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Abstract

Here we analyze the use of the resolution of the identity (RI) in approximating many-electron matrix elements in linear R12 the-
ories. A modified standard approximation is proposed that involves expansion in the orthogonal complement to the span of orbital
basis set (OBS). The new formulation is labeled complementary auxiliary basis set (CABS) approach. CABS MP2-R12 method has a
smaller RI error vis-à-vis the standard ABS approach. Both ABS and CABS approaches are most accurate if the auxiliary basis
includes OBS explicitly. The CABS approach found to be more numerically robust than the ABS counterpart.
! 2004 Elsevier B.V. All rights reserved.

1. Introduction

Basis set incompleteness error (BSIE) is a major com-
ponent of the total error in traditional wave function-
based ab initio electronic structure computations.
Explicitly correlated ab initio methods speed up the as-
ymptotic rate of decay of BSIE with respect to the size
of the basis set by including terms explicitly dependent
on the interelectronic distances. Such terms are designed
to correct the unphysical short-rij behavior of conven-
tional (product) wave functions, which is the main cause
of the slow convergence. Unfortunately, presence of
explicitly correlated terms leads to three- and higher-
electron matrix elements. Evaluation of these many-elec-
tron integrals is feasible via direct evaluation [1,2] or
expansion of the correlation factor in terms of Gaussian
Geminals (idea reminiscent of work by Persson and Tay-
lor [3] and pursued by Manby and co-workers [4]). The
popular linear R12 methods of Kutzelnigg, Klopper,
and co-workers [5–7] avoid such matrix elements alto-

gether via the insertion of the resolution of the identity
(RI). Thus only two-electron matrix elements need to be
evaluated. The R12methods, while relatively inexpensive,
have repeatedly demonstrated accuracy that is often com-
pletely out of reach of the conventional methods [8–11].

Original linear R12 methods [6,7,12] employed the
same basis for the orbital expansion and the RI, which
meant that the preceeding Hartree–Fock computation
was rather expensive. Recently Klopper and Samson
[13] reformulated the MP2-R12 theory to use a separate,
auxiliary basis set for the RI (the ABS MP2-R12 meth-
od). We have independently implemented the method
recently in a massively parallel program MPQC. Initial
applications[14] hinted at several potential issues with
the ABS approach, such as the error due to remaining
approximations in the theory and a somewhat more
technical issue of the accuracy of the RI approximation.
In this work, we investigate how the RI approximation
works in the context of the ABS MP2-R12 method.

In the linear R12 theories the first-order wave func-
tion is written as a sum of the standard 2-products of
unoccupied 1-particle functions and the r12-multiplied
2-products of occupied states:
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where the correlation operator R will be defined as:

Rkl
ab ¼

rklab if P̂a ¼ 0 or P̂b ¼ 0;

0 if P̂a ¼ a and P̂b ¼ b

(

ð2Þ

(see [6,14] for complete notation). This definition corre-
sponds to ansatz 2 of Klopper and Samson [13] and
ensures orthogonality of the r12-multiplied terms with
respect to conventional orbital products [2,14]. It is al-
so common to use first quantized forms in the litera-
ture on the explicitly correlated methods – here we
show them for convenience:
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Different choices of the correlation operator R in Eq.
(1) correspond to different choices for the two-particle
projector Q̂12 in Eq. (3). Our choice (Eq. (2)) corre-
sponds to the following two-particle projector:

Q̂12 ¼ ð1% Ô1Þð1% Ô2Þ % V̂ 1V̂ 2;

¼ 1% Ô1 % Ô2 % P̂ 1P̂ 2 þ Ô1P̂ 2 þ P̂ 1Ô2: ð4Þ

Three and higher-electron matrix elements appear
when the the first-order wave function is plugged into
the Hylleraas functional for the second-order energy:

F ðwð1ÞÞ ¼ hwð1ÞjĤ ð0Þ % Eð0Þjwð1Þiþ 2hwð0ÞjĤ ð1Þ % Eð1Þjwð1Þi:
ð5Þ

Evaluation of matrix elements in Eq. (5) produces
terms like Rkl

abg
ab
ij which contain three-electron integrals:
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In their ABS MP2-R12 method Klopper and Samson

insert the resolution of the identity directly into the
three-electron matrix elements in terms of a separate
RI basis set {p 0}, e.g.,
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Our goal in this Letter is to investigate

( how to best construct the RI basis set, and
( whether there!s a better approach to approximating

the many-electron matrix elements than direct inser-
tion of the RI via Eqs. (7) and (9).

