the subspace {S} one may use either the
eigenvalues of P HP;,

H| 52y = e D190, (23)

”m nr

or a barycentric definition.

Hol ¥y = T (DlHol®e>C )w (24)

Ke(S)

where H, may be the Moller—Plesset or Epstein—
Nesbet zeroth-order hamiltonians for the single
determinant cases. The barycentric H, has been
shown [12] to satisfy the physical separability
criterion up to the fourth order, namely it ensures
that if one treats two non-interacting subsystems
A and B as a supersystem (at infinite distance for
instance). the excitations on system B have no
influence on the transition energies of system A.
This would not be necessarily the case when the
eigenvalues of P;HP; are taken as zeroth-order
energies of the multiconfigurational wavefunctions
belonging to {S).

5. Summary of the various estimates of the energy

One may summarize the various evaluations of
the energy which appeared in the preceding discus-
sion and which have been actually calculated in
the numerical tests.

Variational values

€9 (7,(n = 1)), variational energy obtained from
the diagonalization of P¢HPg, mean energy of o,
P; selecting all determinants which have a compo-
nent larger than 7.

€'9(7, n), variational energy obtained from the
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diagonalization of P, yyHP gy where M
selects all the delermmams having a component
lower than 7 and larger than 7.

Correcited variarional value

€250 M= €0 (7. M)/IC(7. MY, is the David-
son-Siegbahn corrected variational energy. C2
being the weight of |¥, > in the wavefunction
resulting from the dlagonalization of P,y
XHP s, apy-

Variation + perturbation final energies

(MEMP siven by eq. (12). with the MP definition
of HY for the determinants outside of {S). and the
corresponding barycentric definition [cf. eq. (22)]
of the zeroth-order energy for the multiconfigura-
tional functions ¥, €{S).

(IEEN given by eq. (12). with the EN definition
of H® for the determinants outside of {S§)} and
EY = (¥ |H|¥’) for the multiconfigurational
functions ¥, € {S} (i.e. the eigenvalues of P¢HPF).

(HpC.MP _(3)y-MP (2)MP (1)NP {1INMP
El ) - E + Em M “pm hi ‘pm M >‘ (25)

(D EC.EN _ () EN ()!;\' (HEN (DHEN
Er 'E +e <‘I,:n \pm = (26)

m.

to correct the preceding values in order to get a
correct size consistance of the energy.

VMP (0) (2)MP
Em =€ i{S+ \I)+€m s (27)

[cf. egs. (13) and (19)] adding the second-order MP
correction by the determinants belonging to {s} to
€(0) .

mAS + A}

VEN (0 {2)EN )
Em enx.{S-'—.U).i_Em Ky - ("8)

adding the second-order EN correction by the
determinants belonging to {s) to €2} ..

VDS MP _ _(0)DS (2)MP a
E:n e:lr{S+.\l)+€:n EXY I (2')
VDS EN __ _(0)DS {2)EN -~
El" - E:n,(S-i—.\l)«l_ enr.{,\‘) i ("0)

replace the variational eigenvalue €!V)¢. ,,, by its
Davidson-Siegbahn corrected estimate in the pre-
ceding expressions.

6. Numerical calculations

6.1. H,0 in ua double zera basis set

Since the exact solution of this problem is known
[19]. the results may be expressed in terms of

]

absolute energy errors. The exact correlation en-
ergy is —0.14803 au, the (single + double)CI error
is 0.00855 au (when corrected by the Davidson
formula), while the (single-double-triple-quadru-
ple)Cl is only in error by 0.00026 au.

Sixteen calculations have been performed corre-
sponding to various values of the two threshold
parameters (77 and 7). The characteristics of these
calculations are reported in table 1. The first col-
umns of tables 1-5 correspond to the original
two-class CIPSI algorithm (= = 5. no middle class).
As previously discussed [10). the MP values slowly
converge by upper values when the size of {S} (1.e.
the quality of the wavefuncuon) is increased. but
the error remains important when 82 determinants
are involved in {S}. The EN values converge from
below. but the excellent agreement obtained from
the largest {S) subspace diagonalizations is cer-
tainly partly fortuitous.

