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With the aid of the Laplace transform, the canonical expression of the second-order many-body per-
turbation correction to an electronic energy is converted into the sum of two 13-dimensional integrals,
the 12-dimensional parts of which are evaluated by Monte Carlo integration. Weight functions are
identified that are analytically normalizable, are finite and non-negative everywhere, and share the
same singularities as the integrands. They thus generate appropriate distributions of four-electron
walkers via the Metropolis algorithm, yielding correlation energies of small molecules within a few
mEh of the correct values after 108 Monte Carlo steps. This algorithm does away with the integral
transformation as the hotspot of the usual algorithms, has a far superior size dependence of cost,
does not suffer from the sign problem of some quantum Monte Carlo methods, and potentially easily
parallelizable and extensible to other more complex electron-correlation theories. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4768697]

I. INTRODUCTION

The second-order many-body perturbation correction1 to
the Hartree–Fock (HF) energy of a molecule is

E(2) = E
(2)
A + E

(2)
B , (1)

with

E
(2)
A = 2

occ.∑
i,j

vir.∑
a,b

〈ij |ab〉〈ab|ij 〉
εi + εj − εa − εb

, (2)

E
(2)
B = −

occ.∑
i,j

vir.∑
a,b

〈ij |ab〉〈ab|ji〉
εi + εj − εa − εb

, (3)

where 〈ij|ab〉 is a two-electron integral defined below, εi is the
canonical HF orbital energy of the ith orbital, and the sum-
mations must be taken over all occupied (labeled by i and j)
and all virtual (a and b) orbitals. The Møller–Plesset parti-
tioning of the Hamiltonian is assumed. This theory, MP2 or
MBPT(2), accounts for the majority of the correlation energy.
It is also the simplest member of the systematic series of ap-
proximations formally convergent to the exact eigenvalue of
the Schrödinger equation and thus holds special importance
in ab initio molecular orbital (MO) theory.

The two-electron integrals appearing in the above expres-
sions are 6-dimensional and involve four MO’s,

〈pq|rs〉 =
∫

d r1

∫
d r2

ϕ∗
p(r1)ϕ∗

q (r2)ϕr (r1)ϕs(r2)

r12
, (4)

where r12 = |r1 − r2|. The MO’s, {ϕp}, are, in turn, related
to atomic-orbital (AO) basis functions, {χκ}, by

ϕp(r) =
∑

κ

Cκ
pχκ (r). (5)
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The expansion coefficients, {Cκ
p}, are a part of the solution of

the HF problem and should be available prior to the MP2 pro-
cedure. The two-electron integrals over the MO’s are, there-
fore, obtained by transforming those over AO’s, which are de-
fined elsewhere,1

〈pq|rs〉 =
∑

κ,λ,μ,ν

Cκ∗
p Cλ∗

q Cμ
r Cν

s 〈κλ|μν〉. (6)

The number of arithmetic operations in this step increases as
the fifth power of the number of MO’s. This transformation—
not the evaluation of Eq. (2) or (3)—constitutes the computa-
tional bottleneck of the whole MP2 calculation. It also tends
to be the hardest part to program into an efficient, parallel-
scalable code because of the large number of data involved
and disparate nature of the AO’s and MO’s.

Can one bypass the integral transformation and, ulti-
mately, contrive an algorithm of MP2 that has more manage-
able, i.e., less steep, size dependence of cost? Can the algo-
rithm be simpler and thus straightforwardly extended to more
complex theories and more easily parallelized? In this arti-
cle, we propose such an algorithm that combines Almlöf’s
Laplace-transform expression of MP2 energy2 and Monte
Carlo (MC) integration3 of the 12-dimensional parts of the
resulting 13-dimensional functions. The details are described
below.

