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INVITED ARTICLE

Open-shell explicitly correlated F12 methods

David P. Tew and Wim Klopper*

Institute of Physical Chemistry, Theoretical Chemistry Group, Karlsruhe Institute of Technology—KIT,
Kaiserstrabe 12, D-76131 Karlsruhe, Germany

(Received 3 October 2009; final version received 28 October 2009)

In calculations on open-shell systems, spin-flipped geminals must be used in explicitly correlated F12 methods
with spin-unrestricted or restricted open-shell Hartree–Fock reference wave functions. We suggest the use of the
sp ansatz of Bokhan et al. [J. Chem. Phys. 131, 084105 (2009)] for calculations with fixed F12 amplitudes, but to
use a novel contracted geminal approach if the F12 amplitudes are to be optimised. This new approach is denoted
MP2-F12-o (CCSD(F12)-o). The performance of the new approach is assessed by calculating the atomisation
energies of a test set comprising 106 molecules containing the atoms H, C, N, O and F, and by calculating the
ionisation energies and electron affinities of the atoms C, N, O and F.

Keywords: open-shell systems; electron correlation; geminals; correlation cusp

1. Introduction

R12 explicitly correlated electronic structure methods
overcome the slow convergence of orbital expansions

by employing geminal basis functions that closely

resemble the correlation holes in electronic wave

functions [1,2]. These methods have developed rapidly
over the last seven years and are emerging as robust

tools for computational chemistry, where small basis

sets may be used to obtain near basis set limit accuracy

[3]. The principal differences between the early and
modern R12 methods are the use of a complementary

auxiliary basis set (CABS) for the resolution of the

identity approximation, employed to evaluate the

many-electron integrals [4,5], and the use of a
Slater-type correlation factor for the geminal basis

functions [6]. Methods that use nonlinear correlation

factors instead of the original linear factor are

commonly referred to as F12 methods. So far, the
F12 approach has been combined with MP2 [6],

CASPT2 [7] and coupled-cluster wave function meth-

ods up to CCSDTQ [8–11]. In addition, many

researchers have improved the efficiency of F12
methods through density fitting [12,13], improved

methods for evaluating Fock matrix elements for

geminal functions [14,15], localisation techniques

[16–19] and by constructing specially optimised basis
sets [20–22].

One further development is the rational generator

approach of Ten-no [23]. In this approach the s- and

p-wave coalescence conditions [24,25] for the

first-order wave function are used to predetermine

the F12 amplitudes instead of optimising them. The
fixed-amplitude method is computationally less

demanding because only the diagonal elements of the
spin-adapted F12 matrix elements need to be com-

puted and no equations for the F12 amplitudes need to
be solved. Moreover, the fixed-amplitude method is

free from geminal basis set superposition error, which
arises if the amplitudes are optimised [26], and is free

from the numerical problems associated with inverting
the geminal Fock matrix, which becomes non-positive

definite in some limits [27]. The loss of accuracy due to
the reduced variational degrees of freedom is slight and

the fixed-amplitude method is used increasingly in F12
calculations, particularly for explicitly correlated

coupled-cluster singles and doubles methods
(CCSD-F12) [28–34].

The extension of the fixed-amplitude approach to
open-shell systems has been attempted only recently

[27,30,32,35] and has led to a re-evaluation of the

geminal basis used for open-shell calculations [32].

Bokhan et al. demonstrated that, contrary to the

closed-shell case, it is not possible to satisfy both the s-

and p-wave UMP2 coalescence conditions using the

functions f(r12)jiji alone. jiji is the usual two-electron

determinant of occupied spin-orbitals i and j and f(r12)

is the correlation factor. To satisfy the s- and p-wave

coalescence conditions for open-shell MP2-F12 calcu-

lations, Bokhan et al. introduced a spin-flipped

geminal basis and have subsequently performed
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calculations at the UMP2-F12 level [35]. They demon-

strated that the basis set convergence without the

spin-flipped basis is limited by the X�5 behavior for the

pair energies where one orbital is singly occupied in the

HF reference, arising from the unsatisfied p-wave

derivative discontinuity. By including the spin-flipped

basis, the X�7 convergence behavior of F12 methods

for closed-shell species is achieved for open-shell

species. For high-spin ROHF references, Knizia et al.

have also included spin-flipped geminal basis functions

in their RMP2-F12 and CCSD-F12x methods [30],

noting improved performance for atomisation ener-

gies, electron affinities and ionisation potentials

compared with their earlier open-shell fixed-amplitude

approach [27].
Nevertheless, a number of questions remain unan-

swered for open-shell F12 calculations. For UHF
references, the combined basis of normal and
spin-flipped geminals contains many near linear
dependencies and including both sets with full varia-
tional flexibility leads to severe numerical problems.
Indeed, Bokhan et al. only considered the diagonal
orbital-variant method and, even here, a singular value
decomposition was necessary. We consider the optimi-
sation of coefficients for both normal and spin-flipped
geminals as undesirable since it results in an unbal-
anced treatment of open- and closed-shell systems,
favoring the open-shell species. It is also numerically
problematic and can lead to steps in potential energy
surfaces. In this work we suggest that a contracted
geminal basis should be used, that is, fixed linear
combinations of normal and spin-flipped geminals
with contraction coefficients determined by the s- and
p-wave coalescence conditions. Our approach can be
unproblematically combined with the original orbital-
invariant ansatz, and can be extended to the
UCCSD(F12) level of theory, using ROHF or UHF
references, with minimal changes to the existing
UCCSD(F12) program.

