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Abstract

We present a practical scheme for the evaluation of nonstandard two-electron integrals including the factors rk
12 exp(−γ r212)

which have been appeared recently, where k ! −1 is an integer. The method used throughout this paper is based on the highly
efficient Head-Gordon and Pople (HGP) approach of evaluation of electron repulsion integrals (ERI). Thus only straightforward
modifications of existing codes that employ HGP or HGP-PRISM scheme are necessary to implement our approach.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Most of the standard ab initiomethods of quantum chemistry represent the N -electron wave function as a linear
combination of products of one-electron functions. This strong approximation leads to a very poor description of
the Coulomb hole and cannot represent the electron correlation cusp in a proper way. The configuration interaction
(CI) method [1] is used extensively for this purpose. The CI wave function is written as a linear combination of anti-
symmetrized products of one-electron functions, and its expansion coefficients are determined by the Rayleigh–
Ritz variational method. The CI method is conceptually very simple and is mathematically exact in a complete set
of one-electron basis function. For obvious reasons however, the CI wave function must actually be represented in
a finite one-electron basis.
To take into account the short-range correlation and thus compute very accurate atomic and molecular wave

functions one must necessarily use explicitly correlated methods (for example: Hylleraas [2]). The most technically
tractable of such methods employ wave functions that include explicitly the dependence on the electronic distances
in a linear form, the so-called “linear r12” methods [3].
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Several new ab initio methods have appeared that often yield better accuracy than available from experiment.
A number of linear r12 formulations of electron correlation methods as R12-MP2 [4], R12-MRCI [5] and R12-CC
[6] have appeared in the literature in combination with several types of approximations designed to remove the
three- and four-electron integrals involved [7–9]. It is worth to mention the 6D potential energy surfaces for the
hydrogen fluoride dimer obtained by Klopper et al. [10] within the R12-MP2 formalism which provided results of
unprecedented accuracy. Compared to other highly accurate ab initio approaches, linear r12 methods, in particular
R12-MP2, are not restricted to very small chemical systems as they have been applied to molecules as large as
ferrocene [11]. We can also mention the use of the geminal factor exp(−γ r212) in the perturbational treatment of
the correlation cusp given by Sirbu and King [12]. As an example, they have been able to obtain the helium ground
state energy in error by 4 nanohartrees.
It is important to mention that the use of the linear r12 factor for large molecules, which does not vanish

for large electronic separations, yields to a wrong description of the inter-electronic interaction at least with a
large separation between the electrons. Thus, an important perspective of the correlation factor r12 exp(−γ r212)
introduced by Samson et al. [13] is to be able to utilize local-correlation techniques to enforce linear scaling with
respect to the molecule size. These authors have recently derived the formula within the McMurchie and Davidson
[14] framework.
One can write the unnormalized primitive Cartesian Gaussian function centered at A= (Ax,Ay,Az)

T ∈ R3 as

(1)φa(r) = (x − Ax)
ax (y − Ay)

ay (z − Az)
z exp

(−ζa(r−A)2
)

,

where r = (x, y, z)T ∈ R3 is the coordinate vector of the electron, ζa ∈ ]0,∞[ is the orbital exponent and
a = (ax, ay, az)

T ∈ N3 is a set of nonnegative integers, which is usually termed the angular momentum index.
Henceforth, ai will refer to the ith component of a, where i = x, y, z. Basic vector addition rules will apply to
these triads of numbers, e.g., a + 1x ≡ (ax + 1, ay, az)

T. The scheme presented in this paper is based on the
Obara and Saika [15] (OS) method and its modification by Head-Gordon and Pople [16] (HGP) and the scheme
independently introduced by Lindh, Ryu and Liu [17] and Hamilton and Schaefer [18] (which we mention by HSL)
for the evaluation of the two-electron integral over Cartesian Gaussian atomic orbitals. As shown by Samson et al.
[13], none of the five ERI’s that arise from the use of the damped r12 factors require much more computational
time than the usual ERI calculation over GTO.
The practical scheme presented for the evaluation of the correlated integrals follows the same direction as the

work by Valeev and Schaefer [19]. These authors have formulated the OS and the HGP schemes for the evaluation
of the integrals over the two-particle correlation function r12. The presence of the Gaussian factor exp(−γ r212) in
the current correlation function allows us to employ the properties like derivative and Cartesian factorization of the
Gaussian. Thus different recurrence relations could be obtained.