2. Formalism

For practical purposes we will only need to consider
expressions of the following type:

Cab
ij X

kl
ab % Cab

ij X
kl
ab; ð10Þ

in which the operator pair (C,X) is one of the follow-
ing: ðr%1

12 ; r12Þ; ðr12; r12Þ; ðr%1
12 ; ½T̂ 1 þ T̂ 2; r12*Þ. Following

Kutzelnigg [6] such expressions are rewritten in terms
of complete and orbital basis set indices only:
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Original evaluation of such expressions [6] assumed
that the orbital basis {p} was sufficiently complete to re-
solve the identity accurately:
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This RI procedure is equivalent to replacing j with p
in Eq. (11). In first quantization this corresponds to re-
placing standalone projectors Ô1 and Ô2 in Eq. (4) with
Ô1P̂ 2 and Ô2P̂ 1, respectively.

The ABS MP2-R12 method of Klopper and Samson
[13], used a separate "auxiliary! basis set (ABS) {p 0} to
approximate matrix elements in Eq. (11):
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In first quantization we replace projectors Ô1 and Ô2

in Eq. (4) with Ô1P̂
0
2 and Ô2P̂

0
1, respectively. If the ABS

is more appropriate for the RI than the OBS, then Eq.
(13) should be more accurate than Eq. (12). When the
ABS is the same as the OBS, both expressions are equiv-
alent. When the ABS approaches completeness Eq. (13)
becomes exact.

In order to understand and control the error due to
the approximate RI, one must be able to approach the
complete ABS limit. In atoms, partial wave analysis of
these expressions indicates that an ABS complete
through a certain finite orbital quantum number is often
sufficient (see [6,13]). No such simplification is possible
in a general molecular case. Therefore one should ask:
how large of an ABS should one use and how should
it be constructed?

Eq. (11) is formally rewritten as

Cab
ij X

kl
ab % Cab

ij X
kl
ab ¼ Cjk

ij X
kl
jk % Cpq

ij X
kl
pq % Ca0m

ij Xkl
a0m % Cma0

ij Xkl
ma0 ;

ð14Þ

where set {a 0} spans the orthogonal complement to the
space of OBS, {p}. In other words, {j} = {a 0} [ {p} and
{a} = {a 0} [ {a}. Terms containing sums over a 0 indices
are approximated as
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where basis set {a 0} is a finite approximation for the
space of {a 0}. One can interpret this approach as using
Ca0m

ij Xkl
a0m þ Cma0

ij Xkl
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ij X
kl
jm þ Cmj

ij X
kl
mj%

Cpm
ij X

kl
pm % Cmp

ij X
kl
mp rather than using Cp0m

ij Xkl
p0m þ Cmp0

ij Xkl
mp0

to approximate Cjm
ij X

kl
jm þ Cmj
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mj in the standard ABS

approach. In the language of first quantization: the
ABS approach approximates the identity operator as
P̂
0
, whereas in the new approach the difference 1% P̂ is

approximated directly as an orthogonal complement
projector X̂ .

While Eqs. (11) and (14) are equivalent, their respec-
tive approximations, Eqs. (13) and (15), are only equiv-
alent when {p 0} = {a 0} [ {p}. This means that {p 0} must
span {p} exactly, i.e., ABS must span OBS exactly. Thus
in theory Eq. (13) is less accurate than Eq. (15) when the
space of ABS does not include the space of OBS (the ar-
gument is illustrated in Fig. 1).

The MP2-R12 method which uses Eq. (15) will be
called Complementary Auxiliary Basis Set (CABS)
MP2-R12 method, to distinguish from the ABS MP2-
R12 method of Klopper and Samson [13], which uses
Eq. (13).