The zeroth-order subspace {S} progressively in-
cludes the most important doubly excited determi-
nants. The best zeroth-order wavefunction con-
tributes for = 56% of the total correlation energy.
The size ci the {5+ M} matrices as reporied in
table 1 remains very limited. but quite surpris-
ingly. the energy obtained from these limited Cls.
involving the most important quadruple excita-

Table 1

Characteristics of the H,O calculations. For each value of 3
and 7. one finds the variational energy €2! (in au). the weight
of V9 in the corresponding eigenvector of {S + ). and the
size of the (S + M} CI martrix. The eaact energy 15 taken as a
conventional zero

n T= 7=0.01 +=0.002 = 0.0005
(original
CIPS])
0.060 0.13802 0.033474 0.01075 0.00929
1.0 0.963 0.9539 0.959
(§)) (133) (301 (113)
0.010 0.11481 0.03364 0.00961 0.00610
1.0 0.973 0.968 0.967
10 (142) (333) (657)
0.025 0.09500 0.03313 Q.00866 0.00394
1.0 0.980 0.976 0.975
(3 (139) (379 (79%)
0.015 0.06325 0.03585 0.00819 0.00430
1.0 0.990 0.985 0.984
(82) (143) (203 (1129)




96

Table 2

Energy error on the correlation energy of H,0. as estimated from the perturbative estimates ‘*’EM¥ (MP) and **’EF™ (EN) (au) {4)
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7 T=7 T=10.01 7 =0.002 = 0.0005

MP EN MP EN MP EN MP EN
0.060 0.00855 —0.03523 0.00938 0.00310 0.00975 0.00754 0.00977 0.00758
0.040 0.01253 —0.01350 0.00726 0.00209 0.00666 0.00490 0.00525 0.00324
0.025 0.01191 - 0.00509 0.00496 0.00014 0.00518 0.00502 0.00394 0.00272
0.015 0.00900 —0.00060 0.00422 —0.00052 0.00324 0.00230 0.00265 0.00184

tions. quickly goes below the canonical SDCI re-
sult (cf. the errors for + = 0.0005. when 5 = 0.040.
0.025 or 0.015). This first result illustrates the
interest of using a rationally chosen multiconfig-
urational zeroth-order wavefunction, followed by a
rational selection of the most important determi-
nants. as compared to an a priori truncation of the
C1 matrix in terms of excitation levels. The CIPSI
process may be viewed as a progressive selection
of the most important perturbation contributions.

In table 2. the middle-class { M) effect is taken
into account to fourth order [eq. (12)]. the re-
mainder {s} being treated to second order only.
For the best calculations (7 =0.025. 0.015. r=
0.002 or 0.0005), the error is about one half to one
fourth of the SDCI error. As expected the Ep-
stein—Nesbet definition of H, gives better values.
and the normalization defect makes the error posi-
tive. When one tries to eliminate this normaliza-
tion defect by adding the e*( ¥V ¥} term [cf.
eq. (20)], the error (cf. table 3) is reduced to one
fourth to one tenth of the SDCI error, and may
become negative. The difference between the MP
and EN results essentially comes from the second-
order treatment of the remainder {s). The fourth-

order values for the treatment of {S+ M} are
almost identical to the diagonalization results.
This statement appears clearly by comparing
tables 2 and 4. Table 4 reports the results of E,Y-MF
(respectively EN) [eq. (27). respectively (28)] ad-
ding the second-order effect of {s} to the eigenval-
ues of {S + M). Table 5 includes the Davidson—
Siegbahn correction to avoid the normalization
defect of the diagonalization of {§ + M) [egs. (29)
and (30)]. The error is drastically reduced by a
factor of one third in the MP treatment, and the
Epstein—Nesbet values are in a fascinating agree-
ment with the exact result. The comparison be-
tween figs. 2 and 3 illustrates the efficiency of the
Davidson—Siegbahn correction in this multirefer-
ence case. However, the agreement with the exact
energy cannot be attributed only to this (de)nor-
malization correction since the error on the David-
son corrected SDCI (0.00169 au) is much larger
than the present errors for 7 = 0.005. For this last
value, the error is not larger than the SDTQ CI
one (resulting from the diagonalization of a 17 X
103 configurations matrix), at a much smaller
computational effort. This agreement shows the
advantage of the CIPSI hierarchical selection of

