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Abstract: A detailed description of the explicitly correlated second-order Møller–Plesset perturbation theory (MP2-
F12) method, as implemented in the Turbomole program package, is presented. The Turbomole implementation makes
use of density fitting, which greatly reduces the prefactor for integral evaluation. Methods are available for the treatment
of ground states of open- and closed-shell species, using unrestricted as well as restricted (open-shell) Hartree–Fock
reference determinants. Various methodological choices and approximations are discussed. The performance of the Tur-
bomole implementation is illustrated by example calculations of the molecules leflunomide, prednisone, methotrexate,
ethylenedioxytetrafulvalene, and a cluster model for the adsorption of methanol on the zeolite H-ZSM-5. Various basis
sets are used, including the correlation-consistent basis sets specially optimized for explicitly correlated calculations
(cc-pVXZ-F12).

© 2011 Wiley Periodicals, Inc. J Comput Chem 32: 2492–2513, 2011
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Introduction

F12 explicitly correlated methodologies have now entered main-
stream electronic structure theory as a direct and efficient solution
to the basis set problem for dynamic correlation. F12 techniques
have been combined predominantly with pair theories, such as
second-order Møller–Plesset perturbation theory (MP2) and cou-
pled cluster singles-and-doubles (CCSD) theory, and basis set limit
energies are routinely obtained with these F12 methods using only
medium-sized orbital basis sets.1–3 Although historically the field
of R12/F12 explicit correlation has been associated with an abun-
dance of approximations and associated acronyms, this has now
crystallized to a few useful variants through a consensus among the
community of developers. Furthermore, specially optimized orbital
and auxiliary basis sets are now available for F12 methods,4–8 and
the calculations can be performed in a black-box manner, at least
for compounds of light elements. The double-zeta F12 basis sets
are sufficient to reduce the basis set incompleteness errors of F12
methods to below 0.30 kJ/mol per valence electron for reaction ener-
gies while basis set errors with triple-zeta F12 basis sets are less
than 0.05 kJ/mol per valence electron, which can be further reduced
through extrapolation.9

The aim for computation in electronic structure theory is ulti-
mately to provide reliably accurate or quantitative chemical predic-
tions.10, 11 In many cases, this means accounting for three-electron
and even higher order correlation effects. In this context, MP2-F12
and CCSD-F12 methods are useful for eliminating basis set errors in
the dominant pair interactions and providing estimates for the basis
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set error in the higher order corrections. This article is concerned
exclusively with MP2-F12 theory, which is a prerequisite for CCSD-
F12 and CCSD(T)-F12 methods (see, for example, Ref. 12). The
MP2-F12 method is also useful in its own right as a tool for the com-
putational treatment of weak interactions between large systems, in
particular for hydrogen-bonded systems. For typical van der Waals
systems, the method may be applied in its spin-component-scaled
(SCS) variant.13, 14 Conventional CCSD and CCSD(T) calculations
may be augmented with corrections obtained from MP2-F12 theory,
as for example recently done in large-scale calculations on a trimer
of pyrazine,15 and the basis ser error of a given basis may be esti-
mated from MP2-F12 calculations, noting that the basis set errors
at higher levels are usually smaller than at the MP2 level.16, 17

The aim of this article is to present the details of the MP2-F12
method for ground state energies, to present its implementation in
the Turbomole program and to demonstrate the range of utility
currently affordable. For this purpose and as a reference for future
work, we briefly review the theory, although no new aspects are
added. Not only the MP2-F12 method but also the SCS-MP2-F12
method is available in the Turbomole program package.14

The calculations presented in this article were performed with
version 6.3 of the Turbomole program package18 (A develop-
ment of Universität Karlsruhe (TH) and Forschungszentrum Karl-
sruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007. The
Turbomole program package can be obtained from redistributor
COSMOlogic GmbH & Co. KG in Leverkusen, Germany. For infor-
mation on license schemes, prices, how to order the Turbomole
program package, please contact COSMOlogic GmbH & Co. KG
via turbomole@cosmologic.de.).

General Philosophy

The Turbomole program package aims at application to large sys-
tems using desktop machines, thus efficient procedures are adopted,
and the routines are designed with low disk and memory require-
ments.19 The MP2-F12 implementation is therefore in line with
these design principles, making calculations on sizable systems fea-
sible. Standard MP2 (and CC2) calculations can be performed using
the Ricc2 module of the Turbomole suite, which is applicable to
systems as large as compounds of the composition C5H61O59Si37Al,
even in a TZVP basis.20 The salient features of the MP2 and CC2
implementations are the use of density fitting, which greatly reduces
the prefactor for integral evaluation, and that storage of four-index
quantities is avoided, which ensures low disk usage. The MP2-F12
method has been implemented in the Ricc2 module and adopts these
efficient techniques and uses many of the same routines. Density fit-
ting is used for all two-electron integral evaluations, and four-index
integrals are evaluated at the point they are required and are not
stored on disk.

Regarding the various methodological choices within F12 the-
ory, the approximations that are implemented are consistent and
conservative, preserving the accuracy of the approach. The meth-
ods available are those that give a balanced description of open- and
closed-shell species and preference is given to the variants with the
lowest scaling with system size.

Our implementation takes care of the general applicability of
the code, that is, by allowing to use effective core potentials

(ECPs21) and/or finite external fields and point charges for (periodic)
electrostatic embedding purposes.22

F12 Basis Functions

In standard Møller–Plesset and coupled cluster methods, the wave
function is expressed as a linear combination of the Hartree–Fock
(HF) wave function and excited configurations. Two-body electron-
electron interactions are accounted for through double excitations,
where a pair of occupied spin orbitals |ij⟩ is replaced by a lin-
ear combination of pair functions |ab⟩, where a, b are virtual spin
orbitals. The essence of F12 theory is to use a basis of pair func-
tions |wxy⟩ in addition to the standard pair basis |ab⟩, where |wxy⟩
depends explicitly on r12, the distance between two electrons. The
level of correlation treatment is unchanged, while the basis set limit
for the parameterization of the double excitations is approached
more rapidly than for standard methods. The reason that F12 meth-
ods achieve near basis set limit accuracy with relatively small basis
sets is because the F12 basis functions efficiently describe the sharp
features of the wave function in the region of short-range r12, that
is, the correlation cusp. In this way, the X−3 energy convergence of
the orbital expansion is accelerated to X−7 for F12 methods, where
X is the cardinal number of the orbital basis set.

The F12 basis functions are given by

|wxy⟩ = Q̂12f12Ŝxy|xy⟩. (1)

The spin orbitals x, y are chosen to be the active occupied orbitals.
f12 is the correlation factor, which has a length scale parameter γ :

f12 =
n∑

v=1

cve−γvr2
12 ≈ (−1/γ )e−γ r12 . (2)

Between 3 and 6 Gaussian functions can be used to fit the Slater-
type correlation factor. The exponents and coefficients are taken
from Ref. 23 for γ = 1 a−1

0 and scaled appropriately. Q̂12 is the
strong orthogonality operator, which ensures that the F12 basis func-
tions are strongly orthogonal to the Hartree–Fock reference and
orthogonal to the conventional double excitations:

Q̂12 = (1 − Ô1)(1 − Ô2) − V̂1V̂2, (3)

where Ô and V̂ project onto the space of occupied (active and frozen)
and active virtual spin orbitals, respectively:

Ô =
∑

o

|o⟩⟨o|, (4)

V̂ =
∑

a

|a⟩⟨a|. (5)

The rational generator Ŝxy ensures that the s- and p-wave coalescence
conditions are satisfied for both restricted and unrestricted first-order
wave functions:

Ŝxy = 3
8

+ 1
8

P̂xy, (6)

P̂xyϕx(1)σx(1)ϕy(2)σy(2) = ϕy(1)σx(1)ϕx(2)σy(2), (7)
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where ϕx and σx are the space and spin components of spin orbital
φx , respectively.

As the F12 geminal basis functions efficiently parametrize the
space of double excitations and effectively eliminate this source
of basis set error, the basis set error in the HF energy becomes
important. This is particularly true for calculations with double- or
triple-zeta orbital basis sets. Therefore, F12 methods also include a
perturbative correction for the HF basis set error24, 25 by including
single excitations from the occupied Hartree–Fock orbitals to the
complementary auxiliary basis set. Doing so, both the Hartree–Fock
part and the correlation contribution exhibit comparable error bars
such that neither one is the bottleneck in terms of accuracy.

Notation and Definitions

For reasons of continuity with a forthcoming article on CCSD-F12
theory, we present equations using the formalism of second quanti-
zation. We will use the short hands ap

q = apaq, and apr
qs = aparasaq,

where ap and aq are normal-ordered creation and annihilation oper-
ators, respectively. p, q, . . . are the spin orbitals of the occupation
number representation. The Hamiltonian is written as

Ĥ = E0 + F̂ + Ĝ, (8)

where E0 = ⟨0|Ĥ|0⟩ is the energy of the reference determinant |0⟩.
The Fock operator F̂ is given by

F̂ = f q
p ap

q. (9)

We use the Einstein summation convention, where a summation
over repeated indices is implied. The Fock operator decomposes
into contributions

F̂ = T̂ + V̂ + Ĵ − K̂ + Û, (10)

f q
p = hq

p + jq
p − kq

p + uq
p. (11)

T̂ + V̂ is the core Hamiltonian, Ĵ and K̂ are the Coulomb and
exchange operators, respectively, and Û contains all other non-
multiplicative operators, such as an effective core potential, or the
mass-velocity operator. Multiplicative operators such as electric
fields are included in V̂ . The fluctuation potential Ĝ is given by

Ĝ = gqs
prapr

qs , (12)

where gqs
pr = ⟨pr|r−1

12 |qs⟩ are antisymmetrized two-electron repul-
sion integrals in the ⟨12|12⟩ notation. For the pair indices, we adopt
the convention that p < r and q < s.

We will use |p⟩ = φp to denote a spin orbital with spatial and
spin components ϕpσp. |pq⟩ always refers to a Slater determinant

|pq⟩ = (φpφq − φqφp)/
√

2, (13)

whereas |φpφq⟩ = φpφq, thus

〈
pr

∣∣r−1
12

∣∣qs
〉
=

〈
φpφr

∣∣r−1
12

∣∣φqφs
〉
−

〈
φpφr

∣∣r−1
12

∣∣φsφq
〉
. (14)

Table 1. A summary of index conventions.

p, q, r, . . . Orbitals in the HF basis
i, j, k, . . . Active occupied orbitals
o Active and frozen occupied orbitals
a, b, c, . . . Active virtual orbitals in the finite basis
α, β, γ , . . . Virtual orbitals in a formally complete basis
α′, β ′, γ ′, . . . Complementary virtual orbitals in a formally complete basis
a′, b′, c′, . . . CABS representation of complementary virtual orbitals
p′, q′, r′, . . . Orbitals in the HF plus CABS basis
v, w, x, . . . Orbitals of the F12 geminal basis
κ , λ, µ, . . . Atomic orbitals in finite basis
κ ′, λ′, µ′, . . . CABS atomic orbitals
P, Q, R, . . . Auxiliary basis set for density fitting

Furthermore, we will use the notation

(
pq

∣∣r−1
12

∣∣rs
)

(15)

to denote integrals over spatial orbitals ϕp(1), ϕq(1), ϕr(2), and
ϕs(2).

To represent the F12 geminal basis functions using second quan-
tization (see next section), it is necessary to introduce a formally
complete set of orbitals. All of the definitions above apply trans-
parently to such a basis, because one only has to extend a, b, . . .,
p, q, . . . to run over the orbitals of the complete basis. The formally
complete orbital space can be partitioned into the orbitals occupied
in the HF reference i, and a formally complete set of virtuals α. In
turn, this space of virtual orbitals can be partitioned into orbitals
a, the virtuals spanned by the finite orbital basis (used to determine
the Fock operator and the HF reference determinant) and the rest α′.
Certain aspects of F12 theory, connected to the RI insertion used to
approximate three-electron integrals in terms of two-electron inte-
grals, require a programmable representation of the complementary
virtuals α′. For this, a complementary auxiliary basis (CABS) is
used to define a set of virtual orbitals a′ that are a subset of α′. This
set is constructed by orthogonalizing the CABS functions against
the HF basis. A summary of the indices and the spaces they refer to
are given in Table 1.

Concerning the Fock matrix f , for a determinant from a RHF
or UHF calculation in the orbital basis, the condition that matrix
elements f a

i = 0 is known as the Brillouin condition. The matrix
elements f α′

i and f α′
a on the other hand are not in general zero. For a

reasonable orbital basis, the elements f α′
i are expected to be small.

Assuming that they are zero is referred to as (assuming) the gen-
eralized Brillouin condition (GBC). For an almost complete orbital
basis, the elements f α′

a will also be small and are taken to be zero if
the extended Brillouin condition (EBC) is assumed.

