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A stochastic algorithm is proposed that can compute the basis-set-incompleteness correction to
the second-order many-body perturbation (MP2) energy of a polyatomic molecule. It evaluates
the sum of two-, three-, and four-electron integrals over an explicit function of electron-electron
distances by a Monte Carlo (MC) integration at an operation cost per MC step increasing only
quadratically with size. The method can reproduce the corrections to the MP2/cc-pVTZ energies
of H2O, CH4, and C6H6 within a few mEh after several million MC steps. It circumvents the
resolution-of-the-identity approximation to the nonfactorable three-electron integrals usually nec-
essary in the conventional explicitly correlated (R12 or F12) methods. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4862255]

The second-order many-body perturbation (MP2) energy
of a molecule in the near complete-basis-set (CBS) limit can
be accurately and inexpensively estimated by the explicitly
correlated (F12, née R12) method.1–6 The correlation energy
in the MP2-F12 method is the sum of the MP2 correlation
energy in the orbital basis set (OBS) and the F12 correction:

EMP2-F12 ≡ EMP2 + EF12. (1)

For a closed-shell molecule, the latter is given as
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with

V ij
mn = 〈ij |r−1

12 Q̂12f12|mn〉, (3)

B
ij

kl = 〈ij |f12Q̂12(F̂1 + F̂2)Q̂12f12|kl〉, (4)

X
ij

kl = 〈ij |f12Q̂12f12|kl〉, (5)

where t
ij

kl is a geminal amplitude, f12 is the correlation fac-
tor, which is an explicit function of the electron-electron dis-
tance r12, and F̂n is the Fock operator of the nth electron.
Here, Q̂12 is a projector that makes f12|ij〉 geminals “strongly
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orthogonal”7 in addition to being orthogonal to products of
two virtual orbitals,

Q̂12 = (1 − Ô1)(1 − Ô2) − V̂1V̂2, (6)

with

Ôn =
occ.∑
i

|ϕi(rn)〉〈ϕi(rn)|, (7)

V̂n =
vir.∑
a

|ϕa(rn)〉〈ϕa(rn)|, (8)

where ϕi(rn) is the ith spatial orbital of the nth electron. As
the correlation factor, Ten-no’s Slater-type geminal,2 f12 = {1
− exp ( − γ r12)}/γ , is widely adopted as it consistently out-
performs f12 = r12,1, 8 when γ ≈ 1.

Equation (2) is a Hylleraas functional5 and is bounded
from below with respect to the variation of the geminal ampli-
tudes t and of γ . Their values should, therefore, be determined
so as to minimize EF12. At the minimum, Eq. (2) reduces5 to

EF12 =
occ.∑

i,j,m,n

V ij
mn

(
2tmn

ij − tmn
ji

)
. (9)

Ten-no proposed2, 3 holding the geminal amplitudes fixed at
the values that satisfy the first-order cusp condition:

tmn
ij = 3

8
δmiδnj + 1

8
δmj δni . (10)

This has eliminated the cumbersome variational determina-
tion of the geminal amplitudes without significant loss of
accuracy. It is widely adopted in MP2-F12 and other F12
methods.6, 9

With the fixed amplitudes, it is advisable to use the orig-
inal bounded expression (Eq. (2)) rather than the minimum
expression (Eq. (9)), when evaluating EF12. Nonetheless,
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Eq. (9) with Ten-no’s fixed amplitudes leads to a convenient
expression, which can be subjected to an Monte Carlo (MC)
integration:

EF12 = 5
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8
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(11)

Expanded, this becomes the sum of two-, three-, and four-
electron integrals, EF12 = E2e + E3e + E4e, where
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Although the four-electron integrals can be factored into
products of two-electron integrals, they are left unfactored
to facilitate their MC integration. Here, we report a highly
scalable MP2-F12 algorithm that evaluates these 6-, 9-, and
12-dimensional integrals stochastically, while EMP2 to be
added with EF12 is computed either deterministically or
stochastically.10, 11 We call this algorithm Monte Carlo explic-
itly correlated MP2 or MC-MP2-F12.

This method has the following advantages over the con-
ventional, deterministic MP2-F12 algorithms:

In the conventional MP2-F12, the dimension of the non-
factorable high-dimensional integrals needs to be reduced by
the resolution-of-the-identity (RI) approximation,1, 3, 12, 13 al-
though it is also possible to evaluate the three-electron in-
tegrals exactly.14, 15 The RI approximation requires an aux-
iliary basis set such as a complementary auxiliary basis set
(CABS),7, 13 which is much greater than the OBS. In MC-
MP2-F12, there is no need for RI or an auxiliary basis set
because the high-dimensional integrals are evaluated (not in-
dividually but as their sum) directly.

