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Fundamental aspects of the explicitly correlated R12 and F12 theories are summa-
rized in the perspective of recent advances related to our contribution in this field.
Starting from the basics of pair functions and second quantized formulations,
the R12/F12 ansätze have been applied to MP2, coupled-cluster, and equation of
motion coupled-cluster theories. Emphasis is given to approaches that use the
rational generator to create the exact cusp conditions (SP ansatz). Computational
aspects of the evaluation of many-electron integrals are also discussed in con-
junction with the use of the Slater-type geminal, which is the predominant choice
for the correlation factor in modern R12/F12 theories. C© 2011 John Wiley & Sons Ltd.
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INTRODUCTION

I t has been known for more than 80 years that intro-
duction of the interelectronic distance coordinate

r12 = |#r2 − #r1| (1)

directly into the wavefunction expansion is an ef-
ficient tool to treat the dynamical electron corre-
lation effects.1 In todays’ terminology, approaches
possessing this feature are denoted as explicitly corre-
lated electronic structure theory.2 This feature makes
them different from the traditional ab initio corre-
lated methods, when—in algebraic approximation—
the electron correlation is treated via wavefunction
expansions merely in terms of the configuration state
functions (or Slater determinants). In quantum chem-
ical calculations, these traditional configuration in-
teraction (CI) type expansions suffer from a well-
recognized drawback, namely, a frustratingly slow
convergence of the calculated energies toward the
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one-particle basis set limit values. This hindrance is
related to the improper description of the electron–
electron cusp,3 unlike in explicitly correlated ap-
proaches. On the other hand, for many-electron sys-
tems, an explicit introduction of the interelectronic
distance coordinate directly into the wavefunction is
by far not a trivially solvable computational prob-
lem. From the variety of approaches,2 methodologies
based on the idea of Kutzelnigg5—nowadays known
as R12 theories—most effectively combine the advan-
tages of the traditional CI-type expansions with the
explicit treatment of the electron–electron cusp. As a
result, the error of the energy with respect to the basis
set limit changes from ∝ (L + 1)−3 for the traditional
expansion to ∝ (L + 1)−7 in R12 theories,6 in which
L is the highest angular momentum involved in the
basis set (in a close to saturated manner).

The original R12 methods considered only
terms linear in r12 sufficient to describe the electronic
cusps at the small vicinity of the coalescence of two
electrons. For larger interelectronic distances the lin-
ear r12 leads to an unphysical description of the cusp
profile, which implies that this defect has to be treated
by the use of fairly extended basis sets. With less
flexible sets, the aforementioned drawback leads to
numerical problems and a loss of accuracy. Conse-
quently, the short-range correlation factors are get-
ting used in the so-called explicitly correlated F12
methods. The predominant choice of such correla-
tion factors is the use of Slater-type geminals (STG),7
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TABLE 1 Definition of Spin-Orbital Indices

Indices Type of Spin-Orbitals Dimension

i, j, . . . Occupied spin-orbitals O
a, b, . . . Virtual spin-orbitals in the given basis V
p, q, . . . Any spin-orbitals in the given basis N

p′′, q ′′, . . . Complementary auxiliary basis (CABS) C
p′, q ′, . . . Spin-orbitals in CABS + given basis C + N
α, β, . . . Virtual spin-orbitals in the complete basis
κ, λ, . . . Any spin-orbitals in the complete basis

which gives rise to a dramatic improvement of the
accuracy with wider applicability. It has been shown
that F12 methods with triple-zeta bases yield results
equivalent to those from the standard orbital expan-
sions with quintuple-zeta basis sets.

Several excellent reviews dealing with the
R12/F12-based theories have appeared during the last
five years,8 fully covering the recent progress made in
this field. The main aim of this overview is to pro-
vide an insight into the explicitly correlated theory
from the perspective of the contribution of the au-
thors. We shall focus on an alternative understanding
of the R12/F12-concept. As well, some technical as-
pects related to the practical implementation of this
theory will be outlined.

BASICS OF THE R12/F12 METHODS
In order to introduce the reader into the background
of R12/F12 theories, in our formulations we shall
employ notations of spin-orbital indices as listed in
Table 1. If needed, the corresponding capital letters
are used for the spatial part of the orbitals. We use a
given basis set (GBS) for practical calculations and its
orthogonal complement (OC) in the complete basis
set (CBS). The dimensions of the occupied, virtual,
and general orbitals in GBS are O, V, and N = O+
V, respectively. In some considerations and practical
implementations the OC space will be replaced by
a finite complementary auxiliary basis (CABS)12, 13

whose dimension is denoted by C.
Second-order many-body perturbation theory

(MBPT2) with the Møller–Plesset partitioning of the
Hamiltonian (MP2) is the simplest post Hartree–Fock
model for the electron correlation. MP2 was the first
model that was combined with the R12 ansatz5 for
many electron systems by Klopper and Kutzelnigg.14

This initial implementation used linear r12 in the
wavefunction expansion. The theory was formulated
within what is nowadays known as the ‘standard ap-
proximation’ (SA)6 and it was not invariant with re-
spect to rotations among the orbitals in the occupied

orbital subspace. Even though the R12 theory has
evolved both toward large (or much larger) molecu-
lar systems and toward highly accurate methods, the
MP2–R12 (or, more generally, the MBPT2–R12) has
reattracted the attention in the last decade. Develop-
ment along this line has been related to alternative
techniques in evaluation of the matrix elements, us-
ing alternative wavefunction ansätze and/or introduc-
ing correlation factors alternative to linear r12. In the
following, we shall recapitulate some ideas related
mainly to our work.