To properly assess the impact of spin-flipped
geminals on the accuracy of a calculation, it is
necessary to make a comparison with analogous
methods without the spin-flipped geminals. When
optimising the amplitudes, the comparison is between
the original orbital invariant formulation of Ref. [36]
and the new methods presented here. However, no
open-shell fixed-amplitude method exists in the liter-
ature where the coalescence conditions are fulfilled as
far as possible within the normal geminal basis, that is,
without spin-flipped functions. In this work we derive
such a fixed-amplitude method for MP2-F12 with
UHF and ROHF references that is both orbital
invariant and size extensive and reduces to Ten-no’s

rational generator method when the � and � orbitals
are identical.

2. The geminal basis for open-shell F12 calculations

Stemming from the original ideas of Kutzelnigg [1], the
geminal basis in F12 methods is chosen such that the
s- and p-wave coalescence conditions can be satisfied
for every spin-adapted first-order pair function usij. The
s-wave condition applies to the singlet pair functions,
u0ij, and the p-wave condition to the triplet pair
functions u1ij,

u0ij¼ u0ijðr12¼ 0Þþ
1

2
r12ðjijiþ j jiiÞð2þ2�ijÞ

�1=2
þOðr212Þ,

ð1Þ

u1ij ¼ r12 �
@u1ij
@r12

�����
r12¼0

þ
1

4
r12jiji þ Oðr

3
12Þ, ��, ��, ð2Þ

u1ij¼ r12 �
@u1ij
@r12

�����
r12¼0

þ
1

4
r12ðjiji� j jiiÞ2

�1=2þOðr312Þ, ��:

ð3Þ

jiji is a two-electron determinant of spin-orbitals i and
j, where it is understood that the first orbital has � spin
and the second has � spin, for the opposite-spin case.
We use this convention consistently throughout this
article. Introducing variational flexibility into an
orbital-invariant manner [36], the first-order pair
functions are expanded as

uij ¼
X
a5b

tijabjabi þ
X
k5l

cijklQ̂12 f ðr12Þjkli, ð4Þ

where k, l run over occupied and a, b over virtual
Hartree–Fock spin-orbitals. Q̂12 is the strong ortho-
gonality operator and @f(r12)/@r12jr12¼0¼ 1. For
restricted closed-shell systems, Equations (1) and (3)
can be used to select fixed F12 amplitudes,

cijkl ¼
1

4
�ik�

j
l , ��, ��, ð5Þ

cijkl ¼
3

8
�ik�

j
l þ

1

8
�il�

j
k, ��: ð6Þ

Indeed, in the limit of a large orbital basis, variation-
ally optimised F12 amplitudes tend to these values.
The derivation of Equations (1)–(3) assumes that
singlet and triplet pair functions can be constructed
and thus is only rigorous for closed-shell restricted
first-order pair functions. For UMP2 using ROHF or
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UHF references, the coalescence conditions must be
re-examined in terms of spin-orbitals. Our derivation
of the coalescence conditions for open-shell MP2 is
reported in the appendix and we consider both UHF
and ROHF references. In complete agreement with the
work of Bokhan et al., we find that Equation (2) holds
for the same-spin pairs and for the �� pairs

uij ¼ uijðr12 ¼ 0Þ þ
1

2
r12ðjiji þ j �j �i iÞ2�1=2

þ r12 �
@uij
@r12

����
r12¼0

þ
1

4
r12
�
jiji � j �j �i i

�
2�1=2 þOðr212Þ:

ð7Þ

The spin-orbital �i has the same spatial component as i,
but the spin component is flipped such that
�i¼ (ŝþþ ŝ�)i. Notably, both s- and p-wave coalescence
conditions apply to the opposite-spin pair functions,
even though it is not possible to construct singlet and
triplet functions from the corresponding pairs of
occupied spin-orbitals. As concluded by Bokhan
et al., it is only possible to satisfy both s- and p-type
derivative discontinuities if spin-flipped functions are
included in the geminal basis. Equation (4) thus
becomes

uij ¼
X
a5b

tijabjabi þ
X
k5l

cijklQ̂12 f ðr12Þjkli

þ
X
�k5 �l

cij�k �l
Q̂12 f ðr12Þj �k �li: ð8Þ

Equation (7) is naturally also valid for closed-shell HF
references and, in this case, the spin-flipped functions
are obviously always present in the normal geminal
basis and the functions f ðr12Þj �k �l i are redundant. For
ROHF references, the only spin-flipped functions
missing from the normal geminal basis are those
where either k or l belongs to a singly occupied
restricted HF orbital and thus has no spin-flipped
counterpart among the HF occupied orbitals.

2.1. Fixed F12 amplitudes in ROMP2-F12 and
UMP2-F12

The coefficients in Equation (8) may be selected using
the coalescence conditions, which gives

cijkl ¼
1

4
�ik�

j
l , cij�k�l

¼ 0, ��, ��, ð9Þ

cijkl ¼
3

8
�ik�

j
l , cij�k �l

¼
1

8
�il�

j
k, ��: ð10Þ

This method is orbital invariant and size extensive
and is also size consistent when combined with a

UHF reference. It yields X�7 convergence behaviour

for both restricted and unrestricted MP2-F12 calcula-

tions and thus gives a balanced treatment of open- and

closed-shell species. This spin-flipped SP ansatz has

previously been implemented for ROHF-based

MP2-F12 and CCSD-F12x by Knizia et al. [30] and

also for UHF-based MP2-F12 by Bokhan et al. [35].

We will refer to MP2-F12 methods that use

spin-flipped geminals with this choice of fixed ampli-

tudes as MP2-F12-sp.
To assess the effect of including the spin-flipped

geminals, we must define a fixed-amplitude method

where the geminal basis is restricted to that of

Equation (4). The best choice of fixed amplitudes is

to satisfy the derivative discontinuities as far as

possible within the basis available. For ROHF

references and restricted orbitals, this corresponds to

cijkl ¼
1

4
�ik�

j
l , ��, ��, ð11Þ

cijkl ¼
3

8
�ik�

j
l þ

1

8
�il�

j
k, ��, ‘d ’, ð12Þ

cijkl ¼
1

2
�ik�

j
l , ��, ‘s’, ð13Þ

where ‘d ’ denotes pairs ij where both i and j refer to

orbitals that are doubly occupied and ‘s’ pairs where

either i or j is singly occupied in the ROHF reference.