II. THEORY

Equations (2) and (3) involve the denominator, εi + εj

− εa − εb, which makes the summations over all four or-
bitals (i, j, a, and b) coupled. However, using the Laplace
transform,2

1

εi + εj − εa − εb

= −
∫ ∞

0
dτ exp

{
(εi + εj − εa − εb)τ

}
,

(7)
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one can interchange the order of summations and integrations
and obtain the following alternative expressions wherein the
summations over orbitals are now decoupled:

E
(2)
A = −2

∫
d r1

∫
d r2

∫
d r3

∫
d r4

∫ ∞

0
dτ

×o(r1, r3, τ )o(r2, r4, τ )v(r1, r3, τ )v(r2, r4, τ )

r12r34
,

(8)

E
(2)
B =

∫
d r1

∫
d r2

∫
d r3

∫
d r4

∫ ∞

0
dτ

×o(r1, r3, τ )o(r2, r4, τ )v(r1, r4, τ )v(r2, r3, τ )

r12r34
,

(9)

with

o(r1, r3, τ ) =
occ.∑
i

ϕ∗
i (r1)ϕi(r3) exp(εiτ ), (10)

v(r1, r3, τ ) =
vir.∑
a

ϕa(r1)ϕ∗
a (r3) exp(−εaτ ). (11)

Equations (8) and (9) are both 13-dimensional integrals
of slightly more involved integrands. They may be ideally
evaluated by MC, whose statistical errors are known to de-
crease as the inverse square root of the number of sampling
points regardless of dimensionality. They can be contrasted
with the original expressions, Eqs. (2) and (3), which are the
sums of enormous numbers of lower-dimensional integrals,
which may be evaluated efficiently by recursion formulas,4

but need to be stored and transformed. Here, we apply MC
integrations to the 12 dimensions spanned by r1, r2, r3, and
r4 in Eqs. (8) and (9), while the integration over τ is carried
out more suitably by a quadrature (see below).

Generally, a MC integration3 approximates an integral of
a high-dimensional function, f (x), by the summation of the
quotient f (xn)/w(xn) evaluated at increasingly many random
sampling points, {xn}, distributed according to the weight
function, w(x):

I =
∫

dxf (x), (12)

=
∫

dx
f (x)

w(x)
w(x), (13)

≈ 1

N

N∑
n=1

f (xn)

w(xn)
, (14)

where N is the number of MC steps or sampling points. The
proper choice of the weight function is crucial for the effi-
ciency or even the viability of MC integration; w(x) should
be as close as possible to |f (x)/I | so that the quotient
f (x)/w(x) is smooth and thus integrated easily with fewer
sampling points.

Thanks to the Metropolis–Rosenbluth–Rosenbluth–
Teller–Teller algorithm (hereafter simply the Metropolis
algorithm),5 we now can generate a distribution of sampling
points according to a variety of forms of w(x). Nevertheless,
we must still impose certain conditions on the form such as

w(x) ≥ 0, (15)

∫
dxw(x) = 1, (16)

and, furthermore, ∣∣∣∣f (x)

w(x)

∣∣∣∣ < ∞, (17)

except at a countable number of points.3 In our context, since
the integrands in Eqs. (8) and (9) are singular at r12 = 0 and
r34 = 0, we must require w(x) to have the same singulari-
ties at the same positions and, generally, behaves like f (x)
elsewhere.

Here, we propose the following weight function that sat-
isfies all these conditions:

wρ(r1, r2, r3, r4) = 1

E2
J

ρ(r1)ρ(r2)ρ(r3)ρ(r4)

r12r34
, (18)

where ρ(r) is the electron density of the molecule,

ρ(r) = 2
occ.∑
i

ϕ∗
i (r)ϕi(r), (19)

and EJ is the so-called Coulomb energy of the HF theory
given by

EJ =
∫

d r1

∫
d r2

ρ(r1)ρ(r2)

r12
. (20)

The value of EJ should be known from the preceding HF cal-
culation. It is straightforward to verify that wρ satisfies Eqs.
(15)–(17), and has the same (r12r34)−1 singularity as the inte-
grands of Eqs. (8) and (9).

Numerically, however, the quotients in Eq. (14) can be-
come quite large where the density is vanishingly small and
the virtual orbitals in the integrands are diffuse. We, therefore,
consider the following weight function also:

wg(r1, r2, r3, r4) = 1

E2
g

g(r1)g(r2)g(r3)g(r4)

r12r34
, (21)

where g(r) is, typically, but not necessarily, a sum of s-type
Gaussian functions centered at atoms and

Eg =
∫

d r1

∫
d r2

g(r1)g(r2)

r12
, (22)

which can be evaluated analytically.4 The prefactors and ex-
ponents of the Gaussian functions are adjusted so as to maxi-
mize the sampling efficiency.

