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Recent advances have seen the convergence of the R12 and Gaussian geminal explicitly correlated
methods, such that the principal remaining distinction is the way in which the many-electron
integrals are handled. Here we examine the weak orthogonality functional and the resolution of the
identity and find that the first, although exact in the limit of infinite basis, introduces a conflict
between the physical description of the electronic cusp and the satisfaction of the strong
orthogonality constraint. This leads us to propose an improved weak orthogonality functional where
the explicitly correlated pair functions are almost orthogonal to the occupied orbitals by
construction. For applications where 95%-98% accuracy in the total correlation energy is sufficient,
we recommend use of the strong orthogonality functional in combination with the resolution of the
identity for three- and four-electron integral evaluations. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2795702�

I. INTRODUCTION

The importance of including the interelectronic distance
r12 explicitly in the wave function form has been appreciated
ever since the pioneering work of Hylleraas in 1929.1 Not
only is short-range electron correlation most naturally de-
scribed by the coordinate r12, but the exact wave function
also exhibits derivative discontinuities at points of electron
coalescence.2,3 These discontinuities are completely absent in
orbital based expansions and large basis sets containing func-
tions of high angular momentum are required for accurate
calculations. Both the Coulomb hole and the electron cusp
can be efficiently represented by basis functions with explicit
r12 dependence, leading to high accuracy with relatively few
variational parameters. However, in contrast to orbital based
methods, the n-electron integration required for the evalua-
tion of Hamiltonian matrix elements does not in general sim-
plify to two-electron integrals. Even for the explicitly corre-
lated Gaussian method,4,5 where the integrals are analytic,
the sheer number of integrals that arise has prevented appli-
cations to systems with more than six electrons.6 Conse-
quently, with the exception of variational quantum Monte
Carlo,7 the development of explicitly correlated methods for
general applications has concentrated on Hartree-Fock �HF�
based pair theories, which rely on the rapid convergence of
the coupled-cluster hierarchy to the full configuration inter-
action limit. The essential features of these methods are
manifest at the second-order Møller-Plesset �MP2� level of
theory.

The two prominent explicitly correlated pair methods in
the current literature are the Gaussian-type geminal �GTG�
and R12 theories, which arose from two alternative strategies

for incorporating explicitly correlated geminal basis func-
tions in the representation of the first-order pair functions
ũij�1,2�. Although the original MP2-GTG �Refs. 8 and 9�
and MP2-R12 �Ref. 10� theories differed significantly, sub-
sequent developments in both methods have blurred the dis-
tinctions. In particular, the MP2-GTG method of Persson and
Taylor11–13 and the recent F12 variants of the MP2-R12
method14–18 employ the same choice of explicitly correlated
GTG basis functions:

�ũij� = Q̂12�uij� , �1�

�uij� = �
ab

tij
ab�ab� + �

pq,�
cij

pq,�e−��r12
2

�pq� . �2�

Here and throughout we use the notation i , j , . . . for occupied
and a ,b , . . . for virtual canonical HF orbitals. Arbitrary HF
orbital �spanned by the finite HF basis� sets are denoted us-

ing p ,q , . . .. The projector Q̂12 enforces strong orthogonality
�SO� between the pair functions ũij�1,2� and the set of oc-
cupied orbitals, which is necessary to retain the separability
of the MP2 expressions into decoupled pair equations:

Q̂12 = �1 − Ô1��1 − Ô2�, Ô = �
i

�i��i� . �3�

We consider the GTG basis functions of Eq. �2� to be supe-
rior to the linear-r12 geminal functions of the original MP2-
R12 method, being damped at long range and containing
sufficient flexibility to adapt to the shape of the Coulomb
hole for intermediate values of r12. Furthermore, the above
GTGs yield high accuracy without the need for optimizing
the nonlinear parameters and are therefore also preferable to
the floating GTGs of the original MP2-GTG method.

Only two primary distinctions remain between MP2-F12
and Persson and Taylor’s MP2-GTG. In the MP2-GTG
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method, matrix elements involving three-electron integrals
are evaluated analytically and four-electron integration is
avoided through the use of the weak orthogonality �WO�
functional.9 In the MP2-F12 method, the usual SO Hylleraas
functional is employed and three- and four-electron integrals
are approximated by inserting an approximate resolution of
the identity �RI� and assuming the generalized Brillouin con-
dition �GBC�.10,19 Further differences, related to the extent of
the sum over pq in Eq. �2� or whether contracted or decon-
tracted GTG sets are used, may be regarded as secondary.