For ‘d ’ pairs, both the s- and p-wave discontinuities

can be satisfied, but for ‘s’ pairs, only the s-wave cusp

can be satisfied. This choice differs from that of Ref.

[27], where cijkl ¼
3
8 �

i
k�

j
l was used for the ‘s’ pairs.

However, it is easily verified that, in the limit of a large

orbital basis, the optimised amplitudes tend to our

values. Upon rotating the orbitals, for example for

semi-canonicalisation or localisation, the �� ampli-

tudes become

cijkl ¼
1

2
�ik�

j
l �

1

8

X
mn

sinsknsmjsml þ
1

8
silskj, ð14Þ

where sil is the spatial overlap between the �
spin-orbital �i and the � spin-orbital �l. For calcula-

tions based on UHF references, we suggest that

Equation (14) is the best choice within the const-

raints of the normal geminal basis, even though neither

the s- nor the p-wave conditions are rigorously met (the

coefficients are based on the overlap and not on how

closely ’l’k matches ’i’j at r12¼ 0). Such a choice is

both orbital invariant, size extensive and, importantly,

size consistent, by virtue of the dependence on

the overlap sil. We will refer to this method as

MP2-F12-esp.
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As an aside, we note that the Quantum Monte
Carlo community makes a different choice for
open-shell calculations [37] which, when applied to
MP2-F12 theory, corresponds to

cijkl ¼
1

4
�ik�

j
l , ��, ��, ð15Þ

cijkl ¼
1

2
�ik�

j
l , ��: ð16Þ

Here, only the s-wave cusp is satisfied for the �� pairs.
For restricted closed-shell systems, this reduces to
cijij ¼

1
2 for the spin-adapted singlet pairs, and cijij ¼

1
4,

1
2

and 1
4 for the ms¼ 1, 0, �1 components of the triplet

excitations, respectively. Although this is both orbital
invariant and size consistent, it clearly introduces
spin-contamination [23] and we do not consider it
further.

Concerning the relative computational costs of the
above choices, we make the following observations,
which apply to density fitted MP2-F12. For
closed-shell calculations, we remind the reader that
the integral transformation steps scale as N 4, that the
contractions of three-index integrals to build
four-index quantities scale as N 5 and that the
contractions of the four-index quantities to build the
B and V matrices scale as N 4, because only the
diagonals of the spin-adapted matrices are required
for the fixed-amplitude ansatz. For open-shell
calculations:

(1) The N 4 steps increase by a factor of 2 since
integrals for � and � orbitals are required. This is
true for the Coulomb, exchange and Fock
transformed integrals even if restricted orbitals
are used. For the spin-flipped method, the
prefactor is increased by a further factor of 2,
since spin-flipped integrals are required. This
further factor of 2 is avoided if restricted orbitals
are used (RMP2-F12).

(2) TheN 5 contractions are twice as expensive as in the
closed-shell case (again, this also applies to themost
expensive contractions in RMP2-F12). For the
spin-flipped method, a further factor of 2 arises due
to the spin-flipped geminals, but this is avoided for
RMP2-F12.

(3) For both the normal and spin-flipped
fixed-amplitude methods, N 4 scaling can be
recovered for the final construction of the �� B

and V matrices by appropriately contracting
four-index quantities with the fixed amplitudes.
For spin-flip this is trivial and, for the
overlap-based approach, due to the factorisability
of the terms in Equation (14) into separate

transformations for � and � orbitals, this can be

achieved by four N5 contractions with a low

prefactor (they scale at most as O3V2, where O is

the number of active occupied orbitals and V is the

maximum number of virtual or CABS orbitals).

We note that an analogous contraction has been

utilised by Köhn to simplify the equations for

restricted closed-shell F12 methods [33].

To summarise, using spin-flipped geminals is

approximately twice as expensive as using the normal

geminal basis with Equations (11)–(14), unless

restricted orbitals are used, in which case the two

methods have comparable cost. Numerical tests

comparing the performance of the two approaches

are reported in Section 3.

2.2. Optimised F12 amplitudes in ROMP2-F12 and
UMP2-F12

Equation (4) presents no special difficulties upon

variational optimisation of the F12 amplitudes cijkl,

beyond those sometimes encountered for closed-shell

calculations. Indeed, this method has been employed

for open-shell R12 calculations for the past 15 years.

Equation (8), on the other hand, contains large

redundancies between the normal and spin-flipped

geminals for restricted open- or closed-shell HF

references, which become severe near linear dependen-

cies when an unrestricted HF reference is used. Bokhan

et al. have proposed deleting geminals based on

singular value decomposition to remove the linear

dependence. For ROHF-based MP2-F12, this is not

necessary since the redundancies can be removed

exactly by constructing the geminal basis from the

restricted orbitals. However, we consider that a

balanced treatment of open- and closed-shell species

will only be obtained if the size of the geminal basis is

proportional to the number of correlated electron

pairs. We therefore propose that Equation (8) should

be replaced by

uij ¼
X
a5b

tijabjabi þ
X
k5l

cijklQ̂12 f ðr12Þðcjkli þ �cj �l �kiÞ, ð17Þ

where the contraction coefficients c and �c are deter-

mined using the coalescence conditions

c ¼
1

4
, �c ¼ 0, ��, ��, ð18Þ

c ¼
3

8
, �c ¼

1

8
, ��: ð19Þ
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It should be noted that, for same-spin pairs, the
spin-flipped geminals always have exactly zero contri-
bution. Variational optimisation of the cijkl is no more
complicated than if Equation (4) is used. Restricting cijkl
to the diagonal amplitudes cijij results in a non-orbital
invariant method and we do not consider it here,
although it may be useful in combination with local-
isation techniques. In Section 3 we present results of
calculations where the F12 amplitudes are optimised
with and without the flipped contributions. We will
refer to the standard orbital invariant method, without
spin-flipped geminals, as MP2-F12-õ and to the new
method including the flipped functions as MP2-F12-o.
For comparison, we also report ROHF-based calcula-
tions where the non-redundant set of normal and
flipped variational parameters are optimised sepa-
rately, which will be denoted MP2-F12-oþ.