Table 3
Energy error on the correlation energy of H,O, as estimated from the corrected perturbative estimates [eqgs. (25) (MP) and (26) (EN)]
(au)
n T=7 T=0.01 7= 0.002 = 0.0005
MP EN MP EN MP EN MP EN
0.060 0.00855 —0.03523 0.00512 —0.00748 0.00407 —0.00618 0.00402 —0.00628
0.040 0.01253 —0.01350 0.00542 —0.00190 0.00389 —0.00097 0.00239 —0.00278
0.025 0.01191 —0.00509 0.00420 —0.00135 0.00369 0.00215 0.00239 —0.00026
0.015 0.00900 —0.00060 0.00406 —0.00080 0.00266 0.00130 0.00201 0.00072
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Table 4
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Energy error on the correlation energy of H,O, as calculated from eqgs. (27) (MP) und (28) (EN) (without Davidson correction) (au)

n T=7 T=0.01 = =0.002 T = 0.0005

MP EN MP EN MP EN \p EN
0.060 0.00855 —0.03523 0.00870 0.00408 0.00863 0.00831 0.00863 0.00860
0.040 0.01253 —0.01350 0.00721 0.00285 0.00644 0.00603 0.60503 0.00494
0.025 0.01191 —0.00509 0.00510 0.00027 0.00512 0.00166 0.00388 0.00373
0015 0.00900 —0.00060 0.00426 - 0.00053 0.00327 0.00251 0.00263 0.002435

determinants. Since the Davidson-Siegbahn cor-
rected results of egs. (29) and (30) are much better
and more stable than the corrected fourth-order
values of eqs. (19) and (20). the purely perturba-
tive treatment of {S + A} will not be discussed for
the CN* problem.

6.2. The CN ™ near degeneracy problem

The calculation 1s performed in a (double-zeta
+ polarization) basis set proposed by Bruna et al.
{217 and for their suggested R values. Our calcula-
tion differs from the basis of their MRD (I treat-
ment (reported extensively in ref. [21]) by the lack
of f functions in the middle of the bond and the
use of five components for d functions. In that
problem, the SCF calculations predict the *IT to be
lower in energy than the 'Y~ configuration by
= (.1 au.

Table 6 gives the main characteristics of the
calculations. 7 and 7 values, size of the multirefer-
ence space and of the {S -+ M} matrices, zeroth-
order energies, and eigenvalues of (S + M}. The
zero of energy is taken as the '=* SCF determi-
nant energy (—91.6265 au). One may notice that
the {S + M} diagonalizations selected on the same

Table 5

grounds (same 7 and 7 threshoelds) tend 1o give a
constant splitting of —0.020 au. between the two
states (in favour of *IT).

Tables 7 and 8 reproduce the total energies
according 1o egs. (29) and (30) (second-order cor-
rection by the remainder {5} added 1o the David-
son-Siegbahn corrected cigenvalue of {S+ M)
which appeared to give the most reliable values
from the test study of H.O. From the lowest right
corner of this table the Moller—Plesset values seem
to converge from above and the Epstein—-Nesbet
values seem to converge from below. There is still
some important difference (= 0.009 au) between
these two estimates. the Epstein—Nesbet one cer-
tainly being more reliable.

The calculation of exact energies is usually less
important than the knowledge of energy varia-
tions. from one geometry to another or from one
state to another. The most important question in
this precise problem is the epergyv difference be-
tween the '~ and the “I7 siates. Table 9 gives the
E('X7)— ECII) energy difference as a function of
n and 7 for both definitions of the periurbation
expansion. The unceriainty in the energy dif-
ference seems to be significantly less than the
fluctuation of the energy of each siate. In view of

Energy error on the correiation energy of H,O. as calculated from eqs. (29) (MP) and (30) (EN) (including Davidson correction) (au)

7 T=7 7=0.01 == 0.002 == 0.0005

MP EN MP EN MP EN \MP EN
0.060 0.00855 ~0.03523 0.00436 —0.00026 0.00281 0.00268 0.00273 0.00270
0.040 0.01253 —0.01350 €.00397 - 0.00038 0.00188 0.00148 0.00019 0.00008
0.025 0.01191 —0.00509 0.00277 —-0.00206 0.00165 0.00119 0.00016 0.00001
0.015 0.00900 —0.00060 0.00309 —0.00171 0.00111 0.00036 0.00031 0.00011
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Fig 2. Convergence of the CIPSI algorithm for the H,O ground
state correlation energy. The reference energy corresponds to
the exact calculation in the same basis set (ref. [19]). The
parameters y and 1 correspond to the selection thresholds for
the primary {S) and intermediate {Af} spaces. For a given
value of 7. the upper (respectively lower) curve corresponds to

the Moller-Plesset [eq. (27)] (respectively Epstein-Nesbet: eq.
(28)) partition.

