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Explicitly correlated second order perturbation theory: Introduction
of a rational generator and numerical quadratures

Seiichiro Ten-noa)
Graduate School of Information Science, Nagoya University, Chikusa-ku Nagoya 464-8601, Japan

!Received 8 March 2004; accepted 9 April 2004"

A rational generator, which fulfills the cusp conditions for singlet and triplet electron pairs, is
proposed and applied to explicitly correlated second order Møller–Plesset perturbation theory
calculations. It is shown that the generator in conjunction with frozen geminals improves the
convergence of correlation energy without introducing any variational parameters in explicitly
correlated functions. A new scheme for three-electron integrals based on numerical quadratures is
also illustrated. The method is tested for the convergence of reaction enthalpies with various basis
sets. © 2004 American Institute of Physics. #DOI: 10.1063/1.1757439$

I. INTRODUCTION

A fairly large basis set is required for a reliable result in
molecular orbital calculations due to the correlation cusp by
the Coulomb potential with singularity at electron coales-
cence. The cusp condition,1 the exact wave functions obey,
suggests that the Coulomb hole behaves linearly to the inter-
electronic distance at small r12 . And thus it is the main ob-
stacle to accurate calculations that a configuration interaction
!CI" expansion converges very slowly as (L!1)"3 with the
maximum angular momentum of one-electronic basis L.2,3
As exhibited a long time ago for the He ground state wave
function,4 the inclusion of r12 terms accelerates the conver-
gence of the partial wave expansion substantially to (L
!1)"7.5 It has, however, turned out that the generalization
to many-electronic systems is not so straightforward because
of the complex couplings of explicitly correlated functions
like r12 and electronic interactions r12

"1. Thus it has been one
of the central issues in quantum chemistry and physics to
establish useful expansions of many-electron wave functions
involving interelectronic distances explicitly.

The quantum Monte Carlo !QMC" techniques have ad-
vantages in the ease of implementation as such couplings are
estimated numerically. The variational Monte Carlo method
usually employs a Jastrow correlation factor in a simple form
like a product of two-body functions of electron–nucleus and
electron–electron distances, though the importance of the
three-body contribution that correlates two electrons and a
nucleus has been shown for improved results.6 Despite the
simple form of a trial function, QMC suffers from spin
contamination.7 The reason for this is the spin dependency in
the correlation factor. Antisymmetric electronic pair func-
tions !triplet pairs" should follow the so-called p-wave cusp
condition,3,8 which is different from the s-wave cusp condi-
tion for singlet pairs. For a factor defined as a function of
spatial-spin coordinates, the inseparability of the correlations
for spin antiparallel singlet and triplet pairs averages the de-
scriptions to cause spin contamination as displacements from

those of the corresponding spin-parallel triplet pairs. The
subsequent discussion in this paper explains this situation in
more detail.

Explicitly correlated Gaussian functions have been em-
ployed successfully for benchmark calculations,9,10 ever
since the functions were introduced in quantum chemistry by
Boys and Singer.11 The application is, however, limited to
very small molecules due to the prohibitively increasing
number of N-body integrals, which themselves can be esti-
mated relatively easily in closed form algebraic expressions.
The transcorrelated method12,13 avoids such a difficulty by
the use of a similarity transformed effective Hamiltonian.
The transcorrelated Hamiltonian terminates at the three-
electron interaction owing to the commutability between the
correlation factor and potentials. There has been a recent
resurgence in the development of the method with auxiliary
CI-type expansions.14,15 Spin-free correlation factors for the
s-wave cusp condition are utilized around electron coales-
cences to offer improved convergences at the second order
perturbation theory16 and coupled-electron pair approxi-
mation.17 Relevant progress has also been reported in density
functional theory18 and QMC.19 The main drawbacks of the
transcorrelated methods are that the obtained energy is not
necessarily an upper bound of the true energy and that the
cusp conditions cannot be fulfilled completely as in QMC.