Hylleraas Energy Functional
As in MP2 the unperturbed Hamiltonian is repre-
sented by the (true) Fock operator, the energy can
be expressed as a sum of contributions (ε(2)

i j ) from
strictly decoupled pair functions ui j . The Hylleraas
energy functional for each i j pair,

h(ui j ) = 〈ui j |F̂1 + F̂2 − εi − ε j |ui j 〉

+ 2Re〈ui j |r−1
12 |{i j}〉 ≥ ε

(2)
i j , (2)

is minimized to determine ui j under the orthogonal-
ization constraints

〈ui j |{kl}〉 = 0, ∀k, l. (3)

The curly bracket denotes an antisymmetric product,

{pq} = 1√
2

[φp(1)φq(2) − φq(1)φp(2)], (4)

and εp is the orbital energy related to the orbital
φp. Explicitly correlated electronic structure methods
overcome the slow convergence of orbital expansions
by employing geminal basis functions that resemble
the cusp behavior of the exact wavefunction. Each
pair function ui j is expressed as a sum of the standard
products of virtual orbitals and a term explicitly de-
pendent on the interelectronic distance in the unitary
invariant manner,15

|ui j 〉 = 1
2

∑

ab

ci j
ab|{ab}〉 + 1

2

∑

kl

c′i j
kl Q̂12 f12|{kl}〉, (5)

Volume 2, January /February 2012 115c© 2011 John Wi ley & Sons , L td .



Overview wires.wiley.com/wcms

in which f12 = f (r12) is a spherically symmetric gem-
inal correlation factor which models the correlation
holes appropriately, and Q̂12 is the strong orthogonal-
ity projection operator with respect to the reference
functions,

Q̂12 = (1 − Ô1)(1 − Ô2) − V̂1V̂2. (6)

Ôn and V̂n are projection operators onto the occupied
and virtual orbitals, respectively,

Ôn =
∑

i

|φi (n)〉〈φi (n)|, (7)

V̂n =
∑

a

|φa(n)〉〈φa(n)|. (8)

The amplitudes ci j
ab and c′i j

kl are antisymmetric with
respect to the interchanges of the lower or upper in-
dices. The use of projector (6) guarantees that there
is no overlap between the first (conventional) and the
second (geminal) part of the pair function |ui j 〉. On
the other hand, this projector also assures that in the
second term of the right-hand side of Eq. (5) just
f12 parts describable by the GBS are out-projected.
Although this projector has been implicitly used in
early R12 considerations related to the evaluation of
matrix elements,6 due to SA its practical application
turned out to be equivalent to (1 − P̂1)(1 − P̂2) with
the projector onto GBS, P̂n = Ôn + V̂n. An a priori
use of the latter projector is equivalent to the ansatz 1
of Klopper and Samson12 to distinguish it from the
ansatz 2 that relates to Eq. (6) without the last term
and that is equivalent to the use of the strong orthog-
onality projection operator of Pan and King.16 It has
to be noted that while in ansatz 1 a significant part
of the description of f12 is missing; in the definition
of the ansatz 2 of Klopper and Samson, there is a
partial overlap between the conventional and the
geminal part of the pair function (5) (see also section
Second Quantized Formulation). The use of the full
projector (6) is sometimes referred to as ansatz 3.17

Modern explicitly correlated R12-based elec-
tronic structure methods almost exclusively employ
the STG7 in the form

f12 = −γ −1 exp(−γ r12) (9)

with the length-scale parameter γ . Its main advantage
is related to the fact that STG covers a wider range of
the correlation hole better than other correlation fac-
tors prevalent in the literature such as Gaussian-type
geminals (GTG) and linear r12 functions. In practi-
cal evaluations of the necessary integrals, represen-
tation of STG by a linear combination of GTGs is
an alternative approach beside the analytical evalu-
ation outlined in section Integrals over Slater-Type
Geminals.

We shall briefly address the terminologies of
R12 and F12. The original R12 method features the
use of the linear r12 correlation factor and the system-
atic approximation for many-electron integrals with
the resolution of the identity (RI).6 The terminology
of F12 was first used by May and Manby18 to distin-
guish the use of nonlinear correlation factors. They
used the density fitting version of the RI approxima-
tion, and the linear r12 behavior is fitted by a lin-
ear combination of GTGs as shown in the work of
Persson and Taylor.19 Almost at the same time, one
of us (Seiichiro Ten-no) proposed the use of STG
for R12-type calculations.7 Since then, various au-
thors have shown the drastically improved accuracy
of STG.20 Nowadays, STG is the predominant choice
of correlation factor, and explicitly correlated meth-
ods with STG are mostly called F12. (There remain
some researchers who intend to keep the original ter-
minology of R12 for the nonlinear correlation factor.)
It should be noted that SP ansatz23 with fixed geminal
amplitudes to cusp conditions (see section SP Ansatz
with the Rational Generator) is granted only for non-
linear correlation factors. The long-range behavior
of linear r12 is unphysical, and the unitary invariant
ansatz of Klopper15 is crucial for R12 to eliminate the
error.