2. Evaluation of the integrals

In Sections 2.1 and 2.2, we begin our discussion of the evaluation of the two-electron integrals by reviewing the
damped-R12 integrals that need to be evaluated and the basic spherical Gaussian integrals [13]. In Section 2.3 and
2.4 we recall the horizontal recurrence relation (HRR) and the electron transfer recurrence relation (ETRR) over
any bi-electronic operatorsO(r1, r2)where r1, r2 ∈ R3 are the positions of the electrons 1 and 2, respectively. Then
in Section 2.5 we give the vertical recurrence relation (VRR) which completes the set of relations needed for the
evaluation of the damped-R12 integrals. In Section 2.6 we introduce the centered bi-horizontal recurrence relation
(CBHRR). The last Section 2.7 will be dedicated to the evaluation of the integral over the modified Coulomb
operator r−1

12 exp(−γ r212).
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2.1. The damped-R12 integrals

Following Samson et al. [13], the six different integrals to be considered including the correlation factor
f12 = r12 exp(−γ r212), where γ ∈ [0,∞[ and r12 = |r1 − r2| the inter-electronic distance, are given by:

(2)I1 =
∫ ∫

R3×R3

d3r1 d3r2 φa(r1)φc(r2)r−1
12 φb(r1)φd(r2),

(3)I2 =
∫ ∫

R3×R3

d3r1 d3r2 φa(r1)φc(r2)r−1
12 f12φb(r1)φd(r2),

(4)I3 =
∫ ∫

R3×R3

d3r1 d3r2 φa(r1)φc(r2)f12φb(r1)φd(r2),

(5)I4 =
∫ ∫

R3×R3

d3r1 d3r2 φa(r1)φc(r2)f12f ′
12φb(r1)φd(r2),

(6)I5 =
∫ ∫

R3×R3

d3r1 d3r2 φa(r1)φc(r2)[f12, T1]φb(r1)φd(r2),

(7)I6 =
∫ ∫

R3×R3

d3r1 d3r2 φa(r1)φc(r2)
[

[f12, T1], f ′
12

]

φb(r1)φd(r2),

where the T1 operator is the usual kinetic-energy operator of electron 1, [f12, T1] and [[f12, T1], f ′
12] are the

well-known commutators which appear in R12-theory, for flexibility in the choice of the correlation factor
f ′
12 = r12 exp(−γ ′r212) has been introduced in I4 and I6 and the exponents γ and γ ′ are parameters. Samson et
al. pointed out that the integrals involving kinetic-energy operator I5 and I6 can be expressed as [13,20]:

(8)I5 = 1
2
(

∇2
A − ∇2

B

)

I3,

(9)I6 =
∫ ∫

R3×R3

d3r1 d3r2 φa(r1)φc(r2)
(

1− 2γ r212
)(

1− 2γ ′r212
)

exp
(

−(γ + γ ′)r212
)

φb(r1)φd(r2).

In the following sections, we will use the short-hand notation O(r1, r2) for any bi-electronic operator, Ok for the
particular operator Ok ≡ Ok(r1, r2,γ ) = rk

12 exp(−γ r212) where k ! −1 is an integer, and the usual short hand
notation for the integral

(10)
(

ab|O(r1, r2)|cd
)

=
∫ ∫

R3×R3

d3r1 d3r2 φa(r1)φc(r2)O(r1, r2) φb(r1)φd(r2).