Fig. 3. Same quantities as in fig. 2 when the Davidson-Sieg-

bahn correction is applied 1o the variational result. egs. (29)
and (30).

Table 6

Characteristics of the CN ™ calculations. For each value of 5 and 7. one finds the variational energy €{2.. ,,, (in au). the weight of ¥{3%,
in the corresponding eigenvector. and the size of the {S+ M) CI matrix. The SCF ('X; ) energy (—91.6265 au) is taken as zero of
energy

n Iz~ 7 n
T=1 7=0.01 7= 0.005 7= 0.0035 T=7 7 =001 7 = 0.005 T =0.0035
0.15 ~0.0501 —0.2515 —0.2997 —0.3169 0.15 0.1043 —0.1968 —0.3262 —0.3419
1.0 0.866 0.867 0.867 1.0 0.907 0.903 0.903
4) (282) a71) (1210) (1) (254) (707) (1047)
0.055 —0.1473 —0.2470 —0.3001 —0.3242 0.075 —0.161 —0.2731 —0.3281 —0.3463
1.0 0.951 0.941 0.935 1.0 0.944 0.935 0.931
(26) (246) (675) (1185) (12) (216) (671) (1045)
0.035 —0.1770 —0.2483 —0.3034 —0.3260 0.030 —0.1867 —0.2720 —0.3261 —0.3462
1.0 0.966 0953 0.949 1.0 0.961 0.950 0.946
(40) (246) (676) (1171) (29) (212) (640) (1047)
—0.1923 —0.2476 —0.3027 —0.3253 0.025 —0.2088 ~0.2707 —0.3250 —0.3458
1.0 0.975 0.961 0.956 1.0 0.973 0.960 0.955
(75) (231) (661) (1163) (45) (199) (617) (1022)




Table?7

S. Evangelisti et al. / Convergence of a CIPS! algorithm 99

1X+ energy estimates from egs. (29) MP and (30) EN. including the Davidson-Sicgbahn corrected variational energies and MP and
EN second-order contribution (au)

n T=1 7=0.01 T=0.005 T = 0.0033

MP EN MP EN MP EN MP EN
0.15 —92.0378 —92.1860 —92.0545 —92.0791 —902.0526 —92.0630 —92.0518 —92.0599
0.075 —92.0326 —92.1043 —92.0406 —92.0637 —92.0426 —92.0563 —92 0438 — 92,0553
0.035 —92.0354 —92.0692 —92.0428 —92.0600 —-92.0472 —92.03599 —92.0480 — 92,0574
0.025 —92.0364 —92.0642 —92.0422 —92.0619 —02.0462 — 92,0587 —-92.0474 — 920566

the four best calculations (last two values of 7 and
7) one finds that the energy difference lies between
0.009 and 0.003 au (i.e. 0.3 and 0.1 eV) the lowest
state being the *IT state.

Two calculations on the same system have been
performed with the MRD CI method. Bruna et al.
[36] using a basis set similar to ours also suggest
that ECZ™)> ECII) by 0.05 eV. Adding f func-
tions in the basis (see ref. {21]) seems to favour the
!5+ state which is found to be the stablest state by
0.1 eV. The result obtained in ref. [22] with the
CAS SCF method is difficult to compare since it
uses a set of two d functions in each atom.

Table 8
*I7 energy estimates from egs. (29) (MP) and (30) (EN) (au)

7. Discussion

The proposed algorithm implies three levels of
approximation:
— progressive choice of a multireference zeroth-
order variational wavefunction. which does not
necessarily give an important part of the corre-
lation energy bui allows us to include the most
important changes of the wavefunction. which are
likely to slow down the convergence of the per-
turbation expansion. and to reach the most im-
portant triple and quadruple excited configura-
tions. This zeroth-order wavefuncuion may include
up to 200 determinants.

7 T=7 7=20.01 7 = 0.005 + = 0.0035

MP EN MP EN AP EN AP EX
0.15 —92.0516 —92.1497 —92.0600 —-92.0779 —92.0603 —92.0682 —92.0605 —92.0653
0.075 —92.0406 —~92.0778 —92.0560 —92.0736 —92.0593 —92.0677 —92.0601 —-92.0662
0.035 ~92.0403 —92.0712 —92.0525 —92.0683 —92.0536 — 92,0630 —92.0568 —92.0626
0.025 —$2.0380 — 92,0589 —92.0487 —92.063>5 — 020537 —92.0620 —92.0556 — 02,0615
Table 9