Another class of theories utilizes two-electron functions
!geminals" with strong orthogonality projection operators. In
early applications of such methods, Gaussian-type geminals
were employed in many-body perturbation theory.20,21 Fur-
ther developments involving a simplification of the second
order energy functional to bypass the requirement of four-
electron integrals were given by Szalewicz and co-workers.22
The studies since have highlighted the treatment of three-
electron integrals to transcend the restriction to small mol-
ecules. The main breakthrough is the resolution of the iden-
tity !RI" introduced by Kutzelnigg and Klopper,23 which
expands a many-electron integral into a sum of products of
two-electron integrals. The R12 coupled-cluster method was
also developed based on the RI approximation.24,25 Althougha"Electronic mail: tenno@info.human.nagoya-u.ac.jp
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it turned out that a very large basis set must be employed to
ensure the accuracy of the RI approximation, the use of aux-
iliary functions makes calculations with standard orbital ba-
sis sets possible.26 A comprehensive overview of the meth-
ods is given in Ref. 27. More recently, Manby utilized the
density fitting !DF" technique28–31 to enhance the MP2-R12
method with a fractional computational cost.32 It is also
shown that DF improves the convergence of the RI
approximation.33

The principal objective of this paper is to offer a genera-
tor form, which is capable of fulfilling both of the s-wave
and p-wave cusp conditions. It is shown that the explicitly
correlated second order perturbation theory with frozen
geminals is conveniently derived based on the generator. We
also demonstrate that numerical quadratures are effective in
the implementation of the method containing multielectron
integrals. In what follows, we present necessary formulas.
Numerical results involving reaction enthalpies are presented
in Sec. III.

II. THEORY
A. Rational generator

The product of a correlation factor, exp(G), and an anti-
symmetric wave function, %,

&#exp!G "% , !1"

has been employed as trial functions in many places for elec-
tron correlation problems in molecules, clusters, and solids.
The so-called Jastrow–Slater wave function consisting of a
Jastrow factor and a single Slater determinant is quite popu-
lar in QMC calculations. The generator, G, is typically a sum
of two-electron functions

G#
1
2'i j

(

g!xi ,xj", !2"

where the summation indices are exclusive to each other. The
two-electron function is usually of spatial-spin coordinates,
xi#(xi ,) i), and is symmetric, g(xi ,xj)#g(xj ,xi). The
choice of the spherically symmetric form, g(xi ,xj)
#g(!xi j!), simplifies the implementation though the inclu-
sion of electron–nucleus distances improves the result
significantly.6 Additionally, the choice of % as a linear com-
bination of Slater determinants turned out to be useful for a
system with near degeneracy.34

The exact asymptotic behavior of the geminal is given
by the cusp condition of Kato1 and its generalization of Pack
and Byers-Brown without angular-averaging the relative
coordinate.8 The results are known to be the s- and p-wave
cusp conditions3

g!x1 ,x2"#
r12

2!s!1 " !O!r12
2 ", !3"

where the quantum number of the relative coordinate takes
the values s#0 for singlet and s#1 for singlet triplet pairs,
respectively. Apparently, the traditional form in Eq. !2" does
not suffice the above conditions since the spin antiparallel
singlet and triplet pairs

% i j
!0,0"!x1 ,x2"#

1
!2

*i j+!0 "!r1 ,r2"#,!)1"-!)2"

"-!)1",!)2"$ , !4"

% i j
!1,0"!x1 ,x2"#

1
!2

*i j+!1 "!r1 ,r2"#,!)1"-!)2"

!-!)1",!)2"$ , !5"

are not distinguished by the generator, where *i j+(s)(r1 ,r2)
denotes symmetric and antisymmetric spin-less pair func-
tions

*i j+!0 "!r1 ,r2"#. i j/ i!r1"/ j!r2"!
1
!2

!1". i j"

$#/ i!r1"/ j!r2"!/ j!r1"/ i!r2"$ , !6"

*i j+!1 "!r1 ,r2"#
1
!2

#/ i!r1"/ j!r2""/ j!r1"/ i!r2"$ . !7"

The appropriate cusp conditions can be imposed only to the
spin parallel triplet pairs

% i j
!1,1"!x1 ,x2"#*i j+!1 "!r1 ,r2",!)1",!)2", !8"

% i j
!1,"1 "!x1 ,x2"#*i j+!1 "!r1 ,r2"-!)1"-!)2". !9"

Consequently, the resulting wave function is spin contami-
nated even if % is an eigenfunction of Ŝ2.