SP Ansatz with the Rational Generator
The exact wavefunction obeys the cusp conditions,3

which indicate the presence of a discontinuity at the
coalescence of two electrons,

)(s) =
[
1 + r12

2(1 + s)
+ O

(
r2

12
)]

*(s), (10)

in which *(s) is a noninteracting component of the
wavefunction and s takes 0 (s-wave) and 1 (p-
wave) for singlet and triplet pairs, respectively. Equa-
tion (10) can be hardly represented by orbital prod-
ucts. We can modify the form of (5) so that the s- and
p-wave cusp conditions are plugged into the pair func-
tion directly, which gives rise to the SP ansatz23, 56

|ui j 〉 = 1
2

∑

ab

cab
i j |{ab}〉 + R̂12|{i j}〉. (11)

Here R̂12 is the rational generator for the cusp
conditions,23

R̂12 = Q̂12 f12

(
3
8

+ 1
8

p̂12

)
. (12)

and p̂12 is the permutation operator over the position
vectors #r1 and #r2:

p̂12*
(s) = (−1)s*(s) (13)
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because the singlet and triplet pairs are symmetric
and antisymmetric with respect to the permutation
of spatial coordinates (or equivalently of orbital in-
dices). Using the commutability between the Fock and
strong orthogonality projection operators, it is con-
firmed that the above form eliminates the Coulomb
singularity of the perturbation in the first-order equa-
tion. Comparison between (5) and (11) immediately
leads to the amplitudes,

c′i j
kl = 3

8
δikδ jl + 1

8
〈kl| p̂12|i j〉 . (14)

The SP ansatz is referred to as ‘the diagonal or-
bital invariant’ and the amplitudes are particularly
simple in the spin-free formulation as shown in the
forthcoming sections. The SP ansatz is computation-
ally effective especially for coupled cluster (CC) cal-
culations (vide infra).

Second Quantized Formulation
Exact reformulation of an n-particle operator in
the second quantized form means that the operator
should be expanded in the CBS. Hence, within the
frame of the second quantization formalism with nor-
mal ordering related to the Hartree–Fock reference
(|0〉) any two-particle operator (X̂) is rewritten as

X̂N = 1
4

∑

κ,λ,µ,ν

X̄µν
κλ {â†

κ â†
λâν âµ}

+
∑

κ,µ

∑

i

X̄µi
κi {â†

κ âµ}. (15)

Where appropriate, we shall use the tensor nota-
tion for integrals over an arbitrary n-particle operator
(X̂12...), i.e.,

Xλ1λ2...
κ1κ2... = 〈κ1κ2 . . .|X̂12...|λ1λ2 . . .〉 (16)

and the overbars denote antisymmetrized integrals,
X̄λ1λ2

κ1κ2
= Xλ1λ2

κ1κ2
− Xλ2λ1

κ1κ2
.

It is useful to partition the operator (15) into the
part describable by the GBS

X̂GBS
N = 1

4

∑

p,q,r,s

X̄rs
pq{â†

pâ†
qâs âr }

+
∑

p,r

∑

i

X̄ri
pi {â†

pâr } (17)

and a complementary part that can only be described
with the aid of the OC of the CBS.24 To facilitate the
text, we shall use calligraphic letters to distinguish
these operators, i.e.,

X̂ = X̂N − X̂GBS
N . (18)

With n electrons in the considered system, f̂ =∑n
k>l fkl represents the global operator of the corre-

lation factor whose normal order form ( f̂N) can be
expressed as (15) with X̂ = f̂ . In this case, we shall
use F̂ to denote the complementary part of f̂N corre-
sponding to Eq. (18). Acting of F̂ on |0〉, which de-
notes the Hartree–Fock wavefunction in GBS, gives
rise to

F̂ |0〉 = 1
4

∑

i, j,α,β

F̄ i j
αβ{â†

α â†
β â j âi }|0〉

+
∑

i,α

∑

j

F̄ i j
α j {â†

α âi }|0〉. (19)

On the right-hand side, the surviving parts of F repre-
sent excitation operators from the reference determi-
nant to hypothetical excited configurations involving
orbitals from the OC basis. The first term of the right-
hand side stands behind the established R12/F12 ap-
proaches. The second term disappears faster than the
first term for a basis set which gives the exact HF
solution. In this case, the GBS should correspond to
the Hartree–Fock limit basis and the matrix elements
F̄ i j

α j become zero by definition. The importance of this
term in practical calculations with smaller basis sets
is by far not negligible, as it was stressed in Ref 24. In
the same work diverse possibilities for the Hamilto-
nian partitioning were discussed when the GBS is not
a Hartree–Fock limit one, which at same time means
that the Fockian in Eq. (2) would not be the exact
one. Hence, the generalized Brillouin theorem

〈α|F̂ |i〉 = 0 (20)

does not hold.
Using Eqs (15)–(19) and the latter relation, the

ansatz of Eq. (5) can be rewritten employing the first-
order excitation operators,24, 25