In the subsequent sections, we will present a method for the evaluation of the integrals (ab|Ok|cd) with k =
−1,0,1,2,4, as the problem of the evaluation of the integrals (2)–(6) can be reduced to the evaluation of these
“basic” integrals. We can notice that the method proposed in this paper can be generalized to any integrals over the
operator Ok with k ! −1.
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2.2. Basic spherical Gaussian integrals

In this section, we summarize the evaluation of the spherical Gaussian integrals as presented in [13]. The
integrals (11)–(15) can be easily evaluated

(11)(00|O0|00) =
(

π2

ζpζq

)3/2( α

α + γ

)3/2
exp

(

−ζaζb

ζp
AB2

)

exp
(

−ζcζd

ζq
CD2

)

exp
(

− αγ

α + γ
PQ2

)

,

(12)(00|O2|00) =
(

3
2

+ α2

α + γ
PQ2

)

(00|O0|00)
α + γ

,

(13)(00|O4|00) =
(

15
4

+ 5α2

α + γ
PQ2 + α4

(α + γ )2
PQ4

)

(00|O0|00)
(α + γ )2

,

(14)(00|O−1|00) = 2
√

α + γ

π
F0

(

α2

α + γ
PQ2

)

(00|O0|00),

(15)(00|O1|00) =
[

exp
(

− α2

α + γ
PQ2

)

+
(

1+ 2α2

α + γ
PQ2

)

F0

(

α2

α + γ
PQ2

)]

(00|O0|00)√
π(α + γ )

in which

(16)ζp = ζa + ζb,

(17)ζq = ζc + ζd,

(18)α = ζpζq

ζp + ζq
,

(19)P= ζaA+ ζbB
ζp

,

(20)Q= ζcC+ ζdD
ζq

,

(21)PQ =
√

PQ2
x + PQ2

y + PQ2
z ,

(22)PQi = Pi − Qi, i = x, y, z;
and where we have introduced the Boys function [1] of order n ∈ N

(23)Fn(z) =
1

∫

0

duu2n exp
(

−zu2
)

.

2.3. Horizontal recurrence relation (HRR)

The well-known HRR introduced by Head-Gordon and Pople [16] can be generalized as

(24)
(

ab+ 1i |O(r1, r2)|cd
)

=
(

a+ 1ib|O(r1, r2)|cd
)

+ ABi

(

ab|O(r1, r2)|cd
)

,

which holds for any well-behaved operator O(r1, r2). An important feature is that the angular momentum can be
transfered from the centers A and C to centers B and D, respectively, after the contraction step. It is worth to
mention that numerical instability can arise during the HRR step when, for example, ζa ≫ ζb as shown by Ishida
[21] for the ERI’s.
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2.4. Electron transfer recurrence relation (ETRR)

The ETRR introduced by Hamilton and Schaefer [18] and Lindh, Ryu and Liu [17] can be easily extended to
any well-behaved bi-electronic operators O(r1, r2) as

(

a0|O(r1, r2)|c+ 1i0
)

= 1
2ζq

[

Ni(a)
(

a− 1i0|O(r1, r2)|c0
)

+ Ni(c)
(

a0|O(r1, r2)|c− 1i0
)]

(25)− ζp

ζq

(

a+ 1i0|O(r1, r2)|c0
)

− ζbABi + ζdCDi

ζq

(

a0|O(r1, r2)|c0
)

in which, for example, Ni(a) = ai where i = x, y, z. This relation allows us to transfer the angular momentum
from the second to the first electron. As in the HRR case Section 2.3, numerical instabilities can arise by the use of
Eq. (25). Further discussion of the problem can be found in Ref. [21].

2.5. Vertical recurrence relation (VRR)

To complete the set of equations needed for the evaluation of the integrals (ab|Ok|cd), we need the vertical
recurrence relation for the particular bi-electronic operator Ok . To obtain the VRR we will use the identity given
by Klopper and Röhse [20]

(26)∇P

(

ab|O(r1, r2)|cd
)

=
(

ab|{∇1O(r1, r2)}|cd
)

,

where ∇P = ∇A +∇B , ∇A ≡ ( ∂
∂Ax

, ∂
∂Ay

, ∂
∂Az

), ∇B ≡ ( ∂
∂Bx

, ∂
∂By

, ∂
∂Bz

) and finally ∇1 ≡ ( ∂
∂r1x

, ∂
∂r1y

, ∂
∂r1z

). The above
equality holds for integrals over any multiplicative bi-electronic operators O(r1, r2) if φa(r1)φb(r1)O(r1, r2) = 0
when |r1| → ∞, ∀r2 ∈ R3 as shown in Appendix A.
Because we will use this in the following, we give here the ith component of the gradient of the operator Ok

with respect to the electron 1:

[∇1Ok]i =
[

∇1
{

rk
12 exp(−γ r212)

}]

i
= (r12)i

(

k − 2γ r212
)

rk−2
12 exp

(

−γ r212
)

(27)= (r12)i(kOk−2 − 2γOk),

in which (r12)i stands for (r1i − r2i ). On one hand, the explicit differentiation of the left-hand side of Eq. (26) over
the operatorsO(r1, r2) gives

[

∇P

(

a0|O(r1, r2)|c0
)]

i
=

(

∂

∂Ai
+ ∂

∂Bi

)

(

a0|O(r1, r2)|c0
)

= 2ζa

(

a+ 1i0|O(r1, r2)|c0
)

− Ni(a)
(

a− 1i0|O(r1, r2)|c0
)

+ 2ζb

(

a1i |O(r1, r2)|c0
)

= 2ζp

(

a+ 1i0|O(r1, r2)|c0
)

− Ni(a)
(

a− 1i0|O(r1, r2)|c0
)

(28)+ 2ζbABi

(

a0|O(r1, r2)|c0
)

,

where we have used the HRR Eq. (24) to transfer a unit of angular momentum from center B to A. On the other
hand, the explicit differentiation of the right-hand side of Eq. (26) with the help of Eq. (27) over the particular
operator Ok gives

[

(a0|{∇1Ok}|c0)
]

i
= (

a0|(r12)i (kOk−2 − 2γOk)|c0
) = (

a+ 1i0|(kOk−2 − 2γOk)|c0
)

(29)− (

a0|(kOk−2 − 2γOk)|c+ 1i0
) + ACi

(

a0|(kOk−2 − 2γOk)|c0
)

,

where we have used the fact that (r12)i = (r1i − Ai) − (r2i − Ci) + ACi . Combination of Eqs. (28) and (29) gives
finally an HGP-like VRR applicable to the integrals over the operator Ok for any integer k ! 0
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(a+ 1i0|Ok|c0) = 1
2

1
ζpζq + γ (ζp + ζq)

[

Ni(a)(ζq + γ )(a− 1i0|Ok|c0)

− 2
(

ζb(ζq + γ )ABi + γ ζdCDi + γ ζqACi

)

(a0|Ok|c0) + γNi(c)(a0|Ok|c− 1i0)
(30)+ kζq

{

(a+ 1i0|Ok−2|c0) − (a0|Ok−2|c+ 1i0) + ACi(a0|Ok−2|c0)
}]

, ∀k ! 0.

In a similar way, it is possible to obtain an HLS-like scheme

(a+ 1i0|Ok|00) = 1
2

1
ζpζq + γ (ζp + ζq)

[

Ni(a)(ζq + γ )(a− 1i0|Ok|00)

− 2
(

ζb(ζq + γ )ABi + γ ζdCDi + γ ζqACi

)

(a0|Ok|00)
(31)+ kζq

{(

a+ 1i0|Ok−2|00
) − (

a0|Ok−2|1i0
) + ACi

(

a0|Ok−2|00
)}]

, ∀k ! 0.

The special HGP case when k = 0 is given by

(a+ 1i0|O0|c0) = 1
2

1
ζpζq + γ (ζp + ζq)

[

Ni(a)(ζq + γ )(a− 1i0|O0|c0)

− 2
(

ζb(ζq + γ )ABi + γ ζdCDi + γ ζqACi

)

(a0|O0|c0)
(32)+ γNi(c)(a0|O0|c− 1i0)

]

, k = 0,

and for the HLS-like scheme

(a+ 1i0|O0|00) = 1
2

1
ζpζq + γ (ζp + ζq)

[

Ni(a)(ζq + γ )(a− 1i0|O0|00)

(33)− 2
(

ζb(ζq + γ )ABi + γ ζdCDi + γ ζqACi

)

(a0|O0|00)
]

, k = 0,

which are just special case of Eqs. (30) and (31), respectively.