Theory

The Zeroth- and First-Order Wave functions

The chosen partitioning of the Hamiltonian into a zeroth-order
operator and a perturbation is

Ĥ = E0 + F̂0 + F̂1 + Ĝ1. (16)
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Ĝ1 = Ĝ and F̂0 = F̂ − F̂1, where

F̂1 = f i
αaα

i + f α
i ai

α . (17)

Thus, the HF wave function |0⟩ in the finite orbital basis is a true
eigenfunction of the zeroth-order operator for restricted (RHF),
unrestricted (UHF), and restricted open-shell (ROHF) wave func-
tions. Note that |0⟩ is not in general a true eigenfunction of F̂ even
for RHF cases, because they both result from a HF calculation in
a finite orbital basis—in other words, the occupied orbitals are in
practice never fully converged to the basis set limit. To first order,
both single and double excitations enter the wave function. In F12
theory, the first-order wave function is expanded as

|1⟩ = (T1 + T1′ + T2 + T2′)|0⟩. (18)

T1 and T2 are the standard single and double excitation operators
within the HF basis, with amplitudes ti

a and tij
ab, respectively,

T1 = ti
aaa

i , (19)

T2 = tij
abaab

ij . (20)

The single excitations outside the HF basis, T1′ , are parameterized
by excitations into the CABS orbitals with amplitudes ti

a′

T1′ = ti
a′ aa′

i . (21)

The double excitations outside the HF basis are parameterized by
double excitations into the set of F12 basis functions |wxy⟩ [eq. (1)],
with amplitudes cij

xy

T2′ = cij
xywxy

αβaαβ
ij , (22)

wxy
αβ = ⟨αβ|wxy⟩. (23)

An F12 double excitation can be viewed as a physically motivated
linear combination of double excitations into orbitals of the com-
plete basis. No spin restrictions are enforced on the amplitudes ti

a,
ti
a′ , tij

ab, or cij
xy. We remind the reader of the implied summation in

eqs. (19)–(22) and that our convention requires x < y, i < j, and
α < β.

The Energy and Amplitude Equations

The second-order energy correction is given by

E2 = ⟨0|[F̂1, T1 + T1′ ] + [Ĝ, T2 + T2′ ]|0⟩

= f a
i ti

a + f a′
i ti

a′ + gab
ij tij

ab + V†xy
ij cij

xy, (24)

The first-order amplitude equations for the singles are entirely
decoupled from the doubles and are given by

0 = ⟨0|ai
a(F̂

1 + [F̂0, T1 + T1′ ])|0⟩

= f i
a + f b

a ti
b + f b′

a ti
b′ − tj

af i
j , (25)

0 = ⟨0|ai
a′(F̂1 + [F̂0, T1 + T1′ ])|0⟩

= f i
a′ + f b

a′ ti
b + f b′

a′ ti
b′ − tj

a′ f i
j . (26)

Note that we have not assumed canonical or semicanonical orbitals.
The first-order doubles amplitudes are determined by

0 = ⟨0|aij
ab(Ĝ + [F̂0, T2 + T2′ ])|0⟩

= gij
ab + f c

a tij
cb + f d

b tij
ad + Cxy

abcij
xy − tkj

abf i
k − til

abf j
l , (27)

0 = wαβ
xy

〈
0
∣∣aij

αβ(Ĝ + [F̂0, T2 + T2′ ])
∣∣0

〉

= Vij
xy + C†ab

xy tij
ab + Bvw

xy cij
vw − Xvw

xy ckj
vwf i

k − Xvw
xy cil

vwf j
l . (28)

Explicit expressions for B, V , X , and C are given later in this article.
It is convenient to partition the MP2-F12 energy into the standard
MP2 energy and an F12 correction. The standard MP2 energy is

EMP2 = E0 − f a
i {ε−1}ib

jaf j
b − gab

ij {ε−1}ijcd
klabgkl

cd , (29)

and is computed very efficiently in the usual way 26, 27 using (semi-)
canonical orbitals, where

ε
ja
ib = (εa − εi)δ

j
iδ

a
b , (30)

εklab
ijcd = (εa + εb − εi − εj)δ

k
i δ

l
jδ

a
c δ

b
d . (31)

The MP2-F12 energy then becomes

EMP2-F12 = EMP2 + f̃ a′
i ti

a′ + Ṽ†xy
ij cij

xy

= EMP2 + +ECABS + +EF12, (32)

where

f̃ i
a′ = f i

a′ − f a
a′ {ε−1}ib

jaf j
b , (33)

Ṽ ij
xy = Vij

xy − C†ab
xy {ε−1}ijcd

klabgkl
cd . (34)

The final working equations to determine the amplitudes are

0 = Ri
a′ = f b′

a′ ti
b′ − tj

a′ f i
j − f a

a′ {ε−1}ib
jaf b′

b tj
b′ + f̃ i

a′ , (35)

0 = Rij
xy = Bvw

xy cij
vw − Xvw

xy ckj
vwf i

k − Xvw
xy cil

vwf j
l

− C†ab
xy {ε−1}ijcd

klabCvw
cd ckl

vw + Ṽ ij
xy. (36)

With respect to the geminal contribution, eq. (36) may be solved
directly (orbital-invariant ansatz), or within a minimal space of gem-
inal functions (orbital-variant ansatz), or simply evaluated using a
predetermined set of amplitudes (fixed amplitude ansatz). Further-
more, a series of approximations can be applied, where successive
terms are dropped from the amplitude equations. These are detailed
in the section on approximations.
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The Orbital-Invariant Optimized Ansatz

Solving eq. (36) optimizes the MP2 energy with respect to the full
space of geminal functions. The energy obtained is invariant to rota-
tions of occupied orbitals and is size extensive. However, in contrast
to standard MP2 theory, the cost scales with system size as n6, both
for the construction of the intermediates B, V , X, and C, and also
for solving eq. (36).

The Diagonal Orbital-Variant Ansatz

The diagonal ansatz is defined by choosing

cij
xy = cij

ij

(
δi

xδ
j
y − δi

yδ
j
x

)
(37)

(as i < j and x < y, the second delta term never contributes—it
is included in eq. (37) for formal completeness). Orbital invariance
is sacrificed to reduce the scaling of the MP2-F12 calculation with
system size from n6 to n5. This reduction in scaling arises from the
fact that it is only necessary to compute the diagonal elements of
the B and V matrices. However, it should be noted that n6 steps also
arise when solving for the amplitudes, even for the diagonal ansatz,
due to the C coupling between T2 and T2′ . To obtain n5 scaling, it
is necessary to either use canonical orbitals for the calculation or to
neglect the contributions from the C matrix (these are zero under
the EBC). If C is neglected, the amplitude equations are

0 = Bij
ijc

ij
ij − Xkj

ij ckj
kj f

i
k − Xil

ij c
il
il f

j
l + Vij

ij . (38)

If canonical orbitals are used, then the C coupling can be included
at n5 cost by replacing V with Ṽ of eq. (34) and B with B̃, where

B̃ij
ij = Bij

ij − C†ab
ij {ε−1}ijab

ijabCij
ab. (39)

The first-order F12 amplitudes cij
xy become increasingly diagonally

dominant as the orbital basis approaches completeness, or if the
occupied orbitals are localized (recall that we choose xy = ij).
Local methods are currently not implemented for standard MP2 and
consequently the diagonal ansatz is of limited use. We recommend
the fixed-amplitude approach, which has the same computational
scaling as the diagonal ansatz, while being also orbital invariant.

The Fixed-Amplitude Ansatz

In the fixed-amplitude ansatz the amplitudes cij
xy for the F12 geminal

basis functions are not optimized, but are simply chosen such that
the first-order s- and p-wave coalescence conditions are satisfied.
For the definition of the F12 amplitudes in eq. (1), this means that

cij
xy = δi

xδ
j
y. (40)

The geminal contribution to the energy is evaluated through the
Hylleraas functional, that is, the Lagrangian where the Lagrange
multipliers have been replaced with the amplitudes (they are equal
at first-order in perturbation theory)

+EF12 = Ṽ†xy
ij cij

xy + c†xy
ij Rij

xy

= B̃ij
ij − Xkj

ij f i
k − Xil

ij f
j
l + 2Ṽ ij

ij . (41)

Note that although the geminal contribution is kept fixed, the ampli-
tudes tij

ab are optimized and differ from those of a standard MP2
calculation through the coupling terms

tij
ab = −

(
gkl

cd + Cxy
cdckl

xy

)
{ε−1}ijcd

klab. (42)

Open-Shell Considerations

The presence of the Ŝxy operator in the definition of the F12 gem-
inals ensures that the above three variants transfer transparently to
the open-shell case. The amplitudes that satisfy the s- and p-wave
coalescence conditions for the first-order wave function are still
cij

xy = δi
xδ

j
y, and the fixed-amplitude ansatz is still a special case of

the other two approaches, just as for closed-shell calculations. For
unrestricted open-shell references, the Ŝxy operator generates spin-
flipped orbitals and the cost of computing the integrals is increased
by a factor of two compared with an analogous calculation that does
not include the spin-flipped orbitals. There are two possibilities to
avoid this factor of two increase in cost. The first is to use the ROHF
reference with restricted rather than semicanonical orbitals such that
the spin up and down orbitals are the same. The only drawback is
that Fock matrix coupling elements f i

o are neglected in a frozen-core
calculation, but these are expected to be small. Alternatively, one
can choose

Ŝ′
xy|xy⟩ = 1

2
|xy⟩ + 1

8

∑

vw

(
sv

wxsw
vy − s̄w

vx s̄v
wy

)
|vw⟩, (43)

with

sv
wx = ⟨ϕwσv|ϕxσx⟩, s̄v

wx = sv
wzs

w
zx . (44)

This is the best possible choice if one does not permit spin-flipped
orbitals, and the meaning can best be seen by examining the ROHF
case with restricted orbitals:

Ŝ′
xy|xy⟩ = 1

4
|xy⟩ αα, ββ (45)

Ŝ′
xy|xy⟩ =

(
3
8

+ 1
8

P̂xy

)
|xy⟩ αβ “d” (46)

Ŝ′
xy|xy⟩ = 1

2
|xy⟩ αβ “s” (47)

“d” and “s” indicate doubly and singly occupied orbitals, respec-
tively. The treatment of singly and doubly occupied orbitals is
clearly unbalanced and the more rigorous approach using eq. (6)
is recommended.

CABS Singles

The energy +ECABS in eq. (32) is referred to as the CABS singles
correction. The amplitude equations (35) have obvious similarities
to the doubles equations (36) and may be solved in an analogous

Journal of Computational Chemistry DOI 10.1002/jcc

Pierre-Francois Loos




MP2-F12 Method in the Turbomole Program Package 2497

way. For RHF and UHF references, this is a purely HF contribu-
tion (no correlation) and is a second-order correction to reduce the
basis set error in the HF energy. For ROHF references, where f i

a is
nonzero, the CABS singles energy corrects for the basis set error
in both the HF energy and the singles contribution to the ROHF-
UMP2 correlation energy. It also introduces spin contamination.
Although the CABS singles correction is entirely distinct from the
F12 energy correction, all of the quantities required for its evalua-
tion can be found among the MP2-F12 intermediates. If the CABS
singles correction is ignored, then the basis set error in the HF con-
tribution limits the accuracy of an F12 calculation when double- or
triple-zeta orbital basis sets are used. Including the CABS singles
correction essentially eliminates this source of error.

B, V, X, and C

The B, X , C, and V matrices are defined as

Bvw
xy = ŜxyŜvw

〈
xy

∣∣f12Q̂12F̂0
12Q̂12f12

∣∣vw
〉
, (48)

Xvw
xy = ŜxyŜvw⟨xy|f12Q̂12f12|vw⟩, (49)

Cxy
ab = Ŝxy

〈
ab

∣∣F̂0
12Q̂12f12

∣∣xy
〉
, (50)

Vij
xy = Ŝxy

〈
xy

∣∣f12Q̂12r−1
12

∣∣ij
〉
, (51)

where F̂0
12 = F̂0

1 + F̂0
2 . The three- and four-electron integrals

intrinsic to these quantities are approximated as sums of prod-
ucts of two-electron integrals by making approximations for the
strong-orthogonality projector:

Q̂12
RI≈ Q̂A

12 = 1 − P̂1P̂2 − Ô1V̂ ′
2 − V̂ ′

1Ô2, (52)

Q̂12
RI≈ Q̂B

12 = P̂1V̂ ′
2 + V̂ ′

1P̂2 + V̂ ′
1V̂ ′

2. (53)

P̂ = Ô + V̂ and V̂ ′ projects onto the space of CABS virtuals

V̂ ′ = |a′⟩⟨a′|. (54)

Q̂A
12 is used for the X and V matrices and Q̂B

12 is used for the C
matrix. To evaluate the B matrix, we commute the Fock operator as
follows

〈
xy|f12Q̂12F̂0

12Q̂12f12|vw
〉

= 1
2

〈
xy

∣∣f12Q̂12
[
F̂0

12, Q̂12
]
f12

∣∣vw
〉
+ 1

2

〈
xy

∣∣f12
[
Q̂12, F̂0

12

]
Q̂12f12

∣∣vw
〉

+ 1
2

〈
xy

∣∣f12Q̂12
[
F̂0

12, f12
]∣∣vw

〉
+ 1

2

〈
xy

∣∣[f12, F̂0
12

]
Q̂12f12

∣∣vw
〉

+ 1
2

〈
xy

∣∣f12Q̂12f12F̂0
12

∣∣vw
〉
+ 1

2

〈
xy

∣∣F̂0
12f12Q̂12f12

∣∣vw
〉
. (55)

We then insert

Q̂12
[
F̂0

12, Q̂12
]