T̂2 = 1
4

∑

i jab

ci j
ab{â†

aâ†
bâ j âi }, (21)

T̂2′ = 1
4

∑

i jkl

c′i j
kl

∑

α>β

F̄kl
αβ{â†

α â†
β â j âi }. (22)

Similarly, one can express the rational generator op-
erator of Eq. (12) in the SP ansatz as

T̂(SP)
2′ = 1

4

∑

i j

∑

αβ

R̄i j
αβ{â†

α â†
β â j âi }. (23)

The rational generator is fixed irrespective of the
wavefunction order.
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Geminal Basis for the Open-Shell Molecules
The operator (23) can be generally rewritten using
spatial parts of the orbitals as

T̂(SP)
2′ = 1

2

∑

I J

∑

αβ

〈α↑β↑|R̂12|I↑ J↑〉{â†
α↑

â†
β↑

âJ↑ âI↑}

+ 1
2

∑

I ′ J ′

∑

α′β ′

〈α′
↓β ′

↓|R̂12|I ′
↓ J ′

↓〉{â†
α↓

â†
β↓

âJ ′
↓
âI ′

↓
}

+
∑

I J ′

∑

αβ ′

〈α↑β ′
↓|R̂12|I↑ J ′

↓〉{â†
α↑

â†
β ′

↓
âJ ′

↓
âI↑},

(24)

where we have distinguished the spatial parts of the up
and down spin orbitals by a prime. Spin flipped gem-
inals appear in the last term of Eq. (24) as a result of
the multiplication of the permutation operator in the
rational generator as p̂12

∣∣I↑ J ′
↓
〉
=

∣∣J ′
↑ I↓

〉
. In the spin-

free formulation for a closed shell reference, Eq. (23)
can be re-expressed in terms of the unitary group gen-
erator, ÊP Q = â†

P↑âQ↑ + â†
P↓âQ↓ and the spatial parts

of the occupied orbitals are identical for up and down
spins. For restricted Hartree-Fock (RHF) (or complete
active space self-consistent field (CASSCF) more gen-
erally), the α and β orbitals are identical, and the cor-
responding geminal amplitudes over spatial orbitals
become particularly simple as26

c′I J
KL = 3

8
δIKδJ L + 1

8
δILδJ K . (25)

The use of the operator (22) without spin-flipped pair
functions is more complicated for wave functions
with different orbitals for different spins (e.g. unre-
stricted Hartree-Fock). Consequently, in this ansatz
the exact cusp conditions are not fully satisfied, and
the geminal space should be augmented with such
spin flipped functions.27

COUPLED CLUSTER F12 METHODS
Generalization of the R12 theory to the CC type
of wavefunction expansion was introduced twenty
years ago.25, 32 Since then, there has been an enor-
mous development in this field, eventually leading to
approaches whose computational demands with the
GBS do not significantly exceed the requirements for
the calculations using traditional CC ansatz, at the
same time providing results with substantially im-
proved accuracy. A general CC approach with sin-
gles and doubles based on R12/F12 theory using both
one- and two-particle part of F̂ has been formulated
more recently.33 In this formulation, the ground state
CCSD-R12/F12 wavefunction )0 is expressed as

|)0〉 = eT̂|0〉, (26)

where the cluster operator T̂ has the form

T̂ = T̂1 + T̂2 + T̂1′ + T̂2′ . (27)

T̂1 and T̂2 are regular single and double excitation
operators, and T̂2′ is a CC generalization of the exci-
tation operator (22):

T̂2′ = 1
4

∑

i jkl

t′i j
kl

∑

α>β

F̄kl
αβ{â†

α â†
β â j âi }, (28)

and

T̂1′ =
∑

ik

t′i
k

∑

α

∑

l

F̄kl
αl {â†

α âi }. (29)

Intermediate normalization is assumed, i.e.,

〈0|)0〉 = 1. (30)

With the ansatz (26) the amplitudes are optimized in
the orbital invariant manner.15 Essentialy, one mini-
mizes the Arponen-like energy functional35

E(-̂, T̂) = 〈0|(1 + -̂)e−T̂ ĤeT̂|0〉 (31)

with respect to the amplitudes of -̂, which implies
that

E = 〈0|e−T̂ ĤeT̂|0〉. (32)

Due to the asymmetric nature of the latter functional,
-̂ is not equal to T̂†. Explicit equations for this ansatz
have been given in Refs 33, 34. As we have shown on
a model study limited to single excitations T̂1 and
T̂1′ , an infinite-order treatment of the orbital relax-
ation within the CC ansatz is quite important.36 The
main message was that whereas the approach using
T̂1′ somewhat underestimates this effect, an alterna-
tive treatment with extending the true single exci-
tations space using CABS gives rise to overestima-
tion of the energies. This uncertainty remains also
with a pragmatic correction for the orbital relaxation
stemming from the second-order perturbation theory
which is often used in the explicitly correlated CC
approaches.37

In the SP ansatz, the one-particle part (29) dis-
appears by definition and the T̂(SP)

2′ remains as in (23).
Evidently, the final CCSD-F12(SP) equations are dras-
tically simplified. In that case, however, the energy
expression (32) is not valid, since the functional (31)
was not minimized with respect to the amplitudes of
-̂2′ . Instead, the energy is calculated as

E =
〈
0
∣∣(1 + -̂

(SP)
2′

)
e−T̂ ĤeT̂

∣∣0
〉
, (33)

where the amplitudes of -̂
(SP)
2′ are fixed to cusp con-

ditions and hence the same as for T̂(SP)
2′ .
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Restriction of the functional (31) to second-
order terms in the fluctuation potential (in our case,
the two particle part of ĤN) and the amplitudes of
T̂2′, T̂†

2′ leads to fairly successful approximation de-
noted as CCSD(F12).38 More detailed description of
various other approximations can be found in Ref 8.