Recent calculations by Dahle et al. have revealed that
the MP2-GTG method appears to perform surprisingly
poorly.13 For example, using an aug-cc-pCVDZ basis and a
decontracted set of nine GTGs in combination with occupied
orbital products �restricting the sum over pq in Eq. �2� to kl
only� yields a value of −333.1 mEh for the correlation energy
of Ne. The corresponding MP2-F12 value, using a single
contraction of the same nine GTGs, is −380.6 mEh and the
basis set limit is −388.1 mEh.20 Furthermore, Valeev has
demonstrated that the MP2-F12 values lower upon decon-
traction, as one would expect.21 Due to the remarkable dis-
crepancies identified by Dahle et al. we were motivated to
reexamine the approximations in the MP2-GTG and MP2-
F12 methods. Our investigations show that the discrepancies
result from the poor performance of the MP2-GTG method,
rather than from the deceptively good performance of the
MP2-F12 method. The deficiency can be traced to the inabil-
ity of the kl GTGs of Eq. �2� to form strongly orthogonal
pairs, a property that is implicitly assumed when the WO
functional is used. In this article we propose an improved
WO functional, based on the concept of almost orthogonal
geminals.22 MP2-GTG calculations using this new functional
yield results of similar quality to the MP2-F12 method while
retaining the same computational requirements as the origi-
nal WO functional.

In Sec. II we discuss the SO and WO MP2 functionals
and present our improved WO functional. In Sec. III we give
the details of our implementation of the WO functionals
within the framework of the RI approximation. The discrep-
ancy between the MP2-GTG method of Persson and Taylor
and the MP2-F12 method occurs even for He and H2 and in
Sec. V we present illustrative calculations on these systems.
We show that the RI error in the MP2-F12 method is com-
pletely negligible when aiming for an accuracy of 95%-98%
in the total correlation energy and we present our analysis of
the poor performance of Persson and Taylor’s MP2-GTG
method. We further demonstrate that the MP2-GTG method
is greatly improved when our new WO functional is used and
present results for the Ne atom.

II. WEAK ORTHOGONALITY FUNCTIONALS

A geminal function uI�1,2� is said to be strongly or-
thogonal to geminal uJ�1,2� if, for any permutation of elec-
tron coordinates, they are one-electron orthogonal:

�uI�1,2��uJ�1,3��1 = 0. �4�

The geminal functions are said to be almost orthogonal if
they are two-electron orthogonal:22

�uI�1,2��uJ�1,2�� = 0. �5�

Note that if Eq. �4� is satisfied, then Eq. �5� is also true, but
not vice versa. Use of the SO condition in pair theories
greatly simplifies the working equations in a manner similar
to the Slater-Condon rules.23 In MP2 methods SO is imposed
between the first-order pair functions and the set of occupied
pairs. Equation �5� is then simply the requirement for inter-
mediate normalization of the first-order wave function. Fol-
lowing Arai24 and expanding an arbitrary geminal function in
terms of a complete set of orthogonal one-particle functions
�spin orbitals� ��:

uI�1,2� = �
��

c��
I ���1����2� , �6�

it is obvious that intermediate normalization is equivalent to
requiring that the coefficients for the occupied pairs vanish.
The fulfillment of the SO condition in Eq. �4� additionally
requires that the first-order pair functions do not contain any
contributions from singly excited pairs �which we define
here as pairs with one occupied HF spin orbital�. The SO
projector of Eq. �3� projects out exactly these components of
the explicitly correlated geminal basis functions. Use of the
SO projector in the MP2 Hylleraas functional permits the
direct optimization of the unprojected first-order pair func-
tions uij�1,2� to obtain the associated MP2 pair energies:

SOF�uij� = �uij�Q̂12� f̂12 − �i − � j�Q̂12�uij� + 2�uij�Q̂12r12
−1�ij� ,

�7�

where f̂12= f̂1+ f̂2. In the MP2-GTG method, the direct com-
putation of the numerous four-electron integrals that arise
presented a serious obstacle to molecular applications. The
WO functional was proposed to circumvent this problem:9

WOF�uij� = �uij� f̂12 − �i − � j�uij� + 2�uij�Q̂12r12
−1�ij�

+ � 1
2 ��i + � j − 2�1� + ���uij�Ô1 + Ô2�uij� , �8�

where �1 is the lowest occupied orbital eigenvalue. In this
work we propose a new WO functional: The SO projector
may be partitioned as