= −(1 − P̂1)F̂0
1 V̂1V̂2 − V̂1(1 − P̂2)F̂0

2 V̂2

RI≈ −V̂ ′
1F̂0

1 V̂1V̂2 − V̂1V̂ ′
2F̂0

2 V̂2, (56)

Q̂12
[
F̂0

12, f12
]

= Q̂12[T̂12 − K̂12 − F̂1
12 + Û12, f12]

RI≈ Q̂A
12[T̂12, f12] − Q̂B

12

(
K̂12 + F̂1

12 − Û12
)
f12

+ Q̂A
12f12

(
K̂12 + F̂1

12 − Û12
)
, (57)

f12Q̂12f12
RI≈ f12Q̂A

12f12, (58)

where T̂12 = T̂1 + T̂2, and similarly for K̂12, F̂1
12, and Û12. Two-

electron integrals over [[f12, T̂1], f12] = [[f12, T̂2], f12] = (∇̂1f12)
2

and f 2
12 can be evaluated analytically. To evaluate the remaining

integrals, for example over P̂1P̂2T̂1f12, or f 2
12K̂1, a further approxi-

mate RI over orbitals p′ is inserted, which can be formulated as an
orbital transformation. This leads to the following expressions for
eqs. (48)–(51):

Bvw
xy = 1

2
B̄vw

xy + 1
2

B̄xy
vw, (59)

B̄vw
xy = T̄ vw

xy + Xv̆w
xy + Xvw̆

xy − P̄vw
xy + Q̄vw

xy − Ēvw
xy , (60)

T̄ vw
xy = τ vw

xy − rpq
xy tvw

pq − ra′o
xy tvw

a′o − rob′
xy tvw

ob′ , (61)

P̄vw
xy = ra′b′

xy pvw
a′b′ + ra′b

xy pvw
a′b + rab′

xy pvw
ab′ , (62)

Q̄vw
xy = π vw

xy − rpq
xy qvw

pq − ra′o
xy qvw

a′o − rob′
xy qvw

ob′ , (63)

Ēvw
xy = C†ab

xy rvw
ab , (64)

Xvw
xy = xvw

xy − rpq
xy rvw

pq − ra′o
xy rvw

a′o − rob′
xy rvw

ob′ , (65)

Cxy
ab = rxy

äb + rxy
ab̈

, (66)

Vij
xy = vij

xy − rpq
xy gij

pq − ra′o
xy gij

a′o − rob′
xy gij

ob′ , (67)

where we have omitted the dagger from the r†p′q′
xy for the sake of

esthetical clarity and

τ vw
xy = 1

2
ŜxyŜvw⟨xy|[[f12, T̂12], f12]|vw⟩, (68)

π vw
xy = ŜxyŜvw

(〈
xy

∣∣f 2
12

∣∣ṽw
〉
+

〈
xy

∣∣f 2
12

∣∣vw̃
〉
), (69)

xvw
xy = ŜxyŜvw

〈
xy

∣∣f 2
12

∣∣vw
〉
, (70)

vij
xy = Ŝxy

〈
xy

∣∣f12r−1
12

∣∣ij
〉
, (71)

rvw
p′q′ = Ŝvw⟨p′q′|f12|vw⟩, (72)

tvw
p′q′ = rvw

p̄′q′ + rvw
p′ q̄′ − rv̄w

p′q′ − rvw̄
p′q′ , (73)

pvw
p′q′ = rvw

p̃′q′ + rvw
p′ q̃′ , (74)

qvw
p′q′ = rṽw

p′q′ + rvw̃
p′q′ . (75)

The transformed orbitals are defined as

|x̆⟩ = f 0x
p′ |p′⟩, (76)

|x̄⟩ = tx
p′ |p′⟩, (77)

|x̃⟩ =
(
kx

p′ + f 1x
p′ − ux

p′
)
|p′⟩, (78)

|ä⟩ = f 0a′
a |a′⟩. (79)
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Table 2. Scaling and CABS Convergence Properties of MP2-F12 Variants.

Scaling with system size RI truncation for the atomic case

Method Orb.a Fixed Noinv Inv Lmax Term responsible

2A* c n5 n5 n6 max
[
2Locc + Lb

vir , 3Locc
]

tvw
pq , ra′o

xy
nc n5 n5 n6

2A c n5 n5 n6 2Locc + Lvir Cxy
ab

nc n5 n6 n6

2B c n5 n5 n6 ∞c,d pvw
a′b′

nc n5 n6 n6

ac refers to (semi-) canonical orbitals (r12orb=hf), nc to all other choices.
bIf t = h rather than t = f + k, this reduces to min[Lvir + 2, 2Locc + Lvir].
cRapidly convergent (L + 1)−7. See Ref. 28.
dIf pvw

a′b′ is neglected (not implemented), this becomes 2Locc + Lvir .
Lmax is the maximum angular momentum quantum number that contributes to the CABS RI insertion for an atom. Locc
and Lvir are the maximum angular momentum quantum numbers of the occupied and virtual orbitals, respectively.

The orbital transformation matrix t, used for the commutator
[T̂12, f12], is best chosen as t = h + j. This is referred to as the
F + K commutator approximation (note that h + j = f + k − u). For
calculations where the exchange terms are neglected, there is a slight
computational advantage when choosing t = h instead (T+V). We
now elucidate the steps required to arrive at eqs. (59)–(79) through
an example. Consider the following contribution to T̄ vw

xy

ŜxyŜvw⟨xy|f12P̂1P̂2[T̂12, f12]|vw⟩

= ŜxyŜvw

∑

pq

⟨xy|f12|φpφq⟩⟨φpφq|[T̂12, f12]|vw⟩

= ŜxyŜvw

∑

pq

1
2
⟨xy|f12|pq⟩⟨pq|[T̂12, f12]|vw⟩

= ŜxyŜvw

∑

p<q

⟨xy|f12|pq⟩⟨pq|[T̂12, f12]|vw⟩, (80)

RI≈ rpq
xy tvw

pq . (81)

We remind the reader of our pair index convention, where contrac-
tions such as rpq

xy tvw
pq imply a summation range p < q, where the

indices p and q each run over both the α and β spin orbitals.
Several aspects of the above choices in approximation require

explanation. First, the Fock operator is commuted [eq. (55)] rather
than inserting two approximate RI expansions because the dou-
ble RI for the f12T̂12f12 converges as l−1, where l is the highest
angular momentum operator in the p′ basis. This slow CABS con-
vergence is avoided because the corresponding commutator integral
can be evaluated analytically. Second, we evaluate the commutator
Q̂12[K̂12, f12] as Q̂B

12K̂12f12 − Q̂A
12f12K̂12 rather than as Q̂B

12[K̂12, f12].
While the latter choice is more consistent and leads to shorter expres-
sions and a saving of 15% in CPU time, it involves a double RI
for the integrals f12f12K̂1, which is also slowly convergent with
CABS and leads to sizable CABS errors.28 All of the RI inser-
tions in the computational scheme detailed above have partial wave
expansions that either truncate or are rapidly convergent. A sum-
mary of the CABS convergence behavior for various MP2-F12
approaches is given in Table 2. Finally, as an aside, we note that

⟨xy|f12Q̂12F̂1
12Q̂12f12|vw⟩ = 0. The presence of the GBC terms in

the B matrix is a consequence of the commutator approach, and they
arise independently of the choice of zeroth-order partitioning of the
Fock matrix.

Spin-Adaption

Equations (61)–(67) are in spin orbital formulation and give compact
expressions suitable for implementation of UHF-MP2-F12. Spin
integration restricts the pairs xy and vw to have the same spin com-
ponent as the pair ij and, similarly, the contraction ranges within
p′q′ are restricted to pairs with the same spin components as ij. Sep-
arate amplitude equations are thus solved for the three spin cases,
leading to three uncoupled energy contributions. It should also be
noted that for pairs ij with like spins, applying the summation con-
vention and spin integration eliminates the last contraction in each
of eqs. (61)–(63), (65), and (67). Furthermore, as for the like-spin
pairs,

Ŝvw⟨p′q′|f12|vw⟩ = 1
4
⟨p′q′|f12|vw⟩, (82)

it is more convenient to collect all the factors of 1
4 and apply them

once at the end, by absorbing them into the amplitudes. Thus, for
fixed amplitudes of like-spin pairs, we modify our definitions to
Ŝvw = 3

2 + 1
2 P̂vw and cij

xy = 1
4 δi

xδ
j
y.

For ROHF-MP2-F12 a significant computational saving (∼
50%) is gained by using restricted orbitals rather than semicanon-
icalized orbitals. This arises primarily from the simplification in
the terms generated by Ŝvw on the spin-opposite pairs (see section
on open-shell considerations). An optimal implementation would
involve recasting the contributions into parts that are the same for
the αα, ββ, and αβ pairs, and parts that are different. This is not
done in Turbomole and ROHF-MP2-F12 is implemented using
eqs. (59)–(79). The default is to use semicanonical orbitals.

For RHF-MP2-F12, the α and β orbitals are identical and the
energy decomposes into singlet and triplet pair energies. The αα,
ββ, and αβ +βα triplet components are degenerate, and the energy
and amplitude expressions are exactly those of the like-spin UHF-
MP2-F12 case. The singlet energy and amplitude expressions are
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uncoupled from the triplet pairs and have identical structure to the
triplet equations, with two important differences. First, all of the
antisymmetric two-electron quantities in the triplet expressions are
replaced by symmetric quantities, for example,

rvw
p′q′ = Ŝvw(⟨φp′φq′ |f12|φvφw⟩ + ⟨φp′φq′ |f12|φwφv⟩)

× (1 + δp′q′)−1/2(1 + δvw)−1/2. (83)

Second, the pair indices run over i ≤ j, where i and j are orbital
indices rather than spin orbital indices. Similarly, the pair con-
tractions run over p′ ≤ q′, with orbital indices p′ and q′. A
straightforward way to derive the singlet energy and amplitude equa-
tions is to begin with the spin orbital case and to notice that the αβ

pairs decompose into triplet and singlet spin-adapted pairs through
the transformation

1√
2
(|ij⟩ − |ji⟩) = 1

2
(ϕiϕj − ϕjϕi)(αβ + βα), (84)

(2 + 2δij)
−1/2(|ij⟩ + |ji⟩) = (2 + 2δij)

−1/2(ϕiϕj + ϕjϕi)(αβ − βα).
(85)

The singlet and triplet energies and amplitude equations are recov-
ered by applying this transformation to the spin orbital energy and
amplitude equations for the αβ pairs. For singlet spin-adapted pairs,
the effect of Ŝvw in eq. (83) is only to introduce a factor of 1

2 . It
is more convenient to collect all the factors of 1

2 and apply them
once at the end, by absorbing them into the amplitudes. Thus, for
fixed amplitudes of singlet pairs, we use Ŝvw = 3

4 + 1
4 P̂vw and

cij
xy = 1

2 (δi
xδ

j
y + δ

j
xδ

i
y)(1 + δij)

−1/2(1 + δxy)
−1/2 (note that because

i ≤ j and x ≤ y this reduces to cij
xy = 1

2 δi
xδ

j
y).

Density Fitting

Density fitting (DF) is a standard device in computational chem-
istry, used to greatly reduce the prefactor for integral evaluation and
transformation steps. The overlap distribution of orbitals ip and jq
are fitted using a dedicated auxiliary fitting basis {Q} such that the
integrals (ip|g12|jq) are approximated as29

(ip|g12|jq) ≈
∑

PQR

[
(ip|g12|Q)(Q|P)−1/2] [

(P|R)−1/2(R|g12|jq)
]

= Gip,PGjq,P, (86)

where (P|Q) is shorthand for the Coulomb metric (P|g12|Q), with
g12 = r−1

12 . Evaluation of electron repulsion integrals between Gaus-
sian charge distributions for the three-index Gµν,P intermediates is
much cheaper than for the (µν|g12|κλ) AO integrals. Furthermore,
the transformation from atomic to molecular orbitals is performed
on three-index rather than four-index quantities. The only n5 scaling
step is then the final contraction to form the target integrals, which
has a low prefactor and is well suited to the use of optimized linear-
algebra routines. Disk requirements can also be greatly reduced by
avoiding the storage of four-index matrices, but rather computing
them on the fly when needed from three-index intermediates stored

on disk. DF is also known as the RI approximation in the literature,
but in the context of F12 theory, where there are RI approximations
for the three- and four-electron integrals, we use the term density
fitting to avoid confusion.

Equation (86) ensures that the error in the energy is quadratic in
the density-fitting error and is therefore referred to as robust. The
generalization of robust density fitting to the two-electron integrals
required in MP2-F12 theory was developed by Manby30 and can
be cast into such a form that the number of transformation and
contraction steps is minimal,31

(ip|f12|jq) ≈ Gip,PRjq,P + Rip,PGjq,P − Gip,PUP,QGjq,Q

= Gip,PR̃jq,P + R̃ip,PGjq,P, (87)

where

UP,Q = (P|R)−1/2(R|f12|S)(S|Q)−1/2, (88)

R̃ip,Q = Rip,Q − 1
2

Gip,PUP,Q, (89)

Rip,Q = (ip|f12|R)(R|Q)−1/2, (90)

Gip,Q = (ip|g12|R)(R|Q)−1/2. (91)

The above equations also hold if f12 is everywhere replaced by any
of the (∇̂1f12)

2, f 2
12, or f12g12 operators required for the τ , π , x, and

v matrices. Moreover, the formulation also applies to any of the
transformed orbitals, compare eqs. (76)–(79). The computational
effort of computing the intermediates R̃ip,Q is negligible, and the
F12 integrals are only twice as expensive as the electron repulsion
integrals.