2.6. Centered bi-horizontal recurrence relation (CBHRR)

In a similar way as the HRR Section 2.3, it is possible to transfer the angular momentum from the electrons 1
and 2 to the operatorOk . To obtain the recurrence relation we first express rk+2n

12 in a trinomial expansion as

(34)rk+2n
12 = rk

12

n
∑

s=0

s
∑

t=0

(

n

s

)(

s

t

)

(x1 − x2)
2(n−s)(y1 − y2)

2(s−t )(z1 − z2)
2t ,

where n ∈ N, an nonnegative integer. Then by the introduction of the equality

(r1i − r2i )
n =

(

(r1i − Ai) − (r2i − Ci) + ACi

)n

(35)=
n

∑

u=0

u
∑

v=0
(−)u−v

(

n

u

)(

u

v

)

(r1i − Ai)
n−u(r2i − Ci)

u−vACv
i ,

we obtain an expression for rk+2n
12 which depends only in the difference between the position of the electron 1 or 2

and a nuclei (without looking at the multiplicative factor rk
12), which writes

rk+2n
12 = rk

12

n
∑

s=0

s
∑

t=0

2(n−s)
∑

u=0

u
∑

v=0

2(s−t )
∑

u′=0

u′
∑

v′=0

2t
∑

u′′=0

u′′
∑

v′′=0
(−)u−v+u′−v′+u′′−v′′

×
(

n

s

)(

s

t

)(

2(n − s)

u

)(

u

v

)(

2(s − t)

u′

)(

u′

v′

)(

2t
u′′

)(

u′′

v′′

)
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× (x1 − Ax)
2(n−s)−u(x2 − Cx)u−vACv

x

× (y1 − Ay)
2(s−t )−u′

(y2 − Cy)u
′−v′

ACv′
y

(36)× (z1 − Az)
2t−u′′

(z2 − Cz)
u′′−v′′

ACv′′
z .

It is then possible to write any integrals (ab|Ok+2n|cd) as a linear combination of integrals over the operatorOk as

(ab|Ok+2n|cd) =
n

∑

s=0

s
∑

t=0

2(n−s)
∑

u=0

u
∑

v=0

2(s−t )
∑

u′=0

u′
∑

v′=0

2t
∑

u′′=0

u′′
∑

v′′=0
(−)u−v+u′−v′+u′′−v′′

×
(

n

s

)(

s

t

)(

2(n − s)

u

)(

u

v

)(

2(s − t)

u′

)(

u′

v′

)(

2t
u′′

)(

u′′

v′′

)

(37)× ACv
xACv′

y ACv′′
z (ãn,s,t,u,u′,u′′b|Ok|c̃u,u′,u′′,v,v′,v′′d),

where ãn,s,t,u,u′,u′′ = a+ (2(n− s) − u)1x + (2(s − t) − u′)1y + (2t − u′′)1z and c̃u,u′,u′′,v,v′,v′′ = c+ (u − v)1x +
(u′ − v′)1y + (u′′ − v′′)1z. When, for example, if n = 1 and k = 0 we obtain:

(ab|O2|cd) =
∑

i=x,y,z

{

(a+ 2ib|O0|cd) + (ab|O0|c+ 2id)

− 2(a+ 1ib|O0|c+ 1id) + 2ACi(a+ 1ib|O0|cd)
(38)− 2ACi(ab|O0|c+ 1id) + AC2i (ab|O0|cd)

}

.

We can see that these expressions, Eq. (38) and generally Eq. (37), are very demanding especially in the second
and higher cases when 2n > 2. It is obvious that the CBHRR step can be done in the outermost contraction loop
(K0 loop and whereK is the number of contraction)1 as the sums do not depend explicitly on the orbital exponents
nor the contraction coefficients.

