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Abstract

We propose a simple F12 geminal correction in multi-reference perturbation theory. An explicitly correlated term is introduced in the
external excitations of the first order wave function in an internally contracted manner. By the use of the s- and p-wave cusp conditions,
the F12 correction is expressed as the expectation value of a two-body effective operator, which reduces to the MP2-F12/A*(SP) energy
in the single reference limit. The performance of the F12 multi-reference perturbation method is demonstrated for C, CH2, O2, and SiC3.
! 2007 Elsevier B.V. All rights reserved.

1. Introduction

One of the main obstacles to accurate electronic struc-
ture calculations is the slow convergence of the correlation
energy with respective to the size of one-electronic basis set.
The cusp conditions [1–3] suggest that the first order wave
function in the 1/Z expansion is expressed as a product of
linear r12 and unperturbed wave function at a small inter-
electronic distance,

w ¼ r12

2ðsþ 1ÞUþ Oðr2
12Þ; ð1Þ

where s takes 0 and 1 for singlet and triplet pairs, respec-
tively. The cusp behavior at coalescence is poorly repre-
sented by products of orbitals, while the situation is
ameliorated substantially by introducing terms explicitly
dependent on the inter-electronic distances into the wave
function. Various methods have been proposed in explicitly
correlated electronic structure theory. Above all, the reso-
lution of the identity (RI) approximation for many-elec-
tron integrals [4] introduced by Kutzelnigg and Klopper
in R12 theory has offered practical computational methods
applicable to many-electron systems. The R12 methods

have been implemented at various levels of theories [4–8].
Recently, there have been several developments [9] involv-
ing the use of short-ranged correlation factors like the Sla-
ter-type geminal (STG) f12 = exp(%cr12) [10,11]. The F12
variants with the short-ranged factors turned out to give
very much improved results as compared to the original
R12 methods [12–16]. The objective of this Letter is to
introduce a simple F12 correction in multi-reference per-
turbation theory (MRPT). In the following section, the for-
mulation of the theory is presented. We present numerical
results in Section 3. Conclusions are given in Section 4.

2. F12 correction in MRPT

Let us consider a complete active space self-consistent
field (CASSCF) reference wave function j0æ and its first
order correction j1æ orthogonal to j0æ. The correction
may be divided into the contributions in the internal
(int), semi-internal (sem), and external (ext) subspaces
[17],

j1i ¼ j1intiþ j1semiþ j1exti; ð2Þ

whose convergences with respect to the size of one-particle
basis are rather different. In the atomic case, the partial
wave expansions of the internal and semi-internal contribu-
tions to the correlation energy terminate at Locc. and 3Locc.

for the maximum angular momentum of the occupied
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orbitals Locc., while the external one does not break off.
Thus, we introduce an F12 term in the external contri-
bution,

j1i ¼ j~1iþ Xf j0i; ð3Þ

where j~1i is expanded into a selection of configuration state
functions jKæ spanned by the one-electronic basis set,

j~1i ¼
X

K

jKi~CK ; ð4Þ

the F12 external wave operator is in the general form,

Xf ¼
1

2

X

ab

X

ij

X

pq

cpq
ij habjf12jpqiEaiEbj; ð5Þ

Epq are the unitary group generators, and i, j, . . . denote
the union of the core and valence orbitals to be correlated,
a, b, . . . secondary orbitals in the complete basis, and p,
q, . . . general orbitals in the given basis set. The wave oper-
ator (5) accelerates the convergence in an manner and bears
a close resemblance with the pq-pair function Ansatz of
Dahle et al. [18] in the single reference case, which can be
reduced to various forms of Ansätze by constraints to the
amplitudes fcpq

ij g. In this particular work, we do not opti-
mize the amplitudes but employ the simplest form fulfilling
the s- and p-wave cusp conditions,

cpq
ij ¼

1

4
ð3dipdjq þ diqdjpÞ; ð6Þ

in conjunction with STG,

f12 ¼ %
rc

2
exp % r12

rc

! "
; ð7Þ

where rc is the length-scale parameter. This is equivalent to
the expressions [10,19],

Xf ¼
1

2

X

ab

X

ij

habjG12jijiEaiEbj; ð8Þ

G12 ¼
1

4
f12ð3þ p12Þ; ð9Þ

where p12 is a permutation operator to interchange the spa-
tial coordinates.