Toward More General CC-F12 Ansatz
A great (theoretical and computational) advantage
of the CC ansatz using excitation operators T̂n′ of
Eqs (28) and/or (29) together with the ‘conventional’
excitation operators T̂n is hidden in the fact that all op-
erators in the exponential mutually commute. This en-
ables a straightforward using of the algebraic and/or
diagrammatic techniques that are known from the
conventional single reference CC theory, albeit with
some modifications.25, 40 From the physical point of
view the operator (28) means that in the reference de-
terminant one replaces a pair of occupied orbitals |i j〉
with a pair |kl〉 multiplied by the correlation factor
from which the ‘content’ describable by the GBS has
been outprojected. Via disconnected clusters ( 1

m! T̂
m)

that arise from the Taylor expansion of the expo-
nential operator in CC-R12/F12 the aforementioned
substitution is extended to excited determinants, too,
but still restricted to the action of the correlation fac-
tor on the pair of orbitals from the space of occu-
pied orbitals. This is fully justified when the reference
determinant is prevailing and we are predominantly
concerned about the ground state energies. In the de-
scription of excited states, such an approach is unbal-
anced and at least pairs with selected virtual orbitals
have to be treated in the same manner.41

In principle, in the exponential of (26) one can
consider the full operator F̂ . If the correlation factor
was r12 and without parameters related to individual
replacement operators in F̂ , such an approach would
eventually resemble the CC analog of the Hylleraas
configuration interaction.42 At the same time, how-
ever, this approach would become practically unfea-
sible even for small systems. One way to overcome
this difficulty is to use the similarity transformed
Hamiltonian, the so-called transcorrelated Hamilto-
nian of Boys and Handy, which terminates at the
three-electron interactions.43 The special form of the
transcorrelated Hamiltonian,

ĤTC = exp
(

−1
2
F̂

)
Ĥ exp

(
1
2
F̂

)
, (34)

which cancels the Coulomb singularity, has been
applied to MBPT2 and coupled electron pair
approximations44 with the RI approximation for
three-electron integrals.

More general is an extension of the replacement
operators of (28) and (29) to

T̂2′ = 1
4

∑

pqrs

t′pq
rs

∑

κ>λ

F̄ rs
κλ{â†

κ â†
λâqâp}. (35)

and

T̂1′ =
∑

pr

t′p
r

∑

κ

∑

l

F̄ rl
κl {â†

κ âp}. (36)

Here, one should keep in mind that F inherently ex-
cludes matrix elements describable in the GBS, hence
at least one of the indices κ, λ must belong to the OC
basis. Several extended ansätze have been examined
in GTG calculations at the MP2 level by Dahle et al.47

T̂1 would now disappear only if the GBS were
saturated for all angular momenta involved in it. In
this generalization, the SP ansatz corresponds to

T̂ (SP)
2′ = 1

4

∑

pq

∑

κλ

R̄pq
κλ {â†

κ â†
λâqâp}. (37)

Further constraints on T̂ were applied in the recently
proposed extended SP (XSP) ansatz of Köhn,48 where
the summation over pq in (37) takes over all ai
pairs, and the geminal operator is contracted with the
response singles (vide infra). Moreover, summation
over κλ remained as in (37), i.e., over αβ, which is
different as soon as T̂ acts on an excited determinant.
Obviously, acting on |0〉, both T̂2′ and T̂2′ provide the
same result.

EOM-CC-F12 Methods
In the EOM-CCSD-F12 method, the κth excited state
(|)κ〉) satisfies the Schrödinger equation,

Ĥ|)κ〉 = Eκ |)κ〉, (38)

|)κ〉 = R̂κ |)0〉, (39)

where the total replacement operator

R̂κ = R̂κ1 + R̂κ2 + R̂κ2′ , (40)

with the usual single- and double- excitation opera-
tors

R̂κ1 =
∑

ia

(rκ )a
i {â†

aâi }, (41)

R̂κ2 = 1
4

∑

i jab

(rκ )ab
i j {â†

aâ†
bâ j âi }, (42)

and the geminal doubles operator,

R̂κ2′ = 1
4

∑

i jkl

(r ′
κ )i j

kl.̂
kl
i j + 1

2

∑

i jka

(r ′
κ )i j

ka.̂
ka
i j , (43)

.̂
pq
i j = 1

2

∑

αβ

F̄ pq
αβ {â†

α â†
β â j âi }. (44)

Volume 2, January /February 2012 119c© 2011 John Wi ley & Sons , L td .



