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Abstract. An algorithm is presented for the efficient
evaluation of two types of one-center three-electron
Gaussian integrals. These integrals are required to avoid
the resolution-of-identity (RI) approximation in explic-
itly correlated linear R12 methods. Without the RI
approximation, it is possible to enforce rigorously the
strong orthogonality of the second-order Mgller—Plesset
R12 ansatz. A test calculation is performed using atomic
Gaussian-type orbitals of the neon atom.
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1 Introduction

The advantages of using explicitly correlated basis
functions in molecular electronic calculations have been
recognized for many years. Compared with the more
conventional products of one-electron functions, the use
of basis functions with terms depending explicitly on the
interelectronic coordinates can improve significantly the
rate of convergence of the wave-function expansion.
Various explicitly correlated ansdtze have been pro-
posed. The explicitly correlated Gaussian [1] and
Gaussian geminal approaches (with [2] or without [3]
optimization of the Gaussian exponents) have been ap-
plied to small systems and have provided extremely ac-
curate results. The R12 method [4, 5] has demonstrated
its usefulness in particular for relatively large systems.
The principal advantage of this method is the scheme by
which the expensive evaluation of integrals involving
more than two electrons is avoided. A key ingredient of
this approach is the use of the resolution of the identity
(RI) to factorize the three-electron integrals into linear
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combinations of products of two-electron integrals.
Concerning the RI approximation, the one-electron ba-
sis set should be complete up to the finite angular mo-
mentum quantum number ¢ = 3foccupied [6]. Experience
has shown that, for medium-sized basis sets, this does
not cause major problems. Nevertheless, in a molecule,
atomic orbitals of all ¢ have partial occupations. Fur-
thermore, for heavy atoms with occupied d or f shells,
the justification of the RI approximation in terms of
low-angular-momentum functions is not obvious [7].

In this context, the exact evaluation of three-electron
integrals would be useful. First, it will make possible the
direct investigation of the errors incurred by the use of
the RI approximation. Second, in molecular calcula-
tions, it may be possible to include some exactly evalu-
ated three-electron integrals as improvements on the
conventional R12 method.

The main obstacles associated with the exact evalu-
ation of all three-electron integrals are the large number
of such integrals and their complicated evaluation.
A simplification can be achieved by restricting the
calculation to one-center integrals. The three-electron
integrals can then be calculated for medium-sized basis
sets (containing 50-100 Gaussians) and convergence
properties can be tested on atoms.

Algorithms for the evaluation of one-center three-
electron integrals have already been proposed. For
example, in Ref. [8] general algorithms are given for
Slater-type orbitals and spherical-harmonic expansions.
We know of no applications, however, of similar algo-
rithms for medium-sized Gaussian basis sets.

We present here an efficient method for the evalua-
tion of two types of three-electron integrals. As will be
shown elsewhere, these integrals are sufficient for re-
moving the deficiencies introduced by the RI approxi-
mation. The efficiency of the method enables us to use
relatively large basis sets.

Our method is based on the expansion of overlap
distributions in Hermite Gaussians, widely used for the
evaluation of two-electron integrals in the McMurchie—
Davidson scheme [9]. An advantage of this scheme is
that it may be extended from one-center to six-center



integrals, although the computational cost would obvi-
ously be much higher. Indeed, explicit schemes based on
this approach have already been exposed for the calcu-
lation of three-electron integrals in the case of Gaussian
geminals [3]. The connection between the two ap-
proaches can be seen by observing Eq. (25) later. In the
Gaussian-geminal approach, the integration over ¢ in
Eq. (25) is avoided; instead, ¢ corresponds to a constant
geminal exponent. The principal advantage of the
geminal approach is that the elementary integral
derivatives can be (relatively simply) evaluated also for
multicenter integrals [3, 10].

2 Evaluation of one-center three-electron integrals

In this section we present a method for the evaluation of
three-electron integrals of the type
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In these expressions, the bra Gaussian orbitals are given
by

Lu(r1) = xfng’lP 21;5 exp ( O‘ur%P) ) (4)
x(r2) = xzp)’zpzz‘z§ exp ( /g"’gp) ) (5)
1:(13) = X33 v3p 255 exp (=7,73p) (6)

where rip, rp, and r3p are the norms of the position
vectors

rip=r—P;, (7)
np=r,—P (8)
rp=13—P; | )

and similarly for the ket Gaussians. Since we consider
the evaluation of one-center integrals, the three centers
Py, P,, and P; are the same; however, for the purpose
of deriving the expressions for the evaluation of the
integrals, we shall need to distinguish between the
centers Py, P,, and P3; of the orbitals of the three
electrons.
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Of the three types of integrals (Egs. 1-3), only /1gr and
Igr are of direct interest in the context of explicitly
correlated methods; however, since the evaluation of I1r
and /g is easily related to the evaluation of Iy, we shall
first discuss the evaluation of Ij;.