Approximations

Distinct from the RI approximation, intrinsic to the F12 approach,
and the DF approximation, used to reduce the cost of the integral
evaluation and transformation, a great number of approximations
have arisen in F12 theory, where certain terms are neglected from
the energy and amplitude equations. The purpose of these was to
simplify the equations and further reduce the computational cost,
while preserving accuracy. The method in which the MP2-F12
energy is computed as outlined above without further simplification
is referred to as approximation B, or equivalently approximation C
(see section on the connection with other approximations). The mul-
titude of alternative approximations has now been whittled down to
two useful simplifications.

Approximation A

In approximation A, we make the replacement in the residual eq. (36)

Bvw
xy cij

vw − Xvw
xy ckj

vwf i
k − Xvw

xy cil
vwf j

l ≈
(
Tvw

xy − Evw
xy

)
cij

vw (92)

The fact that the [K̂12, f12] term (P − Q) is small enough to be
neglected can be deduced by noting that it is zero for a local exchange
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operator, such as the LDA exchange functional used in density func-
tional theory. The F̂1 contributions to P and Q are zero if the GBC
is fulfilled and are therefore also small. The other neglected terms
involve the geminal overlap

1
2

(
Xv̆w

xy + Xvw̆
xy + Xvw

x̆y + Xvw
xy̆

)
cij

vw − Xvw
xy ckj

vwf i
k − Xvw

xy cil
vwf j

l . (93)

For closed shell systems in a canonical basis, this simplifies to
(assuming xy = ij)

1
2
(εx + εy + εv + εw − 2εi − 2εj)Xvw

xy cij
vw. (94)

The diagonal elements cancel and indeed need not be computed for
the diagonal or fixed amplitude ansatz. Thus, it can be seen that the
overlap contribution is also usually small in the general case.

The combined neglect of the exchange and overlap contributions
causes slight overshooting in the computed correlation energies.
Consequently, the A and B approximations converge to the basis
set limit from opposite directions and the difference between the A
and B values is a useful indication of the remaining basis set error.
Additionally, 0.6 A + 0.4 B gives an improved estimate of the basis
set limit, at least for total energies.32

Concerning the computational cost, the most expensive contri-
bution to approximation B comes from the P term, which requires
O2N ′2X contractions to build the p matrices and further O4N ′2 con-
tractions to build the full P matrix, if the amplitudes are to be
optimized in an orbital-invariant manner. Approximation A is much
cheaper than B, primarily because P is neglected. However, approx-
imation A* is even cheaper and is in general more accurate than
approximation A.

Approximation A*

Approximation A* is derived from approximation A by assuming
the EBC. Note that the GBC terms have already been discarded
since these correspond to the F̂1 contributions to P and Q. Matrix C
vanishes under the EBC and thus the residual equation (36) becomes
simply

0 = Rij
xy = Tvw

xy cij
vw + Vij

xy, (95)

and the energy is

+EF12 = V†xy
ij cij

xy. (96)

Approximation A* is the simplest and cheapest approach and is sur-
prisingly accurate, particularly for small orbital basis sets. The GBC
and EBC assumptions can also be separately applied to approxima-
tion B to give B*, but because the latter one is neither cheaper nor
more accurate than A*, this is not a useful approach.

The EBC assumption can also be applied to the CABS singles
amplitude and energy equations, removing the contribution from f b

a′
to give

+ECABS = −f a′
i {ε−1}ib′

ja′ f
j
b′ (97)

This does not lead to any computational savings and only serves
to lower the accuracy. Applying the EBC in this way is somewhat
incongruous with keeping the smaller GBC terms, but eq. (97) can
also be derived by redefining the zeroth-order Fock operator such
that the EBC terms are considered first-order in the perturbation.

There is, however, a subtle distinction between assuming the
EBC and adopting the revised partitioning of the Hamiltonian oper-
ator. For approximation A, the two alternatives lead to the same
equations for +EF12, but not for approximation B: Although all
contributions involving the C matrix are then identically zero, addi-
tional terms appear due to the [F̂1, f12] contribution to P − Q. This,
together with the consideration of the CABS singles correction,
convinces us that the zeroth-order Fock operator should contain the
EBC terms, and we define approximation A* as assuming the EBC
only for the +EF12 contribution.

Connection with Other Approximations

The MP2-F12 equations detailed here are very closely related, but
not identical to the equations presented by Klopper and Samson
in 2002.33 Even adjusting for the modified definition of Q̂12 and
the CABS approach, the methods differ in three ways: (i) Here,
the single-commutator [T̂12, f12] terms are evaluated using double
RI, whereas these were previously computed analytically as two-
electron integrals. (ii) Here, the C matrix is evaluated by direct RI
without commuting the Fock operator. Thus, the C matrix is kept the
same for the A and B approximations. (iii) Here, we do not assume
the GBC but compute these terms.

These differences are slight and, GBC aside, refer to the way
terms are computed rather than which terms are computed, and we
therefore refer to the present approach as approximation B to main-
tain consistency with our earlier work. However, provided that the
matrix t = h + j (F + K) is used for the kinetic energy commutator
[eq. (77)], the present implementation of approximation B is in fact
identical to approximation C, introduced by Noga.34 This becomes
clear once it is realized that

B̄vw
xy = T̄ vw

xy + Xv̆w
xy + Xvw̆

xy − P̄vw
xy + Q̄vw

xy − Ēvw
xy

= T̄ vw
xy + Xv̄w

xy + Xvw̄
xy − P̄vw

xy − Ēvw
xy

= τ vw
xy − rpq

xy (rvw
p̄q + rvw

pq̄ ) − ra′o
xy (rvw

ā′o + rvw
a′ ō) − rob′

xy (rvw
ōb′ + rvw

ob̄′)

+ xv̄w
xy + xvw̄

xy − P̄vw
xy − Ēvw

xy . (98)

The last equation is exactly equivalent to those reported by Werner
et al. for approximation C.35 Computing approximation B with
t = h + j (i.e., approximation C) directly in this way leads to
a noticeable computational saving since significantly fewer three-
index intermediates are required and thus fewer contractions are
performed. However, if one desires to compute energies for both
approximations A and B to obtain an estimate of the remaining basis
set incompleteness error, this saving is lost. Note that the equiva-
lence of our formulas with those of Werner et al. applies only for
Û = 0 in eq. (10). In our work, Û is part of the Fock operator, and
if Û ̸= 0, then F̂ + K̂ ̸= T̂ + V̂ + Ĵ .
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Orbital basis : cc-pVTZ-F12
Cardinal number : T
Recommended exponent: 1.0000
Actual exponent: 1.0000

INPUT MENU FOR MP2-F12 CALCULATIONS

ansatz : CHOOSE ANSATZ 2 [1,2*,2]
r12model : CHOOSE MODEL B [A,B]
comaprox : COMMUTATOR APPROXIMATION F+K [F+K,T+V]
cabs : CABS ORTHOGONALIZATION svd 1.0D-08 [cho,svd]
examp : CHOOSE FORMULATION fixed flip [inv,fixed,noinv, flip,noflip]
r12orb : CHOOSE GEMINAL ORBITALS hf [hf,rohf,boys,pipek]
corrfac : CHOOSE CORRELATION FACTOR LCG [R12,LCG]
cabsingles: CABS SINGLE EXCITATIONS on [on,off]
pairenergy: PRINT OUT PAIRENERGIES off [on,off]
slater : SLATER EXPONENT 1.0000

* / end : write $rir12 to file and leave the menu
& : go back - leaving $rir12 unchanged...

Scheme 1. The f12 menu of the define module of Turbomole.

Options and Keywords

A MP2-F12 calculation is defined through a number of choices
concerning the nature of the geminals (f12 and Q̂12), the geminal
excitation space (ijvw or ijij), and approximations in computing the
B matrix (GBC, EBC, [T̂ , f12]). These choices correspond to key-
words in Turbomole’s $rir12 data group, which are explained
in the following.

To run a MP2-F12 calculation, one has to select three different
auxiliary basis sets, namely cbas, cabs, and optionally jkbas.
The Ricc2 program uses robust fitting techniques for the F12 inte-
grals and the cbas basis is used for both the F12 and the usual MP2
electron-repulsion integrals. For the density fitting of the Coulomb
and exchange matrices of the Fock matrix, thejkbaswill be used if
it is included in the control file (this is recommended and is achieved
using the jkbas submenu in the cc menu of define; the cbas
basis will be used instead if the jkbas is not included). For the
RI approximation of the three- and four-electron integrals as sums
of products of two-electron integrals, intrinsic to the F12 method,
the CABS approach is used. When define is used to set up the
cabs basis, the library cabasen is searched. This library contains
the optimized cabs basis sets5, 6 for the cc-pVXZ-F12 basis sets
of Peterson et al.4, 7 For other basis sets, the auxiliary basis in the
library cabasen is identical with the auxiliary basis in the library
cbas.

The $rir12 data group may be set by choosing the f12 option
in the cc menu when running define. This command activates
the f12menu, where the default options may be changed if desired
(cf. Scheme 1, a cc-pVTZ-F12 basis set was used in the example).

The keyword ansatz refers to the choice of Q̂12. Almost all
modern MP2-F12 calculations use ansatz 2 (default), which is
defined in terms of Q̂12 as given in eq. (3). Ansatz 2 gives much
improved33 energies over ansatz 1, which uses

Q̂12 = (1 − P̂1)(1 − P̂2), P̂ =
∑

p

|p⟩⟨p|. (99)

The main additional cost of using ansatz2over ansatz1 is concerned
with the coupling between the F12 and conventional amplitudes.
This coupling is avoided by choosing 2*, which corresponds to
neglecting EBC terms in the Fock matrix elements.

The keyword r12model refers to the method of computing the
B matrices (see the section on approximations for details). The cost
and accuracy increase from A to B. It is recommended to use B
(default). The energies computed using A are then also printed out
in the output.

The keyword comaprox is the method for approximately
computing the integrals for the operator [T̂ , f12], where the
matrix representations of F+K or T+V are used. F+K (the core
Hamiltonian plus Coulomb term) is recommended and is the
default.

The keyword cabs refers to the method of orthogonalizing
the orbitals in the complementary auxiliary basis. Singular-value
decomposition (svd) or Cholesky decomposition (cho) are avail-
able. svd is recommended and is the default, with a threshold
of 1.0d-08. The basis set used for CABS is set from the cc
menu.

The keyword examp refers to the choice of excitation space.
inv is the orbital-invariant method, with amplitudes cij

vw. noinv
is the original orbital-dependent diagonal ijij method of Ref. 36,
with amplitudes cij

ij (not recommended, unless in combination with
localized orbitals). fixed is the (diagonal and orbital-invariant)
rational generator approach of Ref. 37, where the F12 amplitudes are
not optimized but predetermined using the coalescence conditions
(default, cf. section on the fixed-amplitude ansatz).

The keyword r12orb controls which orbitals are used in the
calculation. hf means that (semi-) canonical Hartree–Fock orbitals
are used (default). rohf means that ROHF orbitals are used. Both
the Boys38 and Pipek–Mezey39 methods are available for the local-
ization of the orbitals, but this works only for closed-shell systems.
It should be noted that for the orbital invariant methods, using
localized and canonical orbitals give identical energies and that the
noninvariant optimized method only has n5 scaling for ansatz 2*
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Table 3. Frozen-Core MP2-F12/2B Second-Order Correlation Energies (in Eh) of the O Atom in the
cc-pVQZ-F12 Basis as a Function of the Keywords r12orb and examp.

r12orb examp MP2 F12/2Ba Eb
CABS Total

ROHF reference, equivalent orbitals (EROHF = −74.8092632 Eh)
rohf inv flip −0.1701183 −0.0089115 −0.0000173 −74.9883103
rohf fixed flip −0.1701183 −0.0088920 −0.0000173 −74.9882908
rohf inv noflip −0.1701183 −0.0087685 −0.0000173 −74.9881673
rohf fixed noflip −0.1701183 −0.0087000 −0.0000173 −74.9880988
hf inv flip −0.1701544 −0.0089127 −0.0000173 −74.9883475
hf fixed flip −0.1701544 −0.0088931 −0.0000173 −74.9883280
hf inv noflip −0.1701544 −0.0087698 −0.0000173 −74.9882046
hf fixed noflip −0.1701544 −0.0087014 −0.0000173 −74.9881362

ROHF reference, nonequivalent orbitals (EROHF = −74.8122513 Eh)
rohf inv flip −0.1682893 −0.0088262 −0.0000188 −74.9893856
rohf fixed flip −0.1682893 −0.0088080 −0.0000188 −74.9893674
rohf inv noflip −0.1682893 −0.0086813 −0.0000188 −74.9892407
rohf fixed noflip −0.1682893 −0.0086136 −0.0000188 −74.9891731
hf inv flip −0.1683264 −0.0088274 −0.0000188 −74.9894238
hf fixed flip −0.1683264 −0.0088092 −0.0000188 −74.9894056
hf inv noflip −0.1683264 −0.0086826 −0.0000188 −74.9892791
hf fixed noflip −0.1683264 −0.0086150 −0.0000188 −74.9892114

UHF reference (EUHF = −74.8188201 Eh)
hf inv flip −0.1614851 −0.0086913 −0.0000209 −74.9890174
hf fixed flip −0.1614851 −0.0086737 −0.0000209 −74.9889998
hf inv noflip −0.1614851 −0.0085468 −0.0000209 −74.9888729
hf fixed noflip −0.1614851 −0.0084807 −0.0000209 −74.9888067

aUsing ansatz 2, approximation B, and the F+K commutator approximation.
bCABS singles contribution.