Overview wires.wiley.com/wcms

The geminal operator .̂ka
i j in the second term of

Eq. (43) represents the cusp treatment between the
excited electron in the virtual space and those in the
occupied orbitals. Importance of the inclusion of such
an operator for the description of excited states was
pointed out by Neiss et al.41 Substituting )κ into
(38) and subtracting the ground-state conditions with
suitable projections, we obtain the commonly known
commutator form of the equation of motion (EOM)
expressions,

〈0|(âaâ†
i )[ ˆ̄H, R̂κ ]|0〉 = ωκ (rκ )a

i , ∀a, i, (45)

〈0|({âaâbâ†
j â

†
i })[

ˆ̄H, R̂κ ]|0〉 = ωκ (rκ )ab
i j , ∀a, b, i, j,

(46)

〈
0
∣∣(.̂kp

i j

)†[ ˆ̄H, R̂κ ]
∣∣0

〉
= ωκ

〈
0
∣∣(.̂kp

i j

)† R̂κ2′
∣∣0

〉
,

∀i, j, k, p, (47)

where we have introduced the similarity transformed
Hamiltonian ˆ̄H = e−T̂ ĤeT̂, and ωκ are excitation en-
ergies. Although the solutions of Eqs (45), (46), and
(47) yield desirable excitation energies and amplitudes
of R̂κ , numerically stable solutions can be obtained for
the ground state by the use of SP ansatz in which the
geminal amplitudes are fixed to the cusp conditions.
More recently, Köhn extended the use of the SP ansatz
for excited states 48 using the geminal operator,

R̂(SP)
κ2′ = 1

2

∑

i jc

∑

αβ

R̄ic
αβ(rκ )c

j {â†
α â†

β â j âi }. (48)

In this case, Eq. (47) is not used, but extra terms are
added in ˆ̄H due to the contribution from the gemi-
nal operator. The details are discussed for CC linear
response theory 48 and for EOM-CCSD.49

Multireference CC-F12
Quite recently, we have extended the CC-R12/F12
ansatz to a multireference treatment within the
Brillouin–Wigner theory.50, 51 Our work is based on
the Jeziorski–Monkhorst ansatz52 using a cluster op-
erator augmented by the R12/F12 excitations to the
complementary orbital basis. The model space is as-
sumed to be spanned by M orthogonal reference con-
figurations |*µ〉, whereas the projection of the exact
wavefunction (for the state ω) on the model space
|) P

ω 〉 is expanded as a linear combination of reference
configurations

∣∣) P
ω

〉
=

M∑

µ=1

Cω
µ |*µ〉. (49)

P stands for the projection operator onto the model
space

P̂ =
M∑

µ=1

|*µ〉〈*µ|. (50)

The exact wavefunction of the ωth electronic state is
then obtained as

|)ω〉 =
M∑

µ=1

Cω
µeT̂(µ)|*µ〉, (51)

where T̂(µ) is, in general, an excitation operator of
the same form as (27) but related (normal ordered)
to the specific reference |*µ〉. The amplitudes of T̂(µ)
and the expansion coefficients Cω

µ are determined us-
ing the generalized Bloch equation (for details, see
Ref 50). Using of the SP ansatz is straightforward
with the rational generators (23) related to individual
references, i.e., T̂(SP)

2′ (µ).
The use of internally contracted geminal basis26

is an attractive alternative to provide efficient MR
R12/F12 methods reducing the number of geminal
amplitudes. The SP ansatz leads to such expansion
naturally and has been employed in MR second-order
perturbation theory.26, 53, 54 Extension of these meth-
ods to other MR methods is one of the important
challenges in the field of R12/F12.

MATRIX ELEMENTS IN R12/F12
METHODS
The matrix elements involving the correlation factor
in the exact (first quantized) formulation may lead
to many-particle integrals (vide infra). The second
quantized formulation by its nature automatically
factorizes these integrals to products of one- and/or
two- particle integrals summed up over the indices be-
longing to the virtual orbitals in the CBS basis, which
in turn can be expressed through the resolution of
identity employing

∑

α

=
∑

κ

−
∑

o

. (52)

Hence, typically
∑

α>β

Āαβ
pq f̄ rs

αβ =
∑

κ>λ

Āκλ
pq f̄ rs

κλ −
∑

κ>m

Āκm
pq f̄ rs

κm, (53)

where Â is either ĝ = r−1
12 or f̂12. Recognizing the two-

particle resolution of identity in the first term, one
arrives at a new type of two-particle integrals over
Â f̂ . Operators that appear in the R12/F12 theories
in this manner are listed in Table 2 together with f12.
Two-electron integrals over these operators have to be
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TABLE 2 Operators of Two-Electron Integrals in R12/F12
Methods

Operator Omissible Case

f12 –
f12/r 12 R12
−(∇2

1 f12) − (∇1 f12) · (∇1 − ∇2) Approximation C

f 2
12 –

f 2
12/r 12 –

−(∇1 f12) · (∇1 f12) R12, STG (Proportional
to f 2

12)

evaluated in addition to the usual two-electron repul-
sion ones. Operators f12/r12 and −(∇1 f12) · (∇1 f12)
are simple constants in the R12 case ( f12 = r12).
Moreover, −(∇1 f12) · (∇1 f12) can be skipped in the
STG case as it is proportional to f 2