2.1. Evaluation of riry, integrals

On combining the bra and ket Gaussians, Eq. (1)
becomes
= [ [ [ttt
2 2 2
exp (—orip — Prip — yr
% p (—orip — Brap — 1rip) dr, dr, dr; |,
F13F12
(10)
where we have introduced the total exponents
o=+ o , (11)
P=2i+ Ve (13)
and the total Cartesian quantum numbers
Ny, =Ny +ng, (14)
ny, = ny, +ng, (15)
gy = Ny, + Ay (16)

Next, following the procedure of McMurchie and
Davidson for one- and two-electron integrals, we expand
the Cartesian Gaussians in Hermite Gaussians, for
example,

t
xpexp (—oatp) Z £y (@)

Pe=0
(17)

The expansion coefficients E}* that appear in this
expression can be calculated by recurrence relations.
Since in our case the Cartesian and Hermite Gaussians
are centered at the same position, these become partic-
ularly simple,

E)=1,

X eXp {—oc(xl - Px)z} .

(18)
n 1 n— n
El = ZEz—ll + (1 + I)Ez+ll : (19)

In terms of integrals over Hermite Gaussians, we now
obtain

My

In =Y EE En B B v By B Ev? Ruy

tuv

where the Hermite integrals are defined as
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By taking the differentiations outside the integration
(Leibniz theorem), we obtain

o\ [a\"
Ry = <6T§,> (@) Rooo (22)

where the basic, undifferentiated integral is given by

exp (—or?, — fr2, — yr2
ROO():/// p( ir ~ Prap V3P)dr1drzdr3.

r13ri2
(23)

Our strategy will now be to obtain a simple expression
for the integral Eq. (23) and then to obtain the
remaining Hermite integrals by differentiation according
to Eq. (21). To evaluate Ry, we follow Boys and
introduce the identity

1 27 ,
—=— [ exp(—rijzu°)du , 24
3 ‘/EO/ P( 13 ) (24)

and similarly for ;. This gives us the following 11-
dimensional integral:

4
Rooo:;/////GXP(_W%P_ﬂrgp_y”gp_”lzztz

—ryu’)dt dudry drp dry
(25)
whose integration over the nine spatial coordinates is

trivial. By carrying out these integrations and making

the substitutions (2)/(f + #*) — ¢ and («?)/(y + u*) —

u?, we obtain

_ oz,[?z‘zPlzzwLoc','MZPIZg + Byt uszz3

11
47 CXp ( PR R
Rooo = —— 3
T (a4 B2 + yu?)?

Note that both integration limits are from 0 to 1.

)dtdu .

(26)

2.2. Expansion of the Hermite integrals Ry
in elementary integrals

The integrals Ry, are obtained by successively differen-
tiating the basic integral Ryy in Eq. (26). This produces
a linear combination of elementary integrals of the type

abc . 1 2L-M—N N —1 M—1 a a) ajz }71 bz b} Cl Cy 7C3
Iy =4ma VX X3 X Y Y33 2,232

2N, 2M
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(27)

where X5, Y12, and Zj; are the three Cartesian compo-
nents of the vector

Ppo=P —-P,, (28)

and similarly for the components of P;3 and P,3. Since
we are concerned with one-center integrals, only inte-
grals of the type

I = (I/(\)/E)\EI)L)]JI —P,=P; (29)
will contribute, but for the purpose of deriving expres-
sions for the calculation of the integrals, it will be
necessary to consider the full set of integrals in Eq. (27).
We therefore expand the Hermite integrals as follows:

_ ta ub ve abc
RtUV - E : CNXMXLX CNyM‘,.Ly C'NZMZL:]NML ’ (30)
NML abc

where we have used the notation

N=N,+N,+N, , (31)
M =M +M,+ M. , (32)
L=L+L,+L.. (33)

Since all dependence on exponents and coordinates has
been included in the integrals /%S in Eq. (27), the
expansion coefficients in Eq. (30) are independent of the
exponents and coordinates (and thus are the same for
the three Cartesian directions). By considering some
low-order special cases, it becomes clear that the
coefficients are even integers (positive, negative, or zero).