The relative computational cost of including or
excluding spin-flipped geminals has been discussed in
the previous section for the fixed-amplitude MP2-F12
methods. If the coefficients in Equation (4) or (17) are
variationally optimised, then N 6 contractions are
required for the construction of the B and V matrices,
and also for the inclusion of coupling terms between tijab
and cijkl when solving the amplitude equations.
Extending the approach of Bokhan et al. to the
invariant ansatz for UHF-based MP2-F12 would
lead to a fourfold increase in the N 6 contractions for
the �� B matrix compared with neglecting spin-flipped
geminals and a twofold increase for the �� V matrix. If
an ROHF reference is used, this corresponds to the
MP2-F12-oþ method and only the spin-flipped gem-
inals for the ‘s’ pairs need be computed in addition to
the the normal geminals, leading to a slight increase in
the prefactor for the N 6 contractions compared with
MP2-F12-õ. However, if the geminal basis is con-
tracted as we suggest, there is no additional computa-
tional cost for including the spin-flipped functions for
the N 6 steps.

2.3. The geminal basis in open-shell CCSD-F12
calculations

At the CCSD level of theory it has been standard
practice [38] to use the geminal basis appropriate for
MP2 and also to use the MP2 coalescence conditions
to define fixed F12 amplitudes [28,29,32], even though
the MP2 and coupled-cluster coalescence conditions
differ [39]. Köhn has recently included additional
geminals that amend this deficiency, demonstrating
that they are important for response properties [33].
For ground-state energies, however, selecting the
geminal basis and amplitudes based on MP2 appears

to be sufficient and we pursue this approach here.
Switching to second quantisation, the doubles cluster
operator becomes

T̂2 ¼
1

4

X
aibj

tijab�̂
ab
ij þ

1

8

X
kilj

cijkl

X
��

wkl
���̂

��
ij , ð20Þ

where � and � are orbitals in the complete basis and

wkl
�� ¼ ch��jQ̂12 f ðr12Þjkli þ �ch��jQ̂12 f ðr12Þj �l �ki: ð21Þ

The contraction coefficients are c ¼ 1
4, �c ¼ 0 for

like-spin pairs and c ¼ 3
8, �c ¼ 1

8 for �� pairs, or simply
c¼ 1 and �c ¼ 0 if spin-flipped geminals are not to be
included. For the fixed-amplitude method, Equations
(11) and (14) are recommended in the absence of
spin-flipped geminals and if spin-flipped geminals are
included, then cijkl ¼ �

i
k�

j
l . If a UCCSD-F12 program is

available that uses the normal geminal basis, all that is
required to extend it to employ the spin-flipped
geminal basis is to replace the F12 integrals with the
above linear combination of normal and flipped
integrals. In Section 4 we present results of spin-flipped
calculations at the ROHF-based UCCSD(F12) level of
theory.

3. MP2-F12

Our focus is on the effect of the spin-flipped geminals
on the correlation treatment. For ROHF-based MP2,
contributions from both single and double excitations
occur, but they are uncoupled and the singles energy
depends only on the Fock matrix elements. Since the
basis set convergence for the singles and doubles are
thus very different, we partition the MP2 energy into
HFþ¼EHF þ f ai t

i
a and the doubles correlation

contribution.

3.1. Atomisation energies

We have recently computed a set of basis set limit
frozen-core (fc) MP2 energies for a set of 106 molecules
of H, C, N, O and F to an accuracy of 99.95%, which
are intended as a test set for F12 methods [40]. Here we
use these benchmarks to assess the relative perfor-
mance of the MP2-F12-esp, MP2-F12-sp, MP2-F12-õ,
MP2-F12-o and MP2-F12-oþ methods for atomisation
energies using the cc-pVXZ-F12 orbital basis sets [20]
with X¼D, T and Q. All UMP2-F12 calculations are
based on RHF or ROHF references and were per-
formed with the TURBOMOLE program package using
the default options, namely Ansatz 2, approximation
B, the specially optimised complementary auxil-
iary basis sets of Peterson and co-workers [21]
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and the aug-cc-pwCV(Xþ1)Z MP2-fitting [41] and
aug-cc-pV(Xþ1)Z RI-JK basis sets [42] for density
fitting. The Slater-type correlation factor was
expanded in six Gaussians [43] and the exponents for
the Slater function were 0.9, 1.0 and 1.1 a�10 for the
cc-pVXZ-F12 basis sets, X¼D, T and Q, and 1.4, a�10

for the aug-cc-pVXZ basis sets. The integrals involving
the single commutator of f (r12) with the kinetic energy
were computed from the matrix representation of the
Fock and exchange matrices. Furthermore, a singles
perturbative correction was added to the HF energy
using Equation (48) of Ref. [27] for ROHF (see Ref.
[30] or [44] for the closed-shell case). In our previous
work, the basis set limits for the atoms were computed
using the MP2-F12-õ method. The corresponding
MP2-F12-o energies are slightly closer to the basis set
limit and we use these improved benchmarks (Table 1)
in this work.