In the conventional MP2-F12 (hereafter referred to as
RI-MP2-F12), the form of the correlation factor is limited
to those that lend themselves to semi-analytical integration
over Gaussian-type orbitals (GTOs). In MC-MP2-F12, virtu-
ally any correlation factor can be used with a trivial modifica-
tion to the computer code.

Most importantly, as demonstrated below, MC-MP2-F12
is fundamentally more scalable with respect to both system
size and computer size. Its operation cost per MC step in-
creases only quadratically with system size.

The demerits of MC-MP2-F12 include the inevitable
statistical errors, which decay slowly as the inverse square
root of the number of MC steps. Also, integrals such as B
(Eq. (4)) are not easily subjected to MC integrations because
of the derivative operator in its definition. We, therefore, rely
on Eq. (9) instead, which, as we shall see below, is less stable
than Eq. (2), but reliable and useful nonetheless.

Next, we describe the Metropolis algorithm of the MC
integrations of Eqs. (12)–(14). They are evaluated as
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∫∫
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where the integrands are defined by

F2(r1, r2) = 5

8
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with

Opq =
occ.∑
i

ϕ∗
i (rp)ϕi(rq), Vpq =

vir.∑
a

ϕ∗
a (rp)ϕa(rq). (21)

The sets of electron coordinates in Eqs. (15), (16), and
(17) are sampled randomly from weight functions, w2, w3,
and w4, respectively. The weight functions must be analyti-
cally integrable, be positive everywhere, and cancel all singu-
larities in the integrands exactly.16 We propose the following
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that satisfy all these conditions:

w3(r1, r2, r3) = w2(r1, r2)w1(r3), (22)

w4(r1, r2, r3, r4) = w2(r1, r2)w1(r3)w1(r4), (23)

and

w1(r1) = 1

N1
g(r1), w2(r1, r2) = 1

N2

g(r1)g(r2)

r12
, (24)

where g(r) is a sum of s-type GTOs centered at constituent
atoms and

N1 =
∫

d r1 g(r1), N2 =
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d r1d r2
g(r1)g(r2)

r12
, (25)

which can be evaluated analytically.17 It is easy to verify that
w3 and w4 cancel exactly the r−1

12 singularities in F3 and F4. In
F2, the singularity is already eliminated by f12, but we elect to
retain the r−1

12 factor in w2 to facilitate the redundant-walker
convergence acceleration.11

It is important11 to generate many (redundant) sets of
electron coordinates (walkers) and to substitute all distinct
permutations of them into the integrands to boost the MC
sampling efficiency. The working equation is adjusted to in-
voke the redundant-walker algorithm:
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To evaluate the right-hand side, we must have m1 independent
sets of walkers {r [n]

i |1 ≤ i ≤ m1} at the nth MC step, each
of which is distributed according to the three-dimensional
weight function w1 of Eq. (24). We also need m2 inde-
pendent sets of walker pairs {r [n]

1i , r [n]
2i |1 ≤ i ≤ m2} gener-

ated according to the six-dimensional weight function w2 of
Eq. (24). These correct distributions are ensured by the
Metropolis algorithm.11, 18

The statistical uncertainty ε in IN is given by

ε2 = 1

N (N − 1)

N∑
n=1

(In − IN )2. (29)

This definition makes use of the reblocking algorithm of
Flyvbjerg and Petersen19 with the blocking length increasing
with the degrees of redundancy m1 and m2.

In each MC cycle, the algorithm has three steps. The first
step is the Metropolis propagation of m1 single walkers and
m2 walker pairs according to their respective weight func-
tions. This involves the evaluation of the weight functions,
which is inexpensive. The second step is where the ampli-

TABLE I. The F12 correction (in mEh) to the MP2/cc-pVDZ energy of H2O
as a function of γ (in a.u.) in the Slater-type geminal.