12.7 Operator in
the third entry of the Table 2 follows from the terms
like the first term of Eq. (2), or formally a similar term
in the CC-R12/F12. In these terms, the product

∑

α,β

F̄αβ
i j F γ

α F̄kl
γβ (54)

has to be evaluated, which is not as straightforward
task as for the products of the (53) type. In the essen-
tial early work on the evaluation of matrix elements
in the R12 theory, assumptions like the generalized
Brillouin theorem or even the extended Brillouin the-
orem (F α′

p = 0, α′ ∈ OC) have been applied a priori in
the spirit of the SA.6 Subsequent derivation leads to
integrals over the commutator of the kinetic energy
operator with f12 that is hidden in the pertinent third
entry of the Table 2. Not so long ago, we showed that
if no a priori assumptions are applied in the evalua-
tion of (54), integrals over the aforementioned com-
mutator are not needed.55 This has been denoted as
approximation ‘C’ to distinguish this approach from
the formerly introduced approximations ‘A’ and ‘B’.6

Consequently, using STG along with the C approxi-
mation in F12 implies the requirement of two-electron
integrals over exp(−αr12) and exp(−αr12)/r12 with
α = γ and α = 2γ . With STG correlation factor, the
integrals over the commutator are in fact reduced to
the ones over exp(−αr12) in the approximations A
and B, as well.

Many-Electron Integrals
The second term of Eq. (53) would give rise to three-
particle integrals. The simplest of such integrals are

in
〈
ui j

∣∣ r−1
12 |{i j}〉 of Eq. (2) in the form,

〈
i j

∣∣r−1
12 Ô2 f12

∣∣kl
〉
=

∑

m

〈
i jm

∣∣r−1
12 f13

∣∣kml
〉

=
∑

κm

gκm
i j f kl

κm. (55)

R12 and F12 methods replace the summation over
the complete basis by a finite one using the unifi-
cation of GBS and CABS to decompose the required
many-electron integrals into products of two-electron
integrals,

∑

κ

gκm
i j f kl

κm
CABS
0

∑

p′

g p′m
i j f kl

p′m. (56)

From considerations at an atomic level follows that
such an expansion is justified as soon as the basis
of p′ functions is saturated at the level of 3Locc.6 To
treat such a CABS is relatively inexpensive for smaller
molecular systems involving atoms of the first two
periods, but alternatives for larger systems are more
than welcome. Such an alternative is provided by the
use of numerical quadratures (QD)23 when the three-
electron integrals are evaluated as

〈
i jm

∣∣r−1
12 f13

∣∣kml
〉 QD
0

∑

g

φ̄i (rg)φk(rg)gg
jm f g

ml , (57)

gg
pq =

∫
drφp(r)

1
|r − rg|

φq(r), (58)

f g
pq =

∫
drφp(r) f (|r − rg|)φq(r), (59)

φ̄i (rg) = φi (rg)wg with the quadrature weights wg, and
we have suppressed the integration over the spin co-
ordinate. The formal computational costs for the el-
ementary objects scales as N3(N + C) for CABS (56)
and N2G for QD (57) where G is the number of
the quadrature points. The number of grid points is
usually of the order of 10,000 per atom for good
accuracy of integrals.23, 56 Hence, QD is more advan-
tageous for large molecules. For cyclic three-electron
integrals with r−1

12 f13 f23, QD cannot be applied for
both of the 1 and 2 electronic coordinates due to
the divergence of r−1

12 at coincident quadrature points.
A hybrid QD/CABS technique should be introduced
for these classes of integrals, similarly as in the hy-
brid QD/RI method used for four-electron integrals
in MP2-F12.56 It is noted that the density fitting tech-
nique can increase the efficiency and accuracy of the
RI approximation.57, 58 The robust expansion of den-
sity fitting leads to an energy error only quadratic to
the density error.57
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Integrals over Slater-Type Geminals
All integral expressions needed in F12 methods of the
analytic STG can be obtained from integrals over the
Yukawa potential,
(

ab
∣∣∣∣
e−γ r12

r12

∣∣∣∣ cd
)

=
∫

dr1dr2ϕa(r1)ϕb(r1)
e−γ r12

r12
ϕc(r2)ϕd(r2), (60)

which can be calculated using standard algorithms for
electron repulsion integrals,59–61, 63 where ϕ stands
for the standard Cartesian Gaussian-type functions
(GTFs),

ϕa(r) = (x − Ax)ax(y − Ay)ay(z − Az)aze−ζa |r−A|2 ,

(61)

and the functions ϕb, ϕc, ϕd are defined in the same
way with the exponents, ζb, ζc, and ζd at the cen-
ters B, C, and D. The Yukawa potential can be ex-
pressed in terms of Gaussian functions in the integral
transformation,7

e−γ r

r
= 2√

π

∞∫

0

du exp
(

− γ 2

4u2

)
exp(−u2r2). (62)

The Obara–Saika recurrence relation61 to increase the
angular momentum indices holds for the auxiliary
integrals over the Yukawa potential,
(

ab
∣∣∣∣
e−γ r12

r12

∣∣∣∣ cd
)(m)