In Table 2 we report the mean D and standard
deviation 	 (sN) for basis set errors of atomisation
energies using MP2-F12 methods with and without the
spin-flipped geminal basis. Results for both
the fixed-amplitude (MP2-F12-esp,MP2-F12-sp) and
optimised (MP2-F12-õ,MP2-F12-o,MP2-F12-oþ)
approaches are presented. In all cases, the inclusion
of spin-flipped geminals decreases both the mean and
standard deviation of the basis set errors for the
correlation energy contributions, which indicates that a
more balanced treatment of atoms and molecules has

been achieved. For the triple- and quadruple-zeta
quality basis sets, the improvement is at least a
factor of 2.

Comparing the MP2-F12-esp and MP2-F12-sp
results, we note that if the spin-flipped geminals are
excluded, the correlating basis set for the atoms is
poorer than that for the molecules, contrary to all
experience with conventional MP2 calculations. As a
result, the basis set errors for the HF and correlation
contributions have on average opposite signs, which
leads to a cancelation of errors for the total MP2
atomisation energies. By including the spin-flipped
geminals, the correlating basis set for the atoms is
better than that of the molecules, as usually expected,
which reverses the sign of the errors and results in a
deterioration in the mean basis set errors for the total
MP2 atomisation energies (not reported in Table 1).
The improvement in the standard deviation, however,
is retained.

For the methods where the cijkl are variationally
optimised, the mean basis set errors are smaller in
magnitude than for the fixed-amplitude methods, while
the standard deviations are similar. Since the errors for
the spin-flipped and normal geminal calculations
decrease from opposite directions, this represents
an improvement in the correlation description rather
than a cancelation of errors due to basis set super-
position error, which would favor the molecules over
the atoms. The effect of fully optimising both the
normal and spin-flipped geminal amplitudes may be
seen by comparing the results for MP2-F12-o and
MP2-F12-oþ. We find that the basis set errors are
fairly similar and conclude that the contraction
coefficients c and �c used in the MP2-F12-o method
are close to optimal. The mean error for MP2-F12-oþ

is more negative than that of MP2-F12-o, which
indicates that the geminal basis is less balanced,
favoring the atoms over the molecules. We therefore
recommend the MP2-F12-o approach.

3.2. Ionisation potentials and electron affinities

The statistics for the atomisation energies in the
previous section give an indication of how balanced
the method is for treating open- and closed-shell
systems. Here we investigate the effect of spin-flip on
the relative accuracy of atoms and ions. In Table 3 we
report basis set errors of ionisation potentials and
electron affinities of C, N, O and F, computed using
fc-MP2-F12/cc-pVXZ-F12, X¼D, T and Q, with and
without spin-flipped functions. The effect of spin-flip
on the basis set error of the total correlation energy is
largest for the s2p4 configuration, and the importance

Table 2. Basis set error statistics for the HFþ and doubles
correlation contributions to fc-MP2-F12 atomisation ener-
gies (kJmol�1 per valence electron). HFþ refers to EHFþ

f ai t
i
a þ f p

0

i tip0 .

cc-pVDZ-F12 cc-pVTZ-F12 cc-pVQZ-F12

MP2-F12 D 	 D 	 D 	

HFþ �0.13 0.05 �0.02 0.01 0.00 0.00esp 0.16 0.23 0.08 0.06 0.03 0.02
sp �0.34 0.11 �0.07 0.03 �0.02 0.01
õ 0.09 0.12 0.07 0.04 0.03 0.02
o �0.14 0.08 �0.02 0.02 �0.01 0.01
oþ �0.18 0.09 �0.05 0.03 �0.01 0.01

Table 1. Basis set limit HF and valence MP2 and CCSD
correlation energies for the atoms C, N, O and F in Eh.

Atom EHF

MP2
correlation

CCSD
correlation

C Carbon �37.6886122 �0.0818650 �0.0980777
N Nitrogen �54.4009236 �0.1138167 �0.1258611
O Oxygen �74.8093817 �0.1792901 �0.1910343
F Fluorine �99.4093241 �0.2477734 �0.2534840

320 D.P. Tew and W. Klopper

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
T
o
k
y
o
/
T
O
K
Y
O
 
D
A
I
G
A
K
U
]
 
A
t
:
 
0
3
:
5
1
 
2
0
 
A
p
r
i
l
 
2
0
1
0



of spin-flip decreases monotonically when progressing
to either the s2p0 or the s2p6 configuration. Thus the
IPs for C, N and O are improved with spin-flip, while F
deteriorates. Similarly, the EAs of O and F deteriorate.
The mean absolute basis set error over the seven energy
differences does not improve upon incorporating
spin-flipped geminals into the wave function, but the
errors do become more uniform.

Clearly, when computing electron affinities, the
capability of the basis to represent the diffuse electron
cloud is an issue. The cc-pVXZ-F12 basis sets do not
appear to contain sufficiently diffuse functions for the
correlation treatment of the anions. Moreover, our
investigations show that the aug-cc-pVXZ basis sets do
not perform better than the cc-pVXZ-F12 basis sets for
the EAs computed here. It should be noted that the HF
error has been greatly reduced by the CABS singles
correction. The necessity for more diffuse functions is
particularly important in F12 methods, which may be
seen from the dependence of the basis set errors on the
exponent 
 of the correlation factor. Figures 1–3 show
the 
 dependence of the MP2-F12-sp and MP2-F12-o
basis set errors of C, O and F, respectively, together
with their cations and anions, using the cc-pVTZ-F12
basis. The MP2-F12-o curves for the anions differ
strongly from those of the atoms and cations and lie
far below the corresponding MP2-F12-sp curves (for O
and F) at low values of 
. The exaggerated importance
of off-diagonal (and diagonal for C) excitations into
long-range geminals for the MP2-F12-o method is due
to the lack of sufficiently diffuse functions in the
orbital basis and leads to the undesirable 
 depen-
dence. Figures 1–3 also demonstrate that, choosing 


based on the neutral atom, necessarily biases the
geminal basis in favor of the atom. The exponent 
 is
related to the extent of the correlation hole, which is
naturally smaller for the cation (larger 
) with a
contracted electron density and larger for the anion
(smaller 
). In the case of the cations, however, this
bias does not appear to be severe.