γ RI (VBX)a RI (V)b RI (V)c MC (V)d

0.4 −21.80 − 123.27 − 124.46 − 122.36 (0.49)
0.8 −75.61 − 101.29 − 102.02 − 100.90 (0.33)
1.2 −83.90 − 82.31 − 82.80 − 82.08 (0.24)
2.0 −71.03 − 53.74 − 54.01 − 53.60 (0.15)
2.5 −59.45 − 41.40 − 41.59 − 41.28 (0.13)

aUsing Eq. (2) and uncontracted aug-cc-pVQZ as CABS.
bUsing Eq. (9) and uncontracted aug-cc-pVQZ as CABS.
cUsing Eq. (9) and cc-pVDZ-F12/OptRI as CABS.22

dUsing Eq. (9) with m1 = m2 = 40 and N = 2 × 106. The values in parentheses are the
statistical uncertainty in mEh.

tudes of molecular orbitals (MOs) and the O and V matrices
are evaluated at newly accepted coordinates of walkers. This
nominally costs O(m1M2 + 2m2M2) because, to evaluate M
MO amplitudes, one needs to compute M atomic-orbital (AO)
amplitudes at an O(M) cost and then transform them to the
MO amplitudes at an O(M2) cost per each walker. The third
step is to compute In in Eq. (27), of which the cost scales as
O(m2

1m2M
0). The theoretical performance increase brought

by the redundant-walker algorithm is (m2
1m2)/(m1 + 2m2). In

each step, the memory cost is negligibly small. The whole al-
gorithm can be easily and efficiently parallelized.

The RI- and MC-MP2-F12 calculations on H2O, CH4,
and C6H6 have been performed with the geometries and
weight functions given in the supplementary material.20 The
RI-MP2-F12 calculations utilized the open-source MPQC

package,21 in which the Slater-type geminal was approxi-
mated as a linear combination of Gaussians. The 1s core or-
bitals were frozen in all calculations.

Table I shows the dependence of EF12 on various pa-
rameters of the calculations. Comparing the second and third
columns, we see that the “VBX” expression (Eq. (2)) gives
EF12 that varies less with γ with the minimum occurring at
around γ = 1.2, whereas the “V” expression (Eq. (9)) is cor-
rect only in the vicinity of γ = 1.2. MC-MP2-F12 based on
the “V” expression is, therefore, predicated on the knowledge
of the optimal value of γ and its transferability across a vari-
ety of molecules, which has been established.2 Furthermore,
the γ dependence of the “V” data is likely exaggerated by
the smallness of the OBS, which may be understood by not-
ing that the functional form of f12 depends strongly on γ only
away from the cusp, where the basis-set dependence of corre-
lation is relatively small.

The rightmost column shows that EF12 from MC-MP2-
F12 can be easily made to converge within 1 mEh of the cor-
rect limits after 2 × 106 MC steps for all values of γ . The
rapid convergence may be traced to the smallness of the mag-
nitude of EF12 and the fact that integrand F2 is already free of
singularities by virtue of f12 and thus more easily integrable.

Table II summarizes EF12 obtained by RI- and MC-MP2-
F12 with a range of molecules and OBS. MC-MP2-F12 re-
produces the correct (RI) values within a few mEh for H2O
and CH4 after 2 × 106 MC steps with m1 = m2 = 40. For
C6H6, a larger degree of redundancy (m1 = m2 = 80) and
more MC steps (8 × 106) are necessary to achieve compa-
rable accuracy. The uncertainties also increase with the size
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TABLE II. The F12 correction EF12 and statistical uncertainty ε (in mEh)
obtained by RI- and MC-MP2-F12 (γ = 1.2; m1 = m2 = 40, and N = 2
× 106 for H2O and CH4; and m1 = m2 = 80 and N = 8 × 106 for C6H6).

Molecule OBS EF12 (RI) EF12 (MC) ε

H2O cc-pVDZ − 82.2 − 82.1 0.3
H2O cc-pVTZ − 35.0 − 34.5 0.7
H2O cc-pVQZ − 16.1 − 16.3 1.6
CH4 cc-pVDZ − 46.0 − 46.2 0.3
CH4 cc-pVTZ − 18.5 − 19.3 1.1
CH4 cc-pVQZ − 8.3 − 9.2 2.6
C6H6 cc-pVDZ − 215.4 − 214.7 1.3
C6H6 cc-pVTZ − 95.0 − 94.9 4.3
C6H6 cc-pVQZ − 44.5 − 35.8 9.9

of OBS to the extent that they become significant portions of
EF12 when cc-pVQZ is used. However, since the objective of
the F12 correction is to avoid large OBS, smaller statistical
uncertainties for smaller OBS (despite the greater magnitudes
of EF12) are encouraging. The uncertainties are indeed suffi-
ciently small to render MC-MP2-F12 a viable alternative to
RI-MP2-F12, although a systematic application of MC-MP2-
F12 to energy differences such as reaction enthalpies is still
needed and underway.

Figure 1 plots the operation cost of MC-MP2-F12 per 5
× 105 MC steps as a function of the number of MOs (M).
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FIG. 1. The CPU time (in minutes) spent in 5 × 105 MC steps of the MC-
MP2-F12/cc-pVXZ calculations for H2O (D, T, and Q) and for CH4 (D′, T′,
and Q′). The dashed line and curve are linear and quadratic functions.