(ansatz = 2*) and approximation A (r12model = A). Pair
energies (vide infra) can only be printed out in computations with
(semi-) canonical orbitals (r12orb = hf). As a reference for
future work, Table 3 displays the valence-shell second-order corre-
lation energies of the neutral oxygen atom obtained using various
choices for the keywords examp and r12orb in the cc-pVQZ-
F12 basis. The calculations were performed in the cc-pVQZ-F12
basis of Peterson and co-workers,4 using their corresponding OptRI
auxiliary basis as CABS,5 the aug-cc-pwCV5Z cbas of Ref. 40
for the (robust) fitting of both the F12 integrals and the usual
electron-repulsion integrals, and the aug-cc-pV5Z jkbas basis of
Weigend41 for the Coulomb and exchange matrices of the Fock
matrix.

The keyword corrfac corresponds to the choice of correlation
factor f12 in the geminal basis functions. R12 results in a calculation
using linear-r12 and LCG results in a calculation using the Slater-
type correlation factor with appropriate exponent for the chosen
basis set. This Slater-type correlation factor is represented as a linear
combination of six Gaussians (see Ref. 23). Note that the exponents
0.9, 1.0, and 1.1 a−1

0 are recommended for use with the cc-pVXZ-
F12 basis sets wit X = D, T, and Q, respectively.4 The recommended
values for the aug-cc-pVXZ basis sets with X = D, T, Q, and 5 are
1.0, 1.1, 1.4, and 1.4 a−1

0 .
The keyword cabsingles switches on/off the calculation of

a second-order correction to the Hartree–Fock energy by account-
ing for single excitations into the complementary auxiliary basis
set (CABS). The single excitations into the CABS basis can be

computed without extra costs if the CABS Fock matrix elements are
required anyway for the F12 calculation (i.e., for ansatz 2, approxi-
mationBorcomaprox = F+K). The computation of CABS singles
cannot be switched off if it is free of costs.

The keyword pairenergy switches on/off the printing
of the F12 contributions to the MP2 pair energies (default
pairenergy = off).

By default, a data group $lcg, in which the represented by six
Gaussians, is inserted into the control file (cf. Scheme 2, data group
may be edited by the user, if required.

On the left panel of Scheme II, a linear combination of six Gaus-
sians is used to represent a Slater-type geminal with exponent 1.0
a−1

0 . On the right panel, the Gaussian exponents and contraction
coefficients are defined for a linear combination of three Gaussians
by the user.

MP2-F12 calculations may be combined with Grimme’s SCS
approach by insertingscs into the data group$ricc2, as indicated
in Scheme 3.

$lcg $lcg
nlcg 6 nlcg 3
slater 1.0000 expo1 coef1

expo2 coef2
expo3 coef3

Scheme 2. Input for the correlation factor.
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$ricc2
mp2 energy only
scs

Scheme 3. Input for the SCS approach.

In this case, the SCS parameters cos = 6/5 and css = 1/3 are
used. Also individual scaling factors for the same-spin and opposite-
spin contributions may be defined.

Implementation

Integrals

In addition to the standard electron-repulsion integrals (ERIs)
between three charge distributions, required for the DF-MP2
method,

(µν|g12|P), (100)

the implementation of MP2-F12 requires several new kinds of inte-
grals, where the electron repulsion operator g12 is replaced by each
one of

f12, f 2
12, f12 · g12, (∇̂1f12)

2. (101)

f12 is the correlation factor of the geminal basis functions, which
is either linear in the interelectronic distance, or an arbitrary com-
bination of Gaussians in the interelectronic distance. Within the
Obara-Saika recursion method for integral evaluation, one only
needs to modify the integral kernel to generate the new integral types.
Thus, the MP2-F12 integrals take full advantage of the efficient
Obara-Saika integral code within Turbomole.

For correlation factors that are linear combination of Gaussians,
the contraction of the Gaussians is performed at the level of the
Boys function, which ensures that the cost for the new integrals
does not scale with the number of Gaussians used in the fit and that
the new integrals cost the same as conventional ERIs to within a
small prefactor. Furthermore, since the Schwartz inequality applies
to the resulting kernel, screening for the new integrals with a LCG
correlation factor is obtained from a straightforward generalisation
of the ERI case.

Three-Index Intermediates

The construction of the basic three-index intermediates is carried out
using Ricc2 routines, which have been extended to be able to treat
the new auxiliary basis set. Except for the novel features, all basic
steps are the same as for the efficient DF-MP2 implementation. In
particular, the AO-MO transformation is performed for the (trans-
formed) occupied index first, which drastically reduces the number
of matrix elements involved in the subsequent AO-MO transforma-
tion for the second index (typically virtual or CABS). When creating
three-index intermediates, each block of orbital spaces required
is stored separately in order to increase disk I/O efficiency when
building four-index quantities.

Semidirect Algorithm

Some of the core aims of the Turbomole program package are
the low resource requirements, ability to run calculations on large
molecules on desktop machines and a parallel implementation with
a high speed-up. For the MP2 algorithm this translates into using
an algorithm that needs to store only three-index quantities on hard
disk. Therefore, four-index integrals are computed by DF and are
directly used in the construction of the B- and V -type matrices
without storing them on disk. The reduced disk requirements make
the calculation of large molecules possible and the reduced disk
I/O ensures a high speed-up in parallel calculations. Although cal-
culation of MP2-F12 energies for ansatz 2 and approximation B
with all amplitudes optimized scales as n6 with system size, sev-
eral MP2-F12 variants permit a lower n5 scaling algorithm and
the lower scaling algorithm, is implemented wherever possible (see
Table 2).

In the following, we outline the algorithm to compute matrices
such as V and B. After the computation of the three-index integrals
needed for the construction of the four-index quantities via DF (see
section on density fitting), the integrals are resorted such that the
virtual index is the outermost index (the auxiliary index is always
fastest). For closed-shell calculations, the three-index integrals are
read from disk and are contracted (n5) to the four-index integrals,
such as (xp|yq) or (ip|jq). The (spatial) orbital indices run over the
triangle p ≤ q and the square x, y or i, j. Then the indices x, y or i, j
are (anti-) symmetrized to yield the intermediates

ãpq
ij =

(
apq

ij ± apq
ji

)
(1 + δij)

−1/2(1 + δpq)
−1/2, (102)

with a being a generic integral (i.e., g, r, t, C, or any other) and
(anti-) symmetrization performed for all four cases (xp|yq), (ip|jq),
(xv|yw), and (ix|jy). The symmetric combination is used in the
construction of the singlet (symmetric) B or V matrix, and the anti-
symmetric combination is used for the triplet (antisymmetric) B or
V matrix.

Vxy(s)
ij + = −r̃xy

pq g̃pq
ij (103)

This n6 contraction reduces to n4 if only the diagonal elements of
B and V are required (e.g., for the fixed-amplitude approach). The
(anti-) symmetrization procedure saves a factor of 2, because in the
B and V matrices only the indices x ≤ y and k ≤ l need to be
computed. Also, in addition to B and V , only the slice (ab) of a
small number of four-index integrals need to be kept in memory
at the same time, so that the memory requirements are effectively
O(N2). The matrices B and V have four indices but are usually small,
because they have only geminal indices. If a diagonal approximation
is used even that reduces to an N2 quantity.

For certain MP2-F12 approaches, it is necessary to solve
the amplitude equations iteratively (e.g., if all amplitudes are
optimized—see next section). In such cases, the four-index matrix
C is used repeatedly, and it is therefore stored on disk after being
computed.

For open-shell calculations, the algorithm proceeds as for the
closed shell case but deviates slightly for unlike spin-pairs. Here,
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the four-index integrals (xp|yq) and (ip|jq) are required for the rect-
angle p, q, and the intermediates ã are not formed through (anti-)
symmetrization, but through

ãpq
xy = Ŝxyapq

xy , (104)

ãvw
xy = ŜxyŜvwavw

xy . (105)

For integrals with no geminal indices, ã = a. For spin-flipped cal-
culations with (semi-) canonical orbitals, Ŝxyapq

xy involves four-index
integrals with spin-flipped indices. The necessary three-index inte-
grals with spin-flipped indices are read from disk and contracted to
form the four-index integrals at the same point as for the normal
integrals. The steps where the intermediates ã are used to build the
B and V matrices proceed as for the closed-shell case.

For calculations that do not assume the EBC, contractions invol-
ing {ε−1}ijcd

klab are required to form Ṽ [eq. (34)] and B̃ [eq. (39)]
(or alternatively in the iterative solution of the amplitude equa-
tions 36). If the orbitals i, j are (semi-) canonical, contractions are
straightforward, for example,

Ṽ xy(s)
ij + = −C̃xy

abg̃ab
ij /(εa + εb − εi − εj) (106)

Therefore, the four-index quantities for these contractions are
always formed in the (semi-) canonical basis and subsequently
transformed back to ROHF or localized orbitals if required.

In the case of parallel runs, several three-index quantities are
contracted in parallel to give a four-index quantity. The resulting
four-index quantities are contracted with multiple threads to give
the final contribution to, for example, the V matrix. This leads to a
speed-up of about 4–6 when eight threads are used—the difference
to an ideal speed-up (of 8) can be traced back to the I/O of the
three-index quantities, which cannot be parallelized.

Solving for the Amplitudes

For the fixed-amplitude MP2-F12 approach, the second-order
energy obtained when optimising the amplitudes tij

ab in the pres-
ence of a fixed geminal contribution is computed by evaluating the
Hylleraas functional, eq. (41). Having computed the matrix contri-
butions T −E, CC/ε, −P +Q, X, V and Cg/ε using the semi-direct
algorithm, these are read from disk and combined to generate the F12
contributions to the MP2 pair energies. Depending on the choice of
keywords, energies for both approximations A and B are computed.

The amplitude equations for the fully optimized MP2-F12
approach eq. (36) are solved efficiently using the iterative linear
equation solver routines in Ricc2, where the system of equations
s = Ac are solved in a reduced space of trial solution vectors
c1 . . . cn. The initial trial solution vector is cij

vw = B−1xy
vwṼ ij

xy, and
in each subsequent iteration, an additional vector is generated from
B−1xy

vwRij
xy. The inversion of the B matrix scales as O6, as do the

majority of the contractions when computing the residual Rij
xy. The

contractions involving the C matrix are performed in the (semi)-
canonical basis using the diagonal ε and scale as O4V2. The scheme
for these contractions closely follows that of the semidirect algo-
rithm in that the contraction indices a, b are slowest and only a batch
(ab) of the integrals Cxy

ab are held in memory at a given time so that

the memory requirements scale as O2. However, as the matrix C is
required many times (typically 15 iterations), rather than rebuilding
C each time from the three-index quantities, it is read from disk,
requiring O2V2 disk storage.

Example Calculations

We have selected a few medium-sized molecules to give examples of
MP2-F12 calculations that can be performed with the Turbomole
program package. Our selection includes drugs of various molecu-
lar size such as leflunomide, prednisone, and methotrexate, as well
as technically interesting molecules such as ethylenedioxytetrathi-
afulvalene (EDO-TTF) and a cluster model for the adsorption of
methanol on the H-ZSM-5 zeolite.

All of the calculations were performed in the basis sets cc-
pVXZ-F12 with X = D, T, and Q (optimized by Peterson et al.
for F12 calculations, see Ref. 4) as well as in the usual augmented
correlation-consistent basis sets aug-cc-pVXZ with X = D, T, Q,
and 5. A number of standard MP2 calculations were performed in the
aug-cc-pV6Z basis, but no MP2-F12 calculations were performed
in this basis (for the aug-cc-pV6Z basis, the auxiliary basis sets
needed in a MP2-F12 calculation are not available). For MP2-F12
calculations in the double-zeta sets (cc-pVDZ-F12 and aug-cc-
pVDZ), the aug-cc-pwCVTZ cbas of Ref. 40 was used for the
(robust) fitting techniques for the F12 integrals and the usual MP2
electron-repulsion integrals. Accordingly, for the triple-zeta sets
(cc-pVTZ-F12 and aug-cc-pVTZ), the aug-cc-pwCVQZ cbaswas
used, and so on.

As CABS, we used the OptRI basis sets of Yousaf and Peter-
son.5, 6 As jkbas needed for the Coulomb and exchange matrices
of the Fock matrix, we used the aug-cc-pV(X + 1)Z jkbas basis
of Weigend41 both for the cc-pVXZ-F12 as well as for the aug-cc-
pVXZ orbital basis sets with X = D, T, and Q. For the aug-cc-pV5Z
orbital basis, however, Weigend’s aug-cc-pV5Z jkbas basis was
used. All complementary auxiliary basis sets were orthogonalized
using the default singular-value decomposition method with the
threshold of 1.0d-08. For example, in the calculation on the
molecule leflunomide in the aug-cc-cc-pV5Z basis, 74 linearly
dependent CABS functions out of 3020 (ca. 2.5%) were removed
by this procedure.