2.1. Construction of the complimentary auxiliary basis set
{a 0}

In practice one would like to construct an optimal
{a 0} using an arbitrary, not necessarily orthogonal, set
of functions {l 0}, i.e., an auxiliary basis set of atom-cen-

tered Gaussian atomic orbitals (AO ABS) 1. It is always
possible to orthogonalize the given AO ABS {l 0} to a
given numerical precision. Then it is convenient to ex-
pand functions in the complementary basis set {a 0} in
terms of the orthogonal functions {jl 0æ}:

ja0i ¼
XN 0

l0¼1

Ca0
l0 jl

0i: ð16Þ

where jl 0æ is a set of N 0 orthogonal basis functions
formed by orthogonalization of the non-orthogonal
{l 0} basis set.

We postulate that the overlap between the comple-
mentary basis set, {a 0}, and the OBS, {p}, must be zero

ha0jpi ¼ 0 8a0 2 fa0g; 8p 2 fpg: ð17Þ

Upon substitution of Eq. (16) in Eq. (17), we obtain
an equation for the expansion coefficients:

XN 0

l0
Cl0

a0 hl
0jpi ¼ 0 8a0 2 fa0g; 8p 2 fpg: ð18Þ

We should also impose orthonormality condition on
the {a 0} basis:

XN 0

l0

XN 0

m0
Cl0

a0C
b0
m0 hl

0jm0i ¼ db
0

a0 8a0 2 fa0g; 8b0 2 fa0g:

ð19Þ

In principle, one could solve Eqs. (18) and (19) via a
straightforward Gram–Schmidt (GS) orthogonalization
procedure. However, GS orthogonalization is not a ro-
bust numerical method. Thus, we avoided the GS route
as follows.

Let us rewrite Eq. (18) in matrix form.

S12C ¼ 0; ð20Þ

where S12 is the overlap matrix between the {jpæ} and
{jl 0æ} sets. Thus, we need to find vectors C that span
null space of S12. Singular value decomposition (SVD)
[15] of S12 can be used to rewrite Eq. (20) as

Uy
1R12V2C ¼ 0: ð21Þ

where U1 and V2 are orthogonal matrices of dimen-
sions n and N 0, respectively, and R12 is a diagonal
n · N 0 matrix of singular values. For our purposes we
will assume that N 0 is greater than n. The numerical
rank of S12 is then rank(S12) 6 n. Hence V2 can be rep-
resented as:

V2 ¼
VR

2

VN
2

 !

; ð22Þ

Fig. 1. Pictorial representation of projectors P̂ and P̂
0
used in Klopper

and Samson!s ABS linear R12 methods. When ABS does not span
OBS exactly (left part of the figure), the difference P̂

0 % P̂ (difference of
areas X2 and Px) may be a poor approximation to the exact orthogonal
complement projector 1% P̂ (the entire area outside of the octagon).
Thus, it is always preferable to approximate 1% P̂ with the projector
corresponding to area X2.

1 Other functional choices, such as plane waves, are possible. The
choice of the basis function type does not fundamentally change our
formalism.
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where the two blocks are composed of rank(S12) and
N 0 % rank(S12) rows, respectively. The desired solution
C is simply a transpose of VN

2 :

Uy
1R12V2V

N
2 ¼ 0; ð23Þ

is true by construction. Hence our simplified procedure
for constructing the complementary auxiliary basis set
{a 0} is:

1. form S12, the overlap matrix between orthonormal-
ized ABS, {jl 0æ}, and OBS, {jpæ},

2. compute SVD of S12: S12 ¼ Uy
1R12V2,

3. select last N 0 % rank(S12) rows of V2, transpose, and
transform to the {l 0} basis. Result is the desired ma-
trix of coefficients in Eq. (16).

Note that N 0 > n almost always holds in practice be-
cause it makes sense to use ABS larger than OBS.