4. UCCSD(F12)

4.1. Atomisation energies

Benchmark fc-CCSD correlation energies for a subset
of 30 of the 106 molecules of our test set have recently
been computed using the CCSD(F12) method with the
same orbital and auxiliary basis sets as for the fc-MP2
benchmarks [45]. The corresponding benchmark
valence CCSD correlation energies for the atoms are
reported in Table 1, computed using the
UCCSD(F12)-o method with semi-canonical ROHF
orbitals. We expect that, just as for the MP2 correla-
tion energies, these benchmarks are accurate to
99.95% and we used them to assess the effect of
including spin-flipped functions in CCSD(F12) calcu-
lations. In Table 4 we present basis set errors for the
CCSD(F12)-esp, CCSD(F12)-sp, CCSD(F12)-õ and
CCSD(F12)-o methods for atomisation energies using
the cc-pVXZ-F12 orbital basis sets. The same auxiliary
basis sets and F12 ansatz and approximations were
used as for the MP2-F12 calculations discussed in
Section 3.1.

We find that the improvements obtained for
MP2-F12 by including spin-flipped geminals are

Table 3. Basis set errors in the fc-MP2-F12 HFþ and doubles correlation contributions to ionisation
potentials and electron affinities (meV). HFþ refers to EHF þ f ai t

i
a þ f

p0

i tip0 .

IP EA

Basis MP2-F12 C N O F C O F MAD

cc-pVDZ-F12 HFþ 5.9 6.4 3.5 4.2 1.7 1.4 1.1 3.5esp 10.6 10.8 59.0 2.3 40.1 24.1 �22.5 24.2
sp 8.4 8.3 40.1 39.4 40.8 52.1 45.7 33.5
õ 11.1 12.5 32.3 12.9 39.8 43.0 26.9 25.5
o 8.1 9.2 28.8 24.5 38.5 52.8 46.4 29.8

cc-pVTZ-F12 HFþ 1.6 2.0 2.3 2.9 0.7 1.4 1.7 1.8esp 4.1 3.8 15.1 �1.8 28.9 21.6 4.8 11.4
sp 3.0 2.7 10.6 7.7 28.8 29.9 21.1 14.8
õ 4.3 4.3 11.1 2.0 29.1 26.4 13.9 13.0
o 3.2 3.1 8.9 6.2 28.5 30.5 22.4 14.7

cc-pVQZ-F12 HFþ 0.2 0.2 0.5 0.4 0.0 0.0 �0.4 0.2esp 1.1 1.3 4.8 �0.4 12.9 22.5 9.4 7.5
sp 0.7 1.0 3.3 2.2 12.9 24.7 14.1 8.4
õ 1.2 1.4 4.1 0.3 12.9 23.4 11.0 7.8
o 0.7 1.1 3.2 2.0 12.7 24.8 14.3 8.4
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mirrored in the CCSD(F12) results and the discussion
for MP2-F12 applies equally well to CCSD(F12). We
note, however, that the standard deviation of the basis
set error is somewhat larger on average for CCSD than
for MP2. One possible source for this additional
uncertainty is the incomplete basis for the singles
contribution to the correlation energies, which is more
important for open-shell systems than closed-shell
systems. Unfortunately, the decomposition of the
basis set limit fc-CCSD energies into doubles and

singles contributions is not available for the molecules
and we are unable to examine these separately. This is
possible for our current calculations on atoms and ions
and we investigate the singles and doubles contribu-
tions separately for IPs and EAs in the next section.

4.2. Ionisation potentials and electron affinities

In Table 5 we present the basis set errors for ionisation
potentials and electron affinities for the CCSD(F12)-esp, CCSD(F12)-sp, CCSD(F12)-õ and CCSD(F12)-o
methods, computed using fc-UCCSD(F12) with
semi-canonical ROHF orbitals. We partition the
CCSD(F12) energy into HFþ and the doubles corre-
lation contribution, where HFþ is the sum of the HF
energy, the singles correlation, and the CABS singles
correction. Just as for the atomisation energies, we find
that the effect of spin-flip on the CCSD energies is very
similar to that of the MP2 energies, discussed in
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Figure 2. The 
 dependence of MP2-F12-o (dashed line) and
MP2-F12-sp (solid line) basis set errors (meV) in the doubles
correlation energies for Oþ (�), O (.) and O� (�), using the
cc-pVTZ-F12 orbital basis.
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Figure 3. The 
 dependence of MP2-F12-o (dashed line) and
MP2-F12-sp (solid line) basis set errors (meV) in the doubles
correlation energies for Fþ (�), F (.) and F� (�), using the
cc-pVTZ-F12 orbital basis.
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Figure 1. The 
 dependence of MP2-F12-o (dashed line) and
MP2-F12-sp (solid line) basis set errors (meV) in the doubles
correlation energies for Cþ (�), C (.) and C� (�), using the
cc-pVTZ-F12 orbital basis.

Table 4. Basis set error statistics for the fc-CCSD(F12)
correlation contribution to atomisation energies (kJmol�1

per valence electron).

cc-pVDZ-F12 cc-pVTZ-F12 cc-pVQZ-F12

CCSD(F12) D 	 D 	 D 	

esp 0.37 0.59 0.12 0.14 0.07 0.07
sp �0.24 0.33 �0.06 0.07 0.02 0.04
õ 0.23 0.43 0.08 0.07 0.09 0.04
o 0.04 0.37 0.03 0.04 0.07 0.03
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Section 3.2. Comparing the HFþ and doubles compo-
nents of the CCSD energies with the MP2 equivalents,
we find that the singles contributions converge at
similar rates. The basis set errors from the doubles
are larger on average for CCSD than MP2 for the
cc-pVDZ-F12 basis, but are similar to MP2 for
the cc-pVQZ-F12 basis. This is consistent with the
effect of the singles basis set incompleteness on the
doubles, through the coupling which is present in
CCSD but not in MP2.