Finally, it is important to notice that the conventional MP2 corre-
lation energies reported in this section were obtained using the large
aug-cc-pwCV(X+1)Z cbas auxiliary basis sets mentioned above.
If such conventional MP2 energies would have been computed in
separate calculations (without F12 contributions), one would have
used a (much) smaller auxiliary cbas basis. Hence, the conven-
tional MP2 energies reported here are slightly different from what
one would obain in a standard calculation with Turbomole. An
exception are the MP2/aug-cc-pV6Z results. These were obtained
using the usual aug-cc-pV6Z cbas.

Leflunomide

Leflunomide is a pyrimidine-synthesis inhibitor belonging to the
class of disease-modifying antirheumatic drugs. We have chosen
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Figure 1. Frozen-core MP2/aug-cc-pVTZ-optimized geometry of
leflunomide. The corresponding fc-MP2/aug-cc-pVTZ energy is
−1020.5135 Eh.

this small molecule because it contains all atoms of the set {H, C,
N, O, F} as well as an aromatic six-ring and a peptide bond as two
typical molecular building blocks.

We have optimized the equilibrium geometry at the frozen-core
MP2/aug-cc-pVTZ level. For the purpose of benchmarking and
mutual comparison of various codes, the Cartesian coordinates of
the MP2/aug-cc-pVTZ-optimized geometry are given in full detail
(in atomic units) in the Supporting Information. Our optimized equi-
librium geometry (Fig. 1) agrees well with the experimental X-ray
structure42 as well as with the geometries found in earlier theoretical
studies.43

Table 4 shows the Hartree–Fock energy, the conventional
MP2 correlation energy, the F12/B-sp correction from explicitly
correlated theory, and the energy correction due to CABS singles
for a series of basis sets. All of these energy contributions add
up to the total energy, which is also given in Table 4. All of the
calculations were performed for the MP2/aug-cc-pVTZ-optimized
geometry, which was kept fixed. The aug-cc-pV6Z basis yields the
lowest Hartree-Fock energy (−1017.0278 Eh), which is expected
to be close to the Hartree–Fock basis set limit. Adding the CABS
singles energy correction to the aug-cc-pV5Z Hartree–Fock energy
provides an energy close to this limit (−1017.0267 Eh). The F12
correction was obtained from an MP2-F12/B-sp calculation, that
is, using ansatz 2, approximation B, fixed amplitudes, and the
[F + K] approximation. In such an MP2-F12/B-sp calculation, the
corresponding energy for approximation A is also computed as an
intermediate result, and here and in the following, we adopt the
approach of Ref. 32 to estimate the MP2 basis set limit. Accordingly,
we estimate the basis set limit by adding 60% of the MP2-F12/A-sp

Figure 2. Frozen-core MP2/aug-cc-pV(T + d)Z-optimized geometry
of ethylenedioxytetrathiafulvalene (EDO-TTF). The corresponding fc-
MP2/aug-cc-pV(T + d)Z energy is −2048.8882 Eh.

energy to 40% of the MP2-F12/B-sp energy. For the largest basis set
(aug-cc-pV5Z), we thus obtain the frozen-core second-order energy
of E(2) = −3.9615(20) Eh, where the error bar (to be interpreted
as 95% confidence limit, −3.9615(20) ≡ −3.9615 ± 0.0020) has
been obtained as the difference between the estimated limit and the
MP2-F12/B-sp/aug-cc-pV5Z second-order energy. Hence, our best
estimate for the basis set limit of the total (frozen-core) MP2 energy
of leflunomide is EMP2 = −1020.989(2) Eh. Our total MP2-F12/B-
sp/aug-cc-pV5Z energy corresponds to 99.9997% of this value, but
rather than comparing total energies, it is more interesting to look
at the second-order correlation energies, as is done in Table 5.

In the aug-cc-pV5Z basis, with more than 3000 contracted
Gaussian basis functions, about 97.6% of the valence-shell MP2
correlation energy is obtained. Remarkably, all of the MP2-F12
calculations, even in the small double-zeta basis sets (cc-pVDZ-
F12 and aug-cc-pVDZ) yield a more accurate correlation energy.
When adopting a basis set limit of E(2) = −3.9615(20) Eh, we
observe that the correlation energy is slightly overestimated in
magnitude in all of the MP2-F12/A calculations while the MP2-
F12/B results are slightly smaller in magnitude. Table 5 also shows
that the two-point X−3 extrapolation of Helgaker et al. provides
excellent estimates of the basis set limit of the valence-shell MP2
correlation energy.44 The (TQ), (Q5), and (56) extrapolations yield
99.4, 99.87, and 99.95%, respectively. Nevertheless, the correlation
energies obtained at the MP2-F12/cc-pVTZ-F12 and MP2-F12/cc-
pVQZ-F12 levels are more accurate (and more economical from
a computational point of view) than these (TQ), (Q5), and (56)
extrapolations.

Table 4. Frozen-Core Second-Order Correlation Energy (in Eh) of Leflunomide.a

Basis Size Hartree–Fock MP2 F12/B-spb ECABS
c Total

cc-pVDZ-F12 651 −1016.906603 −3.237780 −0.672685 −0.057063 −1020.874130
cc-pVTZ-F12 1169 −1017.007601 −3.648331 −0.301658 −0.007803 −1020.965392
cc-pVQZ-F12 1959 −1017.025846 −3.804481 −0.155646 −0.000812 −1020.986785
aug-cc-pVDZ 518 −1016.706532 −2.950163 −0.932458 −0.120568 −1020.709721
aug-cc-pVTZ 1081 −1016.949345 −3.564402 −0.366962 −0.017845 −1020.898553
aug-cc-pVQZ 1934 −1017.011610 −3.781262 −0.171607 −0.003153 −1020.967632
aug-cc-pV5Z 3133 −1017.026113 −3.866734 −0.092296 −0.000600 −1020.985743
aug-cc-pV6Z 4734 −1017.027792 −3.905763 −1020.933554

aAt the frozen-core MP2/aug-cc-pVTZ-optimized geometry (cf. Fig. 1).
bFixed amplitudes MP2-F12/B result.
cCABS singles contribution.

Journal of Computational Chemistry DOI 10.1002/jcc



2506 Bachorz et al. • Vol. 32, No. 11 • Journal of Computational Chemistry

Table 5. Frozen-Core Second-Order Correlation Energy (in Eh and in %) of Leflunomide.a

Basis Size MP2 (%)b MP2-F12/A-spc (%)b MP2-F12/B-spd (%)b

cc-pVDZ-F12 651 −3.237780 (81.7) −4.011357 (101.3) −3.910465 (98.7)

cc-pVTZ-F12 1169 −3.648331 (92.1) −3.978474 (100.4) −3.949989 (99.7)

cc-pVQZ-F12 1959 −3.804481 (96.0) −3.969558 (100.2) −3.960128 (100.0)

aug-cc-pVDZ 518 −2.950163 (74.5) −4.006485 (101.1) −3.882621 (98.0)

aug-cc-pVTZ 1081 −3.564402 (90.0) −3.966986 (100.1) −3.931364 (99.2)

aug-cc-pVQZ 1934 −3.781262 (95.5) −3.963171 (100.0) −3.952869 (99.8)

aug-cc-pV5Z 3133 −3.866734 (97.6) −3.963080 (100.0) −3.959030 (99.9)

aug-cc-pV6Z 4734 −3.905763 (98.6)

aug-cc-pV(DT)Ze −3.823029 (96.5)

aug-cc-pV(TQ)Ze −3.939511 (99.4)

aug-cc-pV(Q5)Ze −3.956410 (99.9)

aug-cc-pV(56)Ze −3.959374 (99.9)

aAt the frozen-core MP2/aug-cc-pVTZ-optimized geometry (cf. Fig. 1).
bPercentage of the estimated basis set limit of E(2) = −3.9615(20) Eh.
cFixed amplitudes MP2-F12/A result.
dFixed amplitudes MP2-F12/B result.
eTwo-point X−3 extrapolation.

EDO-TTF

Ethylenedioxy-tetrathiafulvalene (EDO-TTF) is a tetrathiafulvalene
derivative with one ethylenedioxy group (cf. Fig. 2). Because this
molecule contains four sulfur atoms in addition to the first-row
elements, and because of its small size, we have selected it to
demonstrate the performance of our MP2-F12 implementation in
Turbomole. We have optimized the equilibrium geometry at the
frozen-core MP2/aug-cc-pV(T + d)Z level. The bent equilibrium
geometry (cf. Fig. 2) is similar to the geometries found in previous
work (cf. Ref. 45 and references therein). The Cartesian coordinates
of the MP2/aug-cc-pV(T+d)Z-optimized geometry are given in full
detail (in atomic units) in the Supporting Information. Table 6 shows
the Hartree–Fock energy, the conventional MP2 correlation energy,
the F12/B-sp correction from explicitly correlated theory, and the
energy correction due to CABS singles for a series of basis sets.

As for leflunomide in the previous section, we estimate the MP2
basis set limit from adding 60% of the MP2-F12/A-sp energy to 40%
of the MP2-F12/B-sp energy obtained in the aug-cc-pV(5 + d)Z

basis (Table 7). This yields E(2) = −2.758(2) Eh, and we estimate
the total (frozen-core) MP2 energy of EDO-TTF as EMP2 =
−2049.221(2) Eh. Table 7 shows the percentage of the correla-
tion energy recovered at the various levels of calculation. Despite
the four sulfur atoms in this molecule, the percentages are almost
identical to those obtained for leflunomide in comparable basis
sets.

All of our MP2-F12 calculations in the cc-pVXZ-F12 and aug-
cc-pVXZ basis sets were performed using the Slater-type geminals
optimized by Peterson et al., that is, using the exponents 0.9, 1.0,
and 1.1 a−1

0 for the basis sets cc-pVDZ-F12, cc-pVTZ-F12, and
cc-pVQZ-F12, and the exponents 1.1, 1.2, 1.4, and 1.4 for the basis
sets aug-cc-pVXZ (X = D, T, Q, 5), respectively.4 For the molecule
EDO-TTF, the dependence on the geminal exponent for the basis
sets cc-pVDZ-F12, cc-pVTZ-F12, and cc-pVQZ-F12 is shown in
Figure 3. Indeed, the minima of the three curves are very close to
the recommended values. For EDO-TTF, we find optimal exponents
of 0.92, 1.03, and 1.07 a−1

0 for the three correlation-consistent F12
basis sets.

Table 6. Frozen-Core Second-Order Correlation Energy (in Eh) of EDO-TTF.a

Basis Size Hartree–Fock MP2 F12/B-spb ECABS
c Total

cc-pVDZ-F12 510 −2046.378756 −2.213937 −0.508065 −0.044595 −2049.145353
cc-pVTZ-F12 886 −2046.450219 −2.523995 −0.225297 −0.005631 −2049.205143
cc-pVQZ-F12 1458 −2046.461306 −2.639571 −0.117351 −0.000713 −2049.218941
aug-cc-pV(D + d)Z 412 −2046.254175 −2.052546 −0.643320 −0.092560 −2049.042600
aug-cc-pV(T + d)Z 818 −2046.413443 −2.474962 −0.261247 −0.013749 −2049.163401
aug-cc-pV(Q + d)Z 1432 −2046.453085 −2.626865 −0.123862 −0.002962 −2049.206774
aug-cc-pV(5 + d)Z 2295 −2046.461223 −2.688964 −0.067550 −0.000869 −2049.218607
aug-cc-pV(6 + d)Z 3444 −2046.462708 −2.717357 −2049.180066

aAt the frozen-core MP2/aug-cc-pV(T + d)Z-optimized geometry (cf. Fig. 2).
bFixed amplitudes MP2-F12/B result.
cCABS singles contribution.
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Table 7. Frozen-Core Second-Order Correlation Energy (in Eh and in %) of EDO-TTF.a

Basis Size MP2 (%)b MP2-F12/A-spc (%)b MP2-F12/B-spd (%)b

cc-pVDZ-F12 510 −2.213937 (80.3) −2.795765 (101.4) −2.722003 (98.7)

cc-pVTZ-F12 886 −2.523995 (91.5) −2.771442 (100.5) −2.749293 (99.7)

cc-pVQZ-F12 1458 −2.639571 (95.7) −2.764805 (100.2) −2.756922 (99.9)

aug-cc-pV(D + d)Z 412 −2.052546 (74.4) −2.774850 (100.6) −2.695866 (97.7)

aug-cc-pV(T + d)Z 818 −2.474962 (89.7) −2.760648 (100.1) −2.736209 (99.2)

aug-cc-pV(Q + d)Z 1432 −2.626865 (95.2) −2.758482 (100.0) −2.750728 (99.7)

aug-cc-pV(5 + d)Z 2295 −2.688964 (97.5) −2.759745 (100.0) −2.756515 (99.9)

aug-cc-pV(6 + d)Z 3444 −2.717357 (98.5)

aug-cc-pV(DT + d)Ze −2.652821 (96.2)

aug-cc-pV(TQ + d)Ze −2.737713 (99.2)

aug-cc-pV(Q5 + d)Ze −2.754117 (99.8)

aug-cc-pV(56 + d)Ze −2.756358 (99.9)

aAt the frozen-core MP2/aug-cc-pVTZ-optimized geometry (cf. Fig. 2).
bPercentage of the estimated basis set limit of E(2) = −2.758(2) Eh.
cFixed amplitudes MP2-F12/A result.
dFixed amplitudes MP2-F12/B result.
eTwo-point X−3 extrapolation.