Energy difference between the two nearly degenerate states [ECX)— ECGI] from eqgs. (29) (MP) and (30) (EN) (au)

n

7=0.01

T=19 T=0.005 + = 0.003>

MP EN MP EN MP EN \P EN
0.15 0.0138 0.0383 0.0055 —0.0012 0.0079 0.0032 0.0087 0.0056
0.075 0.080 0.0265 0.0154 0.0099 0.0168 0.0114 0.0136 0.0109
0.035 0.049 0.0020 0.0097 0.0083 0.0084 0.0041 0.0088 0.0052
0.025 0.0016 —0.0053 0.0065 0.0014 0.0075 0.0033 0.0081 0.0049
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— selection of the most important determinants
obtained through single and double substitution
on the multiconfigurational zeroth-order wave-
function. and diagonalization of the resulting ma-
trix, which may have the size of 1 to 5% 10°?
determinants.

— the other singly and doubly substituted determi-
nants are treated by a second-order perturbation.
Their number may be huge (10°) but the low order
of perturbation allows a rapid calculation.

These three levels of approximation define
clearly the main difficulties of the procedure. One
may hope that starting from a refined zeroth-order
wavefunction, the perturbation expansion is rap-
idly convergent (as appears from the fact that the
fourth-order corrected energy does not differ from
the variational value in {S -+ M)). However, the
{S + M} variational treatment introduces a first
error which is due to the normalization of the
wavefunction. This error may be corrected through
the Davidson-Siegbahn formulas, which appear to
be very efficient for this multireference case. in
view of the H,O test. Then the second-order treat-
ment of the remainder introduces a last and more
important error. It is likely that ¢~’™F is un-
derestimated, while €2’ N may be slightly over-
estimated.

The error on € and €' may be evaluated
by considering two successive iterations 7, > 7, for
a given value of 7. Then some determinants. which
were treated in a perturbative mode in the first
iteration are treated variationally in the second
one, and from the comparison of the variational
and perturbative corrections

[E(O)DS(T’ 7,) + € O0S( 7, 7’2)]
X [ (r.m) —e@(7.,)] T =L (1)

one may try to obtain the AMP and AE™ correction
parameters which should allow us to correct the
last perturbation correction and guess some im-
proved estimate (7 — 0), closer to the exact solu-
tion. Such an analysis has been performed and we
obtained

(2)MP 2)EN

AMP =105+ 0.02,
AEN =0.95+0.04, for'XZ™;

AMP =107 +0.03,

AEN =0.96 + 0.03. for *I1;

when applied to the best calculations, these correc-
tions suggest (in au)

E(*II) = —92.0601 (MP) or —92.0587 (EN).
E(*=*)= —92.0514 (MP) or —92.0521 (EN).
AE =0.0087 (MP) or 0.0066 (EN).

The discrepancy between the MP and EN absolute
values of each state is of course reduced and the
energy difference between the two states is some-
what stabilized with respect to our previous esti-
mates. This procedure may be thought as an at-
tempt to reach the final variational DCI from a
given multireference space, i.e. the limit =0 for a
given value of 7. This is an alternative solution
along the way followed by the MRD CI scheme
(at its first extrapolation step).

As another extrapolation technique. one may
consider the surface E = f(7. 1) and rather than
finding the f(0, #) limiting curve which requires a
further extrapolation for n — 0, one may try to
find directly an estimate of E(1=0. 7 =0). from
the few points calculated on the surface. Consider-
ing two calculations which imply a consistent im-
provement in 7 and 7, 1.e. two calculations (7,. n,)
and (7, 17, ) such that

T/Mm=n/1,=a (a<l).(n<7).

they belong to a line = an which goes through
the origin v=17=0. Then assuming a constant
energy variation along this line one may try to
estimate E(7=0. 1 =0) from the best calculation
7,. 7, and the local slope of the energy curve

E(o. 0) = E(,. "Iz) + E("'z- "72) E("'l- "h)q_’.

T -

(32)

This may be done independently on both the MP
and EN surfaces, the agreement between the two
independent estimates gives an indication upon
the reliability of the extrapolation procedure. When
applied to the CN ™ problem, this procedure gives:

E(CII) = —92.0556 (MP) or —92.0553 (EN),
E('=*%)= —-92.0480 (MP) or —92.0484 (EN),
AE =0.0076 (MP) or 0.0069 (EN).
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These extrapolated values are somewhat higher (by
= 0.0040 au) than the previous ones but they are
surprisingly consistent, and the energy difference
is confirmed to lie around 0.0070 au (0.2 eV) with
an increased certitude. The later extrapolation
technique seems more reliable since it handles
simultaneously T and 7. while the former one only
deals with the dependence of the energy on the
parameter 7.