Q̂12 = P̂12 − Ô1�1 − P̂2� − �1 − P̂1�Ô2, �9�

with

P̂12 = 1 − Ô1Ô2 − Ô1V̂2 − V̂1Ô2, P̂ = �
p

�p��p� ,

V̂ = �
a

�a��a� . �10�

Insertion into Eq. �7� and replacing f̂	Ô	 with ��1−��Ô	 and

f̂	�1− P̂	� with 1
2 ��i+� j��1− P̂	� for 	=1,2 yields

IOF�uij� = �uij�P̂12� f̂12 − �i − � j�P̂12�uij� + 2�uij�Q̂12r12
−1�ij�

+ � 1
2 ��i + � j − 2�1� + ���uij�Ô1�1 − P̂2�

+ Ô2�1 − P̂1��uij� . �11�

This is equivalent to replacing uij with P̂12uij in the WO

174105-2 Tew, Klopper, and Manby J. Chem. Phys. 127, 174105 �2007�

Downloaded 25 Mar 2013 to 150.203.35.130. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



functional in Eq. �8�. No four-electron integrals arise and the
nonstrongly orthogonal components of the geminal pair
function that enter the Fock matrix are only partially can-
celled by the penalty function. For any positive �, both func-
tionals provide a strict upper bound to the MP2 correlation
energy when given exact HF orbitals. The tightness of the
bound depends on the ability of the chosen geminal basis to
form strongly orthogonal pairs and in the limit of a complete
geminal basis, the pair function satisfies the SO condition
and the correct MP2 limit is obtained. In our new functional,
however, the condition for almost orthogonality �AO� is ex-
plicitly satisfied and the SO-violating singles within the �fi-
nite� HF orbital basis are also projected out. The only SO-
violating components of the explicitly correlated geminals
that enter the Fock matrix are those that correspond to single
replacements outside the space of the HF basis. The geminal
basis need only be flexible enough to zero these terms. Fur-
thermore, the corresponding SO-violating contributions to
the Fock matrix are expected to be small and are in fact zero
within the GBC approximation �under the GBC approxima-

tion �
i� f̂ �
��=0, where �
p �
��=0�. We will refer to this
functional as the intermediate orthogonality �IO� functional.

For a given GTG basis the computational expense of
using the IO functional is very similar to that of using the
WO functional since the same number of three-electron in-
tegrals is required for the two functionals. One might also
consider an AO functional as an alternative to the IO func-

tional, where uij is replaced with Ô12uij in Eq. �8�:

AOF�uij� = �uij�Ô12� f̂12 − �i − � j�Ô12�uij� + 2�uij�Q̂12r12
−1�ij�

+ � 1
2 ��i + � j − 2�1� + ���uij�Ô1 + Ô2

− 2Ô1Ô2�uij� , �12�

with Ô12=1− Ô1Ô2. AO is explicitly enforced and the prin-
cipal SO-violating terms that enter the Fock matrix corre-
spond to terms that are neglected if the extended Brillouin

condition �EBC� is assumed ��
a� f̂ �
��=0�, which are some-
what larger than the GBC terms that enter the IO Fock ma-
trix. The performance of this functional is therefore expected
to be worse than the IO functional, but nonetheless a signifi-
cant improvement over the WO method. The AO functional
is slightly cheaper than the IO functional since only occupied
orbitals enter the projection operators, which would be ad-
vantageous in the effort to combine explicitly correlated
wave functions with local methods.12,25,26 We have not pur-
sued the AO functional in this work.

III. COMPUTER IMPLEMENTATION

We have implemented the WO and IO functionals within
the R12 framework using the RI approximation to evaluate
the three-electron integrals. In this work we use the geminal
functions of Eq. �2� and restrict the sum over pq to kl. We
write the unprojected first-order pair function as

�uij� = �vij� + �wij� , �13�

�vij� = �
ab

tij
ab�ab� , �14�

�wij� = �1 − V̂1V̂2��
kl

�
�

cij
kl,�f��r12��kl� . �15�

An additional projector has been inserted to enforce almost
orthogonality between vij and wij, which minimizes the cou-
pling in the MP2 equations but does not affect the result. The
MP2 energy may be evaluated using the method described in
Ref. 19. All that is needed are the spin free matrix elements