Let us consider the recursive evaluation of the
expansion coefficients. By differentiating Eq. (30) with
respect to P,,, we obtain the two equivalent expressions

_ t+1,t2,t3,a ~ub ve abc
Rii 110,030 *E E CNXMXLX CN‘,M,L,,CNZMLZINML

NML abc
(34)
a u ve ol i
= Z Z C]tvaer CN}:M Ly CNz]M:Lz a}v)ML ?
NML abc X1
(35)

where the derivatives
Eq. (27) are given by

of the elementary integrals

alabc
NML __ [alfl-az,awbyc +a 1111702*1,03-1776
oP. HNML 24NmL
X1
a+1,a2,a3,b,c ay,ar+1,a3,b,c
_2IN+1,M7L+I _2[N,M+1,L+1 : (36)

On inserting Eq. (36) into Eq. (35), substituting dummy
indices, and comparing with Eq. (34), we obtain

ti+1,h,t3,0 ta1+1,az,a3 tay,ax+1,a;3
CNXMXLX = (a1 + I)CNXM,.LX + (a2 + I)CNXMXLX

tar—1,az,a3 tar,a;—1,a3
=20y D1~ 28N

(37)
t b+ 1,t3,a _ taa+1,az,a3 t,ay,az,a3+1
CNXMXLX =—(a1 + I)CNXMXLX + (a3 + I)CNXMXLX
ta)—1l,az,az t,ay,az,a3—1
20 i~ 2O S
(38)
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tap,ax+1,a3 t,ay,az,a3+1
N.M.L, —(a2+ DOy = (as + DOV

+ 2C]t\'a11\;27111‘j3 1 + th “LT’M‘13711L -1
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where we have included the corresponding recurrence
relations for #, and #3. By beginning with the element

; (40)

and noting that the coefficients vanish if any of the
indices become negative, we may generate the full set of
expansion coefficients by recursion. In practice, many
of the expansion coefficients are zero. In fact, for a
coefficient to be nonzero, ¢; + t, + t3 must be an even
integer and the following conditions must be satisfied:

t t t
%szv,ﬁMx. (41)

000000 __
COOO =1

max(Ny, M,) < Ly, =

Since the number of nonzero coefficients is rather small
and is independent of the exponents and the Cartesian
directions, the coefficients may be calculated and stored
once and for all, that is, there is no need to recompute
them for each individual integral.

2.3. Expansion of the Cartesian integrals Iy
in elementary integrals

Having established the transformations from elementary
to Hermite integrals (Eq. 30) and from Hermite to Car-
tesian integrals (Eq. 20), we are now ready to consider
the direct transformation from elementary to Cartesian
integrals. By substituting into Eq. (20) the expansion
Eq. (30), we obtain

Ny, N Ny N2y My Myy Mz
In =Y ESE;EyE EREZE) ESES
tuv NLM
itz UiUU3 V10203
X CN L, CN),MyLy CyarrAvme - (42)
For an efficient evaluation, we combine the expansion
coefficients for each Cartesian direction and obtain

E Mxy E Tty § T Chnt
E Etz E NXM L, >

where we have indicated that the coefficients are best
evaluated by three partial summations, one for each
electronic coordinate. Since the Hermite-to-Cartesian
expansion coefficients depend on the exponents (Eq. 19),
this transformation must be carried out separately for
each new batch of integrals. In terms of these coeffi-
cients, we obtain the following expression for the
Cartesian integrals:

VlX] Ny Vll3

Fyoat, (43)

”ﬂ”m”rz Tiyy yy yy gtz Tzy Mzy
In = NML FNML FNML

NLM

INML . (44)

It only remains to consider the evaluation of the

elementary integrals Iyu;,. However, we first note the
following restrictions on the summation indices:

N < nxl + n,’63
X

LA (45)
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M, < Ty + My : (46)
2
L, <Mt B (47)
2
max(Ny, M) < Ly < Ny + M, (48)
The summation over the indices Ny, M,,L,,N,,

M,, Ly, N;, M., L. can be factorized by first summing over
N ,M,,L,,N;,M,,L, and then over Ny,M,,L,N,+ N,
M +M.,L, + L. This is still the most time-consuming
part of the calculation. It is difficult to give an expression
for the number of nonzero terms in Eq. (44), but the
conditions on the indices ensure that the number of
nonzero terms is not too large.