Zeolite H-ZSM-5 Cluster Model

The explicitly correlated R12 and F12 methods have proven par-
ticularly useful for the calculation of small interaction energies.
Early applications include the very weakly bound benzene. . .Ne
and benzene. . .Ar van der Waals complexes46 and the hydrogen-
bonded H2O and HF clusters.47–49 More recently, the interaction
of Ar with n-propanol50 and various 2-pyridone. . .(fluoro)benzene
complexes were studied.14, 51–53

In the present work, we have chosen the interaction of a methanol
molecule with a cluster model for zeolite H-ZSM-5 as an example
calculation. This model was taken from the work of Svelle et al.,20 in
which it was denoted as “4T” cluster model. We optimized this clus-
ter model at the frozen-core MP2/aug-cc-pV(T + d)Z level and the
corresponding Cartesian coordinates of the equilibrium geometry
are given (in atomic units) in the Supporting Information (cf. Fig 4).

Tables 8 and 9 display the MP2 correlation energies calculated
for the “4T” cluster model in absolute terms and as percentage of
the estimated basis set limit of E(2) = −2.128(1) Eh, respectively.
The total energy is estimated at EMP2 = −1532.412(1) Eh.

At the fixed MP2/aug-cc-pV(T + d)Z geometry, we estimate
the basis set limit for the frozen-core MP2 correlation contribution
to the interaction energy from the counterpoise corrected MP2-
F12/A and MP2-F12/B values obtained in the aug-cc-pV5Z basis.
These values are −13.447 and −13.429 mEh, respectively, leading
to the final best estimate of +E+MP2 = −13.44(1) mEh. Together
with the Hartree-Fock value of +EHartree−Fock = −22.25 mEh, we
arrive at +EMP2 = −35.69(1) mEh (93.7 kJ/mol). Note that this is
the purely electronic interaction energy, including neither fragment
relaxation energies nor zero-point vibrational energies nor any other
corrections.

Table 10 shows how the basis set limit for the frozen-core MP2
correlation contribution to the interaction energy (−13.44(1) mEh)

is approached as a function of the basis set, at the standard MP2
as well as at the MP2-F12 level, with and without counterpoise
corrections.

When discussing interaction energies, it is informative to con-
sider the basis set superposition error (BSSE) and the counterpoise
correction that corrects for it (cf. Ref. 54). Such counterpoise correc-
tion can be computed for the MP2-F12 method in exactly the same
manner as for the standard MP2 approach, that is, by performing
calculations on the fragments in the basis of the whole complex. As
we only consider the sp ansatz with fixed F12 amplitudes here, we
need not be concerned with the “geminal BSSE” due to the basis

Figure 3. Frozen-core MP2-F12/B-sp/cc-pVXZ-F12 correlation
energy of EDO-TTF as a function of the exponent γ of the Slater-type
geminal. Shown are curves for the cc-pVDZ-F12 (+), cc-pVTZ-F12
(×), and cc-pVQZ-F12 (∗) basis sets.
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Table 8. Frozen-Core Second-Order Correlation Energy (in Eh) of the “4T” Cluster Model.a

Basis Size Hartree–Fock MP2 F12/B-spb ECABS
c Total

cc-pVDZ-F12 471 −1530.207512 −1.707585 −0.392958 −0.037962 −1532.346022
cc-pVTZ-F12 836 −1530.271370 −1.934870 −0.185771 −0.005963 −1532.397974
cc-pVQZ-F12 1416 −1530.283290 −2.032719 −0.094065 −0.000936 −1532.411010
aug-cc-pV(D + d)Z 401 −1530.053450 −1.572188 −0.511032 −0.101311 −1532.237981
aug-cc-pV(T + d)Z 841 −1530.232249 −1.904501 −0.205513 −0.016695 −1532.358958
aug-cc-pV(Q + d)Z 1526 −1530.273793 −2.025649 −0.096758 −0.003398 −1532.399598
aug-cc-pV(5 + d)Z 2506 −1530.283074 −2.074434 −0.051886 −0.001239 −1532.410634
aug-cc-pV(6 + d)Z 3831 −1530.284810 −2.096254 −1532.381064

aAt the frozen-core MP2/aug-cc-pV(T + d)Z-optimized geometry (cf. Fig. 4).
bFixed amplitudes MP2-F12/B result.
cCABS singles contribution.

set superposition of geminal basis functions.55 When using the sp
ansatz, there is no such geminal BSSE.

Table 10 immediately shows that the BSSE is significant in all
of the standard MP2 calculations. Even in the largest basis set
(aug-cc-pV(6 + d)Z), the counterpoise correction to the correla-
tion contribution to the interaction energy amounts to 0.47 mEh,
which is about 100 times larger than the corresponding correction
at the Hartree–Fock level (ca. 0.005 mEh). Incidentally, we note that
taking the average of the uncorrected (−13.84 mEh) and corrected
(−13.05 mEh) aug-cc-pV(5+d)Z energies gives a remarkably good
estimate of the limiting value. The same average interaction energy
is obtained in the aug-cc-pV(6 + d)Z basis.

Also at the MP2-F12 level the basis set superposition error
is non-negligible, being of the same order of magnitude as the
Hartree–Fock BSSE. However, except for the largest basis sets
(cc-pVQZ-F12 and aug-cc-pV(5 + d)Z), the counterpoise correc-
tion to the MP2-F12 correlation contribution is smaller than the
corresponding correction to the Hartree–Fock interaction energy

(Table 11). When including a counterpoise correction to the MP2-
F12 correlation contributions, the basis set convergence is very fast.
Already in the aug-cc-pV(D+d)Z and aug-cc-pV(T+d)Z basis sets,
the electron correlation contributions are within 0.3 and 0.1 mEh of
the basis set limit, respectively.

Prednisone and Methotrexate

The frozen-core MP2/aug-cc-pVDZ equilibrium structure of pred-
nisone is shown in Figure 5 and is available from the Supporting
Information. It agrees very well with the 3D structure found in the
University of Alberta’s database DrugBank,56, 57 except for the
orientation of the –CH2OH group.

Table 12 shows the Hartree–Fock energy, the conventional MP2
correlation energy, the F12/B-sp correction from explicitly corre-
lated theory, and the energy correction due to CABS singles for a
series of basis sets. MP2-F12/A-sp and MP2-F12/B-sp correlation
energies are given in Table 13. We estimate the basis set limit for the
second-order energy at E(2) = −5.197(7) Eh, of which already more

Table 9. Frozen-Core Second-Order Correlation Energy (in Eh and in %) of the “4T” Cluster Model.a

Basis Size MP2 (%)b MP2-F12/A-spc (%)b MP2-F12/B-spd (%)b

cc-pVDZ-F12 471 −1.707585 (80.3) −2.158991 (101.5) −2.100543 (98.7)

cc-pVTZ-F12 836 −1.934870 (90.9) −2.138805 (100.5) −2.120641 (99.7)

cc-pVQZ-F12 1416 −2.032719 (95.5) −2.132798 (100.2) −2.126784 (100.0)

aug-cc-pV(D + d)Z 401 −1.572188 (73.9) −2.149952 (101.0) −2.083220 (97.9)

aug-cc-pV(T + d)Z 841 −1.904501 (89.5) −2.129371 (100.1) −2.110014 (99.2)

aug-cc-pV(Q + d)Z 1526 −2.025649 (95.2) −2.128141 (100.0) −2.122407 (99.8)

aug-cc-pV(5 + d)Z 2506 −2.074434 (97.5) −2.128597 (100.0) −2.126320 (99.9)

aug-cc-pV(6 + d)Z 3831 −2.096254 (98.5)

aug-cc-pV(DT + d)Ze −2.044422 (96.1)

aug-cc-pV(TQ + d)Ze −2.114054 (99.4)

aug-cc-pV(Q5 + d)Ze −2.125618 (99.9)

aug-cc-pV(56 + d)Ze −2.126227 (99.9)

aAt the frozen-core MP2/aug-cc-pVTZ-optimized geometry (cf. Fig. 4).
bPercentage of the estimated basis set limit of E(2) = −2.128(1) Eh.
cFixed amplitudes MP2-F12/A result.
dFixed amplitudes MP2-F12/B result.
eTwo-point X−3 extrapolation.
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Table 10. Hartree–Fock and Frozen-Core Second-Order Interaction Energies (in mEh) for Methanol Adsorbed on
the Zeolite H-ZSM-5 Cluster Model.a

Hartree–Fock MP2b MP2-F12/B-spc

Basis Size +Ed CPe +ECP
f +Ed CPe +ECP

f +Ed CPe +ECP
f

cc-pVDZ-F12 471 −23.31 1.00 −22.32 −12.51 2.89 −9.62 −13.38 0.32 −13.07
cc-pVTZ-F12 836 −22.40 0.24 −22.16 −13.88 2.00 −11.88 −13.53 0.19 −13.34
cc-pVQZ-F12 1416 −22.28 0.04 −22.24 −13.72 0.99 −12.73 −13.50 0.08 −13.42
aug-cc-pV(D + d)Z 401 −24.17 2.46 −21.71 −14.15 4.71 −9.44 −13.64 0.48 −13.16
aug-cc-pV(T + d)Z 841 −22.87 0.83 −22.05 −14.75 2.92 −11.83 −13.75 0.37 −13.38
aug-cc-pV(Q + d)Z 1526 −22.39 0.15 −22.24 −14.16 1.45 −12.71 −13.62 0.21 −13.41
aug-cc-pV(5 + d)Z 2506 −22.28 0.03 −22.25 −13.84 0.79 −13.05 −13.52 0.09 −13.43
aug-cc-pV(6 + d)Z 3831 −22.25 0.00 −22.25 −13.68 0.47 −13.21
aug-cc-pV(DT + d)Zg −12.83
aug-cc-pV(TQ + d)Zg −13.36
aug-cc-pV(Q5 + d)Zg −13.40
aug-cc-pV(56 + d)Zg −13.42

aAt the frozen-core MP2/aug-cc-pV(T + d)Z-optimized geometry (cf. Fig. 4).
bCorrelation contribution only.
cFixed amplitudes MP2-F12/B result; correlation contribution only.
dInteraction energy with respect to fragments that were kept fixed in the complex geometry.
eCounterpoise correction.
f Interaction energy including counterpoise correction.
gTwo-point X−3 extrapolation.

than 99% is obtained at the MP2-F12/B-sp/cc-pVDZ-F12 level. The
aug-cc-pV(TQ)Z and (Q5) extrapolations are comparable in qual-
ity with the MP2-F12/B-sp/aug-cc-pVTZ and aug-cc-pVQZ results,
but note that the latter calculations are more economical.

The frozen-core MP2/aug-cc-pVDZ equilibrium structure of
methotrexate is shown in Figure 6 and is available from the Sup-
porting Information. Our structure is clearly different from the
DrugBank 3D structure56, 57 as well as from other reported struc-
tures.58–60 This is understandable, because we have optimized an
isolated molecule and not the crystal structure of methotrexate
tetrahydrate. We have found an equilibrium structure with two
intramolecular hydrogen bonds (cf. Fig. 6). In a comprehensive
study of the molecular conformations of methotrexate by force field
techniques, 1,250 minima were found within 10 kcal/mol above the
respective global minimum.60 Note that the lowest-energy minimum
in Kollman’s force field is rather different from our structure, with
only one intramolecular hydrogen bond.60

Tables 14 and 15 list the relevant Hartree–Fock, MP2, and
MP2-F12 energies. We estimate the basis set limit for the second-
order energy at E(2) = −6.755(9) Eh, of which already about
99% is obtained at the MP2-F12/B-sp/cc-pVDZ-F12 level. The
excellent performance of the MP2-F12/B-sp/cc-pVDZ-F12 level of
calculation is demonstrated.

Computation Times

All of the calculations presented in this article were performed
on a heterogeneous Intel® Xeon® compute server containing
X5460 3.16 GHz, E5640 2.67 GHz, and E5530 2.40 GHz proces-
sors. Table 16 reports the measured computation times (wall clock)
of the calculations performed on the leflunomide molecule in the
aug-cc-pVXZ basis sets. These computation times were taken from

the calculations done for Table 4, which were not performed on
a dedicated processor but rather on various processor types and
under normal working conditions, that is, under load. By running
one particular MP2-F12 calculation simultaneously on all proces-
sors of the compute server (under load), we found that the ratio
between the fastest and the slowest calculations was about 1.5 with
respect to wall-clock time. Hence, the timings reported in Table 16
provide rather crude estimates of the timings that one may expect
from this kind of calculations in real-life applications. Table 16
gives, however, a proper impression of the “order of magnitude”
of the computation times of Hartree–Fock, conventional MP2, and
explicitly correlated MP2-F12 calculations.