Vkl�
ij = �
k
l�f��1 − V̂1V̂2��1 − Ô1��1 − Ô2�r12

−1�
i
 j� , �16�

Ckl�,ab
ij = �
k
l�f��1 − V̂1V̂2�� f̂12 − �i − � j��
a
b� , �17�

WOBkl�,mn�
ij = �
k
l�f��1 − V̂1V̂2�� f̂12 − �i − � j�


�1 − V̂1V̂2�f��
m
n� + �ij�
k
l�f�


�Ô1 + Ô2�f��
m
n� , �18�

IOBkl�,mn�
ij = �
k
l�f��1 − P̂1P̂2�� f̂12 − �i − � j�


�1 − P̂1P̂2�f��
m
n� + �ij�
k
l�f�


�Ô1�1 − P̂2� + Ô2�1 − P̂1��f��
m
n� , �19�

where �ij =
1
2 ��i+� j −2�1�+�. The V matrix is identical to

that of Ansatz 3 for the MP2-F12 method:27,28

Vkl�
ij = skl�

ij − �
pq

rkl�
pq gpq

ij − �
p�q

rkl�
p�qgp�q

ij − �
pq�

rkl�
pq�gpq�

ij . �20�

We use the complementary auxiliary basis set �CABS�
method for the RI approximation,27 and have introduced the
indices p� ,q� , . . . to denote the orthonormal orbitals in the
auxiliary basis set, which are also orthogonal to the orbital
basis. Introducing the indices p� ,q� , . . . to denote orbitals
contained in the union of the finite and complementary aux-
iliary basis sets, the two-electron integrals have the usual
definitions:

sp�q��
r�s� = �
p�
q��f�r12

−1�
r�
s�� , �21�

rp�q��
r�s� = �
p�
q��f��
r�
s�� , �22�

gp�q�
r�s� = �
p�
q��r12

−1�
r�
s�� . �23�

The C matrix is also identical to that of Ansatz 3 and we use
approximation B, where we do not neglect the exchange
commutator integrals:

Ckl�,ab
ij = t†

kl�
ab − ��a + �b − �k − �l�rkl�

ab + Kk
p�rp�l�

ab − rkl�
p�bKp�

a

+ Kl
q�rkq��

ab − rkl�
aq�Kq�

b . �24�

When computed in this way, C is the same for all pairs ij. We
have used the definitions

tp�q�
r�s�� = �
p�
q���T̂1 + T̂2, f���
r�
s�� , �25�
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Kp�
q� = �
p��K̂�
q�� . �26�

For the WO functional, the B matrix is easily computed via
the usual techniques of the MP2-F12 method. Using similar
notation to Ref. 19, we have

WOBkl�,mn�
ij = 1

2 �Tkl�,mn� + Tmn�,kl�� − 1
2 �Ykl�,mn�

+ Ymn�,kl�� + 1
2 ��k + �l + �m + �n − 2�i

− 2� j�Xkl�,mn� + 1
2 �Qkl�,mn� + Qmn�,kl��

− 1
2 �Pkl�,mn� + Pmn�,kl�� + �ijOkl�,mn�, �27�

with

Tkl�,mn� = zkl�
mn� − rkl�

ab tab
mn�, �28�

Xkl�,mn� = xkl�
mn� − rkl�

ab rab
mn�, �29�

Ykl�,mn� = ckl�
ab rab

mn�, �30�

Qkl�,mn� = Xkl�,p�n�Kp�
m + Xkl�,mq��Kq�

n , �31�

Pkl�,mn� = rkl�
p�q�pp�q�

mn� − rkl�
ab pab

mn�, �32�

Okl�,mn� = rkl�
p�orp�o

mn� + rkl�
oq�roq�

mn�, �33�

and

zkl�
mn� = 1

2 �
k
l��f�,�T̂1 + T̂2, f����
m
n� , �34�

xkl�
mn� = �
k
l�f�f��
m
n� , �35�

ckl�
ab = Ckl�,ab

ij , �36�

pp�q�
mn� = Kp�

r�rr�q�
mn� + Kq�

s�rp�s�
mn�. �37�

In the derivation of the above expressions we have assumed
the GBC, but not the EBC. The analogous definitions of the
components of IOB are