2.4. Inclusion of the r3, factor

We shall now compute the integrals Egs. (2) and (3) by
including the factors 7%, and r7;. The factor 7, can be
introduced by considering the integral

Rooo,a = = /////SXP —orp — Brap — pr3p —

(# — a) — r}y?]dt du dry dr, drs . (49)

After the integration over the nine spatial coordinates,
we substitute (© —a)/(f+* —a) — ¢ and take the
derivative with respect to a for a = 0.We obtain

Py, = ﬁINML - ZINA,ML, for N>1, (50)
Pyyr, = lINML — (3 + L> (LIN+1,M,L+1

i 2 of

—%INM7L+1> , forN=0. (51)
The integral Eq. (2) can then be expressed as
he =Y i FML P, P - (52)

NML

The integral Eq. (3) can be derived in a similar manner
to give

Trr = ZF/:lfx}t;%n%F/\n/:};}innF;A;inzs Onme (53)
NML
with
1 1
Ovmr = TPNML ——Pym-1r, forM>1, (54)
Y 20

1 3
Onmr = =Py — <+L)
Y 2

1 1
X | —Pvmiri+l — = Pwmiir |, forM =0 .
oy o

(55)

The expansion coefficients are the same for Egs. (44),
(52), and (53), and should be computed together.
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3 Test calculations

We computed the three-electron integrals that occur in
second-order Mgller—Plesset (MP2)-R12 calculations on
the neon atom, both to assess the correctness and
efficiency of our integral-evaluation scheme and to gain
some preliminary insight into the quality of the RI
approximation in linear R12 theory.

In linear R12 theory, the following (spin-free) two-
electron functions occur

Wi (r,r) = (1= PiP)ring;(r)¢,(r) , (56)

Where ¢; and ¢, are occupied orbitals, and P, and P, are
projectors onto the finite basis used in the calculation:

P= > (57)

1. Ebasis

Zu(T0)) o (rn)]

However, the two-electron functions of this ansatz are
not strongly orthogonal to the occupied orbitals. A
correct, strongly orthogonal ansatz requires the follow-
ing two-electron functions
W0(ry, 1) = (1 - 01)(1 — @) (1 = PPy)ria

X ¢i(rl)¢j(r2) ) (58)

where Q1 and Q, are projectors onto the occupied orbital
space:

0= Y

¢ € occupied

| (r1)) (de(r1)] - (59)

One of the major effects of the RI approximation is to
replace the strongly orthogonal ansatz (Eq. 58) by the
simpler form (Eq. 56). With the exact evaluation of
one-center three-electron integrals now possible, we
can compare directly the two ansdtze. We do this by
comparing the norms of Egs. (58) and (56), which
involve three-electron integrals over occupied orbitals
and the operator product r; x r13.

Table 1. Basis sets 1 (20s14p11d9f), 2 (20s11p7d5f), and 3 (20s8p7d5f)

In our calculations, we used three different basis sets
(Table 1). The largest basis (basis 1) contains the func-
tions 20s14p11d9f and corresponds to the 18s13p basis
of Partridge [11] supplemented with two diffuse s-type
functions with exponents 0.1 and 0.05, one diffuse p set
with exponent 0.05, and the 11d9f set of Noga et al. [12].
The two smaller basis sets, basis 2 (20s11p7d5f) and
basis 3 (20s8p7d5f) have the same s functions, but fewer
functions of higher angular momentum.

The norm of Egs. (58) and (56) is compared for dif-
ferent valence orbital pairs of the neon atom in basis | in
Table 2. The differences between the two ansétze are
very small. We therefore expect the resulting differences
in the calculated energies to be only a few percent of the
R12 basis-set truncation correction. Since, in this basis,
the R12 correction itself is a small part of the total en-
ergy, the resulting error due to the RI approximation is
certainly negligible. This is not unexpected, because it
has been shown (cf. Ref. [6]) that if the occupied orbitals
have an angular momentum quantum number not larger
than £oceupica then the RI approximation becomes exact if
the one-electron basis is complete up to £ = 3loccupied-
For the neon atom, this means that it is sufficient to have
a basis complete up to f-type functions. In practical
calculations, this completeness condition is never met.
It is therefore crucial to study the RI approximation
for a smaller basis.