Let us choose jKæ to be orthonormal and to diagonalize
the zeroth order Hamiltonian in the given basis set,

hKjH 0jLi ¼ Eð0ÞK dKL: ð10Þ

The minimization of the Hylleraas energy functional,

Eð2Þ ¼ h1jH 0j1iþ 2Reh1jV j0i; ð11Þ
H 0 ¼ H 0 % Eð0Þ; ð12Þ

with respect to f~CKg leads to the second order energy
expression with an F12 correction,

Eð2Þ ¼ Eð2Þconv: þ DEð2ÞF12; ð13Þ

where Eð2Þconv: is the conventional second order energy with-
out the F12 term and

DEð2ÞF12 ¼ %DEð2ÞB þ D2Eð2ÞV ; ð14Þ

DEð2ÞB ¼ hF jH 0jF i%
X

K

hF jH 0jKi
hKjH 0jF i
Eð0ÞK % Eð0Þ

; ð15Þ

DEð2ÞV ¼ h0jV Xf j0i%
X

K

h0jV jKi hKjH 0jF i
Eð0ÞK % Eð0Þ

; ð16Þ

jF i ¼ Xf j0i: ð17Þ

In this work, we employ a couple of approximations. First,
we use the analogy of the extended Brillouin condition
(EBC) that assumes the zeroth order Hamiltonian closed
in jKæ,

hKjH 0jF i
Eð0ÞK % Eð0Þ

ffi
EBC
hKjF i: ð18Þ

Secondly, the remaining products H 0Xf in (15) are approx-
imated by the operator,

!j ¼ 1

2

X

ab

X

ij

habj!j12jijiEaiEbj; ð19Þ

where !j12 is the commutator between the kinetic energy
operators and the generator,

!j12 ¼ %
1

2
½r2

1 þr
2
2; G12(: ð20Þ

Consequently, the F12 correction becomes

DEð2ÞF12 ¼
X

ijkl

Cð0Þijklg
kl
ij ; ð21Þ

where C(0) is the second order reduced density matrix of j0æ,

Cð0Þijkl ¼
1

2
h0jEikEjl % dkjEilj0i; ð22Þ

the effective operator g is given by

gkl
ij ¼ hijjð!j12 þ 2r%1

12 ÞðQ
0
1Q02 % Q1Q2ÞG12jkli; ð23Þ

Q0n and Qn are projection operators,

Q0n ¼
X

a

jaðnÞihaðnÞj; ð24Þ

Qn ¼
X

a

jaðnÞihaðnÞj; ð25Þ

and the summation index a runs over the secondary orbi-
tals in the given basis. In the single reference limit, the pres-
ent E(2) reduces to the MP2-F12/A*(SP) energy [11]. The
contribution with Q01Q02 actually involves three-electron
integrals. They can be estimated directly [20], but yet the
use of the RI approximation [4] or numerical quadratures
[19] is computationally more advantageous.

3. Results and discussion

We present some numerical results of the F12 correc-
tion. Except for the application to SiC3, parent second
order perturbation energies are obtained from the state-
specific second order multi-reference Møller-Plesset
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(MRMP2) method [21,22], which is the special case of the
multi-configurational quasi-degenerate perturbation theory
(MC-QDPT) [23] for multi-roots. In MRMP2 calculations,
we use the canonical orbitals of the spin-averaged Fock
operator based on the full valence CASSCF wave function.
Basis set convergences are examined using aug-cc-pVXZ
[24–26]. Unlike the latest implementation of the single ref-
erence MP2-F12 methods [11], the current MRMP2-F12
method implemented in an old program terminal is capable
of handling up to g-basis functions, and h-functions are not
included in calculations for X = 5. All of the two- and
three-electron integrals are calculated using the numerical
quadrature [19] with the parameters, nR = 48, nh = 12
and n/ = 24, based on the polar coordinate.