The key for amelioration is to make use of the parity in
the spatial coordinates since the difference in correlations is
not originating from the spin function but from the symmetry
in the spatial part. To this end, we introduce the permutation
operator, p12 , which interchanges the labeled spatial coordi-
nates

p12/!r1"#/!r2"p12 . !10"

The operator gives unity if there is no function concerning
the labeled spatial coordinates either on the left or right of
the operator

p12c#c . !11"

The new generator is spin free and is expressed as a sum of
direct and exchange functions

Ḡ#
1
2'i j

(

Ḡi j , !12"

Ḡi j#g !d "!ri ,rj"!g !x "!ri ,rj"pi j . !13"

This explicitly separates the weights for the singlet and trip-
let pairs as

Ḡ12%12
!0,0"!x1 ,x2"##g !d "!r1 ,r2"!g !x "!r1 ,r2"$

$%12
!0,0"!x1 ,x2", !14"

Ḡ12%12
!1,m "!x1 ,x2"##g !d "!r1 ,r2""g !x "!r1 ,r2"$

$%12
!1,m "!x1 ,x2". !15"

The cusp conditions give the asymptotic behaviors
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g12
!d "#g !d "!r1 ,r2"# 3

8r12!O!r12
2 ", !16"

g12
!x "#g !x "!r1 ,r2"# 1

8r12!O!r12
2 ". !17"

The transcorrelated Hamiltonian simplifies the application of
correlation factors as it terminates at three-body interactions,
irrespective of the treatment of the Hamiltonian. Although
the new generator, Ḡ , is also commutable with potentials,
nonterminating series appear in commutators with kinetic en-
ergy operators due to the inclusion of permutation operators.
Further inspections are necessary in the exponentiation of the
generator if it is used as in the transcorrelated method and
QMC. In this work, we combine the generator with the
strong orthgonality projector for many-body perturbation
theory in the following section.

B. Second order perturbation theory

We derive the second order perturbation theory based on
the rational generator. The derivation is closely parallel to the
R12-MP2 method beyond RI.26,35 For a while, the standard
notations, i , j , . . . , a ,b , . . . , and p ,q , . . . are employed for oc-
cupied, virtual, and general spin orbitals with respect to a
single-reference vacuum, respectively. Additionally the vir-
tual orbitals in the complete basis set are denoted by the
Greek letters, ,, -,.... The corresponding projectors for the
occupied, given virtual and complete virtual orbitals are de-
fined as

Pn#'
i

!0 i!n "120 i!n "!, !18"

Qn#'
a

!0a!n "120a!n "!, !19"

Qn*#1"Pn#'
,

!0,!n "120,!n "!. !20"

We write the first order wave operator as

3!1 "#3O
!1 "!3G

!1 " , !21"

where 3O
(1) is the orbital-based excitation operator,

3O
!1 "#

1
4 'abi j c i j

abaa
!ab

!a jai , !22"

ci j
ab#c ji

ba#"c ji
ab#"ci j

ba , !23"

and 3G
(1) is the strong orthogonality excitation block of the

rational generator with respect to the vacuum

3G
!1 "#

1
2 ',-i j 2,-!Ḡ12!i j1a,

!a-
!a jai . !24"

We have not antisymmetrized the elements of 3G
(1) for later

convenience. Assuming that the reference function, & (0), is
the exact Hartree–Fock !HF" solution, we obtain the second
order Hylleraas energy functional of the wave operator

EV
!2 "#2&!1 "!H0"E !0 "!&!1 "1!22&!1 "!V!&!0 "1

#'
i% j

"4 i j!'
a%b

#2ci j
ab5ab ,i j"!ci j

ab"2

$!6 i!6 j"6a"6b"$# , !25"

4 i j#2# i j $!!"7̄12!2r12
"1"Q1*Q2*Ḡ12!# i j $1, !26"

5ab ,i j#2#ab$!7̄12!r12
"1!# i j $1, !27"

where the square bracket denotes antisymmetric spin pair
functions

#pq$#
1
!2

#0p!x1"0q!x2""0q!x1"0p!x2"$ , !28"

and 7̄12 is the antisymmetric commutator between the gen-
erator and Fock operator

7̄12#"7̄12
! ##F1!F2 ,Ḡ12$ . !29"

Variations with respect to *ci j
ab+ give the second order energy

expression, which is a sum of the usual Møller–Plesser per-
turbation theory !MP2" energy and the corrections of the
explicitly correlated functions

EV
!2 "#'

i% j
$ 4 i j!'

