
Monte Carlo MP2 on Many Graphical Processing Units
Alexander E. Doran and So Hirata*

Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States

ABSTRACT: In the Monte Carlo second-order many-body
perturbation (MC-MP2) method, the long sum-of-product
matrix expression of the MP2 energy, whose literal evaluation
may be poorly scalable, is recast into a single high-dimensional
integral of functions of electron pair coordinates, which is
evaluated by the scalable method of Monte Carlo integration.
The sampling efficiency is further accelerated by the
redundant-walker algorithm, which allows a maximal reuse of
electron pairs. Here, a multitude of graphical processing units
(GPUs) offers a uniquely ideal platform to expose multilevel
parallelism: fine-grain data-parallelism for the redundant-walker algorithm in which millions of threads compute and share orbital
amplitudes on each GPU; coarse-grain instruction-parallelism for near-independent Monte Carlo integrations on many GPUs
with few and infrequent interprocessor communications. While the efficiency boost by the redundant-walker algorithm on central
processing units (CPUs) grows linearly with the number of electron pairs and tends to saturate when the latter exceeds the
number of orbitals, on a GPU it grows quadratically before it increases linearly and then eventually saturates at a much larger
number of pairs. This is because the orbital constructions are nearly perfectly parallelized on a GPU and thus completed in a
near-constant time regardless of the number of pairs. In consequence, an MC-MP2/cc-pVDZ calculation of a benzene dimer is
2700 times faster on 256 GPUs (using 2048 electron pairs) than on two CPUs, each with 8 cores (which can use only up to 256
pairs effectively). We also numerically determine that the cost to achieve a given relative statistical uncertainty in an MC-MP2
energy increases as O(n3) or better with system size n, which may be compared with the O(n5) scaling of the conventional
implementation of deterministic MP2. We thus establish the scalability of MC-MP2 with both system and computer sizes.

1. INTRODUCTION

In 2009, the fastest supercomputer was Cray XT5 Jaguar at Oak
Ridge National Laboratory, which consisted of 224 162 AMD
Opteron processor cores, according to the TOP500 ranking. In
2012, IBM Blue Gene/Q Sequoia at Lawrence Livermore
National Laboratory took the top spot with 98 304 nodes of 16-
core PowerPC A2 central processing units (CPUs) for a total of
1 572 864 processor cores. It was already obvious then that the
conventional algorithms of computational quantum chemistry
based on dense matrix multiplications were not strongly
scalable on such machines with hundreds of thousands or even
millions of processor cores. This is because interprocessor
communications are pervasive in such algorithms and hard to
eliminate, making the parallel scalability saturate quickly with
the number of CPUs. One may, therefore, have to rethink and
redesign quantum-chemistry algorithms for today’s super-
computing architectures, which will become tomorrow’s
commodity hardware.
In late 2012, Jaguar underwent an upgrade and became Cray

XK7 Titan with an addition of 18 688 NVIDIA K20X graphical
processing units (GPUs), reclaiming the first place in the
ranking. Blue Waters at National Center for Supercomputing
Applications (NCSA) of University of Illinois, also built by
Cray, consists of 26 868 nodes, of which 22 640 XE nodes are
each equipped with two 8-core AMD 6276 Interlagos CPUs
and the remaining 4228 XK nodes each with a single AMD

6276 Interlagos CPU and an NVIDIA K20X GPU. They herald
the modern and future supercomputing architectures contain-
ing both many CPUs and many GPUs. This is further
confirmed by the fact that today’s second fastest super-
computer, China’s Tianhe-2, and the announced upgrades of
Titan and Sequoia (to be built in 2017) all adopt GPU-based or
GPU-like many-core architectures.
A CPU can perform complex instructions and supports

overlapping and out-of-order executions as well as branch
predictions, whereas a GPU (also known as a coprocessor or
accelerator) applies a relatively simple operation on a large
amount of data at once, in the so-called SIMD (single-
instruction, multiple-data) parallelism. Therefore, any algorithm
attempting to harness the full power of many GPUs may need
to adopt multilevel parallelism, in which a fine-grain data-
parallel part is handled by many threads of a GPU, whereas a
coarse-grain instruction-parallel part runs on many GPUs or
many CPUs. Dense matrix multiplications may now become
suitable for the former, but they remain problematic for the
latter.
Scalable algorithms on such large and heterogeneous

hardware are few, but they include stochastic (or Monte
Carlo) algorithms. They achieve scalability by virtue of being a

Received: June 8, 2016
Published: September 7, 2016

Article

pubs.acs.org/JCTC

© 2016 American Chemical Society 4821 DOI: 10.1021/acs.jctc.6b00588
J. Chem. Theory Comput. 2016, 12, 4821−4832

pubs.acs.org/JCTC
http://dx.doi.org/10.1021/acs.jctc.6b00588


sparse-integration method, but incur statistical uncertainties.
The quantum Monte Carlo (QMC) methods,1−5 which solve
electronic or vibrational Schrödinger equations with such
algorithms, boast wide applicability, high scalability (with both
system and computer sizes), and near-exact accuracy when
convergence is achieved. It is fascinating to observe the efficacy
of stochastic algorithms in its applications to the intrinsically
stochastic theories of quantum mechanics and thermodynamics.
The QMC methods, however, have weaknesses. One is the so-
called sign problem, which necessitates the use of approximate
nodal structure of a wave function in, for example, diffusion
Monte Carlo. Another is the difficulty in computing energy
differences in the presence of large statistical uncertainties in
total energies. Yet another is the finite-size error.
One of the present authors with coauthors6 introduced the

Monte Carlo second-order many-body perturbation (MC-
MP2) method,7 which weds ab initio molecular orbital theory
with QMC-like stochastic algorithms,1−5 thereby achieving the
best of the two worlds.8−18 In it, the usual long sum-of-product
expression of an MP2 correlation energy is transformed into a
single 13-dimensional integral of functions of two electron
pairs. This integral is then evaluated by Monte Carlo (MC)
integration using an appropriate weight function for Metropolis
sampling19 of electron-pair distributions. MC-MP2 is rigorously
(diagrammatically) size-consistent, is free from any sign
problem, and can compute energy differences directly and
not as small differences of noisy total energies. The energy
differences include correlation energies and correlated ioniza-
tion and electron-attachment energies20 as well as quasiparticle
energy bands of a crystal,21 which are evaluated directly by
integrating the perturbation corrections to the energies and
self-energies. It can be systematically improved by increasing
the perturbation order22 and basis-set size. It does not require
two-electron integrals precomputed and stored either in the
atomic-orbital or molecular-orbital basis and is, therefore, more
scalable with both system and computer sizes. Explicit
correlation23,24 can also be more easily incorporated.
Being embarrassingly parallel by design (used here in a

nonderogatory sense), an MC-MP2 program could easily be
made to execute efficiently on many CPUs,25 by simply having
all processes perform independent MC integrations and report
their intermediate results to the master process occasionally.
Willow et al.25 also introduced a crucial convergence-
acceleration measure called the redundant-walker algorithm.
In it, more than minimally necessary two electron pairs (say, m
pairs) are propagated at a cost increase by a factor of m/2. With
m electron pairs, there are m(m − 1)/2 distinct ways of
substituting their coordinates in the integrand of the MC-MP2
energy, resulting in a net increase in sampling efficiency by a
factor of (m − 1). However, it was found that the speedup does
not increase indefinitely with m, but saturates at a rather small
value of m, because the m(m − 1)/2 cost of substitution
ultimately becomes the hotspot at large m, nullifying the
sampling efficiency boost. In short, the redundant-walker MC-
MP2 algorithm consists of two equally important parts with
disparate data-access patterns: (1) near-independent MC
integrations using disjoint sets of electron pairs and (2) a
maximal reuse of electron pairs in each independent MC
integration.
Here, we show that the two algorithmic parts naturally

expose multilevel parallelism, with part (1) ideally handled in
coarse-grain instruction-parallelism on many CPUs or many
GPUs involving few and infrequent interprocessor communi-

cations, while part (2) can greatly benefit from fine-grain data-
parallelism on a GPU with data on many electron pairs rapidly
computed and made available on shared memory to all
processor cores (threads) that need them. Not only does this
algorithmic design lead to a highly scalable MC-MP2 method
on many GPUs, but it also brings about a qualitative change in
the behavior of the redundant-walker algorithm for the better:
whereas the efficiency increase from the redundant-walker
algorithm grows only linearly with the number of electron pairs
(m) on CPUs, it increases quadratically on GPUs and its
saturation with m is significantly delayed. This, in turn, is
caused by near-perfect parallelization of the redundant-walker
algorithm on a GPU until the number of electron pairs is large.
An MC-MP2/cc-pVDZ calculation of a benzene dimer (228
basis functions), for instance, is found to be 11 times faster on a
single GPU than on two CPUs (using all of their 16 cores) and
2700 times faster on 256 GPUs than on two CPUs (16 cores).
These high degrees of speedup are partly due to the fact that
whereas the speedup from the redundant-walker algorithm
ceases to increase after 256 pairs on CPUs, as many as 2048
pairs can contribute meaningfully on GPUs.
Earlier, we found6 that the cost of MC-MP2 per MC step

increases nearly linearly with the number of basis functions for
small molecules. In this work, we confirm that this is the case
with MC-MP2 with the redundant-walker algorithm for a more
extensive set of molecules containing fairly large ones. We also
show here numerically that the scaling of the cost of MC-MP2
to achieve a given relative statistical uncertainty is O(nele

3 ), where
nele is the number of electrons or a molecule’s spatial size, or
O(nbas

2.5), where nbas is the number of basis functions for a fixed
molecular size. These are a vast improvement over the O(nele

5 )
or O(nbas

4 ) scaling of the conventional implementation26 of
deterministic MP2.
Together, we demonstrate that MC-MP2 is scalable with

system size and computer size and thus holds a promise as a
future of ab initio electronic structure theory.