3.1. Excitation energy of the carbon atom

The ground (3P) and first excited (1D) states of the car-
bon atom are calculated. Each of the states is optimized
state-specifically in the D2h point group symmetry. Fig. 1
shows the convergence behaviors of the state energies.
We examined two values of the exponent of STG, c = 1.0
and c = 1.5, in the MRMP2-F12 calculations, where the
exponent is related with the length-scale parameter as
c = 1/rc. Nevertheless, the state energies are insensitive to
c except for aug-cc-pVDZ. The basis set dependencies
obtained from the MRMP2-F12 method are much smaller
than those without the F12 correction. Table 1 summarizes
the calculated excitation energies. The MRMP2-F12 exci-
tation energy is likely to be saturated at aug-cc-pVTZ,
while there is room for a further reduction to the limit in
the conventional MRMP2 result even at aug-cc-pV5Z.
The best estimate of the excitation energy from the F12
correction is slightly smaller than the experimental value
1.26 eV, and the most of the deviation is due to the intrinsic
error of the perturbation theory.

3.2. Atomization energy of CH2

The second example is the atomization energy of
CH2(1A1). Henceforth, the exponent of STG is 1.5. The
geometrical parameters RCH = 1.1068 Å and
\HCH = 102.03" optimized at CCSD(T)/cc-pCVQZ [27]
are used. Table 2 lists the calculated atomization energies.
The increment from aug-cc-pVDZ to aug-cc-pVTZ in the
MRMP2-F12 atomization energy is 14 kJ/mol, while most
of the amount is originating from the CASSCF reference
contribution. The difference between aug-cc-pVTZ and
aug-cc-pVQZ in the MRMP2-F12 values diminishes signif-
icantly, while the corresponding value is as large as 8 kJ/
mol without the F12 correction. The best estimate of the
atomization energy from the MRMP2-F12 method with
aug-cc-pVQZ is smaller than the experimental value
757.1 kJ/mol by ca. 30 kJ/mol indicating a large intrinsic
error of the MR-MP2 method.

3.3. Potential energy curve of O2

We calculate the potential energy curve of the ground
state of O2 ð3R%g Þ. Fig. 2 shows the result. The basis set
dependence of the curves in the MRMP2-F12 result is
much smaller than that without the F12 correction. Actu-
ally, most of the differences in the MRMP2-F12 curves
come from the reference energies. It will be shown that
the dynamic correlation energy of the MRMP2-F12
method is insensitive to the basis set. Table 3 lists the cal-
culated equilibrium bond lengths and dissociation energies.
The MRMP2 bond lengths are almost the same as the cor-
responding CASSCF ones, and yet the F12 correction
somewhat improves the accuracy. The dynamic correlation
effects are crucial for the dissociation energy; the CASSCF
energies are less than the experimental value by more than
1 eV. The deviation of the MRMP2 energy with aug-cc-
pVQZ is only 0.014 eV. Nevertheless, the basis set limit
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Fig. 1. Calculated energies of the ground (3P) and excited (1D) states of
the carbon atom.

Table 1
Excitation energy of the C atom (eV)a

aug-cc-pVXZ MRMP2 MRMP2-F12

c = 1.0 c = 1.5

X = D 1.41 1.31 1.29
X = T 1.26 1.21 1.20
X = Q 1.23 1.20 1.20
X = 5b 1.22 1.20 1.20

a The experimental excitation energy is 1.26 eV.
b Without h-functions.