The results of the two ansdtze in the smaller basis 2
(20s11p7d5f) are compared in Table 3; in this basis, the
error is still small. However, if we try to reduce the size
of the basis further, the results deteriorate dramatically.
Thus, the results in Table 4 are obtained by using
slightly sparser p functions in basis 3 (20s8p7d5f). Al-
though the Hartree—Fock and MP2 energies are essen-
tially unaffected by this change in the basis (Table 5),
Eq. (56) is strongly modified and is no longer a good
approximation to Eq. (58), demonstrating that it is
necessary to select carefully basis sets in calculations that
rely on the RI approximation.

20s 14p 11p 8p 11d 7d of st
1+2+3 1 2 3 1 2+3 1 2+3
2598845.0 3257313 132.79 109.35 350.7463400 15.46 73.1402640 4.68
389291.20 771.0460 60.36 36.45 134.2652220 7.02 33.1370820 2.12
88614.780 250.5331 27.43 12.15 56.8868720 3.19 15.7724424 0.96
25103.590 95.90373 12.47 4.05 25.7732860 1.45 7.7657598 0.4
8190.9100 40.63348 5.66 1.35 12.2674552 0.66 3.8727018 0.20
2957.4970 18.40949 2.57 0.45 6.0400354 0.30 1.9217430

1153.7430 8.762468 1.17 0.15 3.0121014 0.14 0.9403200

478.68000 4314311 0.53 0.05 1.4946890 0.4515174

208.86450 2.151501 0.24 0.7313600 0.2082744

94.993240 1.067635 0.11 0.3511802

44.686810 0.522400 0.05 0.1619912

21.623280 0.250843

10.694420 0.115708

5.3116980 0.050000

2.4260420

1.1181120

0.5073780

0.2239600

0.1000000

0.0500000




Table 2. Comparison of the norm of two ansitze for various
electron-pair functions of the neon atom, computed in the

20s14p11d9f basis

Orbital (2802 e )? Relative

pair difference (%)
25° 'S 12572 x 107*  1.2686 x 10™*  0.91

252p 'P 58072 x 107 58164 x 10™*  0.16

252p P 9.6584 x 107 9.7590 x 10~°  1.00

2p° 'S 6.2996 x 10~ 6.3054 x 10~*  0.09

2p° P 1.4979 x 1074 1.5035x 1074 0.37

2p* 'D 55027 x 107 5.5096 x 1074 0.13

Table 3. Comparison of the norm of two ansitze for various
electron-pair functions of the neon atom, computed in the

20s11p7d5f basis

Orbital (=502 e Relative

pair difference (%)
25° 1S 1.300 x 10~* 1.313 x 107* 0.96

2s2p 'p 5.888 x 1074 5.906 x 1074 0.30

2s2p 3P 1.010 x 10~* 1.039 x 104 2.90

2p° 'S 6.476 x 1074 6.491 x 1074 0.23

2p° 3P 1.577 x 10~* 1.592 x 10~ 0.92

20 'D 5.583 x 1074 5.652 % 1074 1.24

Table 4. Comparison of the norm of two ansitze for various
electron-pair functions of the neon atom, computed in the

20s8p7d5f basis

Orbital (2802 [ |? Relative

pair difference (%)
25° 1S 1.513 x 10~* 1.836 x 1074 21

2s2p 'P 6.303 x 10~ 7.979 x 1074 27

2s2p 3P 1.195 x 10~* 2.186 x 10~ 83

2p° 'S 6.826 x 10~* 9.397 x 10~* 38

2p° 3P 1.687 x 10~* 4.029 x 104 139

20 'D 5788 x 1074 8.277 x 1074 43

Table 5. Hartree-Fock and second-order Maoller—Plesset (MP2)

energies (Ey) in three different basis sets

20s14p11dof 20s11p7dsf 20s8p7d5f
EdartreeFock ~ —128.54709 —128.54628 —128.54433
Enpa —0.35984 —-0.35218 —0.35082
Envpa-ri2/A —-0.38967 —-0.38876 —0.38810

4 Concluding remarks

In our calculations, we tested the RI approximation
through its effect on the strong orthogonality condition.
The RI approximation is also used to approximate other
terms. In fact, four-electron integrals also appear in
explicitly correlated R12 theory. Nevertheless, it is
expected that the neglect of the strong orthogonality
condition is the most important error introduced by the
RI approximation. Our results show that the complete-
ness condition in the RI approximation does not require
unreasonably large basis sets. Still,it is interesting to note
that the border where the RI approximation collapses is
rather sharp.
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Practical calculations with the R12 method have
proved to give impressive results, even when the basis is
too small to justify strictly the use of the RI approxi-
mation. It would therefore be of interest to study in
more detail all the terms involved in an explicitly cor-
related calculation. Such a study is under way.