2. MC-MP2 FORMALISM

The usual long sum-of-product matrix expression of the MP2
correlation energy, E(2), can be converted6 by Laplace
transform27 into a single 13-dimensional integral. For a
closed-shell molecule with nele electrons whose restricted
Hartree−Fock (HF) molecular orbitals (MO) are expanded
by nbas atomic-orbital (AO) basis functions, the converted
expression is

∫ ∫ ∫ ∫

∫ τ τ

=

×
∞

E

f

r r r r

r r r r

d d d d

d ( , , , , )

(2)
1 2 3 4

0
1 2 3 4 (1)

with

τ

τ τ

τ τ

τ τ

τ τ

=

− − −

×

+ − −

×

− −

+ + − −

− −

+ + − −

f

G G

G G r r

G G

G G r r

r r r r

r r r r

r r r r

r r r r

r r r r

( , , , , )

2 ( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

1 2 3 4

1 3 2 4

1 3 2 4 12
1

34
1

1 3 2 4

1 4 2 3 12
1

34
1

(2)

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00588
J. Chem. Theory Comput. 2016, 12, 4821−4832

4822

http://dx.doi.org/10.1021/acs.jctc.6b00588


where r12 = |r1 − r2| and G±(r, r′,τ) are the traces of the
retarded and advanced HF Green’s functions in real space and
imaginary time:22

∑τ φ φ′ = * ′ τ−

=

−ϵG r r r r( , , ) ( ) ( )e
i

n

i i
1

i
occ

(3)

∑τ φ φ′ = * ′ τ+

= +

−ϵG r r r r( , , ) ( ) ( )e
a n

n

a a
1

a

occ

bas

(4)

Here, nocc is the number of occupied orbitals, which is equal to
nele/2, φp(r) is the pth MO, and ϵp is the corresponding orbital
energy. Hence, the summation in eq 3 runs over occupied
MOs, while that in eq 4 over virtual MOs, whose number is nvir
(used later). Each MO is, in turn, a linear combination of AOs:

∑φ χ=
μ

μ
μ

=

Cr r( ) ( )p

n

p
1

bas

(5)

where Cp
μ is an MO expansion coefficient determined by the

preceding HF procedure and χμ(r) is the μth AO, which is not
limited to but can be an atom-centered Gaussian-type orbital
(GTO), as in our implementation.
In the MC-MP2 method, we evaluate the one-dimensional

integration over τ in eq 1 by quadrature and its 12-dimensional
real-space integration over electron coordinates, r1, r2, r3, and
r4, by the MC method:

∑≈
̃

̃ ̃=

E
N

f

w w

r r r r

r r r r
1 ( , , , )

( , ) ( , )n

N n n n n

n n n n
(2)

1

1
[ ]

2
[ ]

3
[ ]

4
[ ]

1
[ ]

2
[ ]

3
[ ]

4
[ ]

(6)

with

∑ τ

̃

=

f

w f

r r r r

r r r r

( , , , )

( , , , , )

n n n n

s
s

n n n n
s

1
[ ]

2
[ ]

3
[ ]

4
[ ]

1
[ ]

2
[ ]

3
[ ]

4
[ ]

(7)

where N is the total number of MC steps, (r1
[n],r2

[n]) is the
random coordinates of a pair of electrons 1 and 2 (“a walker”)
in the nth MC step, which, in a long MC run, forms a
distribution according to the weight-function factor, w̃(r1

[n],r2
[n]),

and τs and ws are the sth Gauss−Kronrod quadrature28 point
and weight, respectively. The random distribution according to
w̃(r1

[n],r2
[n]) is achieved by the Metropolis algorithm.19 An

appropriate form6 of the weight function factor is

̃ =w
N

g g
r

r r
r r

( , )
1 ( ) ( )

g
1 2

1 2

12 (8)

where g(r) is a sum of s-type GTOs, and the normalization
coefficient,

∬=N
g g

r
r r

r r
d d

( ) ( )
g 1 2

1 2

12 (9)

is evaluated semianalytically.29

The redundant-walker algorithm25 was introduced as an
essential convergence-acceleration measure for MC−MP2. In
this algorithm, instead of propagating just two electron pairs
(two walkers), (r1

[n], r2
[n]) and (r3

[n], r4
[n]), which are minimally

necessary in eq 6, we propagate m (m ≫ 2) pairs (m
“redundant” walkers), (r1k

[n], r2k
[n]), with 1 ≤ k ≤ m. Having m

pairs increases the propagation cost by a factor of m/2, but it
increases the number of distinct ways to substitute the pair

coordinates in eq 6 from 2 to m(m − 1), a net (m − 1)-fold
increase in the MC sampling efficiency:

∑ ∑ ∑≈ ≡
−

×
̃ + ̃

̃ ̃

= =

−

= +

E I
N m m

f f

w w

r r r r r r r r

r r r r

1 1
( 1)

( , , , ) ( , , , )

( , ) ( , )

N
n

N

k

m

l k

m

k
n

k
n

l
n

l
n

k
n

k
n

l
n

l
n

k
n

k
n

l
n

l
n

(2)

1 1

1

1

1
[ ]

2
[ ]

1
[ ]

2
[ ]

1
[ ]

2
[ ]

2
[ ]

1
[ ]

1
[ ]

2
[ ]

1
[ ]

2
[ ]

(10)

where we exploit the fact that an interchange of r1l
[n] and r2l

[n] also
leads to a distinct summand for a speedup by a factor of 2,
which was overlooked in our previous work.6

The statistical uncertainty σ is computed with the blocking
algorithm of Flyvbjerg and Petersen30 as

∑ ∑ ∑ ∑σ =
−

×
̃

̃ ̃

+
̃

̃ ̃
−

= ′= =

−

= +

″ ″ ″ ″

″ ″ ″ ″

″ ″ ″ ″

″ ″ ″ ″ ⎪

⎪

⎡

⎣
⎢⎢

⎧
⎨⎪
⎩⎪

⎫
⎬
⎭

⎤
⎦
⎥⎥

N
N N m m

f

w w

f

w w
I

r r r r

r r r r

r r r r

r r r r

1 1
( 1)

( , , , )

( , ) ( , )

( , , , )

( , ) ( , )

n

N N

n

N

k

m

l k

m

k
n

k
n

l
n

l
n

k
n

k
n

l
n

l
n

k
n

k
n

l
n

l
n

k
n

k
n

l
n

l
n N

2 b
2

2
1

/

1 b 1

1

1

1
[ ]

2
[ ]

1
[ ]

2
[ ]

1
[ ]

2
[ ]

1
[ ]

2
[ ]

1
[ ]

2
[ ]

2
[ ]

1
[ ]

1
[ ]

2
[ ]

1
[ ]

2
[ ]

2

b b

(11)

where Nb is the block size and n″ = (n − 1)Nb + n′.