All Hartree–Fock calculations of the present work were carried
out without any approximations (column under the header “HF”).
When the cardinal number X of the basis set is increased by 1, the
Hartree–Fock computation time increases roughly by a factor of
9 (note that the calculations in the aug-cc-pV5Z and aug-cc-pV6Z
basis sets were run in parallel, because in terms of one process, these
calculations would have taken 2 months and 1.5 years, respectively).
The MP2-F12/2A* calculations are considerably faster than the
Hartree–Fock calculations, even when using just one thread. In the
larger basis sets, the difference between MP2-F12/2A* and Hartree–
Fock calculations is about one order of magnitude. The MP2-F12/2B
calculations take about four to five times longer than the MP2-
F12/2A* calculations, but they are still faster than their underlying
Hartree–Fock calculation, except in the small aug-cc-pVDZ and
aug-cc-pVTZ basis sets.

When comparing the sequential MP2-F12 calculations with
those that were run in parallel using eight threads (OpenMP), we find
that the speed-up amounts to about only 4–5, significantly below 8.
This can be explained by the I/O involved and by the fact that the
processor time in the parallel calculations may be up to about 30%
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Figure 4. Frozen-core MP2/aug-cc-pV(T+d)Z-optimized geometry of
the “4T” cluster model for zeolite H-ZSM-5 with adsorbed methanol.20

The corresponding fc-MP2/aug-cc-pV(T + d)Z energy is −1532.1367
Eh.

larger than in the sequential calculation (e.g., the OpenMP parallel
calculation needs more core memory, and as a result, some inter-
mediate quantities need to be re-evaluated more often than in the
corresponding sequential calculation).

Table 16 furthermore provides a comparison between explicitly
correlated MP2-F12 and conventional MP2 calculations. As the aux-
iliary basis cbas in the MP2-F12 calculations is larger than the one
that is used in a separate conventional MP2 calculation, the table
contains two columns for the two different cbas basis sets. The
MP2 calculation with the standard cbas basis is the most relevant
one, because this is how regular conventional MP2 calculations are
performed (for the aug-cc-pV6Z basis, there exists only a standard
cbas basis). Table 16 shows that the MP2-F12/2A* calculations
using eight threads take about six times more computation time than
the conventional MP2 calculations (standard cbas). With only one
thread, the factor is about 20.

We observe that virtually all MP2 and MP2-F12 calculations are
significantly faster than the underlying Hartree–Fock calculation,
which needs about 20 iterations. Hence, the Hartree–Fock calcula-
tions have been a major bottleneck in the calculations presented in
this article. However, Hartree–Fock calculations can alternatively
be carried out using the RIJK approximation of Weigend.41 The

Figure 5. Frozen-core MP2/aug-cc-pVDZ-optimized geometry of
prednisone. The corresponding fc-MP2/aug-cc-pVDZ energy is
−1188.7839 Eh.

Figure 6. Frozen-core MP2/aug-cc-pVDZ-optimized geometry of
methotrexate. The corresponding fc-MP2/aug-cc-pVDZ energy is
−1585.5005 Eh.

timings of such calculations are also reported in Table 16, both for
the standard jkbas and for the larger jkbas used in the MP2-
F12 calculations. The reduction of computation time by virtue of
the RIJK approximation is substantial. Using the standard jkbas
basis, the Hartree–Fock timings are of the same order of magnitude
as the MP2-F12/2A* calculation using eight threads.

In conclusion, Table 16 shows that MP2-F12 calculations can
be performed in large basis sets for sizable molecules in reasonable
computation times. For leflunomide in the aug-cc-pV5Z basis (3133
basis functions), for example, a Hartree-Fock calculation using the
standard RIJK approximation, followed by a MP2-F12/2A* cal-
culation using eight threads, takes altogether only about 54 h, that
is, a little more than 2 days. A correlation energy of −3.9635 Eh

(100.05% of the estimated basis set limit) is obtained in such a
calculation on a molecule with 28 atoms.

Concerning basis set extrapolation techniques, we note that
the correlation energy of leflunomide obtained at the extrapolated
aug-cc-pV(Q5)Z level amounts to −3.9564 Eh (99.87%). The calcu-
lations required for this extrapolation add up to 44 h when the RIJK
approximation is invoked in the aug-cc-pVQZ and aug-cc-pV5Z
Hartree-Fock calculations, but to 70 days without this approxima-
tion. A comparably accurate correlation energy can be obtained at
the MP2-F12/2B level in the aug-cc-pVTZ basis. The correspond-
ing calculations take between 7 and 46 h (times for Hartree-Fock
with RIJK plus MP2-F12/2B with eight threads versus Hartree-Fock
without RIJK plus MP2-F12/2B with 1 thread). At the MP2-
F12/2A* level, the corresponding computation times are 3 and 27 h,
respectively. The MP2-F12 calculations clearly outperform basis set
extrapolation techniques.

Concluding Remarks

The aim of this article was to present the details of the MP2-F12
method for ground state energies as implemented in the Turbo-
mole program. The range of utility currently affordable has been
demonstrated by large-scale MP2-F12 calculations of systems with
up to 55 atoms and 3652 contracted basis functions (methothrexate;
4323, 6644, and 13,618 functions in the CABS, jkbas, and cbas
basis sets, respectively). The hope is expressed that this article may
serve as a valuable reference for future work in the field as well as
for users of the MP2-F12 implementation in Turbomole.
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Table 11. Hartree–Fock (HF) Interaction Energies (in mEh), Obtained with and without CABS Singles
Contribution, for Methanol Adsorbed on the Zeolite H-ZSM-5 Cluster Model.a

HF w/o CABS singles HF w/CABS singles

Basis Size +Eb CPc +Ed
CP +Eb CPc +Ed

CP

cc-pVDZ-F12 471 −23.31 1.00 −22.32 −22.43 0.23 −22.20
cc-pVTZ-F12 836 −22.40 0.24 −22.16 −22.31 0.08 −22.23
cc-pVQZ-F12 1416 −22.28 0.04 −22.24 −22.27 0.02 −22.25
aug-cc-pV(D + d)Z 401 −24.17 2.46 −21.71 −22.82 0.79 −22.03
aug-cc-pV(T + d)Z 841 −22.87 0.83 −22.05 −22.41 0.21 −22.20
aug-cc-pV(Q + d)Z 1526 −22.39 0.15 −22.24 −22.31 0.07 −22.24
aug-cc-pV(5 + d)Z 2506 −22.28 0.03 −22.25 −22.26 0.01 −22.25
aug-cc-pV(6 + d)Z 3831 −22.25 0.00 −22.25

aAt the frozen-core MP2/aug-cc-pV(T + d)Z-optimized geometry (cf. Fig. 4).
bInteraction energy with respect to fragments that were kept fixed in the complex geometry.
cCounterpoise correction.
dInteraction energy including counterpoise correction.

Table 12. Frozen-Core Second-Order Correlation Energy (in Eh) of Prednisone.a

Basis Size Hartree–Fock MP2 F12/B-spb Ec
CABS Total

cc-pVDZ-F12 1014 −1185.014786 −4.313639 −0.834380 −0.056935 −1190.219740
cc-pVTZ-F12 1846 −1185.118692 −4.811202 −0.375624 −0.009403 −1190.314920
cc-pVQZ-F12 3146 −1185.139089 −5.007141 −0.189589 −0.001141 −1190.336959
aug-cc-pVDZ 832 −1184.805928 −3.978297 −1.134315 −0.124087 −1190.042626
aug-cc-pVTZ 1794 −1185.055743 −4.735309 −0.434898 −0.020817 −1190.246767
aug-cc-pVQZ 3276 −1185.124360 −4.989929 −0.200175 −0.003674 −1190.318137
aug-cc-pV5Z 5382 −1185.139550 −5.088523 −1190.228073

aAt the frozen-core MP2/aug-cc-pVDZ optimized geometry (cf. Fig. 5).
bFixed amplitudes MP2-F12/B result.
cCABS singles contribution.

Table 13. Frozen-Core Second-Order Correlation Energy (in Eh and in %) of Prednisone.a

Basis Size MP2 (%)b MP2-F12/A-spc (%)b MP2-F12/B-spd (%)b

cc-pVDZ-F12 1014 −4.313639 (83.0) −5.267677 (101.4) −5.148019 (99.1)

cc-pVTZ-F12 1846 −4.811202 (92.6) −5.221831 (100.5) −5.186825 (99.8)

cc-pVQZ-F12 3146 −5.007141 (96.3) −5.208255 (100.2) −5.196729 (100.0)

aug-cc-pVDZ 832 −3.978297 (76.6) −5.252903 (101.1) −5.112611 (98.4)

aug-cc-pVTZ 1794 −4.735309 (91.1) −5.209878 (100.2) −5.170207 (99.5)

aug-cc-pVQZ 3276 −4.989929 (96.0) −5.201553 (100.1) −5.190104 (99.9)

aug-cc-pV5Z 5382 −5.088523 (97.9)

aug-cc-pV(DT)Ze −5.054051 (97.2)

aug-cc-pV(TQ)Ze −5.175732 (99.6)

aug-cc-pV(Q5)Ze −5.191966 (99.9)

aAt the frozen-core MP2/aug-cc-pVTZ-optimized geometry (cf. Fig. 5).
bPercentage of the estimated basis set limit of E(2) = −5.197(7) Eh.
cFixed amplitudes MP2-F12/A result.
dFixed amplitudes MP2-F12/B result.
eTwo-point X−3 extrapolation.
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Table 14. Frozen-Core Second-Order Correlation Energy (in Eh) of methotrexate.a

Basis Size Hartree–Fock MP2 F12/B-spb ECABS
c Total

cc-pVDZ-F12 1188 −1580.611852 −5.604259 −1.085817 −0.087707 −1587.389635
cc-pVTZ-F12 2145 −1580.762283 −6.256507 −0.484984 −0.012193 −1587.515967
cc-pVQZ-F12 3619 −1580.788748 −6.509727 −0.245154 −0.001420 −1587.545051
aug-cc-pVDZ 957 −1580.342976 −5.157446 −1.486306 −0.171340 −1587.158068
aug-cc-pVTZ 2024 −1580.677917 −6.142324 −0.575444 −0.028657 −1587.424342
aug-cc-pVQZ 3652 −1580.769575 −6.479852 −0.265566 −0.004642 −1587.519635
aug-cc-pV5Z 5951 −1580.789241 −6.611223 −1587.400463

aAt the frozen-core MP2/aug-cc-pVDZ optimized geometry (cf. Fig. 6).
bFixed amplitudes MP2-F12/B result.
cCABS singles contribution.

Table 15. Frozen-Core Second-Order Correlation Energy (in Eh and in %) of Methotrexate.a

Basis Size MP2 (%)b MP2-F12/A-spc (%)b MP2-F12/B-spd (%)b

cc-pVDZ-F12 1180 −5.604259 (83.0) −6.847109 (101.4) −6.690075 (99.0)

cc-pVTZ-F12 2145 −6.256507 (92.6) −6.786752 (100.5) −6.741491 (99.8)

cc-pVQZ-F12 3619 −6.509727 (96.4) −6.769759 (100.2) −6.754882 (100.0)

aug-cc-pVDZ 957 −5.157446 (76.4) −6.829593 (101.1) −6.643752 (98.4)

aug-cc-pVTZ 2024 −6.142324 (90.9) −6.771182 (100.2) −6.717769 (99.5)

aug-cc-pVQZ 3652 −6.479852 (95.9) −6.760844 (100.1) −6.745419 (99.9)

aug-cc-pV5Z 5951 −6.611223 (97.9)

aug-cc-pV(DT)Ze −6.557010 (97.1)

aug-cc-pV(TQ)Ze −6.726156 (99.6)

aug-cc-pV(Q5)Ze −6.749054 (99.9)

aAt the frozen-core MP2/aug-cc-pVTZ-optimized geometry (cf. Fig. 6).
bPercentage of the estimated basis set limit of E(2) = −6.755(9) Eh.
cFixed amplitudes MP2-F12/A result.
dFixed amplitudes MP2-F12/B result.
eTwo-point X−3 extrapolation.

Table 16. Computation Times (Wall-Clock Time in Minutes)a of Various Hartree–Fock (20 iterations),
MP2-F12/2B-sp [F + K], and MP2-F12/2A*-sp [T + V] calculations on leflunomide; n is the number of threads.

HF HF F12/2B F12/2B F12/2A* F12/2A*
Basis HF RIJKd RIJKe MP2b MP2c n = 1 n = 8 n = 1 n = 8

aug-cc-pVDZ 118 40 26 2 5 432 95 95 20
aug-cc-pVTZ 1211 96 147 13 28 1549 344 385 83
aug-cc-pVQZ 10086 367 626 70 129 6054 1374 1609 419
aug-cc-pV5Z 90431f 1938 2941 258 398 19011 3719 4541 1296
aug-cc-pV6Z 817018g 993

aMeasured on Intel® Xeon® X5460 3.16 GHz, E5640 2.67 GHz, and E5530 2.40 GHz.
bUsing the standard cbas basis.
cUsing the same cbas basis as used in the MP2-F12/2A* and -2B calculations.
dUsing the standard jkbas basis.
eUsing the same jkbas basis as used in the MP2-F12/2A* and -2B calculations.
f Six times the time measured in a parallel run with six processes.
gEight times the time measured in a parallel run with eight processes.
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