Tkl�,mn� = zkl�
mn� − rkl�

pq tpq
mn�, �38�

Xkl�,mn� = xkl�
mn� − rkl�

pq rpq
mn�, �39�

Ykl�,mn� = ckl�
pq rpq

mn�, �40�

Qkl�,mn� = Xkl�,p�n�Kp�
m + Xkl�,mq��Kq�

n , �41�

Pkl�,mn� = rkl�
p�q�pp�q�

mn� − rkl�
pq ppq

mn�, �42�

Okl�,mn� = rkl�
p�orp�o

mn� + rkl�
oq�roq�

mn�. �43�

We note in passing that, in the absence of a complementary
auxiliary basis �	p�
= � �, the IO penalty function contribu-

tion disappears and �1− V̂1V̂2��1− Ô1��1− Ô2� becomes �1
− P̂1P̂2�. If we also assume the EBC, the Y terms vanish and
the IO equations reduce to those of the original MP2-R12
method. We have implemented the WO and IO equations

within the CC2-R12 module29,30 of the TURBOMOLE program
package, which utilizes the resolution of the identity to ap-
proximate four-center integrals as sums of products of three-
center integrals. For the GTG integrals, the density fitting
formulas of Refs. 31 and 32 are used. The t commutator
integrals are not computed exactly but are approximated by
insertion of the RI.33 Our current program is limited to the
case where the same contracted set of GTGs is used for all
occupied orbital pairs: cij

kl,�=cij
klc�. We optimize the set of

coefficients c� numerically, which, for two-electron systems,
is equivalent to using a fully decontracted set.

IV. COMPUTATIONAL DETAILS AND NOMENCLATURE

In this work we report MP2 correlation energies com-
puted using the cc-pVXZ and aug-cc-pVXZ basis sets for
X=D, T, Q and 5.34,35 Unless otherwise stated, we use a level
shift parameter �=0.1 for the penalty function. In all calcu-
lations we use an uncontracted, even tempered set of nine
GTGs with exponents ranging from 3−2 to 36. These specifi-
cations are identical to those used by Dahle et al. in Ref. 13.
For our calculations on He and H2 we use an uncontracted
aug-cc-pV6Z basis as the CABS for the RI approximation
for the evaluation of the three- and four-electron integrals.
For the RI approximation used to evaluate the four-center
integrals as linear combinations of three-center integrals, we
use the aug-cc-pV6Z auxiliary basis of Hättig.36 For our cal-
culations on Ne, we use the spd functions of the aug-cc-
pCVTZ orbital basis,37 an uncontracted aug-cc-pCV5Z
CABS basis set, and an 18s15p13d11f9g7h5i3k basis for the
density fitting. The CABS and density fitting basis sets are
sufficiently complete for an accuracy of 0.01 mEh in our
correlation energies.

To distinguish between our new mixed methods and the
MP2-F12 and MP2-GTG methods, we introduce the prefix
SO, IO, or WO to denote the functional used to evaluate the
pair functions �Eqs. �7�, �11�, and �8�, respectively� and use
F12 or GTG to indicate the method of evaluating the many-
electron integrals �RI or exact�. The method definition is
completed by the specification of the extent of the sum over
pq in Eq. �2� defining the geminal basis functions, which we
add as a postfix. The resulting plethora of acronyms is sum-
marized in Table I.

V. ILLUSTRATIVE CALCULATIONS

By comparing the results of our SO-MP2-F12-kl and
WO-MP2-F12-kl with the WO-MP2-GTG-kl results of
Dahle et al., we are able to directly and separately evaluate

TABLE I. The acronyms and their meanings �see Sec. IV�.

Method F�uij� f�r12� �pq� RI

MP2-R12 SO r12 kl Yes
SO-MP2-F12-kl SO GTG kl Yes
IO-MP2-F12-kl IO GTG kl Yes
WO-MP2-F12-kl WO GTG kl Yes
WO-MP2-GTG-kl WO GTG kl No
WO-MP2-GTG-kq WO GTG kq No
WO-MP2-GTG-pq WO GTG pq No

174105-4 Tew, Klopper, and Manby J. Chem. Phys. 127, 174105 �2007�
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the consequences of using the RI approximation and of using
the WO functional. The MP2 correlation energies for these
methods, with full optimization of the nine coefficients cij

kl,�,
are presented in Table II for helium and Table III for molecu-
lar hydrogen. The combined error of the RI and GBC ap-
proximations is given by the difference between the WO-
MP2-F12-kl and WO-MP2-GTG-kl values and is at most
0.05 mEh, which, in every case, is completely negligible
with respect to the remaining deviation from the basis set
limit. The effect of using the WO functional in place of the
SO functional is seen by comparing the WO-MP2-F12-kl
and SO-MP2-F12-kl values and is orders of magnitude
larger. For helium, with the cc-pVDZ basis, the percentage of
the correlation energy recovered reduces from 99% for the
SO functional to 90% for the WO functional. The source of
the under performance of the MP2-GTG-kl method of Pers-
son and Taylor is therefore connected to the WO functional.