8. Comparison with MRD Cl}

At this stage one may be tempted to compare
our procedure with the improved MRD C1 scheme
[21]. which also handles three classes of determi-
nants in a very similar way. Besides some dif-
ferences in the relative sizes of (S} and (7). the
main differences concern:

(1) The use of Brillouin—Wigner type of estimate
€PY for the remainder {s)} instead of the MP and
EN Rayleigh—Schrodinger estimates e\2}MPer EN),

(ii) The place where the Davidson correction is
performed. The MRD CI method tries to make
first an extrapolation procedure to guess the varia-
tional result of the SD multireference CI, de-

termining A such that
var BW __ _var
‘{s-r,u)'l'}‘f{_\) = €S A +5)e

Then the Davidson correction is applied to this
extrapolated value. (notice that at this stage the
evaluation of C° becomes difficult, since it should
be extrapolated; the fact that our extrapolated
energies [ECII)= —92.0555 au, E('E7)=
—92.0482 au) are lower than the limits proposed
in ref. [21], despite the use of a slightly larger basis
set in ref. [21]. may be related to an underestima-
tion of the Davidson correction for = = 0.)

(i11) The quality of the zeroth-order wavefunc-
tion is improved by enlarging (S) and the ex-
trapolated and Davidson-corrected results are
plotted as functions of the quality of the zeroth-
order wavefunction (C®)> =K¥2|¥,>° which
should tend toward 1 and a new extrapolation is
performed for C° — 1.

In the present procedure. we do prefer to apply
the Davidson correction to the variational part

only and we accept the uncertainty on the second-
order remainder. The previously defined extrapo-
lated A correction [eq. (31)] for the second-order
€7? values may be performed. or. preferably an
extrapolation of the energy along a line 7 =an
(a << 1) [eq. (32)]. but our objecuive is to reach first
some stability in the results before further extrapo-
lations. It actuallv appears from the four best
calculations in table 7 that a certain stability (<
0.003 au. i.e. 0.1 eV) has been obtained for each
state and that the energy ordering between the two
states is not affected by the remaining uncertainty
(for a given choice of H,): for instance. for the
four best calculations. the highest estimate of
E(CIT) (—92.054 au for MP. —92.061 au for EN)
is always lower than the lowest estimate of E('X7)
(—92.049 for MP. —92.069 for EN). without any
extrapolation or corrective factor. Qur point of
view is that a sufficient stability of the results for
small values of + and n would be preferable to
hardly controlled extrapolation techniques. Of
course the energy stabilization of E(7. 9) m a
certain region (1, <1 <7y.. 7, <7<7) of the
parameters may be fortuttous. but such a local
stabilization would prevent anv reliable extrapo-
lation as well.

9. Conclusion

The improved CIPSI algorithm proposed in the
present work defines three classes of determinants
for each state:

— the largest ones S(strong) are generators and
define a multiconfigurational zeroth-order wave-
function. which will be perturbed bv allowing all
single and double substitutions.

~ the mean ones M(middle) (= 107) are per-
turbed to all orders. and the normalization defect
1s corrected through the Davidson-Siegbahn for-
mulas,

— the most numerocus smallest ones (s) (= 10%)
are only included through their second-order cor-
rection. Two threshold parameters 5 and 5 define
the borders of the classes. and are progressively
decreased for a rational selection of the classes and
for a study of the smbiiil_v of the resulis.

Several states mav be calculated simulta-
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neously. provided that S=5,U S,. M =M, U M,
—(M,UMINS and s=5,Us,— (5, Us,)N(M
US).

The numerical tests of the exactly resolved H,O
problem showed a very good convergence and
accuracy (especially with the Epstein—Nesbet defi-
nition of H,): the error is of the same order as
from the SDTQ CI diagonalization at a much
smaller computational expense. For the nearly de-
generate CN* problem. the process indicates *IT
<!'X* with a great stability the energy difference
being between 0.1 and 0.3 eV. A direct extrapola-
tion technique has been suggested to correct the
second-order contributions. The proposed algo-
rithm has been compared with the parent MRD
CI scheme which essentially differs by the fact that
the Davidson correction is applied after a first
extrapolation, and followed by a second extrapola-
tion.
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