3. MULTILEVEL GPU PARALLELISM
Before entering the discussion of our parallel algorithm of MC-
MP2, we briefly contrast different operational characteristics
between CPUs and GPUs.
A CPU (host) can perform complex instructions efficiently,

including overlapping (pipelined) and out-of-order executions.
It also makes branch predictions. However, interprocessor
communications are relatively slow (both in latency and
bandwidth) because two CPUs typically do not share memory
but are physically distant from each other. Therefore, an
efficient algorithm on many CPUs ought to be coarse-grain
embarrassingly parallel with as few and infrequent interpro-
cessor communications as possible. It is exceedingly difficult to
remove communications from dense matrix multiplications,
which are, therefore, not ideal for this part.
A GPU (device) consists of several multiprocessors, each of

which can execute a large number of concurrent calculations
called threads. Several threads are grouped into a “warp” and
several warps into a “block.” All threads in a block run on a
single multiprocessor and have high-speed access to data on its
volatile shared memory or on its persistent global memory. A
large number of threads should be spawned, so that no cores
are idle, while thread load-balancing is automatically ensured by
hardware. All threads in a warp are meant to execute a rather
simple operation concurrently on many data. Although each
thread in a warp has its own instruction pointer and two
threads can in principle execute different instructions, if that
takes place, all the others in the same warp must remain idle, a
situation known as a “thread divergence.” In the worst case
scenario where all threads in a warp follow different execution
paths, the computation is effectively serialized. An important
consideration in using GPUs is, therefore, to avoid thread
divergence, by exposing fine-grain SIMD parallelism in the
algorithm. Dense matrix multiplications may be appropriate for

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00588
J. Chem. Theory Comput. 2016, 12, 4821−4832

4823

http://dx.doi.org/10.1021/acs.jctc.6b00588


this part, especially with the advent of the CUBLAS library, a
GPU-implementation of the BLAS library provided in the CUDA
toolkit. Furthermore, data transfer to/from CPU (host) from/
to GPU (device) tends to have a high latency. So another
important consideration is to minimize such transfers. Finally,
conceived originally as a graphics engine, presently a GPU
executes single-precision arithmetic more rapidly, and error
correcting codes (ECC) are often optional or unavailable.
An ideal algorithm for many GPUs may, therefore,

implement multilevel parallelism: coarse-grain instruction-
parallelism across many CPUs or many GPUs and fine-grain
data-parallelism on each GPU with built-in error/fault tolerance
or possibly single-precision arithmetic. Data transfers between
two CPUs, between a CPU and a GPU, and between two
GPUs should be minimized. Here, we show that MC-MP2 can
be implemented exactly in this manner and is ideal for many
GPUs.
Figure 1 illustrates the multilevel parallel algorithm of MC-

MP2. A more detailed outline of the algorithm is given in

Figure 2. Each CPU (host) performs its independent MC
integration, as indicated by Steps 1 and 12 in Figure 2, not
unlike most other QMC implementations. This coarse-grain
parallelism can be made scalable to almost any arbitrarily high
degree by delaying a synchronized accumulation (MPI_REDUCE)
of the energies and statistical uncertainties by all processors. It
can also be fault-tolerant (not implemented in this work) and
indefinitely restartable (automatically realized) because of the
additive nature of the MC integrals and statistical uncertainties.
In our implementation, the energies and statistical

uncertainties of all CPUs are accumulated at every 2n (7 ≤ n
≤ 10) MC steps, generating a list of statistical uncertainties

computed with various block sizes (Nb = 2nb with 0 ≤ nb ≤ 12)
from a single MC run (the statistical uncertainties with block
size nb ≤ n are current at every accumulation, while those with
block size nb > n are current at every 2n−nb accumulations).
From this list, one can determine an appropriate block size
(which is the smallest value of Nb at which the statistical
uncertainty starts to plateau, but before it blows up). In
subsequent runs, this optimal value of Nb (typically 128 or 256)
can be used as the interval for synchronization for higher
scalability.
The redundant-walker algorithm propagates m electron pairs

at an m/2-fold increased cost, but generates a m(m − 1)/2-
times greater number of MC samplings. We parallelized all
computing tasks associated with the redundant-walker algo-
rithm on a GPU (device), that is, steps 2, 3, 4, 6, 7, and 9 of
Figure 2, or as shown in Figure 1. Table 1 lists the asymptotic

cost function of each step. The cost is measured as a function of
the number of electron pairs (m ≥ 2) (which is a parameter set
by the user and affects only the performance, but not the
converged limits of MC-MP2) and of the problem size (n)
(which defines the system size and is equal to nbas and
proportional to nele or the number of atoms). In what follows,
we discuss our GPU-parallelization strategy of each step.
Step 2 performs one cycle of the Metropolis algorithm in

which m electron pairs make a distorted random walk. The cost
of this step is dominated by the evaluation of the value of the
weight function (eq 8) at new pair coordinates. It therefore
involves O(mn) exponential function calls. This step executes
efficiently on either CPU (host) or GPU (device), but
performing it on GPU is preferable because it eliminates data
transfer needs. Hence, in our implementation, the transfer
occurs just once outside all loops (Step 0). One thread
propagates one electron pair.
Step 3 calculates the amplitudes of all (n) AOs at m electron

pair coordinates at an O(mn) cost. Although the scaling is lower
than some other steps, this step can be the hotspot unless m or
n is large, because the prefactor on the cost function is the
greatest as it involves expensive evaluations of exponential
functions and spherical harmonics. To avoid thread divergence,
all threads in a block (thus all threads in each warp in the
block) are tasked to calculate AOs that share the same spherical
harmonics (e.g., d-type GTOs only), but at different electron
coordinates concurrently, so that they perform an identical
series of instructions and have the same memory-access pattern.
The converse algorithm, in which all threads in a block calculate
different types of GTOs concurrently at one electron’s
coordinates, causes a severe thread divergence. The AO
amplitudes are stored in nbas × m arrays Xi (i = 1 or 2),
which persist in the GPU’s global memory:

χ=μ μX r( ) ( )i k ik
n[ ]

(12)

Figure 1. A schematic comparison of the MC-MP2 algorithm on many
CPUs and many GPUs. A “pair” refers to an electron pair that
undergoes a distorted random walk in six-dimensional real space.

Figure 2. An outline of the MC-MP2 algorithm.

Table 1. Algorithmic Steps and Their Costs

stepa task costb

2 propagate pairs O(mn)
3 calculate AOs O(mn)
4 calculate MOs O(mn2)
6 calculate G± O(m2n)
7 + 9 calculate E2 O(m2)

aSee the corresponding line in Figure 2. bm is the number of electron
pairs and n is the problem size (n = nbas ∝ nele).

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00588
J. Chem. Theory Comput. 2016, 12, 4821−4832

4824

http://dx.doi.org/10.1021/acs.jctc.6b00588


where i labels electron 1 or 2 in the kth electron pair (1 ≤ k ≤
m), μ designates an AO, and n counts the MC cycle.
Step 4 generates the whole set of the occupied MO

amplitudes in nocc × m arrays Φi
− (i = 1, 2) and the virtual MO

amplitudes in nvir × m arrays Φi
+ (i = 1, 2):

φΦ = ≤ ≤− p nr( ) ( ), 1i pk p ik
n[ ]

occ (13)

φΦ = ≤ ≤+
+ p nr( ) ( ), 1i pk n p ik

n[ ]
virocc (14)

They are related to the AO amplitudes by

Φ =− −C Xi i (15)

Φ =+ +C Xi i (16)

where C− and C+ are the nocc × nbas and nvir × nbas arrays of
occupied and virtual MO expansion coefficients, respectively;
that is,

=μ
μ− CC( )p p (17)

=μ
μ+

+CC( )p n pocc (18)

This AO-to-MO transformation is, therefore, O(mn2) dense
matrix multiplications. They are carried out by CUBLASDGEMM (a
parallel matrix multiplication subroutine) in the CUBLAS library.
For large n, this step becomes the hotspot.
Step 6 is repeated for all grid points of τ in a loop executed

by a host CPU, but all data needed in this step are persistent in
the global memory of the device GPU. In this step, m × m
arrays of retarded and advanced Green’s-function traces are
constructed:

τ τ=− −GG r r{ ( )} ( , , )ij kl ik
n

jl
n[ ] [ ]

(19)

τ τ=+ +GG r r{ ( )} ( , , )ij kl ik
n

jl
n[ ] [ ]

(20)

where k and l designate an electron pair (1 ≤ k, l ≤ m), while i
and j take the value of 1 or 2, corresponding to electron 1 or 2,
respectively, in each pair. They are defined as

τ τΦ Φ=− − † − −G T( ) ( ) ( )ij i j (21)

τ τΦ Φ=+ + † + +G T( ) ( ) ( )ij i j (22)

with

τ δ= ≤ ≤τ− −ϵ p q nT{ ( )} e , 1 ,pq pq occ
p

(23)

τ δ= ≤ ≤τ+ −ϵ + p q nT{ ( )} e , 1 ,pq pq vir
n pocc (24)

These Green’s-function arrays have the following symmetry:

τ τ=− − †G G( ) { ( )}ij ji (25)

τ τ=+ + †G G( ) { ( )}ij ji (26)