Acknowledgements. The research of P.W. has been supported by
the Research Council of Norway and the research of W.K. has been
made possible by a fellowship of the Royal Netherlands Academy
of Arts and Sciences (KNAW). We thank the Supercomputing
Programme of the Research Council of Norway and the High
Performance Computing Programme at the University of Tromsg
for grants of computing time.

Appendix

In this appendix, we evaluate the elementary integrals

Ty, =Amoll—M- N N1 M1
Lo N, 2M
t
x// Y drdu (A1)
(o0 + B2 + yu?)™
0 0
with the constraint
max(N,M) < L<N+M+2 . (A2)
Integration by parts yields
2 3
(2M+ I)INML :& L +§ [N,M+1,L+1
+ oMV BN My (049, B)
(A3)
2 3
(2N + 1)l = L +5 Invimin
o2 MAN NI (B )
(A4)
with
1
JNL a, b —47'[’/ dt . (AS)
(a+ bt2

0

Let us assume that the integrals Jy.(a, b) are known for
all N and L. Then, we can compute Iy, by recursion
using Eqgs. (A3) and (A4). To start these recursions, we
need the integrals Iy for all J as well as Iy and Iyp,.
These integrals are computed as follows:

1 1
// ~dtdu
s ) (o + [fﬂ + yu2)

a1 Py
=————arctany | ———— |
a(e+f+7)

By VaBy

NN

Iooo =

(A6)
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L, L
o

) // ———————dtdu
5/ s oc+ﬁt2 + yu?)?

7471%“ arctan W
3By Vopy
a+ (a+p+7)

, (A7)
(a+p+7)(py+a(a+B+7))

4 14 11

200

Ty = TC // 7dtdu
By ) ) a+ﬁt2+yu2)f

By
471'zoc2 arctan, /20T
 Spy vofiy

120426083 (B+7)+3y(B+7)*
3(o+B+9) v/ (et B+9) (By+o(a+p+y))’
a(f47) (521684592 +02 (1952 +42y+192)
3(o+B+7) v/ (o4 B+7) (Br+au(o+B+7))?

(A8)

1 1
lojo = 4mo ™ g1y / / ~drdu . (A9)
s 7 oc+ﬂt2+yu2)

We write

Ioo = 4w B 1L, (A10)
and integrate over ¢, leading to
| 2
" (A11)

LJ:/ ldu .
, (o + yu2) (o + B + yu?)?

atf+y
otB+yu

Ly =(u+ B o+ B+y

Substitution of x2 =

u? into L, gives

1 7 1
X0/<a+ﬁ+/—yx2) a(a+ﬂ+v)+ﬁvx2dx

(A12)

which can be rewritten to give

yLy=—aLy_1 + (a+ B "at+ B+y

1
2J-2
x/ ol - dx
) (et Bty =)

The second term contains an integral of the type

(A13)

1

2L
MKL:/xinx, WithL >K—1 . (A14)
(a — bx?)
for which integration by parts yields
1
2b(K = 1)My, = ——%—— L - 1)Mg 111 .
(a —b)

(A15)

The integrals Mg, are thus computed recursively in
conjuction with

Mp =1, (Al6)
1
1 1 b
Mm:/ _dx=——1n vatvhy g
/ a— bx 2Vab  \\a— b
My =M ! (A18)
1L _b 1,L—1 b(2L— 1) )

where a > b > 0.
Finally, the integrals Jy;(a, b) are computed from

1

b 4 ; aN_L_l )C2N dx
Ine(a, = 4n? 1 - )
la:b) (a+b)“20/ (a+b—bx2)V "t

(A19)

by virtue of the substitution x*> = (a + b)/(a + b*)£>. If
N — L is negative the integral reduces to an integral over
a polynomial; otherwise, Jy.(a, b) is similar to M.

Integration by parts can be unstable. The conver-
gence of the series in Eqs. (A3) and (A4) is as [y/(a + 7)]'
or [B/(a+ B)]'. For large «, downward recursion is
unstable, but in this case a numerically stable infinite
upward recursion gives a rapidly convergent series
with only positive terms.
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