= 2√
π

∞∫

0

du
(

u2

ρ + u2

)m

× exp
(

− γ 2

4u2

)
(ab|e−u2r2

12 |cd),

(63)

where ρ = ζη
ζ+η

is of only orbital exponents, ζ = ζa +
ζb and η = ζc + ζd. The auxiliary integrals with m = 0
are identical to (ab| e−γ r12

r12
|cd), which can be obtained

from the integrals over s-type functions,
(

00
∣∣∣∣
e−γ r12

r12

∣∣∣∣ 00
)(m)

= 2
√

ρ

π
SabScdGm(T,U), (64)

for all m from 0 to the total angular momentum of
the orbitals, where Sab and Scd are overlap functions
of the corresponding s-type functions,

Sab =
(

π

ζ

) 3
2

e− ζa ζb
ζ

(A−B)2
, (65)

Scd =
(

π

η

) 3
2

e− ζcζd
η

(C−D)|2 , (66)

and Gm(T,U) is the generalized Boys function,7, 56

Gm(T,U) =
1∫

0

dtt2m exp[−Tt2 + U(1 − t−2)],

(67)

with

T = ρ(P − Q)2, (68)

U = α2

4ρ
, (69)

P = ζaA + ζbB
ζ

, Q = ζcC + ζdD
η

. (70)

The expression for integrals over STG can be obtained
by differentiating the Yukawa one with respect to the
exponent. It should be noted that G−1(T,U) arises
from the differentiation. All other integrals needed for
the Approximations A and B can be obtained from
the standard algorithms as variants of the Yukawa
integrals.7

In the Coulomb potential limit (γ = 0), all inte-
gral evaluation is not changed except that Gm(T,U)
is reduced to the usual Boys function,

Fm(T) =
1∫

0

dtt2m exp(−Tt2). (71)

In other words, any Fm(T)-based algorithms for elec-
tron repulsion integrals can be used for Yukawa
integrals by replacing Fm(T) by Gm(T,U). F12 in-
tegrals in our modified DIRCCR12-OS program33

are actually implemented in such a way using the
McMurchie–Davidson algorithm. More recently, Sh-
iozaki introduced a method using orthogonal quadra-
tures which is a generalization of the Dupuis–Rys–
King algorithm.64

CONCLUSIONS
Nowadays, the explicitly correlated ab initio meth-
ods based or being inspired by the original idea
of R12 treatment represent practical alternatives in
order to achieve the CBS accuracy. Their greatest
methodological advantage is that these methods es-
sentially preserve the orbital product expansion, but
at the same time the electron correlation cusp is ef-
fectively described by introducing orbital pair prod-
ucts multiplied by a correlation factor. For the last
decade, it has been revealed that Slater-type gemi-
nal is the most advantageous choice for the explicitly
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correlated part. Moreover, the employment of the-
oretical cusp conditions for the orbital pair products
with STG (the SP ansatz) has provided a much cheaper
yet efficient alternative to the full optimization of the

weight coefficients for the individual pair function. In
this overview, we have summarized the basic aspects
of these theories in the context of our contribution to
the field.
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J, Pittner J, eds. Recent Progress in Coupled Cluster
Methods. Dordrecht, Heidelberg, London, New York:
Springer; 2010, 535–572.

12. Klopper W, Samson CCM. Explicitly correlated
second-order Møller–Plesset methods with auxiliary
basis sets. J Chem Phys 2002, 116:6397–6410.

13. Valeev EF. Improving on the resolution of the identity
in linear R12 ab initio theories. Chem Phys Lett 2004,
395:190–195.

14. Klopper W, Kutzelnigg W. Møller–Plesset calculations
taking care of the correlation CUSP. Chem Phys Lett
1987, 134:17–22.

15. Klopper W. Orbital-invariant formulation of the
MP2-R12 method. Chem Phys Lett 1991, 186:583–
585.

16. Pan K-C, King HF. Gaussian geminals for electron pair
correlation. J Chem Phys 1970, 53:4397–4399.

17. Werner H-J, Adler TB, Manby FR. General or-
bital invariant MP2-F12 theory. J Chem Phys 2007,
126:164102(18).

18. May AJ, Manby FR. An explicitly correlated second
order Moller–Plesset theory using a frozen Gaussian
geminal. J Chem Phys 2004, 121:4479–4485.

19. Persson BJ, Taylor PR. Accurate quantum–chemical
calculations: the use of Gaussian-type geminal func-
tions in the treatment of electron correlation. J Chem
Phys 1996, 105:5915–5926.

20. May AJ, Valeev E, Polly R, Manby FR. Analysis of
the errors in explicitly correlated electronic structure
theory. Phys Chem Chem Phys 2005, 7:2710–2713.

21. Tew DP, Klopper W. New correlation factors for ex-
plicitly correlated electronic wave functions. J Chem
Phys 2005, 123:074101(13).

22. Valeev EF. Combining explicitly correlated R12 and
Gaussian geminal electronic structure theories. J Chem
Phys 2006, 125:244106(10).

Volume 2, January /February 2012 123c© 2011 John Wi ley & Sons , L td .



Overview wires.wiley.com/wcms

23. Ten-no S. Explicitly correlated second order perturba-
tion theory: introduction of a rational generator and
numerical quadratures. J Chem Phys 2004, 121:117–
129.
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