Therefore, G11
± (τ) and G22

± (τ) are constructed by CUBLASDSYRKX

(a matrix multiplication subroutine for a symmetric matrix) and
G12

± (τ) by CUBLASDGEMM in the CUBLAS library, whereas G21
± (τ) is

obtained as the transpose of the latter (assuming real orbitals).
The cost of these multiplications are O(m2n), and hence this
step can also be a hotspot when m is large.
Step 7 is also within the τ-loop and evaluates the sth grid-

point contribution to f(̃r1k
[n],r2k

[n],r1l
[n],r2l

[n]) in eq 10:

∑

∑

τ τ

τ τ

τ τ

τ τ

̃

= − − −

×

+ − −

×

− −

+ +

− −

+ +

f

w

w

r r r r

G G

G G

G G

G G

( , , , )

2 { ( )} { ( )}

{ ( )} { ( )}

{ ( )} { ( )}

{ ( )} { ( )}

k
n

k
n

l
n

l
n

s
s s kl s kl

s kl s kl

s
s s kl s kl

s kl s kl

1
[ ]

2
[ ]

1
[ ]

2
[ ]

11 22

11 22

11 22

12 21 (27)

∑

∑

τ τ

τ τ

τ τ

τ τ

̃

= − − −

×

+ − −

×

− −

+ +

− −

+ +

f

w

w

r r r r

G G

G G

G G

G G

( , , , )

2 { ( )} { ( )}

{ ( )} { ( )}

{ ( )} { ( )}

{ ( )} { ( )}

k
n

k
n

l
n

l
n

s
s s kl s kl

s kl s kl

s
s s kl s kl

s kl s kl

1
[ ]

2
[ ]

2
[ ]

1
[ ]

12 21

12 21

12 21

11 22 (28)

Since 1 ≤ k < l ≤ m (see eq 10), there are m(m − 1)/2
multiplications in every summation, and each of these
multiplications is carried out by a thread. The cost of this
step is always minuscule as compared with step 6 as it is
independent of the system size (n).
Step 9 transfers the intermediate results (the energy

increments) from each device GPU to its host CPU efficiently
by using the REDUCE function provided by the THRUST library of
the CUDA toolkit. The cost of this step is negligible because
only one floating-point number is transferred from the memory
of the GPU to that of the CPU.

4. PERFORMANCE OF THE REDUNDANT-WALKER
ALGORITHM

All calculations were performed on Blue Waters at NCSA of
University of Illinois, which consists of XE CPU nodes and XK
GPU nodes. An XE node is equipped with two AMD 6276
Interlagos processors (each containing 8 cores) and 64 GB of
RAM with a peak performance of 0.314 TFLOPS. An XK node
is configured with a single AMD 6276 Interlagos processor, 32
GB of RAM, and a NVIDIA K20X GPU. The GPU has a peak
performance of 1.31 TFLOPS for double-precision arithmetic.
This suggests that a GPU (a XK node) is intrinsically roughly
4.2 (≈ 1.31/0.314) times faster than two CPUs (a XE node).
In this article, the number of CPUs refers to the number of

AMD 6276 Interlagos processors, each containing eight cores,
on an XE node. The number of GPUs is equal to the number of
the XK nodes used in a calculation; one CPU core on an XK
node is given a minuscule amount of work. The unit of speed is
taken as that of a 16-way parallel calculation on two CPUs
(using all of their 16 cores) on an XE node. The speed is
measured in terms of the number of samples in a unit wall-
clock time. A sample is, in turn, a unique f ̃ summand in eq 10,
whose number is nGPUm(m − 1) N for a calculation with NMC
steps running on nGPU GPUs or CPUs. Not all samples are of
equal quality because of correlation, but we ignore this aspect
and count each sample equally.
Figure 3 compares the efficiency of the redundant-walker

algorithm on a GPU and on 8 CPUs (64 cores) as a function of
the number of electron pairs (m) as measured by the wall time
spent in each case to generate 1024 samples per CPU or GPU.
Given the excellent scalability across many CPUs or many

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00588
J. Chem. Theory Comput. 2016, 12, 4821−4832

4825

http://dx.doi.org/10.1021/acs.jctc.6b00588


GPUs (see below), this figure will hardly change with the
number of CPUs or GPUs.
Focusing on the blue (CPU) curves, we find that the wall

time decreases (the speedup increases) linearly with the
number of pairs (m). For small problems (water and benzene
dimer with nbas = 24 and 228, respectively), however, the
speedup slows down at m = 64 or so, whereas it continues to
grow for taxol (nbas = 1123) up to m = 512 or more. These are
consistent with the algorithm outlined in the previous section.
On CPUs, step 4 (MO construction) is the hotspot with an
O(mn2) operation cost for large n (such as taxol), while the
number of samplings is O(m2), leading to a net O(m) increase
in the sampling efficiency.25 When n is small (such as water and
benzene dimer), step 6 (Green’s function construction) with an
O(m2n) cost surpasses Step 4 and becomes the hotspot as m
increases, whereupon both the cost and benefit of the
redundant-walker algorithm grow quadratically with m, giving
no net increase in sampling efficiency. This explains why the
speedup stalls as m approaches or exceeds n. Nevertheless, even
for water, the redundant-walker algorithm with m = 64 gives an
order-of-magnitude speedup as compared with m = 2.
Shifting our attention to the green (GPU) curves, we notice

that the wall time decreases (speedup increases) quadratically
up to m ≈ 256, then linearly for 256 ≤ m ≤ 2048, and the
saturation of speedup is delayed until m ≈ 2048 for all cases
considered (water, benzene dimer, and taxol). This occurs
because all steps in Table 1 are nearly perfectly parallelized on a
GPU for m ≤ 256 and completed in near-constant wall time
because as many threads (up to tens of thousands) as there are
arithmetic operations are spawned and they execute these
operations concurrently in an automatically load-balanced
manner. This makes the wall time spent by these steps
independent of m, that is, O(1), while generating O(m2)
samples, yielding a net O(m2) sampling efficiency increase.
Only when the number of pairs (m) approaches 256 and the
number of threads necessary to cover all the arithmetic tasks
exceeds the number that can be run concurrently, does the wall
time start to increase as O(m). Thereupon, the speedup
increases only linearly with m (as on CPUs) until it stalls near
m ≈ 2048, which is much greater than the saturation point on

CPUs (m ≈ 64 for water and benzene dimer). Therefore, a
GPU brings about a qualitative change in its algorithmic
behavior for the better. The GPU programming paradigm of
spawning a number of threads in proportion to the problem size
and of load-balancing them makes the ef f iciency of the redundant-
walker algorithm qualitatively better on a GPU. With 2048
electron pairs, the GPU-parallel redundant-walker algorithm
achieves more than 4 orders of magnitude speedup relative to
the minimal two pairs even for water and benzene dimer. On
CPUs, such a large number of electron pairs cannot be used
meaningfully for small molecules.

5. SCALING WITH COMPUTER SIZE
The details of the speedup measurements in this work are given
in the first two paragraphs of the previous section. A discussion
of speedup across two disparate hardware architectures is
fraught with a danger of losing a valid scientific or even
technical meaning. This is particularly true if the two
architectures have different degrees of technological maturity,
if they mandate different algorithms and computational
parameters, or if they produce slightly different numerical
results or accuracy, all of which are often the case with any
CPU−GPU comparison. In this work, we try to minimize these
inevitable disparities by using the CPUs and GPUs on one and
the same supercomputer (Blue Waters) installed at once
relatively recently. A single computer program was written by
the principal author and used for all of the CPU and GPU
calculations of MC-MP2, although the GPU algorithm
described above only applies to the latter and the number of
electron pairs and the statistical uncertainty also differ between
the two types of calculations.
Figure 4 compares the speedup in MC-MP2 brought to by

many CPUs and by many GPUs. As already demonstrated by
our group earlier,25 MC-MP2 can be easily made scalable on
many CPUs by the coarse-grain instruction-parallelism

Figure 3. Efficiency of the redundant-walker algorithm on eight CPUs
(64 cores) or a single GPU as a function of the number of electron
pairs (m) as measured by the wall time (in seconds) spent by each
CPU or GPU to sum 1024 samples in the MC-MP2/cc-pVDZ
calculations of water (nbas = 24), benzene dimer (nbas = 228), or taxol
(nbas = 1123). Functions proportional to m−1 and m−2 are also shown.