a%b

5 i j ,ab
2

6 i!6 j"6a"6b
%

#E !2 ""8EN
!2 "!28EZ

!2 " , !30"

E !2 "#'
i% j
'
a%b

2#ab$!r12
"1!# i j $12

6 i!6 j"6a"6b
, !31"

8EN
!2 "#'

i% j
$ 2# i j $!7̄12Q1*Q2*Ḡ12!# i j $1

!'
a%b

2# i j $!7̄12!#ab$12#ab$!7̄12!# i j $1
6 i!6 j"6a"6b

% , !32"

8EZ
!2 "#'

i% j
$ 2# i j $!r12"1Q1*Q2*Ḡ12!# i j $1

!'
a%b

2# i j $!r12
"1!#ab$12#ab$!7̄12!# i j $1
6 i!6 j"6a"6b

% . !33"

The first term of 8EN
(2) involves four-electron integrals be-

cause of the exchange term in the Fock operator. As there
exist several variants conceivable for the treatment of these
integrals, we use the following approximations to close the
scheme through three-electron integrals in this particular
work.

First, we neglect the effect of the off-diagonal block be-
tween the complementary and given virtual orbital spaces in
the Fock operator, Q1F1(Q1*"Q1)#0, to yield the simplifi-
cations

8EN
!2 "&8EN!

!2 "#'
i% j

2# i j $!7̄12!Q1*Q2*"Q1Q2"

$Ḡ12!# i j $1, !34"
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8EZ
!2 "&8EZ!

!2 "#'
i% j

2# i j $!r12
"1!Q1*Q2*"Q1Q2"Ḡ12!# i j $1.

!35"
This is called the extended Brillouin condition,23,26 the
method of which is distinguished by an asterisk in R12-MP2
theory. The reported results are very similar to those without
the approximation.35 For the exact generator, !with respect to
the block-diagonal Fock operator", the first order equation
holds in the complementary virtual space

!Q1*Q2*"Q1Q2"! 7̄12!r12
"1"!# i j $1#0, !36"

to equalize the energy corrections, 8EN!
(2) and 8EZ!

(2) ,
!virial-type theorem".36 Second, the exchange operator is ne-
glected to leave only the dominant kinetic energy part in the
Fock operator as in the R12-MP2/A method

7̄12&" 1
2#91

2!92
2,Ḡ12$ . !37"

The resulting method features the independency of the
Hamiltonian partitioning, which becomes less important as
the order of perturbation increases.

C. Frozen Gaussian geminals

The short-range asymptotic behaviors of the generator,
Ḡ , are given by Eqs. !16" and !17", while the geminals must
be damped at a long distance because of the localized nature
of fluctuation potentials.37 To see this more closely, let us
consider the He dimer with minimal basis. In this case, the
extended Brillouin condition holds explicitly and the correc-
tion, 8EZ

(2) , to the reaction energy in the limit, r12→: , is

8EZ
!2 ";4'

pApB
2sAsB!r12

"1!pApB12pApB!g12
!d "!sAsB1 , !38"

where s< and p< denote the localized occupied s and com-
plete virtual p orbitals with an arbitrary spin index in the
fragments <#A ,B . It is found that the natural choice of g12

(d)

at large inter-electronic distances is r12
"1 rather than linear r12

for the van der Waals decay, 8EZ
(2);r12

"6. A binomial Taylor
expansion shows that 2pApB!r12

"1!sAsB1 goes as r12
"3 and is a

function of local transition dipoles !and thus the coefficients
are not universal but dependent on pairs". Substitution of r12

"1

into 8EN
(2) certainly brings the same asymptotic behavior.

For explicitly correlated functions decaying slower than r12 ,
the long-range behavior must be discarded in some way as
the unitary invariant formulation developed by Klopper.38
Fortunately, the convergence of the dispersion-type correla-
tion is much faster than that for Coulomb holes as the virtual
orbitals saturate at Locc!1. Thus the decay of the explicitly
correlated function may be faster than r12

"1 if a sufficient
number of polarization functions are available. Additionally,
the damping rate should be smooth and non-negative such
that the commutator, #91

2!92
2,Ḡ12$ , is monotonic in the lo-

cal energy fluctuation.
So far, we have not found a compact and useful function

sufficing the above conditions. It is, however, shown that an
appropriate range of r12 can be fitted accurately with a mod-
est number of Gaussian-type geminals.39 In connection with
this, we have used frozen Gaussian-type geminals14

f 12#'
G

NG

cG exp!"=Gr12
2 ", !39"

which satisfy the s-wave cusp condition approximately

f 12& 1
2r12!O!r12

2 ". !40"