The measured costs display quadratic dependence on size,
suggesting that the evaluation of MO amplitudes is the rate-
determining step in each MC step. This may be contrasted
with the O(M5) dependence of the cost of the RI-MP2-F12
algorithm.

S.Y.W. and S.H. are supported by the U.S. Department
of Energy (Grant No. DE-FG02-11ER16211). J.Z. and E.F.V.
are supported by the U.S. National Science Foundation (Grant
Nos. CHE-0847295 and OCI-1047696). S.H. and E.F.V. are
Camille Dreyfus Teachers-Scholars and S.H. is a Scialog
Fellow of Research Corporation for Science Advancement.
S.Y.W. is supported by Korean National Research Founda-
tion (National Honor Scientist Program: 2010-0020414 and
WCU: R32-2008-000-10180-0) and by Korea Institute of Sci-
ence and Technology Information (KSC-2011-G3-02).

1W. Kutzelnigg, Theor. Chim. Acta 68, 445 (1985).
2S. Ten-no, Chem. Phys. Lett. 398, 56 (2004).
3S. Ten-no, J. Chem. Phys. 121, 117 (2004).
4H.-J. Werner, T. B. Adler, and F. R. Manby, J. Chem. Phys. 126, 164102
(2007).

5T. Shiozaki, E. F. Valeev, and S. Hirata, Annu. Rep. Comput. Chem. 5, 131
(2009).

6L. Kong, F. A. Bischoff, and E. F. Valeev, Chem. Rev. 112, 75 (2012).
7E. F. Valeev and C. L. Janssen, J. Chem. Phys. 121, 1214 (2004).
8W. Kutzelnigg and W. Klopper, J. Chem. Phys. 94, 1985 (1991).
9C. Hättig, W. Klopper, A. Köhn, and D. P. Tew, Chem. Rev. 112, 4
(2012).

10S. Y. Willow, K. S. Kim, and S. Hirata, J. Chem. Phys. 137, 204122
(2012).

11S. Y. Willow, M. R. Hermes, K. S. Kim, and S. Hirata, J. Chem. Theory
Comput. 9, 4396 (2013).

12W. Klopper and C. C. M. Samson, J. Chem. Phys. 116, 6397 (2002).
13E. F. Valeev, Chem. Phys. Lett. 395, 190 (2004).
14P. Wind, T. Helgaker, and W. Klopper, Theor. Chem. Acc. 106, 280

(2001).
15P. Wind, W. Klopper, and T. Helgaker, Theor. Chem. Acc. 107, 173

(2002).
16M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (Wiley-VCH,

Weinheim, 2008).
17S. Obara and A. Saika, J. Chem. Phys. 84, 3963 (1986).
18N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. N. Teller, and E.

Teller, J. Chem. Phys. 21, 1087 (1953).
19H. Flyvbjerg and H. G. Petersen, J. Chem. Phys. 91, 461 (1989).
20See supplementary material at http://dx.doi.org/10.1063/1.4862255 for the

geometries and weight functions used in the MC-MP2-F12 calculations.
21C. L. Janssen, E. F. Valeev et al., “MPQC Ver. 3.0,” Virginia Tech, Blacks-

burg, VA, 2013, see http://www.mpqc.org/.
22K. E. Yousaf and K. A. Peterson, J. Chem. Phys. 129, 184108 (2008).

http://dx.doi.org/10.1007/BF00527669
http://dx.doi.org/10.1016/j.cplett.2004.09.041
http://dx.doi.org/10.1063/1.1757439
http://dx.doi.org/10.1063/1.2712434
http://dx.doi.org/10.1016/S1574-1400(09)00506-4
http://dx.doi.org/10.1021/cr200204r
http://dx.doi.org/10.1063/1.1759319
http://dx.doi.org/10.1063/1.459921
http://dx.doi.org/10.1021/cr200168z
http://dx.doi.org/10.1063/1.4768697
http://dx.doi.org/10.1021/ct400557z
http://dx.doi.org/10.1021/ct400557z
http://dx.doi.org/10.1063/1.1461814
http://dx.doi.org/10.1016/j.cplett.2004.07.061
http://dx.doi.org/10.1007/s002140100281
http://dx.doi.org/10.1007/s00214-001-0318-6
http://dx.doi.org/10.1063/1.450106
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.457480
http://dx.doi.org/10.1063/1.4862255
http://www.mpqc.org/
http://dx.doi.org/10.1063/1.3009271