Figure 4. Speedup as a function of the number of CPUs or the
number of GPUs in the redundant-walker MC-MP2/cc-pVDZ
calculation of a benzene dimer (nbas = 228). The speed was measured
as the reciprocal of the wall time needed to sum the same number of
samples, and the unit of speed was taken as that of 2 CPUs using all of
their 16 cores on an XE node of the Blue Waters supercomputer,
whereas one GPU refers to using one GPU and one core of a CPU on
an XK node. The CPU calculations used 256 electron pairs (m), while
for the the GPU calculations, m = 2048. For both CPU and GPU runs,
total correlation energy and statistical uncertainty were accumulated
across all processors at every 128 MC steps.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00588
J. Chem. Theory Comput. 2016, 12, 4821−4832

4826

http://dx.doi.org/10.1021/acs.jctc.6b00588


described above. Relative to the 2-CPU (16-core) execution,

the 128-CPU (1024-core) calculation achieves 93% scalability,

though the rate goes down to 67% when measured against the

serial (one-core) execution (not shown), as the latter involves

no interprocessor communication. In all calculations shown in

this figure, all processors synchronize and accumulate the

energy increment and statistical uncertainty at every 128 MC

steps, which is the only hindrance for higher scalability, which
can be made arbitrarily less frequent.
The figure also indicates that the 1-GPU calculation is 11

times faster than the 2-CPU (16-core) calculation. This
speedup is greater than the intrinsic performance ratio of 1
GPU (a XK node) to 2 CPUs (a XE node) of approximately
4.2 inferred from hardware specification given by NCSA. This is
likely due to the fact that on a GPU, as many as 2048 electron

Table 2. Electronic Structure Calculations on GPUs

method molecule nbas
a errorb nGPU

c nCPU
d speedupe

MC-MP2/cc-pVDZf water 24 0.4 (0.2%) 1 (dbl) 16 2.8
MC-MP2/cc-pVDZg water 24 65 (3%) 64 (sgl) 16 290
MC-MP2/cc-pVDZh water 24 0.3 (0.2%) 64 (dbl) 16 180
MC-MP2/cc-pVDZi benzene dimer 228 0.2 (0.01%) 64 (dbl) 16 690
MC-MP2/cc-pVDZj taxol 1123 9 (0.1%) 64 (dbl) 16 1600
MC-MP2/cc-pVDZk taxol 1123 ... 64 (dbl) 16 2800
HF/3-21Gl taxol 647 1.2 (10−5%) 1 (sgl) 1 63
HF/3-21Gl valinomycin 882 5 (10−5%) 1 (sgl) 1 93
HF/3-21Gm taxol 647 ... 4 (mix) 4 28
HF/3-21Gm valinomycin 882 ... 4 (mix) 4 44
HF/3-21Gm olestra 2131 ... 4 (mix) 4 182
HF/6-31G(d)n taxol 1032 0 1 (dbl) 1 13.0
HF/6-31G(d)n valinomycin 1350 0 1 (dbl) 1 11.1
HF/6-31G(d)o taxol 1013 0.0013 1 (mix) 1 20
HF/6-31G(d)o valinomycin 1350 0.0088 1 (mix) 1 31
HF/6-31G(d)o olestra 3181 0.0086 1 (mix) 1 114
PW91/6-31Gp taxol 660 3.2 1 (sgl) 1 15
PW91/6-31Gp taxol 660 0.0005 1 (mix) 1 3.7
PW91/6-31Gp valinomycin 882 1.1 1 (sgl) 1 9.2
PW91/6-31Gp valinomycin 882 0.0007 1 (mix) 1 2.8
PW91/6-31Gq taxol 660 0.005 1 (sgl) 1 40
PW91/6-31Gq valinomycin 882 0.006 1 (sgl) 1 39
RI-MP2/cc-pVDZr n-octane 202 0.08 1 (sgl) 1 1.5
RI-MP2/cc-pVDZr n-docosane 538 0.3 (10−4%) 1 (sgl) 1 4.3
RI-MP2/cc-pVDZs taxol 1123 0 1 (dbl) 1 7.3
RI-MP2/cc-pVDZs taxol 1123 11 1 (sgl) 1 11
RI-MP2/cc-pVDZs taxol 1123 0.8 1 (mix) 1 9.3
RI-MP2/cc-pVTZs taxol 2574 2.9 1 (mix) 1 10
RI-MP2/cc-pVDZs valinomycin 1542 0 1 (dbl) 1 7.8
RI-MP2/cc-pVDZs valinomycin 1542 16 1 (sgl) 1 14
RI-MP2/cc- pVDZs valinomycin 1542 1.9 1 (mix) 1 10
CCD/6-31Gt dodecahexaene 124 0.0003 1 (sgl) 8 10
CCD/6-31Gt dodecahexaene 124 0 1 (dbl) 8 5.0
CCD/6-31Gt octadecanonaene 184 0.006 1 (sgl) 8 8.6
CCD/6-31Gt octadecanonaene 184 0 1 (dbl) 8 4.3
CCSD(T) /POL1u “spiro cation” 486 0 64 (dbl) 64 6.2

aThe number of basis functions. bThe greater of the absolute single-precision arithmetic error or the statistical uncertainty in the energy
(accumulation at every 128 steps with block size of 128) in mEh (in %). cThe number of GPUs in the single-precision (“sgl”), double-precision
(“dbl”), or mixed-precision (“mix”) mode. Some mixed-precision calculations performed double-precision arithmetic on the CPU. dThe number of
CPU cores in the double-precision mode used in a reference calculation to define the unit of speed. eThe speedup achieved by a calculation on nGPU
GPUs relative to the same calculation on nCPU CPU cores. fThis work (GPU: m = 2048, N = 3.0 × 104, wall time = 1 h; CPU: m = 256). gThis work
(GPU: m = 2048, N = 5.2 × 105, wall time = 9.5 min; CPU: m = 256). hThis work (GPU: m = 2048, N = 2.4 × 105, wall time = 7 min; CPU: m =
256). iThis work (GPU: m = 2048, N = 5.4 × 107, wall time = 40 h; CPU: m = 512). jThis work (GPU: m = 512, N = 4.8 × 108, wall time = 97 h;
CPU: m = 512). kThis work (GPU: m = 2048; CPU: m = 512). lUfimtsev and Martıńez.31 The speedup is relative to the same calculation using
GAMESS. mUfimtsev and Martıńez.32 The speedup is relative to the same calculations using GAMESS. nAsadchev and Gordon.33 oTitov et al.34 The
speedup is relative to the same calculations using GAMESS. pYasuda.35 The Coulomb-energy part of the density-functional calculation with the
PW91 functional was accelerated on a GPU. qYasuda.36 The exchange-correlation-energy part of the density-functional calculation with the PW91
functional was accelerated on a GPU. rVogt et al.37 RI-MP2 stands for the resolution-of-identity MP2 method. The error for n-octane is the average
over a series of calculations while rotating the central bond angle. The error for n-docosane was not reported; the value of 0.3 mEh is the average
error across the entire alkane series studied by them. sOlivares-Amaya et al.38 tDePrince and Hammond.41 CCD stands for the coupled-cluster
doubles method. uMa et al.42 Only the noniterative triples part of the regularized coupled-cluster singles and doubles with noniterative triples
calculation was accelerated by GPUs. “Spiro cation” stands for 5,5′ (4H,4H′)-spirobi[cyclopenta[c]pyrrole] 2,2′,6,6′-tetrahydro cation.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00588
J. Chem. Theory Comput. 2016, 12, 4821−4832

4827

http://dx.doi.org/10.1021/acs.jctc.6b00588


pairs can be used meaningfully for the benzene dimer, while
CPUs can harness only up to 256 pairs after which the
sampling efficiency no longer increases. In other words, the
GPU and CPU calculations in this figure differ not only in
hardware, but also in calculation parameters.
The MC-MP2 method is highly scalable in the coarse-grain

parallel manner on many GPUs. The scalability of the 256-GPU
calculation is 99% relative to the 1-GPU execution. As a
consequence, the former (256-GPU) achieves a 46-fold
speedup relative to the 128-CPU (1024-core) calculation or a
2700-fold speedup from the 2-CPU (16-core) calculation.
Recall that on CPUs, the MC integrations are coarse-grain
parallelized, but the redundant-walker algorithm (steps 2, 3, 4,
6, 7, and 9 in Figure 2) is still serial; on GPUs, both are parallel.
The redundant-walker MC-MP2 method is, therefore, partic-
ularly well-suited for an efficient multilevel-parallel execution on
many GPUs.
Table 2 compares some of the previous ab initio electronic