The elements of the generator are then identified uniquely as

g12
!d "# 3

4 f 12 , !41"

g12
!x "# 1

4 f 12 . !42"

In this work, we use the geminal in Ref. 33 without scaling.
The exponents are determined by the formula

=G#=1 exp' !G"1 "
ln!=1 /=NG"

NG"1 ( , !43"

with the number of primitive geminals, NG#10, and the
range of exponents between =1#106 and =10#0.5. The co-
efficients are optimized such that a short-range Coulomb po-
tential with a weight Gaussian is suppressed in the similarity
transformed Hamiltonian.14 The resulting parameters are
given in Table I.

The generator joined with frozen geminals is particularly
useful in spin-free formulation. For instance, redefining the
orbital indices for spatial ones, the explicitly correlated wave
operator is expressed by

3G
!1 "#

1
2 ',-i j 2,-!Ḡ12!i j1E,iE- j , !44"

2,-!Ḡ12!i j1# 3
42,-! f 12!i j1! 1

42,-! f 12! j i1, !45"

where E,i denotes the unitary group generator. Taking suit-
able linear combinations of pair functions, we naturally ob-
tain the second order corrections for a closed shell system

8EN!
!2 "# '

s#0,1
!2s!1 "!1" 1

2s "2'
i> j

2*i j+!s "!K12
!L "!Q1*Q2*

"Q1Q2" f 12!*i j+!s "1, !46"

TABLE I. Gaussian exponents and coefficients of f 12 used in the present
work.

G =G cG

1 1000 000.0 "0.000 291 3933
2 199 473.656 25 "0.000 479 7250
3 39 789.742 1875 "0.001 148 0275
4 7 937.005 371 0938 "0.002 555 5096
5 1 583.223 510 7422 "0.005 645 8912
6 315.811 370 8496 "0.013 165 7524
7 62.996 051 7883 "0.027 383 9738
8 12.566 053 3905 "0.082 353 2790
9 2.506 596 5652 "0.136 069 3276
10 0.5 "0.058 926 3588
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8EZ!
!2 "# '

s#0,1
!2s!1 "!1" 1

2s "'
i% j

2*i j+!s "!r12
"1!Q1*Q2*

"Q1Q2" f 12!*i j+!s "1, !47"

K12
!L "#" 1

2#91
2!92

2, f 12$#"!91
2 f 12""!91 f 12"

•!91"92". !48"

This is equivalent to the expression used in the previous
work33 and can be regarded as the generalization of the ap-
plication of fitted r12 with s-wave cusp condition to the
ground state wave function of the He atom.39 The importance
of the rational generator is, however, in the case that singlet
and triplet pairs cannot be extracted so easily for more com-
plicated reference wave functions. The strong orthogonality
projector with respect to, for instance, the complete active
space40 enables us to impose the appropriate cusp conditions
in multireference methods automatically. Such an application
will be presented elsewhere.

The expansion of the strong orthogonality projector

Q1*Q2*#1"P1"P2!P1P2 !49"

gives explicit forms of the corrections. It is noted that only
the connected term of f 12 and K12

(L) survives in the expecta-
tion value of their product and the connectivity is attained
just via the differential operators in the complete basis set
limit

'
i> j

2*i j+!s "!K12
!L " f 12!*i j+!s "1#'

i> j
2*i j+!s "!K12

!Q "!*i j+!s "1,

!50"

K12
!Q "? 1

2#K12
!L " , f 12$#"!91 f 12"•!91 f 12". !51"

In addition to the two-electron integrals for the operators,
f 12 , K12

(L) , r12
"1, K12

(Q) , and Z12? f 12r12
"1, the energy correc-

tions include the three-electron integrals in the general form

2i j !O12P2 f 12!kl1#'
m

2i jm!O12f 13!kml1 , !52"

where O12 takes K12
(L) or r12

"1. The two-electron integrals ex-
cept for the operator, Z12 , are coincident with those in the
transcorrelated method, which involves only commutators of
the kinetic energy operator and f 12 . Additionally, the inte-
grals for f 12

2 should be calculated if the exchange operator is
treated in 7̄12 .