The proposed algorithm of the Monte Carlo MP2 (MC-
MP2) can thus be outlined as follows. A walker explores the
12-dimensional space of four electrons (r1 through r4). These
electron coordinates are distributed according to the weight
function wρ or wg by the Metropolis algorithm. For a given
set of electron coordinates accepted by the Metropolis test,
we evaluate the orbitals and then the integrands of Eqs. (8)
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and (9) at a fixed value of τ . We also evaluate the value of
the weight function at the same set of coordinates. The MP2
energy is updated with the contribution from this walker posi-
tion using Eq. (14). The integration over τ is carried out with a
quadrature since this dimension is essentially decoupled from
the rest. We thus employ the Gauss–Kronrod quadrature6 after
the following conversion of the integration variable is made:

∫ ∞

0
dτ exp

{
(εi + εj − εa − εb)τ

}

=
∫ 1

0

dτ̃

τ̃ 2
exp

{
(εi + εj − εa − εb)(1 − τ̃ )/τ̃

}
. (23)

The statistical uncertainty, ε, of the integral is computed
by

ε2 = 1

N
var

(
f (x)

w(x)

)
, (24)

var

(
f (x)

w(x)

)
= 1

N − 1

N∑
n=1

{
f (xn)

w(xn)
− I

}2

, (25)

where var(x) is the variance of a random variable x and I is
given by Eq. (14). This simple expression is, however, said
to underestimate the true uncertainty because the autocorre-
lation time is ignored. Flyvbjerg and Petersen suggested the
more accurate procedure known as the blocking method.7

This method transforms the original data set {x1, · · · , xN }
into the new data set {x′

1, · · · , x′
N/m} by “blocking” of m data

as

x′
i = 1

m

{
xm(i−1)+1 + · · · + xmi

}
(26)

and defines the uncertainty, ε′, using the variance of these
blocked data. The uncertainty of the blocked data, ε′, is higher
and more accurate than ε. In this study, we employed m = 5.

The advantages of the proposed new algorithm of MC-
MP2 over the conventional one are the following. First, the
polynomial dependence of the cost per MC step is only
quadratic with respect to the numbers of MO’s and AO’s
(see below) as opposed to quintic dependence of the con-
ventional MP2 algorithm. Second, MC allows the importance
sampling in high dimensions, which is next to impossible
with cubature where one is almost always limited to using a
“product” grid, which has optimal distributions of grid points
only along each dimension, but not in the whole high dimen-
sion. Third, the algorithm is naturally parallel as it consists in
the completely independent evaluations of integrands at ran-
dom sampling points carried out concurrently, in any order,
and even allowed to fail without crashing the entire calcu-
lation. Fourth, the algorithm is so simple that it can likely
be extended to more complex or higher-dimensional methods
such as third-order and higher-order many-body perturbation
theories,1 applications to solids,8 quasiparticle energies,8 cor-
relation corrections to excitation energies,9, 10 explicitly cor-
related methods,11, 12 etc. The primary disadvantages are the
inevitable statistical errors and also a large prefactor multiply-
ing the polynomial dependence of the cost.

While sharing the similar goal, our MC-MP2 method
fundamentally differs from “stochastic perturbation theory”
proposed by Thom and Alavi13 (see also Refs. 14–16). The
difference is that, in their method, walkers explores the high-
dimensional Hilbert space with the assumption that the two-
electron integrals over MO’s are readily available, while, in
MC-MP2, a walker represents four electrons roaming in real
space and neither the integral transformation nor the two-
electron integrals over MO’s is necessary.

Our MC-MP2 and the (phaseless) auxiliary-field quan-
tum Monte Carlo (AFQMC)17–19 both combine established
electronic structure methods and even software with MC in-
tegration, but otherwise they have few features in common.
In AFQMC, a one-electron theory with an auxiliary field is a
computational intermediate to solve the Schrödinger equation
within a finite basis set and suffers from the so-called sign
problem unless the phaseless approximation19 is used. MC-
MP2 aims at obtaining finite-basis-set MP2 energies and the
only errors it incurs are statistical ones.

Among the various incarnations of quantum Monte Carlo
(QMC) methods,3, 20–23 MC-MP2 may be most similar to vari-
ational MC (VMC). The difference is, of course, that the latter
is variational and needs to optimize some parameters, whereas
MC-MP2 has no parameters to optimize and is not variational.
The VMC, however, has the great advantage of being a zero-
variance method, which MC-MP2 is not. MC-MP2 may, on
the other hand, be extensible to (non-variational) properties
other than ground-state energies (e.g., quasiparticle energies)
that may be more difficult to obtain with VMC.