structure calculations and our MC-MP2 calculations on GPUs.
In a 2008 summary31 of the use of GPU in computational
quantum chemistry, Ufimtsev and Martıńez quoted their HF/3-
21G calculations of taxol (647 basis functions) and valinomycin
(882 basis functions) on one GPU in the single-precision
mode. They achieved remarkable 63- and 93-fold speedups,
respectively, relative to the corresponding serial calculations
using GAMESS. The same authors32 extended these calcu-
lations to multiple GPUs with mixed single/double-precision
arithmetic and reported a 182-fold speedup in the HF/3-21G
calculation of olestra (2131 basis functions) going from 4 CPU
cores to 4 GPUs. Asadchev and Gordon33 implemented a
GPU-parallel Rys-quadrature algorithm for two-electron
integrals and achieved a one-order-of-magnitude speedup in
the HF calculations of taxol and valinomycin with a range of
basis sets relative to an implementation of a similar highly
optimized algorithm for a CPU. Titov et al.34 also performed a
GPU-based HF calculation with a larger basis set, achieving a
114-fold speedup in the 6-31G(d) calculation of olestra (3181
basis functions) from one CPU core to one GPU.
Yasuda35,36 accelerated the Coulomb and exchange-correla-

tion energy evaluation in density-functional calculations with
one GPU (single or mixed precision). He reported a 15-fold
speedup in the former for taxol with the 6-31G basis set (660
basis functions) and a 40-fold speedup in the latter for the same
system.
In 2008, Vogt et al.37 recorded a speedup by a factor of 4.3 in

their resolution-of-identity (RI) MP2 calculations on one GPU
(single precision) for n-docosane (538 basis functions),
whereas the performance for a smaller n-octane was less
good. In 2010, the same group led by Olivares-Amaya38

improved the speedup by up to a factor of 10 for taxol with the
cc-pVTZ basis set (2574 basis functions) or a factor of 14 for
valinomycin with the cc-pVDZ basis set (1542 basis functions),
both on one GPU in the single-, double-, or mixed-precision
mode. In 2016, Tomlinson et al.39 reported a modest GPU
speedup of an otherwise extremely efficient implementation of
the conventional MP2 method. In the same year, Song and
Martıńez40 reported a cubic-scaling approximation of MP2
(atomic-orbital-based scaled-opposite-spin MP2 using tensor
hypercontraction) that can handle a large molecule with 1600
basis functions. However, the information about the GPU
speedup was not given.
More recently, DePrince and Hammond41 made a thorough

performance comparison of various implementations of the

coupled-cluster doubles (CCD) method running on up to 2
CPUs (8 cores) or one GPU. Their GPU code achieved the
impressive speedup by a factor of 4−5 in the double-precision
mode and 8−10 in the single-precision mode as compared with
double-precision multithreaded execution using 8 CPU cores.
Ma et al.42 accelerated the noniterative triples part of their
regularized coupled-cluster singles, doubles, and noniterative
triples method on as many as 64 GPUs (double precision). For
a molecule with 486 basis functions, the time for noniterative
triples calculation was compressed by a factor of 6.2 relative to
that on 64 CPU cores, which translates to at least an impressive
390-fold speedup from one CPU core to 64 GPUs.
Our MC-MP2 method, with its stochastic algorithm

specifically designed for scalability, is measured to achieve a
180-fold speedup for water (24 basis functions), a 690-fold
speedup for benzene dimer (228 basis functions), and a 2800-
fold speedup for taxol (1123 basis functions), all going from 2
CPUs (16 cores) with 256 or 512 electron pairs to 64 GPUs
(double precision) with 2048 electron pairs. The speedup
increases with the number of basis functions, which is
consistent with the well-known performance increase of the
CUBLAS library with problem size.43 These massive speedups are
the result of a mutual enhancement of GPU-parallelism and the
redundant-walker convergence acceleration as well as of the use
of many GPUs as opposed to just one. When the same number
(512) of electron pairs is used, the speedup for taxol is 1600 as
opposed to 2800. The speedup for water from 2 CPUs (16
cores) to one GPU is measured to be 2.8. The corresponding
value from a serial (one-core) execution to one GPU is 29 (not
shown) and much less than 16 × 2.8 = 45 because parallel
scaling on CPUs is less than perfect.
The speedup obtained with the single-precision mode of

GPUs (a factor of 290 from 2 CPUs to 64 GPUs for water) is
roughly 50% greater than the speedup with the double-
precision mode. However, the MC-MP2 energy from the
former calculation suffers from a large absolute error of 65 mEh
from the deterministic MP2 energy, which is also 80 times
greater than the statistical uncertainty of 0.8 mEh. The statistical
uncertainty itself is much greater in the single-precision mode
than in the double-precision mode (0.3 mEh) despite twice as
many MC steps in the former calculation as in the latter. Both
of these are clearly caused by a rapid accumulation of round-off
errors during long summations, which are inevitable in MC-
MP2. We, therefore, conclude that the small speedup by the
single-precision arithmetic does not outweigh the excessive
precision error44 caused by it in MC-MP2 on GPUs. In
deterministic calculations, the single-precision arithmetic error
is reported to be typically 10−4 to 10−5% of the energy.

6. SCALING WITH SYSTEM SIZE
In our previous study20 we showed that the cost of MC-MP2
per MC step (wall time T0) grows linearly with system’s spatial
size (which may be measured by nele ∝ nbas) for a few small
molecules:

∝ ∝T n n0 ele bas (29)

In Figure 5, we confirm that the cost per MC step of MC-MP2
with the redundant-walker algorithm is also asymptotically
proportional to the system size for a wider range of molecules
including one with 1123 basis functions. This can be
understood by noting that step 6 (Green’s function calculation)
of Table 1 with an O(m2n) operation cost is the hotspot of each
MC step if a sufficiently large number (m) of electron pairs can

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00588
J. Chem. Theory Comput. 2016, 12, 4821−4832

4828

http://dx.doi.org/10.1021/acs.jctc.6b00588


be used. It is, however, wrong to call MC-MP2 a “linear-scaling”
method on this basis, because the number of MC steps (Nfin) to
reach a given accuracy may also depend on the system size. In
fact, it has been our experience that the number indeed grows
with system size.

Figure 6 quantifies this dependence. Let σ0 be the relative

statistical uncertainty after a certain number of MC steps (N0,

which is equal to 16 384 in this figure) defined by

σ σ=
E

0 (2) (30)

where σ is evaluated by eq 11 and appropriately blocked so as
not to be underestimated. This statistical uncertainty σ, in turn,
falls off accurately in proportion to N−1/2 in MC-MP2, as in
most other QMC methods.
Figure 6 testifies that the relative statistical uncertainty, σ0, is

proportional to the system’s spatial size or nele:
σ ∝ n0 ele (31)

The number of MC steps (Nfin) required for the relative
statistical uncertainty to reach a given tolerance σfin bears the
relation,

σ σ=
⎛
⎝⎜

⎞
⎠⎟

N
Nfin 0

0

fin

1/2

(32)

The total cost (total wall time Tfin) is

=T N Tfin fin 0 (33)

Combining eqs(29, 31, 32, and 33, we conclude

σ= ∝ ∝T N T T nfin fin 0 0
2

0 ele
3

(34)

Hence, the cost of MC-MP2 to reach a given relative statistical
uncertainty increases as O(nele

3 ) or cubically with the system’s
spatial size. Figure 7 is a direct observation of this cubic scaling

in the case of the cc-pVDZ-basis-set calculations. These
calculations were carried out on a single GPU with the same
number (512) of electron pairs, and hence the observed scaling
is intrinsic to MC-MP2 and unaffected by these other
acceleration measures (although a proportional increase in
the number of electron pairs with system size may also be a
sensible protocol, possibly leading to an even more favorable
cost scaling). This is a large improvement over the O(nele

5 )
scaling of the conventional, deterministic MP2; MC-MP2 is
expected to become more efficient than the latter for a
sufficiently large molecule.
Next, we consider the scaling of the MC-MP2 cost with nbas

for a molecule of a fixed size (in our test, the benzene

Figure 5. Wall time T0 (in seconds) required for 16 384 MC steps of
the MC-MP2/cc-pVDZ (MC-MP2/aug-cc-pVDZ) calculations of 34
(33) molecules of different sizes as a function of the number of basis
functions (nbas) on a single GPU. The largest molecules for the cc-
pVDZ and aug-cc-pVDZ calculations are taxol (nbas = 1123) and
tetrahydrocannabinol (nbas = 799), respectively, while the smallest is
water (nbas = 24 or 41). The number of electron pairs (m) was 512. A
function proportional to nbas is plotted as a solid line. The wall time is
also asymptotically linear with the number of electrons (not shown).