2.2. Choice of the AO basis set for ABS

We have already discussed that for optimal accuracy
of the RI approximation in the ABS approach (Eq.
(13)) theABS should span theOBS space exactly. In prac-
tice we found that it is extremely difficult to construct such
a basis set by trial and error. It is possible that careful op-
timization of theAOABS for a givenAOOBS could help.
However, a much simpler solution is to use a union of AO
OBS and AO ABS to construct the basis set for the RI.
The "union! basis set has a higher number of AO functions
than the ABS. Thus, the number of molecular AO inte-
grals one has to compute in the union ABS approach is
higher than in the standard ABS approach. However,
the advantage is that the union basis set will span the
space of OBS even with a poor choice of the AO ABS.
The "union! ABS approach will be referred to as ABS+.

2.3. Choice of the AO basis set for CABS

Eq. (20) implies that if the ABS does not overlap with
OBS then any C would automatically satisfy the equa-
tion. In other words, CABS {a 0} should ideally be con-
structed from an AO basis set {l 0} which is orthogonal
(or nearly orthogonal) to OBS {p}. The exact orthogo-
nality is impossible a priori for a general molecule 2.

Let us assume that the AO ABS {l 0} used to con-
struct CABS spans some part of the OBS space. We will
designate rank of the union of ABS and OBS spaces as
NU. Then rank of the orthogonal complement to OBS is

NC = NU % n. Values of NU and NC are determined by
the choice of AO ABS, AO OBS, and the linear depend-
ency threshold. Therefore the best CABS one could
hope to construct would span the entire orthogonal
complement of rank NC. In practice, rank of CABS is
significantly smaller than NC because AO OBS and
AO ABS are not exactly orthogonal to each other.
The union basis set is again helpful here – it is straight-
forward to show that CABS of rank NC can be reliably
constructed using the union of AO OBS and AO ABS.
Therefore, as with the standard ABS approach, one
should use the union basis set for the CABS method.
The "union! CABS method will be referred to as CABS+.

3. Computational methods

We used the MP2-R12 method as implemented within
the MPQC package (upcoming release 2.3) [16,14]. Dun-
ning!s [17,18] augmented double-f correlation consistent
basis set was utilized for the orbital expansion in all com-
putations. Details of "universal! uncontracted basis sets
of increasing completeness X1, X2, and X3 are available
from the author. BS1 basis set was used in [19]. K2 basis
set was taken from an early study by Klopper [20].
K2–basis set is obtained from K2 by removing basis
functions of the two highest orbital numbers from each
atom. Near linear dependencies in the basis sets were
handled via standard orthogonalization procedures
[21], in which overlap eigenvectors that had eigenvalues
smaller than 10%8 times the maximum overlap eigen-
value were omitted. The same linear dependence thresh-
old was used for both OBS and ABS. The core orbitals
were kept "frozen! in all correlated computations.

4. Results and conclusion

We compared the accuracy of the RI in the four ap-
proaches discussed above by looking at the convergence
of absolute and relative MP2-R12/A 0 energies with re-
spect to the size of an AOABS in a diverse set of systems.
A small set of typical results is presented in Figs. 2–5.

The main findings are:

1. The RI error in the ABS MP2-R12 energy is signifi-
cantly larger than in the corresponding CABS MP2-
R12 value when a relatively small AO ABS is used.
The difference is especially staggering for benzene
dimer when the BS1 basis set is used.

2. When AO ABS method is very large then all methods
produce nearly identical energies.

3. The "union! approaches, ABS+ and CABS+, have
smaller RI error than either ABS or CABS method.
It is true even when we compare ABS+ and CABS+
energies with a "small! AO ABS against ABS and

2 In case of an atom angular momentum selection rules suggest that
CABS should be composed of basis functions of angular momenta
which are not represented in OBS if we assume that OBS is complete
through a finite angular momentum level. For example, OBS for a
second-row element should be complete in s and p-type spaces,
whereas CABS should be composed of functions of d-type and higher.
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CABS calculations with a much larger AO ABS. This
finding emphasizes how important it is for the RI ba-
sis set in Eq. (13) to span OBS exactly.

Note that approaches ABS+ and CABS+ are equiv-
alent in absence of numerical round-off error. Practical
tests indicate that the CABS+ approach is less sensitive
to variations in the linear dependency threshold used
for orthogonalization of the union basis set and thus
should be preferred. A more complete investigation
of numerical performance of the CABS method will
be published shortly.
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