D. Numerical quadratures

The order of required integrals can be reduced by the use
of numerical quadratures. For instance, electron repulsion in-
tegrals are represented as sums of two- and three-center ob-
jects over grid points

!pq!rs "#2pr!r12
"1!qs1#'

g
/̄p!rg"/q!rg"2r!r1g

"1!s1,

!53"

where /̄p(rg) denotes weighted orbitals of the quadrature

/̄p!rg"#w!rg"/p!rg", !54"

and 2r!r1g
"1!s1 denotes electric field integrals

2p!r1g
"1!q1#) dr1/p!r1"/q!r1"!r1"rg!"1. !55"

The scaling of the first integral transformation in an MP2
calculation is reduced to N2OG from N4O for the numbers
of occupied and general functions, O and N, respectively, and
that of grid points, G. This reduction is advantageous if G
&N2. Moreover the disk storage requirement can be avoided
by the accumulation of the transformed integrals on the fly. If
the weighted orbitals are replaced by a least square fitting
operator, Eq. !53" reduces to the expression used in the pseu-
dospectral method.41 The pseudospectral method, however,
assumes the completeness of one electronic basis and the
convergence is poor for a system with large energy fluctua-
tions in the physical space, e.g., a correlated calculation with
a small basis set. Efficient numerical integration schemes
have been developed in density functional theory. For a rea-
sonable accuracy !in the order of <Eh), the required number
of grid points ranges from 1000 to 30 000 per atom, which is
10–100 times as large as those employed in the pseudospec-
tral method. This is the price we have to pay in the present
implementation. In addition to the expression of two-electron
integrals without differential operators as in Eq. !53", those
for K12

(L) can be expressed by

2pq!K12
!L "!rs1#'

g
/̄p!rg"#/r!rg"2q!A1g!s1

!gr!rg"•2q!B1g!s1$ , !56"

A1g#"!91
2 f 1g""!91 f 1g"•91 , !57"

B1g#"!91 f 1g", !58"

gp!rg"##9/p!rg"$ . !59"

The numerical grid should integrate the spherical harmonics
for all l@L accurately with the maximum angular momen-
tum of the integrand L. The octahedral grids of Lebedev,
whose numbers, (L!1)2/3, are near minimum, are efficient
especially for nonlinear molecules. More flexible but less
efficient grids are constructed by using the polar coordinate,
0@5@4 and 0@/@24. The number of grid points led to is
(L!1)2/2, i.e., (L!1)/2 for 5 and L!1 for /. In the ex-
plicitly correlated MP2 method, the two-electron integrals
involve at least two occupied orbitals. Thus the grid in the
expressions of two-electron integrals should exactly integrate
the spherical harmonics at least up to L#2(Locc!Lbas) for
the maximum angular momentum quantum numbers of the
occupied shells and given basis set, Locc and Lbas , respec-
tively. For molecules, the use of fuzzy Voronoi polyhedra42 is
crucial for accurate numerical integration. In this case, the
required number of grid points increases for the divided am-
plitudes of different atoms. Later refinements to gridding are
given in the literature.43–46

The main advantage of numerical integrations in the ex-
plicitly correlated method is that the three-electron integrals
can be calculated accurately as

121J. Chem. Phys., Vol. 121, No. 1, 1 July 2004 Explicitly correlated perturbation theory

Downloaded 15 Jan 2013 to 150.203.35.130. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



2i j !r12
"1P2 f 12!kl1#'

g
'
m

/̄ i!rg"/k!rg"2 j !r1g
"1!m1

$2m! f 1g!l1, !60"

2i j !K12
!L "P2 f 12!kl1#'

g
'
m

/̄ i!rg"#/k!rg"2 j !A1g!m1

!gi!rg"•2 j !B1g!m1$2m! f 1g!l1 . !61"

In this case, the grids should integrate the spherical harmon-
ics accurately for l#6Locc that is usually smaller than the
requirement in two-electron integrals, 2(Locc!Lbas), for a
molecule without a heavy atomic element. If the outermost
occupied shell is filled completely, just the spherical average
over m survives to reduce the requirement to l#4Locc . The
orbital indices in an integral are coincident in the MP2
method. Hence the accumulation involving the three-electron
integrals in Eqs. !60" and !61" scales as O3G , which is
cheaper than the integral transformation of the three-center
objects. In the first method of the present MP2 with explic-
itly correlated geminal !MP2 geminal", only three-electron
integrals are treated numerically !QD1". Alternatively, all of
the two- and three-electron integrals can be calculated by the
numerical quadratures !QD2". The formulas for the required
three-center integrals are given in Appendix B. The progress
in this work is that the integrals for the spherically symmet-
ric operators, "(91

2 f 1g) and "(91 f 1g)•(91 f 1g), are calcu-
lated as efficiently as the usual two-electron operators like
r1g

"1 without increments of additional angular momentum in-
dices for the differentiations.