Figure 6. Relative statistical uncertainties (σ0) in the MC-MP2/cc-
pVDZ (MC-MP2/aug-cc-pVDZ) correlation energies of 34 (33)
molecules of different sizes as a function of the number of electrons
(nele). The largest molecules for the cc-pVDZ and aug-cc-pVDZ
calculations are taxol (nele = 452) and tetrahydrocannabinol (nele =
172), respectively, while the smallest is water (nele = 10). The number
of MC steps (N) was 16 384, and the number of electron pairs (m)
was 512. The statistical uncertainties were computed with a block size
(Nb) of 128. Functions proportional to nele are plotted as solid lines.

Figure 7. Wall time Tfin (in seconds) required for the MC-MP2/cc-
pVDZ calculations to reach the relative statistical uncertainty (σ0) of
0.1 as a function of the number of electrons (nele) on a single GPU.
The statistical uncertainty was computed without or with blocking
using a block size (Nb) of 128. The number of electron pairs (m) was
512 in all cases. A function proportional to nele

3 is plotted as a solid line.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00588
J. Chem. Theory Comput. 2016, 12, 4821−4832

4829

http://dx.doi.org/10.1021/acs.jctc.6b00588


molecule). Figure 8 shows that the relative statistical
uncertainty σ0 grows more slowly with a basis-set extension

of the same molecule than with a simultaneous increase in both
spatial and basis-set sizes considered above. The σ0 curve falls
on nbas

0. 75, that is,

σ ∝ n0 bas
0.75

(35)

for a fixed nele. This in conjunction with eqs 29, 32, and 33; we
find

σ= ∝ ∝T N T T nfin fin 0 0
2

0 bas
2.5

(36)

Therefore, the cost of MC-MP2 to reach a target relative
statistical uncertainty is observed to increase as O(nbas

2.5) for a
basis-set extension for a fixed spatial size. This may be
compared with O(nbas

4 ) scaling of the deterministic MP2 for a
basis-set extension (this quartic scaling arises from the most
expensive quarter AO-to-MO integral transformation).26

We note that the prefactor multiplying the cost function of
MC-MP2 is extremely large, making the crossover point at
which (sub)cubic-scaling MC-MP2 becomes actually faster (for
an acceptable statistical uncertainty) than the conventional
quintic-scaling MP2 far into large problems. For instance, a
MC-MP2 calculation of the water molecule takes as long as 1 h
to achieve a statistical uncertainty of 0.4 mEh or 0.2% of the
correlation energy on one GPU (see Table 2) . For taxol (1123
basis functions), the correlation energy with a statistical
uncertainty of 9 mEh (0.1%) is obtained in 97 h on 64
GPUs. This may be compared with a domain-based local pair
natural orbital (DLPNO) MP2 calculation45 of sildenafil (1209
basis functions), which completes in 1.2 h on one CPU core. It
might, however, be possible to combine the two (local-
correlation and stochastic) algorithms for mutual enhancement.

7. CONCLUSION
Earlier, we introduced a stochastic algorithm of MP2, called
MC-MP2.6,7 It can compute energy differences directly,20 does
not suffer from the sign problem or require a fixed-node
approximation, and is rigorously (diagrammatically) size-
consistent.21 It can also be systematically improved toward

exactness by raising the perturbation order22 and increasing the
basis-set size. It does not require two-electron (or any other)
integrals either in the AO or MO basis, can incorporate a
correlation factor easily to become explicitly correlated,23 and is
linear scaling in cost per MC step with system size.20 It
parallelizes easily and efficiently on many CPUs.25

In this work, we demonstrated that MC-MP2 is scalable with
system size on the per accuracy basis. The total cost to achieve a
given relative statistical uncertainty increases only as O(nele

3 ),
where nele is the number of electrons and is proportional to the
system’s spatial size (and the number of basis functions, nbas). It
is also shown to increase even more favorably as O(nbas

2.5), where
nbas is the number of basis functions in a given molecule of a
fixed size. These are a vast improvement over the O(nele

5 ) or
O(nbas

4 ) cost increase of the conventional implementation26 of
deterministic MP2. However, the prefactor of the cost function
of MC-MP2 is extremely large as compared with that of
deterministic MP2.
Here, we also showed numerically that MC-MP2 is scalable

not only on many CPUs by virtue of its embarrassingly parallel
algorithm by design, but also on many GPUs as it lends itself to
multilevel parallelism. Fine-grain parallelism of the redundant-
walker convergence-acceleration algorithm is shown to be
particularly effective on a GPU, as it automatically load-balances
computational tasks associated with many electron pairs on
proportionally many threads spawned also automatically. As a
result, on a GPU, the redundant-walker algorithm improves the
sampling efficiency by a factor of O(m2), where m is the
number of electron pairs, whereas on a CPU, only by a factor of
O(m). A MC-MP2 calculation of a benzene dimer executes 11
times faster on a GPU than on 2 CPUs (using all of their 16
cores) or 2700 times faster on 256 GPUs than on 2 CPUs (16
cores), partly owing to the fact that the redundant-walker
algorithm can use 2048 electron pairs on a GPU, while its
performance boost stalls after 256 pairs or so on CPUs.
In this work, therefore, we have established parallel scalability

of MC-MP2 on thousands of CPU cores and hundreds of
GPUs as well as its O(nele

3 ) and O(nbas
2.5) cost scaling with

problem size. The latter is thanks to the sparse integration
achieved by the Monte Carlo method with a weight function
containing a Coulomb singularity,6 which more heavily samples
electron pairs with shorter interelectronic distances. Since such
close electron pairs occur anywhere in space relative to fixed
nuclear positions, their biased sampling is not possible with
simple product grids, but is straightforward with the Metropolis
algorithm, which is the essence of MC-MP2. A trade-off for the
favorable cost scaling is the statistical uncertainty, although
there are no systematic errors. Therefore, the unique features of
MC-MP2 (such as reduced cost scaling) are hardly imitable by
other deterministic algorithms of MP2, barring ones using a
sparse grid for Coulomb integrals (we are not aware of any).
Also, MC-MP2 samples in real space and is, therefore, rather
different from the methods8−18 that stochastically sample in a
Hilbert space. We believe that it is most closely related to
variational Monte Carlo, but with no variational parameter
because it is perturbative.
A key question concerning the long-term viability of MC-

MP2 then has to do with its overall, absolute cost in
comparison with other reduced-scaling MP2 methods. MP2
(or any other electronic structure methods) is well-known46−49

to be made linear scaling in cost45,50−57 for spatially extended
insulating systems by exploiting locality of correlation therein.
There are other mechanisms by which the cost scaling can be

Figure 8. Relative statistical uncertainties (σ0) in the MC-MP2
correlation energies of benzene as a function of the number of basis
functions (nbas). The number of MC steps (N) was 16 384, and the
number of electron pairs (m) was 512. The statistical uncertainties
were computed with a block size (Nb) of 128. A function proportional
to nele

3/4 is plotted as a solid line.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00588
J. Chem. Theory Comput. 2016, 12, 4821−4832

4830

http://dx.doi.org/10.1021/acs.jctc.6b00588


reduced such as in the scaled-opposite-spin MP2 of Jung et
al.,58 the tensor hypercontraction MP2 of Martıńez and co-
workers,59,60 and their combination.40 The latter methods,
however, tend to have systematic errors and/or have nominally
one-rank higher scaling (quartic) than cubic- or subcubic-
scaling MC-MP2. Therefore, it seems more important to ask if
MC-MP2 can have a unique domain of applicability in the
presence of linear-scaling local MP2.45,50−57 Because the linear-
scaling local-correlation and the (sub)cubic-scaling stochastic
algorithms can be combined with each other for mutual
enhancement, the question is whether the latter (MC-MP2)
with a huge prefactor on its (sub)cubic cost function can ever
be faster than the former (MP2) with a minuscule prefactor on
its quintic cost function for a local small correlated domain or
for a larger problem that is indivisible into localized
subproblems.
We believe that the comparison should be made to the whole

classes of methods or their underlying physics by measure-
ments of performance of their best implementations. The
verdict should depend on the properties computed (since the
acceptable statistical uncertainty and thus the prefactor of the
cost function differ greatly, depending on whether one is
computing total energy or ionization/electron-attachment
energies), the rank of theory (how the comparative perform-
ance changes with the perturbation order, basis set, explicit
correlation, etc.), the system characteristics (systems with long-
range correlation or charge transfer, and heavy elements as well
as large basis-set calculations may favor MC-MP2), the
computers used (a large number of CPUs and complex,
heterogeneous hardware architectures favor MC-MP2), and
even the future trend of the computers and human factors
(such as the cost of porting and tuning codes from an older
parallel computer to a new one). This work serves as a step
toward such rigorous comparisons.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: sohirata@illinois.edu.
Funding
This work has been supported by the U.S. Department of
Energy, Office of Science, Basic Energy Sciences under Award
No. DE-FG02-11ER16211. It is also part of the Blue Waters
sustained-petascale computing project, which is supported by
the National Science Foundation (Awards OCI-0725070 and
ACI-1238993) and the state of Illinois. Blue Waters is a joint
effort of the University of Illinois at Urbana−Champaign and
its National Center for Supercomputing Applications. S.H. has
also been supported by CREST, Japan Science and Technology
Agency

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank Dr. Soohaeng Y. Willow for providing the program
reported in ref 25.