Indeed, the size of the RI error in MP2-F12 calculations
can always be reduced by increasing the CABS to saturate
orbital space. Even for modest CABS, the RI error is typi-
cally less than 1% of the correlation energy for general mo-
lecular systems.39 The magnitude of the GBC error has also
been computed for a number of molecular systems and is
typically less than a fraction of a percent of the total corre-
lation energy for double-� or larger orbital basis sets.16,28,40

For most practical applications, where an accuracy in the
total correlation energy of 98% is sufficient, it is not neces-

sary to evaluate the three-electron integrals exactly. The
enormous additional computational expense involved is thus
only warranted for benchmark calculations.

We have proceeded to investigate the reasons for the
poor performance of the WO functional. When using the WO
functional, one implicitly assumes that the geminal basis
contains sufficient flexibility to form pair functions that are
strongly orthogonal to the occupied orbitals. For the GTGs
employed by Persson and Taylor, SO requires that

�
m�1�
r��3���
pq�

cij
pq,�e−��r12

2
�
p�1�
q�2��1 = 0 �44�

for all occupied orbitals 
m and arbitrary 
r�. Individually,
none of the GTG basis functions satisfies this condition
�since ���0�. For a given GTG to contribute to uij without
violating SO, it must always be accompanied by terms that
remove the nonstrongly orthogonal components

e−��r12
2

�
p�1�
q�2�� − �
m

�
m�1��


�
m�1��e−��r12
2

�
p�1�
q�2��1, �45�

which may be written as

e−��r12
2

�
p�1�
q�2�� − �
m

�
m�1�
̃q�2�� . �46�

This is possible if each component of the second term, which
are all separable, can be represented exactly by the coupled
GTG basis functions:

�
m�1�
̃q�2�� = �
rs�

dij
rs,�e−��r12

2
�
r�1�
s�2�� . �47�

The equality is only true in the limit that rs span the com-
plete basis �the functions exp�−��r12

2 � do not even form a
complete set of pair functions of S symmetry�. The conver-
gence with orbital basis can be expected to be as slow as the
representation of coupled functions in a basis of separable
functions. Although the geminal basis functions in Eq. �2�
are well chosen from the point of view of describing electron
correlation, they are clearly incapable of satisfying the SO
constraint. Moreover, similar arguments show that they are
even incapable of satisfying AO. The resulting SO violation
is particularly large when the sum over pq is restricted to kl.
The SO-violating components of the geminal functions result
in too large B matrix elements, primarily through the terms
that violate AO, which leads to too small correlation ener-
gies.

The cusp conditions suggest that the most efficient way
to describe the Coulomb hole is through the diagonal excita-
tions �ij�→ f�r12��ij�. In Fig. 1 we compare the correlation
factors f�r12�=��c�f��r12� from SO-, IO-, and WO-MP2-
F12-kl calculations on helium using an aug-cc-pVTZ orbital
basis. The functions have been normalized such that
�r2f�r�2dr=1. The shape of the SO correlation factor follows
the average short-range r12 dependence of the Coulomb hole
�−�HF.17 In fact, it is closely fitted by exp�−0.8r12� over the
range 0→2a0 and is in good accord with the optimum
CCSD-F12 correlation factor for helium computed in Ref.
17. The WO correlation factor, on the other hand, contains

TABLE II. Helium MP2 correlation energies �in −mEh, exact value is
−37.38 mEh, Ref. 38�. The same nine GTGs are used in every explicitly
correlated method.

Basis

F12 �RI� GTG �exact�

SO-kl IO-kl WO-kl WO-kl WO-kq WO-pq

cc-pVDZ 36.86 36.53 33.75 33.75 36.71 36.95
cc-pVTZ 37.18 37.03 35.87 35.87 37.18 37.30
cc-pVQZ 37.32 37.29 36.77 36.77 37.33 37.36
cc-pV5Z 37.36 37.35 37.09 37.09 37.36 37.37
aug-cc-pVDZ 36.99 36.84 35.23 35.23 37.17 37.29
aug-cc-pVTZ 37.22 37.12 36.52 36.52 37.26 37.36
aug-cc-pVQZ 37.34 37.31 37.06 37.06 37.35 37.38
aug-cc-pV5Z 37.36 37.36 37.23 37.23 37.37 ¯

TABLE III. Molecular hydrogen MP2 correlation energies �in −mEh, exact
value is −34.25 mEh, Ref. 13�. The same nine GTGs are used in every
explicitly correlated method.