2.7. Evaluation of the integrals (ab|O−1|cd)

Following the same development given by Obara and Saika [15] and making the substitution t2 → t2 + γ it is
then easy to obtain an Obara–Saika two-electron recurrence relation for the integral

(a+ 1ib|O−1|cd)(m) = PAi(ab|O−1|cd)(m) − ζq

ζp + ζq
PQi(ab|O−1|cd)(m+1)

+ 1
2

1
ζp + ζq

[

Ni(c)(ab|O−1|c− 1id)(m+1) + Ni(d)(ab|O−1|cd− 1i )(m+1)]

+ 1
2ζp

[

Ni(a)
{

(a− 1ib|O−1|cd)(m) − α

ζp
(a− 1ib|O−1|cd)(m+1)

}

(39)+ Ni(b)
{

(ab− 1i |O−1|cd)(m) − α

ζp
(ab− 1i|O−1|cd)(m+1)

}]

,

where we have used the short-hand notation

(ab|O−1|cd)(m) = 2√
π

∞
∫

0

dt
(

t2 + γ

α + t2 + γ

)m

(40)×
∫ ∫

R3×R3

d3r1 d3r2 φa(r1)φc(r2) exp
(

−(t2 + γ )r212
)

φb(r1)φd (r2),

1 Numerical instability similar to those observed by Ishida [21], in the ERI’s case, may also arise by using Eq. (37).
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where m ∈ N, a nonnegative integer. The use of the recurrence relation (39) requires the evaluation of the modified
spherical bi-electronic integral, which is given by

(00|O−1|00)(m) = 2√
π

(

π2

ζpζq

)3/2
exp

(

−ζaζb

ζp
AB2

)

exp
(

−ζcζd

ζq
CD2

)

×
∞

∫

0

dt
(

α

α + t2 + γ

)3/2( t2 + γ

α + t2 + γ

)m

exp
(

− α(t2 + γ )

α + t2 + γ
PQ2

)

= 2π5/2

(α + γ )m+1

(

α

ζpζq

)3/2
exp

(

−ζaζb

ζp
AB2

)

exp
(

−ζcζd

ζq
CD2

)

(41)× exp
(

− αγ

α + γ
PQ2

) m
∑

k=0

(

m

k

)

αkγ m−kFk

(

α2

α + γ
PQ2

)

,

where the Boys function Fn(z) Eq. (23) has been used. This relation can be obtained straightforwardly with the
help of the variable substitution

(42)u2 = t2

α + t2 + γ
⇒ dt = (α + γ )−1(α + t2 + γ )3/2du.

The HGP modification of Eq. (39) builds the angular momentum on centers A and B, through

(a+ 1i0|O−1|c0)(m) = PAi(a0|O−1|c0)(m) − ζq

ζp + ζq
PQi(a0|O−1|c0)(m+1)

+ 1
2

1
ζp + ζq

Ni(c)(a0|O−1|c− 1i0)(m+1)

(43)+ 1
2ζp

Ni(a)
[

(a− 1i0|O−1|c0)(m) − α

ζp
(a− 1i0|O−1|c0)(m+1)

]

.

A similar relation can be obtained for the HLS scheme. Note that the final integral (ab|O−1|cd)(0), when
m = 0, is equal to the desired integral (ab|O−1|cd). We can finally mention that the limit γ → 0 of the integral
(ab|O−1|cd)(m) is easily obtained through Eq. (39) and the definition of the integral (40), thus

(44)lim
γ→0

(ab|O−1|cd)(m) = (ab|cd)(m),

where (ab|cd)(m) is the usual modified ERI introduced in [15].

3. Practical aspect

From a theoretical point of view, Eqs. (43), (24), and (30) specify a complete HGP-like scheme for the evaluation
of the target integrals (ab|Ok|cd) with, in our case, k = −1,0,1,2,4. Here, we outline the approach for building
the integrals within the HGP-approach, for odd k we have

A-1 Apply the HGP VRR Eq. (43) to generate the integrals up to (a+ b+ 1i0|O−1|c+ d0) and (a+ b0|O−1|c+
d+ 1i0).