III. RESULTS AND DISCUSSION

Table I compiles the MP2 correlation energies of the N2

and O2 molecules obtained by MC and conventional algo-
rithms. Figure 1 shows the convergence of the energies and
uncertainties for N2 as a function of the MC steps. In both,
the MC results obtained with two types of weight functions
are shown. The form of g(r) in wg used in our study is

g(r) =
2∑

m=1

{
exp(−ζ1r

2
m) + c exp(−ζ2r

2
m)

}
, (27)

with ζ 1 = 0.6, ζ 2 = 0.1, and c = 0.01 for N2 and ζ 1 = 0.7,
ζ 2 = 0.2, and c = 0.01 for O2, where rm denotes the distance
from the mth atom.

TABLE I. The MP2/6-31G** (frozen core) correlation energies and uncer-
tainties (both in Eh) of N2 (1.42 Å) and O2 (1.20 Å) obtained with the con-
ventional and MC methods.

Molecule Method E(2) ε ε′

N2 Conventional −0.4373 . . . . . .
N2 MC (N = 108; wρ ) −0.4391 0.0080 0.0156
N2 MC (N = 108; wg) −0.4396 0.0037 0.0053
O2 Conventional −0.3636 . . . . . .
O2 MC (N = 108; wρ ) −0.3682 0.0091 0.0175
O2 MC (N = 108; wg) −0.3649 0.0045 0.0065
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FIG. 1. The errors in the MC-MP2/6-31G** (frozen core) correlation ener-
gies of N2 (1.42 Å) and the uncertainties (both in mEh) as a function of the
MC steps.

The MC algorithm is capable of reproducing the correct
MP2 energies after 108 steps within a few mEh either with wρ

or wg . The corresponding uncertainties are consistent with the
errors and are on the order of several mEh. Figure 1 shows the
rugged convergence of energies and the smooth N−1/2 conver-
gence of the uncertainties. The uncertainty ε′ from the block-
ing method7 is higher than ε by a factor of 1.5 to 2. The plot
for O2 is very similar.

Clearly, wg offers greater efficiency than wρ . We ascribe
this to the more diffuse nature of wg than wρ and hence to the
fact that walkers can explore a greater space with wg . In other
words, wρ may have too large weights around the atomic core
regions. For instance, the smallest exponent of the Gaussian
function in the O 6-31G** basis set is 0.270058, while we
chose the exponent of 0.2 in wg . In all cases considered, the
fine-tuning of exponents in wg leads to a reduction in ε′ or ε

by a factor of two relative to wρ .
Table II lists the results of the conventional and MC-MP2

calculations of water clusters, (H2O)n, with n = 1, 2, and 3.

TABLE II. The MP2/6-31G** (frozen core) correlation energies and uncer-
tainties (both in Eh) of (H2O)n (n = 1, 2, and 3) obtained with the conven-
tional and MC methods. The central processing unit (CPU) time (in seconds)
are also given.

Molecule Method E(2) ε ε′ CPU

H2O Conventional −0.1970 . . . . . . 0.4
H2O MC (N = 108; wρ ) −0.1974 0.0051 0.0099 3.4 × 103

H2O MC (N = 108; wg) −0.1940 0.0028 0.0040 2.5 × 103

(H2O)2 Conventional −0.3966 . . . . . . 20.1
(H2O)2 MC (N = 2 × 108; wρ ) −0.3749 0.0135 0.0250 32 × 103

(H2O)2 MC (N = 2 × 108; wg) −0.3872 0.0079 0.0112 22 × 103

(H2O)3 Conventional −0.6014 . . . . . . 163
(H2O)3 MC (N = 3 × 108; wρ ) −0.6445 0.0238 0.0462 13 × 104

(H2O)3 MC (N = 3 × 108; wg) −0.6178 0.0161 0.0232 86 × 103
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FIG. 2. The errors in the MC-MP2/6-31G** (frozen core) correlation ener-
gies of (H2O)2 and the uncertainties (both in mEh) as a function of the MC
steps.