Basis

F12 �RI� GTG �exact�

SO-kl IO-kl WO-kl WO-kl WO-kq WO-pq

cc-pVDZ 33.93 33.45 31.58 31.63 33.58 33.80
cc-pVTZ 34.19 34.03 33.47 33.48 34.15 34.23
cc-pVQZ 34.23 34.21 33.99 34.00 34.23 34.24
cc-pV5Z 34.24 34.24 34.14 ¯ ¯ ¯

aug-cc-pVDZ 34.00 33.53 32.71 32.74 33.88 34.05
aug-cc-pVTZ 34.21 34.14 33.82 33.82 34.21 34.25
aug-cc-pVQZ 34.24 34.23 34.14 34.14 34.24 ¯

aug-cc-pV5Z 34.24 34.24 34.21 ¯ ¯ ¯
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nodes that have nothing to do with the physics of electron
correlation in helium. The unprojected basis functions
f�r12��ij� violate SO. For two-electron systems, the only
available flexibility to reduce the SO violation is in the co-
ordinate r12 and nodes appear to reduce the one-electron ex-
pectation value. In Table IV we present WO-MP2-F12-kl and
IO-MP2-F12-kl He correlation energies for several values of
the level shift parameter �=10−5 ,10−4 , . . . ,105 using an aug-
cc-pVTZ orbital basis. We also tabulate the values of the

penalty function �ij�uij�Ô1+ Ô2�uij� and pSO values, which
are a measure of the non-SO character of the pair functions,

pSO = − log10��wij��Ô1 + Ô2 − Ô1Ô2��wij�/�wij�wij�� .

�48�

The corresponding normalized correlation factors for the
WO calculations are plotted in Fig. 2. The low pSO values in
Table IV reflect the inability of the geminal basis to form
pair functions SO to the occupied space. As � increases, the
number of nodes in the WO correlation factor increases and
the pSO values correspondingly increase. However, even for
�→0 �and thus �ij→0 for the helium ground state�, the WO
functional gives a poor prediction of the correlation energy

and the shape of the correlation factor differs significantly
from that of the SO functional.

For many-electron systems, the number of kl GTG basis
functions increases quadratically with the number of elec-
trons, while the number of SO constraints per pair function
grows only linearly. However, the aforementioned results in-
dicate that this additional flexibility is still insufficient for Ne
with ten electrons. Dahle et al. reported calculations using
the kq and pq Ansätze and their results for He and H2 are
presented in Tables II and III. The inclusion of GTGs with
additional nodal structure in r1 and r2 independently has a
large effect on the correlation energy since these functions
are better suited for the expansion in Eq. �47�, leaving the
dominant diagonal excitations free to adopt a more physical
form. WO-MP2-GTG-kq correlation energies are typically of
equivalent quality to SO-MP2-F12-kl values.

In this work we propose an alternative solution that does
not require extended geminal basis sets and also avoids the
four-electron integrals present in the SO functional, namely
the IO functional. From Tables II and III it can be seen that
the IO-MP2-F12-kl correlation energies are of similar quality
to those of the SO functional. For helium with the cc-pVDZ
basis, 98% of the basis set limit correlation energy is recov-
ered, compared to 99% and 90% for the SO and WO func-
tionals, respectively. The presence of the projection operator

P̂12 in the IO geminal basis ensures that the pair functions
satisfy AO to the occupied space, and also removes the SO-
violating components that correspond to single excitations
within the orbital basis. Indeed, the pSO values in Table IV
show that the SO-violating terms are three orders of magni-
tude smaller in the IO functional than in the WO functional.
More importantly, the contribution of the nonstrongly or-
thogonal components to the IO Fock matrix is very small and
consequently there is only a slight adverse effect on the com-
puted correlation energies. As a result the IO correlation en-
ergies are much more stable with respect to � and the corre-
lation factor in Fig. 1 is similar to that of the SO functional.
We also report that the shape of the WO correlation factor is
rather sensitive to the orbital basis set, but the IO correlation
factor converges to that of the SO functional.

We have performed SO-, IO-, and WO-MP2-F12-kl cal-
culations on Ne using the aug-cc-pCVTZ�spd� orbital basis
and the set of nine GTGs used by Dahle et al. and �=0.1. In

FIG. 1. The normalized correlation factor for He computed using the SO,
IO, and WO functionals ��=0.1� and an aug-cc-pVTZ orbital basis set.