III. RESULTS AND DISCUSSION
A. Convergence of numerical integrations

We preliminarily check the convergence of numerical
integrations for the diatomic HF molecule using the product
grid along with the augmented correlation-consistent aug-cc-
pCVTZ basis set.47–49 The bond distance is taken from the
optimized result at the all-electron correlated coupled-cluster
single double !triple" !CCSD!T""/cc-pCVQZ level.50 The
maximum angular momentum indices, Locc#1 and Lbas#3,
lead to the minimum number of grid points, n/#9, for a
saturated result in the / coordinate. In the C2v alignment, the
number increases to n/#12 as the minimum multiple of 4.
Thus the accuracy of numerical integration is a function of
the numbers of the radial and 5 angular grids, nR and n5 .
The grid with nR#144 and n5#36 gives very accurate re-
sults, which are taken as reference values. Table II shows the
calculated MP2 energies to eight decimal places in the Har-
tree atomic unit. With the reference grid, there is no devia-
tion both in the MP2 and MP2-geminal energies between the
numerical and analytical treatments of two-electron integrals.
As the convergence of three-electron integrals is faster than
that of two-electron integrals under the present condition, the
reference MP2-geminal energies are considered to be exact
within the given decimal places.

In addition to QD1 and QD2, we show the results of RI23
and DF in conjunction with RI.33 Both of the methods in-
volve no approximations except for three-electron integrals.
In the result with uncontracted basis, the absolute displace-
ments from the reference MP2-geminal energy are 1.58mEh
and 0.17mEh for RI and DF, respectively. Thus the decom-
position of DF is by 1 order of magnitude more accurate than

TABLE II. Errors of MP2 and MP2-geminal energies for the HF molecule with different grids.

cc-pCVTZ (NR ,N5)

MP2 MP2-geminal

DFNumerical Analytical QD1 QD2 RI

Uncontracted Referencea "0.343 652 59 "0.343 652 59 "0.381 875 69 "0.381 875 69 "0.383 458 20 "0.381 708 37
!96,24" 0.000 000 00 !0.000 000 00" 0.000 000 00 0.000 000 00 !"0.001 582 51" !0.000 167 32"
!48,24" "0.000 000 05 ¯ 0.000 000 23 "0.000 000 10 ¯ ¯
!36,24" "0.000 001 67 ¯ 0.000 012 90 "0.000 004 27 ¯ ¯
!96,12" 0.000 001 67 ¯ "0.000 005 35 "0.000 001 91 ¯ ¯
!48,12" 0.000 001 60 ¯ "0.000 005 11 "0.000 001 99 ¯ ¯
!36,12" 0.000 000 38 ¯ 0.000 006 03 "0.000 005 14 ¯ ¯
!96,9" "0.000 030 78 ¯ 0.000 084 35 "0.000 159 86 ¯ ¯
!48,9" "0.000 030 80 ¯ 0.000 084 23 "0.000 159 67 ¯ ¯
!36,9" "0.000 034 37 ¯ 0.000 106 41 "0.000 171 07 ¯ ¯

Contracted Referencea "0.339 829 80 "0.339 829 80 "0.381 266 31 "0.381 266 31 "0.386 113 27 "0.364 552 38
!96,24" 0.000 000 00 !0.000 000 00" 0.000 000 00 0.000 000 00 !"0.004 846 96" !0.016 713 93"
!48,24" "0.000 000 02 ¯ 0.000 000 15 "0.000 000 07 ¯ ¯
!36,24" "0.000 001 72 ¯ 0.000 012 81 "0.000 003 81 ¯ ¯
!96,12" 0.000 001 40 ¯ "0.000 005 46 "0.000 001 74 ¯ ¯
!48,12" 0.000 001 37 ¯ "0.000 005 30 "0.000 001 81 ¯ ¯
!36,12" "0.000 000 06 ¯ 0.000 005 83 "0.000 004 44 ¯ ¯
!96,9" "0.000 027 00 ¯ 0.000 084 10 "0.000 161 85 ¯ ¯
!48,9" "0.000 026 98 ¯ 0.000 083 97 "0.000 161 70 ¯ ¯
!36,9" "0.000 030 36 ¯ 0.000 105 48 "0.000 171 97 ¯ ¯