5. Conclusion

For closed-shell calculations, the geminal basis func-
tions are chosen as f (r12)jiji, where ij are spin-orbitals,
occupied in the HF reference. These are sufficient to
exactly satisfy the s- and p-wave MP2 coalescence
conditions and thus accelerate the basis set conver-
gence from X�3 to X�7. As first noted by Bokhan
et al., spin-flipped geminal functions are required to
achieve this for open-shell calculations. In this work,
we have defined a hierarchy of open-shell F12 methods
with and without spin-flipped functions, which we
have used to investigate the numerical importance of
the spin-flipped functions for atomisation energies,
ionisation potentials and electron affinities at the MP2
and CCSD levels of theory. In particular, we have
solved the issue of redundancy or near linear depen-
dency in the normal and spin-flipped basis by using
contracted geminals with contraction coefficients
determined from the coalescence conditions.
Furthermore, we have used an analysis of the
spin-orbital MP2 coalescence conditions to establish

the correct choice of fixed amplitudes when no

spin-flipped functions are used in the calculation.

All of the methods we present are orbital invariant,

size extensive and size consistent when combined with

UHF references and reduce to either the sp or original

orbital-invariant ansatz for the closed-shell case.
Our calculations on a set of 106 molecules of H, C,

N, O and F convincingly demonstrate that spin-flipped

functions are important for atomisation energies,

where a balanced treatment of open- and closed-shell

species is necessary. The basis set errors are approx-

imately halved by including the spin-flipped functions

for both MP2 and CCSD calculations. Furthermore,

we find that our contracted geminal approach is

superior to optimising the amplitudes for both the

normal and spin-flipped geminals, since the number of

variational parameters is then proportional to the

number of correlated electron pairs. For ionisation

potentials and electron affinities, we find that including

spin-flipped geminals improves the consistency of the

energies, but that the accuracy is limited due to

difficulties in selecting an appropriate exponent for

the correlation factor and the need for diffuse

functions for electron affinities.
In conclusion, we find that spin-flipped geminals

are very important for open-shell F12 calculations and

recommend that they be used. For the fixed-amplitude

approach, the sp ansatz should be used as proposed by

Bokhan et al. [35], and if the F12 amplitudes are to be

optimised, our contracted geminal approach should be

used. If the MP2 method is desired and computational

cost is an issue, then our esp method is recommended.

For coupled-cluster calculations, the additional cost of

Table 5. Basis set errors in the CCSD(F12) HFþ and correlation contributions to ionisation potentials and
electron affinities (meV).

IP EA

Basis CCSD(F12) C N O F C O F MAD

cc-pVDZ-F12 HFþ 6.5 6.5 11.7 4.8 0.9 1.7 �8.2 5.7esp 13.3 20.6 83.5 16.5 42.3 30.3 �22.1 32.6
sp 7.1 11.5 69.2 59.4 38.6 64.0 51.6 43.1
õ 16.3 24.2 51.5 22.8 48.6 44.0 20.3 32.5
o 12.9 17.4 49.6 34.5 44.7 54.2 37.6 35.8

cc-pVTZ-F12 HFþ 1.7 2.1 2.6 3.2 0.4 3.1 0.6 2.0esp 3.4 4.5 23.0 4.3 28.7 23.1 4.4 13.1
sp 1.5 2.1 19.0 15.0 27.7 33.0 22.4 17.2
õ 3.6 4.7 12.4 6.5 30.0 25.7 13.4 13.8
o 2.9 3.4 10.6 9.4 29.4 28.7 19.8 14.9

cc-pVQZ-F12 HFþ 0.3 0.3 0.9 0.5 �0.2 0.9 �1.0 0.6esp 0.8 1.5 8.8 1.9 12.8 22.0 8.1 8.0
sp 0.2 0.7 7.4 5.0 12.5 24.6 13.6 9.1
õ 0.6 1.3 3.1 0.5 13.0 20.4 8.6 6.8
o 0.4 0.9 2.6 1.6 12.8 21.3 10.7 7.2
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incorporating them in either the sp or optimised
amplitude method is only at the level of the F12
integrals and is thus minimal.
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[44] J. Noga and J. Šimunek, Chem. Phys. 356, 1 (2009).
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Appendix A: UMP2 coalescence conditions

The exact solution to the Born–Oppenheimer,
non-relativistic Schrödinger equation may always be
expressed as a sum of products of spatial and spin
eigenfunctions. Correspondingly, Kato’s proof of the cusp
condition at electron coalescence [24] and the subsequent
analysis of Pack and Byers Brown [25] were concerned with
spatial eigenfunctions only. For approximate wave functions
that are not eigenfunctions of spin, such as UMP2, the
analysis leading to the coalescence conditions must be
repeated in terms of spin-orbitals. Fortunately, this is
relatively straightforward, at least at the level of UMP2,
and follows the analysis in Refs. [32,39] for RHF references
rather closely.

Consider canonical or semi-canonical orbitals, which
are exact eigenfunctions of the zeroth-order operator. The
equation for the first-order wave function separates into
equations for each pair,

V̂1V̂2 f̂ 01 þ f̂ 02 � "i � "j

� �
juiji þ V̂1V̂2

1

r12
jiji ¼ 0: ðA1Þ

Here, juiji ¼ ð1� P̂12Þuij=
ffiffiffi
2
p

and jiji ¼ ð1� P̂12Þ�i�j=
ffiffiffi
2
p

,

where �i and �j are occupied spin-orbitals and P̂12 is the
permutation operator. V̂1V̂2 is the strong orthogonality

projector (1� Ô1) (1� Ô2), where Ô projects onto the space
of occupied spin-orbitals. For the ROHF case, f̂ 0 ¼ f̂ � f̂ 1,

where f̂ 1 ¼ Ôf̂ V̂þ V̂f̂ Ô and the f 1 terms drop out since they
do not connect the space V1V̂2 with juiji. For the UHF case,
f̂ 0 is the usual Fock operator ( f̂ 1 ¼ 0). The presence of f̂ 1 for
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ROHF leads to an equation for single excitations in addition
to Equation (A1), but this does not affect the nature of the
first-order wave function at electron coalescence and we do
not consider it further.