For g(r) in wg , we used

g(r) =
n∑

o=1

{
exp(−ζ1r

2
o ) + c1 exp(−ζ2r

2
o )

}

+c3

2n∑
h=1

{
exp(−ζ3r

2
h) + c2 exp(−ζ4r

2
h)

}
, (28)

where ro and rh refer to the distances from the oth oxygen and
hth hydrogen atom, respectively, and ζ 1 = 0.7, ζ 2 = 0.15, ζ 3

= 0.5, ζ 4 = 0.1, c1 = 0.1, c2 = 0.1, and c3 = 0.16. The small-
est exponent for each atom was chosen to be smaller than the
smallest exponent in the corresponding atom’s 6-31G** basis
functions.

The errors in the MP2 energies obtained with wρ are a
few tens of mEh, while those with wg tend to be smaller.
Figure 2 compares the convergence of the results obtained
with wg and wρ for (H2O)2. Again, the lower efficiency of
wρ is due to the larger quotients |f (x)/w(x)| where the elec-
tron density is vanishingly small, but some virtual orbitals are
not. To confirm the convergence, we have performed longer
calculations up to 8 × 108 MC steps. In Fig. 3, the conver-
gence within several mEh of the conventional results can be
seen for all of (H2O)n (n = 1, 2, and 3).

For clusters of n non-interacting molecules, the variance
and uncertainty should increase as n and n1/2, respectively,
because

var

(
nf (x)

w(x)

)
= nvar

(
f (x)

w(x)

)
. (29)

Hence, when nN MC steps for the n non-interacting molecules
are taken (as done in Table II albeit for interacting water
molecules), the uncertainty should become the same as the
uncertainty for the monomer with N MC steps in view of the
N−1/2 falloff of the uncertainty.

The data in Table II indicate that this expected behavior
is not observed and the uncertainty grows with the number of
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FIG. 3. The same as Fig. 2 for (H2O)n (n = 1, 2, and 3) with wg .

interacting water molecules despite the proportional increase
in the number of the MC steps taken. The cause of this dis-
crepancy is unknown except that the above analysis is based
on non-interacting molecules, whereas the water molecules in
our clusters are interacting and their virtual orbitals have sig-
nificant amplitudes in the non-bonding region that need to be
sampled.

The operational cost of each MC step is dominated by
that of evaluating the integrands of Eqs. (8) and (9) at a point
in the 13-dimensional parameter space. This in turn involves
evaluating the numerical values of MO’s at a point, each of
which is defined as a linear combination of AO’s. Hence, the
overall cost should be asymptotically proportional to the num-
ber of MO’s times, the number of AO’s, and grows quadrati-
cally with size. In our program, however, we evaluate all AO’s
at the point and store them (at a linearly scaling cost) before
they are used to generate the values of all MO’s (at a quadrat-
ically scaling cost). In practice, the first step constitutes the
hotspot and the overall cost exhibits a faster-than-quadratic
scaling with size. The measured CPU times corroborate these
expectations; the CPU time per MC step displays the size de-
pendence that is in between linear and quadratic.

It must be cautioned, however, that comparing the linear-
to-quadratic scaling of MC-MP2 and the quintic scaling of the
conventional MP2 is unfair, given the presence and growth of
the statistical uncertainty with size as well as the huge pref-
actor multiplying the scaling function of MC-MP2. Nonethe-
less, it should be clear from this study that the presented idea
is feasible and holds an exceptional promise in the era of mas-
sively parallel supercomputers and should be fully developed
for large molecules and solids.

IV. CONCLUSION

We have proposed and implemented a whole new al-
gorithm of MP2 or a novel branch of QMC, in which the

Laplace-transformed expression of the MP2 energy is eval-
uated by MC integration at a computational cost per step that
scales only quadratically with size. The usual hotspot of the
MP2 algorithm, the integral transformation, and the need to
store large amount of data (such as partially transformed inte-
grals) are completely eliminated in our algorithm, allowing us
to redesign the algorithms of an array of electron-correlation
theories into simpler, potentially more efficient, and parallel-
scalable ones although at present the conventional MP2 algo-
rithms are still considerably faster for small molecules such
as those studied here. The viability of the algorithm hinges
on whether one can find a weight function that satisfies the
requirements that it is analytically integrable, finite, and non-
negative everywhere, and has the same singularities as the in-
tegrands. We have identified such functions and demonstrated
their effectiveness.
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