■ REFERENCES
(1) Ceperley, D. M.; Alder, B. J. Phys. Rev. Lett. 1980, 45, 566.
(2) Hammond, B. L.; Lester, W. A.; Reynolds, P. J. Monte Carlo
Methods in Ab Initio Quantum Chemistry; World Scientific: Singapore,
1994.
(3) Lüchow, A.; Anderson, J. B. Annu. Rev. Phys. Chem. 2000, 51, 501.

(4) Foulkes, W. M. C.; Mitas, L.; Needs, R. J.; Rajagopal, G. Rev.
Mod. Phys. 2001, 73, 33.
(5) Kolorenc,̌ J.; Mitas, L. Rep. Prog. Phys. 2011, 74, 026502.
(6) Willow, S. Y.; Kim, K. S.; Hirata, S. J. Chem. Phys. 2012, 137,
204122.
(7) Hirata, S.; He, X.; Hermes, M. R.; Willow, S. Y. J. Phys. Chem. A
2014, 118, 655.
(8) Zhang, S.; Krakauer, H. Phys. Rev. Lett. 2003, 90, 136401.
(9) Thom, A.; Alavi, A. Phys. Rev. Lett. 2007, 99, 143001.
(10) Ohtsuka, Y.; Nagase, S. Chem. Phys. Lett. 2008, 463, 431.
(11) Booth, G. H.; Thom, A. J. W.; Alavi, A. J. Chem. Phys. 2009, 131,
054106.
(12) Kozik, E.; Van Houcke, K.; Gull, E.; Pollet, L.; Prokof’ev, N.;
Svistunov, B.; Troyer, M. Europhys. Lett. 2010, 90, 10004.
(13) Cleland, D.; Booth, G. H.; Alavi, A. J. Chem. Phys. 2010, 132,
041103.
(14) Petruzielo, F. R.; Holmes, A. A.; Changlani, H. J.; Nightingale,
M. P.; Umrigar, C. J. Phys. Rev. Lett. 2012, 109, 230201.
(15) Shepherd, J. J.; Booth, G. H.; Alavi, A. J. Chem. Phys. 2012, 136,
244101.
(16) Booth, G. H.; Chan, G. K. L. J. Chem. Phys. 2012, 137, 191102.
(17) Neuhauser, D.; Rabani, E.; Baer, R. J. Chem. Theory Comput.
2013, 9, 24.
(18) Ten-no, S. J. Chem. Phys. 2013, 138, 164126.
(19) Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller,
A. H.; Teller, E. J. Chem. Phys. 1953, 21, 1087.
(20) Willow, S. Y.; Kim, K. S.; Hirata, S. J. Chem. Phys. 2013, 138,
164111.
(21) Willow, S. Y.; Kim, K. S.; Hirata, S. Phys. Rev. B: Condens. Matter
Mater. Phys. 2014, 90, 201110.
(22) Willow, S. Y.; Hirata, S. J. Chem. Phys. 2014, 140, 024111.
(23) Willow, S. Y.; Zhang, J. M.; Valeev, E. F.; Hirata, S. J. Chem.
Phys. 2014, 140, 031101.
(24) Johnson, C. M.; Doran, A. E.; Zhang, J. M.; Valeev, E. F.; Hirata,
S. 2016, unpublished.
(25) Willow, S. Y.; Hermes, M. R.; Kim, K. S.; Hirata, S. J. Chem.
Theory Comput. 2013, 9, 4396.
(26) Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett.
1988, 153, 503.
(27) Almlöf, J. Chem. Phys. Lett. 1991, 181, 319.
(28) Kronrod, A. Nodes and weights of quadrature formulas: Sixteen-
place tables; Consultants Bureau, 1965.
(29) Obara, S.; Saika, A. J. Chem. Phys. 1986, 84, 3963.
(30) Flyvbjerg, H.; Petersen, H. G. J. Chem. Phys. 1989, 91, 461.
(31) Ufimtsev, I. S.; Martínez, T. Comput. Sci. Eng. 2008, 10, 26.
(32) Ufimtsev, I. S.; Martinez, T. J. J. Chem. Theory Comput. 2009, 5,
2619.
(33) Asadchev, A.; Gordon, M. S. J. Chem. Theory Comput. 2012, 8,
4166.
(34) Titov, A. V.; Ufimtsev, I. S.; Luehr, N.; Martinez, T. J. J. Chem.
Theory Comput. 2013, 9, 213.
(35) Yasuda, K. J. Comput. Chem. 2008, 29, 334.
(36) Yasuda, K. J. Chem. Theory Comput. 2008, 4, 1230.
(37) Vogt, L.; Olivares-Amaya, R.; Kermes, S.; Shao, Y.; Amador-
Bedolla, C.; Aspuru-Guzik, A. J. Phys. Chem. A 2008, 112, 2049.
(38) Olivares-Amaya, R.; Watson, M. A.; Edgar, R. G.; Vogt, L.; Shao,
Y.; Aspuru-Guzik, A. J. Chem. Theory Comput. 2010, 6, 135.
(39) Tomlinson, D. G.; Asadchev, A.; Gordon, M. S. J. Comput.
Chem. 2016, 37, 1274.
(40) Song, C.; Martínez, T. J. J. Chem. Phys. 2016, 144, 174111.
(41) DePrince, A. E., III; Hammond, J. R. J. Chem. Theory Comput.
2011, 7, 1287.
(42) Ma, W.; Krishnamoorthy, S.; Villa, O.; Kowalski, K. J. Chem.
Theory Comput. 2011, 7, 1316.
(43) Leang, S. S.; Rendell, A. P.; Gordon, M. S. J. Chem. Theory
Comput. 2014, 10, 908.
(44) Ceperley, D. M.; Bernu, B. J. Chem. Phys. 1988, 89, 6316.
(45) Pinski, P.; Riplinger, C.; Valeev, E. F.; Neese, F. J. Chem. Phys.
2015, 143, 034108.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00588
J. Chem. Theory Comput. 2016, 12, 4821−4832

4831

mailto:sohirata@illinois.edu
http://dx.doi.org/10.1021/acs.jctc.6b00588


(46) Sæbø, S.; Pulay, P. Chem. Phys. Lett. 1985, 113, 13.
(47) Yang, W. Phys. Rev. Lett. 1991, 66, 1438.
(48) Saebo, S.; Pulay, P. Annu. Rev. Phys. Chem. 1993, 44, 213.
(49) Kohn, W. Int. J. Quantum Chem. 1995, 56, 229.
(50) Pulay, P.; Saebø, S. Theor. Chim. Acta 1986, 69, 357.
(51) Hetzer, G.; Pulay, P.; Werner, H. J. Chem. Phys. Lett. 1998, 290,
143.
(52) Ayala, P. Y.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 3660.
(53) Schütz, M.; Hetzer, G.; Werner, H. J. J. Chem. Phys. 1999, 111,
5691.
(54) Lee, M. S.; Maslen, P. E.; Head-Gordon, M. J. Chem. Phys. 2000,
112, 3592.
(55) Saebø, S.; Pulay, P. J. Chem. Phys. 2001, 115, 3975.
(56) Werner, H. J.; Manby, F. R.; Knowles, P. J. J. Chem. Phys. 2003,
118, 8149.
(57) Baudin, P.; Ettenhuber, P.; Reine, S.; Kristensen, K.; Kjærgaard,
T. J. Chem. Phys. 2016, 144, 054102.
(58) Jung, Y. S.; Lochan, R. C.; Dutoi, A. D.; Head-Gordon, M. J.
Chem. Phys. 2004, 121, 9793.
(59) Hohenstein, E. G.; Parrish, R. M.; Martínez, T. J. J. Chem. Phys.
2012, 137, 044103.
(60) Schumacher, S. I. L. K.; Hohenstein, E. G.; Parrish, R. M.;
Wang, L. P.; Martínez, T. J. J. Chem. Theory Comput. 2015, 11, 3042.

■ NOTE ADDED AFTER ASAP PUBLICATION
This paper was published ASAP on September 21, 2016, with
errors in Table 2 and Figure 8. The corrected version was
reposted on September 26, 2016.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00588
J. Chem. Theory Comput. 2016, 12, 4821−4832

4832

http://dx.doi.org/10.1021/acs.jctc.6b00588