The analysis of Pack and Byers Brown proceeds by
transforming to centre of mass, s¼ (r1þ r2)/2, and relative
coordinates, r12¼ r2� r1, and equating powers of r12 as far as
possible. To manipulate Equation (A1) into a form amenable
to such an analysis, we follow Ref. [39] and introduce a pair
function wij that has no orthogonality constraints, such that

uij ¼ V̂1V̂2wij. For UHF, ½ f̂, V̂� ¼ 0 and we may drop the
strong orthogonality projector from the equation. For

ROHF, ½ f̂, V̂� ¼ Ôf̂ V̂� V̂f̂ Ô. Finally, we remove spin by
left projecting onto the spin function ��, �� or ��. In place
of Equation (A1), we now have

ð f̂1 þ f̂2 � "i � "j Þ!ij þ
1

r12
�ij ¼ 0, ðA2Þ

where f̂ is replaced by f̂ � f̂ Ô for ROHF. Note that, for
same-spin pairs, P̂12�ij ¼ ��ij and P̂12!ij ¼ �!ij, but for
spin-opposite pairs, �ij and !ij are just the spatial compo-
nents of �i�j and wij, respectively. Expanding the Fock
operator f̂ in powers of r12, we obtain

f̂1 þ f̂2 ¼ �r
2
r12
þOðr012ÞY00 þOðr

1
12Þ, ðA3Þ

where Ylm are the surface harmonics for the angular
dependence of r12 in spherical coordinates. This differs
from the closed-shell case in that the Oðr112Þ terms, which are
angle dependent, do not cancel. To obtain this, we have used

1

ri1
¼

1

ris
þ
r12

r2is
cos �i þOðr

2
12Þ, ðA4Þ

1

ri2
¼

1

ris
�
r12

r2is
cos �i þOðr

2
12Þ, ðA5Þ

where ris is the distance between s and the centre ri and cos �i
is the cosine between the vectors ris and r12. For ROHF, the
presence of f̂ Ô does not change Equation (A3). The spatial
components of the zeroth- and first-order pair functions are
now expanded in radial and angular functions of r12, with a
Taylor expansion for the radial functions, whose coefficients
depend on s

�ijðr12, sÞ ¼
X1
l¼0

rl12

X�
k¼0

Xl
m¼�l

rk12 f
k
lmðsÞYlm þOðr

�þ1
12 Þ

( )
, ðA6Þ

!ijðr12, sÞ ¼
X1
l¼0

rl12

X�
k¼0

Xl
m¼�l

rk12g
k
lmðsÞYlm þOðr

�þ1
12 Þ

( )
: ðA7Þ

Note that, for same-spin pairs, only terms with odd l survive,
but for �� pairs, all l are present. Following Pack and Byers
Brown, Equation (A2) becomesXv

k¼0

ðkðkþ 2lþ 1Þ gklm � f k�1lm þOðr012Þ g
k�2
lm Þr

k�2
12 ¼ 0: ðA8Þ

Equating terms in r�112 gives the familiar s- and p-wave
coalescence conditions (l¼ 0 and 1, respectively),

g1lm ¼
1

2ðlþ 1Þ
f 0lm: ðA9Þ

For the same-spin pairs, the p-wave conditions apply. This
result is of course well known. For spin-opposite pairs, both
the s- and p-wave conditions apply, so that

!ij ¼ g000 þ
1

2
r12f

0
00 þOðr

2
12Þ

þ r12
X1
m¼�1

g01m þ
1

4
r12f

0
1m þOðr

2
12Þ

� 	
Y1m: ðA10Þ

Since the Y00 terms are symmetric with respect to the
operator P̂12, we may identify

’i’j ð0, sÞ ¼ ð’i’j ð0, sÞ þ ’j’ið0, sÞÞ=2 ¼ f 000ðsÞ, ðA11Þ

where ’i is the spatial component of �i. Similarly, since the
Y1m terms are antisymmetric, we may identify

ð’i’j � ’j’iÞ=2 ¼ r12
X1
m¼�1

f 01mY1m þOðr
2
12Þ: ðA12Þ

For the same-spin (triplet) pairs, the p-wave coalescence
conditions are satisfied if

juiji ¼
1

4
V̂1V̂2r12jiji: ðA13Þ

For the �� pairs, the s-wave cusp conditions are satisfied if

juiji ¼
1

2
V̂1V̂2r12jiji: ðA14Þ

Both the s- and p-wave coalescence conditions are met for the
�� pairs if

juiji ¼
3

8
V̂1V̂2r12jiji þ

1

8
V̂1V̂2r12j �j �i i, ðA15Þ

where the second term is a spin-flipped determinant, for
example, with the � spin-orbital ��j ¼ ’j�, where ’j is the
spatial component of the � spin-orbital �j. From Equation
(A11) it is clear that any linear combination of ’i(r1)’j(r2) and
’j(r1)’i(r2) can be used to satisfy the s-wave cusp and
Equations (A14) and (A15) are not unique solutions.
However, the above choice for Equation (A15) corresponds
to the correct formula for the case of identical � and � spatial
orbitals, where spin and space symmetry are properly
coupled. The choice in Equation (A14) does not require
any spin-flipped functions.
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