A-2 Build up the (a+ b0|O1|c+ d0) through the HGP-like VRR Eq. (30).
A-3 Use the HRR Eq. (24) to set up the target integrals (ab|O−1|cd) and (ab|O−1|cd).
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Fig. 1. Pictorial representation of the HGP vertical recurrence relation (30) applied to odd operator O2n−1 with n = 0,1. The figure shows
the connection, through Eq. (30), between the different intermediate integrals. The target integrals Oa+b0c+d02n−1 are computed in the innermost
contraction loop (where we have used the short-hand notation Oabcdk ≡ (ab|Ok |cd)).

And for the even k case, we have

B-1 Apply the HGP VRR Eq. (32) to generate the integrals up to (a+b+1i +1j0|O0|c+d0) and (a+b0|O0|c+
d+ 1i + 1j0).

B-2 Build up the (a+ b+ 1i0|O2|c+ d0) and (a+ b0|O2|c+ d+ 1i0) through the HGP-like VRR Eq. (30).
B-3 Build up the (a+ b0|O4|c+ d0) through the HGP-like VRR Eq. (30).
B-4 Use the HRR Eq. (24) to set up the target integrals (ab|O0|cd), (ab|O2|cd) and (ab|O0|cd).

The steps A-3, B-3 and B-4 may be executed in the outermost contraction loop (K0 loop), whereas the other steps
are carried out in the innermost loop (K4 loop). Pictorial representations of the HGP VRR are shown in Figs. 1
and 2 for the computation of the integrals over odd and even k operators, respectively. Similar steps can be derived
within the HLS frame-work (see Ref. [17]) and with the help of Eq. (31) and the HLS modification of Eq. (43). It is
possible to use the CBHRR Eq. (38) if we want to evaluate the integrals (ab|Ok|cd). In this case only the sufficient
integrals over O0and O−1 must be computed in the K4 loop, then the BCHRR is applied at the K0 loop, after the
HRR step, to give the desired integrals.

4. Conclusion

In this paper we propose an alternative to the McMurchie–Davidson based approach developed by Samson et
al. [13] for the evaluation of the bi-electronic integrals including the factors rk

12 exp(−γ r212). Our method is based
on the Obara and Saika work and its extensions by Head-Gordon and Pople and Lindh, Ryu and Liu. It is worth
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Fig. 2. Pictorial representation of the HGP VRR scheme (30) applied to even operator O2n with n = 0,1,2. The figure shows the connection,
through Eq. (30), between the different intermediate integrals. The target integrals Oa+b0c+d02n are computed in the innermost contraction loop
(where we have used the short-hand notation Oabcdk ≡ (ab|Ok |cd)).

to mention that there are many different strategies one can devise for the implementation of these two-electron
integral formulas. Moreover, it has been shown that the CBHRR can be used to transfer the angular momentum
centered, for example, on A and C to the operator Ok . Thus it is possible to compute all desired integrals over the
operator Ok+2n from a set of integrals over the operator Ok . Some questions remain about the efficiency of the
methods proposed in this paper. This aspect and a comparison with the method developed by Samson et al. will be
the subject of a subsequent investigation.
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Appendix A

Eq. (26) follows from integration by parts and from the use of the equality

∇1
{

φa(r1)φb(r1)
}

= −∇P

{

φa(r1)φb(r1)
}

,
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which can be easily derived, then it follows
(

ab|{∇1O(r1, r2)}|cd
)

=
∫ ∫

R3×R3

d3r1 d3r2 φa(r1)φc(r2
{

∇1O(r1, r2)
}

φb(r1)φd(r2)

=
∫

R3

d3r2 φa(r1)φb(r1)φc(r2)φd(r2)O(r1, r2)
∣

∣

∣

∣

r1=∞

r1=−∞

=
∫ ∫

R3×R3

d3r1 d3r2
{

∇1
(

φa(r1)φb(r1)φc(r2)φd(r2)
)}

O(r1, r2)

= ∇P

∫ ∫

R3×R3

d3r1 d3r2 φa(r1)φc(r2)O(r1, r2)φb(r1)φd (r2)

= ∇P

(

ab|O(r1, r2)|cd
)

,

which holds for integrals over any well-behaved multiplicative bi-electronic operatorO(r1, r2) such that

lim
|r1|→∞

φa(r1)φb(r1)O(r1, r2) = 0, ∀r2 ∈ R
3.
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