Table 2
Atomization energy of CH2 (kJ/mol)a

aug-cc-pCVXZ CASSCF MRMP2 MRMP2-F12

X = D 639.5 681.1 713.1
X = T 654.9 715.0 727.1
X = Q 656.3 722.6 728.3

a The experimental atomization energy is 757.1 kJ/mol.
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of MRMP2 is likely to be lower by )0.1 eV according to
the result with the F12 correction. We analyze the compo-
nents of the dynamic correlation energies at ROO = 2.35
Bohr in Fig. 3. As we mentioned in the previous section,
the basis set dependence of the semi-internal contribution
is very small. The absolute value of the external energy
from the orbital expansion increases with the size of the
basis set, while the geminal component in the F12 correc-
tion decreases. As a result, the total amount of the external
energy in MRMP2-F12 is conserved perfectly irrespective
of the cardinal number of the basis set.

3.4. Isomers of SiC3

The global minimum of SiC3 has been investigated using
the CCSD(T) [28,29] and MCQDPT [30,31] levels of theo-
ries. These authors have examined a linear isomer in triplet
and two rhomboidal isomers in singlet labeled as 1t, 2s, and
3s, respectively [29]. The previous MC-QDPT study

showed that an erroneous energy ordering is led to by
the use of a small basis set along with spin-averaged orbital
energies [31]. In particular, the latter causes the intruder
state problem for the 1t isomer. To avoid this, we employ
the second order Z-averaged perturbation theory (ZAPT2)
[32] for the high-spin state isomer, and the F12 correction is
obtained based on the restricted open shell Hartree–Fock
(ROHF) wave function. The singlet isomers are calculated
at the corresponding single reference MP2-F12/A*(SP)
method [11]. We use the geometrical parameters optimized
at CCSD(T)/cc-pCVQZ [29]. Fig. 4 shows the basis set
dependence of the energies of the isomers. The profiles of
the F12 methods are much less sensitive to the basis. Table
4 lists the calculated 2s–3s and 2s–1t splittings. The result
of RHF/ROHF indicates the electron correlation is crucial
for quantitative splittings. The 2s–3s splitting is not sensi-
tive to the choice of the basis set, and the results of MP2
and MP2-F12 are similar. Contrarily, the 2s–1t splitting
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Fig. 2. Potential energy curves of O2 from the MRMP2 and MRMP2-F12
methods.

Table 3
Equilibrium bond lengths and dissociation energies of O2

aug-cc-pVXZ re (Å) De (eV)

CASSCF
X = D 1.221 3.951
X = T 1.219 4.093
X = Q 1.216 4.123

MRMP2
X = D 1.226 4.806
X = T 1.219 5.106
X = Q 1.215 5.227

MRMP2-F12
X = D 1.216 5.069
X = T 1.215 5.256
X = Q 1.213 5.301

Experiment 1.207 5.213

DZ TZ QZ

-0.3

-0.2

-0.1

0.0

M
R

M
P

2
re

co
ve

ry
/H

ar
tr

ee

aug-cc-pVXZ

Semi-internal
External (Orbital)
External (Geminal)
External (Total)

Fig. 3. Components of dynamic correlation energy of O2.
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Fig. 4. Calculated energies of the SiC3 isomers.
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from the MP2/ZAPT2 methods increases with the size of
the basis very much. The use of the F12 methods gives
quantitatively correct values entirely in agreement with
CCSD(T) [29] and MCQDPT [31].

4. Conclusions

We have proposed and tested a simple F12 correction
for multi-reference perturbation theory. The F12 terms
are is introduced to the external component in the inter-
nally contracted manner, and the F12 correction is
expressed as the expectation value of the effective two-body
operator g. The F12 correction has been tested on the exci-
tation energy of the carbon atom, the atomization energy
of CH2, the potential energy curve of O2, and the energies
of SiC3 isomers. The convergence behaviors indicate the
particular efficiency of the present F12 correction. It is
expected that the present (internally contracted) Ansatz
to external excitations will likewise work well in other
multi-reference methods.
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