TABLE IV. WO- and IO-MP2-F12-kl correlation energies, energy penalties,
and pSO values of He computed using an aug-cc-pVTZ orbital basis and
various vales of �. Energies are in −mEh.

log10 �

WO functional IO functional

E Penalty pSO E Penalty pSO

−5 36.53 0.00 −0.86 37.12 0.00 2.98
−4 36.53 0.00 −0.82 37.12 0.00 3.00
−3 36.52 0.00 −0.69 37.12 0.00 3.01
−2 36.52 0.00 −0.20 37.12 0.00 3.02
−1 36.52 0.01 0.06 37.12 0.00 3.02
0 36.47 0.05 0.14 37.12 0.00 3.04
1 36.24 0.15 0.73 37.10 0.02 3.57
2 35.88 0.15 2.60 37.04 0.04 4.94
3 35.48 0.21 4.06 36.86 0.14 5.70
4 34.80 0.36 4.75 36.45 0.19 7.27
5 34.09 0.20 6.03 35.83 0.32 8.43

FIG. 2. Normalized WO-MP2-F12-kl/aug-cc-pVTZ correlation factors for
He computed with �=10−5 ,10−3 , . . . ,105.
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Table V we present results from three geminal contraction
schemes: cij

klc�, cij
klcij

� , and cij
kl,�. The WO and SO values using

a fully decontracted geminal basis, cij
kl,�, are from the WO-

MP2-GTG-kl value in Ref. 13 and the SO-MP2-F12-kl value
of Ref. 41 based on the work of Ref. 21. For the SO func-
tional we see that the energy gain upon decontraction is rela-
tively small, in agreement with the work of Valeev.21 Indeed,
99% of the correlation energy has been obtained using the c�

contraction, which corresponds to a single correlation factor.
For the IO functional, with a different correlation factor for
each occupied pair, cij

� , 96% of the correlation energy of Ne
is recovered, compared to 90% for the WO functional.

As a final comment on the application of the WO and IO
functionals to many-electron systems, we address the role of
the penalty function. For the ground states of two-electron
systems, �ij =� and the values of the penalty function pre-
sented in Sec. V are small. For many-electron systems, the
eigenvalue difference �i+� j −2�1 is nonzero and, when � is
small, this is the dominant contribution to �ij for all but the
innermost electron pair. Dahle et al. have investigated the
sensitivity of the MP2-GTG values to the level shift param-
eter � and shown that a value of 0.1 appears to be stable. We
simply interpret this as the regime where � is a negligible
contribution to �ij. The presence of �1 in the penalty function
is concerning for the general applicability of the WO and IO
methods. The penalty function not only breaks size consis-
tency but also leads to an unbalanced treatment of core and
valence electron pairs such that the penalty for the SO-
violating terms in valence pairs is much larger than it is for
that of core electron pairs. For heavy elements it will become
very large indeed, which will greatly decrease the efficiency
with which the valence-shell electron correlation is de-
scribed, even in calculations where core correlation is ne-
glected. This imbalance was realized shortly after the WO
functional was proposed and the modified WO functional
addresses this issue, but it does fix the problem of size
inconsistency.42 The improved penalty function of the modi-
fied WO functional may be straightforwardly applied to the
IO and AO functionals.

VI. CONCLUSION

In this work we set out to investigate the source of the
poor performance of the MP2-GTG method of Persson and
Taylor compared to the MP2-F12 method. Our investigations
conclusively demonstrate that when the WO is used, the ef-
ficient description of electron correlation is frustrated by the

additional requirement that the unprojected pair functions are
strongly orthogonal to the occupied orbitals. Although the
floating GTG basis used in the original MP2-GTG method
has sufficient flexibility to satisfy this requirement, the basis
used by Persson and Taylor does not. We have introduced a
modified WO functional, which we call the IO functional,
that greatly relaxes this constraint without requiring the
evaluation of four-electron integrals present in the SO func-
tional. For a given GTG basis, the computational expense of
the IO method is very similar to that of the WO method, but
much less flexibility is required in the geminal basis for a
given accuracy in the correlation energy. In particular, we
avoid the complexity involved in optimizing the large num-
ber of nonlinear parameters and the associated numerical dif-
ficulty of near linear dependencies, which are major ob-
stacles to the application of the original MP2-GTG method
to larger systems.43 We therefore recommend that the IO
functional replace the WO functional in GTG calculations
where three-electron integrals are evaluated exactly. Further-
more, we recommend that the GTG methods should only be
used for benchmark calculations, aiming at more than 99%
of the correlation energy. Use of the RI to approximately
evaluate the three- and four-electron integrals that arise in
the SO functional is much more efficient and the resulting
accuracy is more than sufficient for general chemical appli-
cations.
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