aReference MP2 energies. Numerical MP2 and MP2-geminal of QD1 and QD2 uses the grid with NR#144 and N5#36. The numbers in parentheses are the
deviations from the reference energies of numerical integrations.
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RI in accordance with the previous work.33 Contrarily, the
error in DF with the contracted basis, 16.71mEh , is more
than three times larger than that of RI, 4.85mEh . This is
because the DF includes duplicated approximations for the
product of orbitals and the completeness insertion. Although
the convergence of each approximation in DF is better than
that of the conventional RI, i.e., 2Locc and 3Locc ,33 respec-
tively, the net error of DF amounts to the one larger than RI
with the less flexible basis set. In either case, the contracted
basis set is not suitable for a precise estimate of three-
electron integrals. The accuracy of the numerical integration
is mostly dominated by n5 rather than nR . As far as the
series, nR#48 and 96 are concerned, the results of grids with
n5#24, 12, and 9 are accurate at least to 1<Eh , 10<Eh ,
and 200<Eh , respectively. These accuracies are acceptable
for many applications in chemistry.

B. Selection of small molecules

A benchmark study on the molecules, CH2(1A1), H2O,
NH3 , HF, N2 , CO, Ne, and F2 was carried out with the
auxiliary-function based MP2-R12 methods.26 The present
MP2-geminal method is applied to the same systems for
comparison with the R12 results. We present only all-
electron correlated results with cc-pCVXZ !X#D,T,Q,5" and
their augmented variants, aug-cc-pCVXZ !X#D,T,Q,5". The
current program handles up to g-basis functions and h func-

tions are not included in calculations for X#5. The QD2
method of the medium grid with the parameters, nR#48,
n5#12, and n/#24, is employed throughout the calcula-
tions. The errors of the numerical integrations are expected
to be less than 0.1mEh for the systems treated in this paper.
All geometrical parameters are taken from Ref. 50.

The results of MP2, MP2-R12/A!,26 and MP2-geminal
for the series of cc-pCVXZ and aug-cc-pCVXZ are given in
Tables III and IV. MP2-R12/A! and MP2-geminal neglect
the exchange operator in commutators, though the present
method further assumes the extended Brillouin condition. In
addition to the difference in the forms of explicitly correlated
functions, i.e., linear r12 and linear combination of Gaussian-
type geminals, MP2-R12/A! optimizes the linear coefficients
based on the unitary invariant formulation.38 The results of
the explicitly correlated methods show markedly better con-
vergence over the conventional MP2. The MP2-geminal with
aug-cc-pCVTZ recovers more than 99% of the MP2 energy
in the complete basis set limit.26,51 It is noted that k functions
or even higher angular momentum components are necessary
in the standard orbital expansion to attain an equivalent
accuracy.52 In the MP2-R12/A! result of Ne with cc-pCVDZ,
the Jacobian in the unitary invariant formulation involves the
negative eigen values with the small basis set, and thus the
Hylleraas energy functional is not optimized appropriately.53
Thus a direct comparison between MP2-R12/A! and MP2-

TABLE III. Convergence of the MP2 energy for the first selection with cc-pCVXZ sets (mEh).

Method System X#D !%" X#T !%" X#Q !%" X#5 !%" Limitb

MP2a CH2(1A1) "146.21 !69.66" "186.40 !88.81" "199.91 !95.24" "204.04 !97.21" "209.9
H2O "241.35 !66.65" "317.51 !87.69" "342.64 !94.63" "350.59 !96.82" "362.1
NH3 "192.81 !59.71" "287.16 !88.93" "307.68 !95.29" "314.34 !97.35" "322.9
HF "242.81 !63.13" "332.03 !86.33" "361.32 !93.95" "370.10 !96.23" "384.6
N2 "382.83 !71.30" "477.87 !89.00" "510.79 !95.14" "520.07 !96.87" "536.9
CO "362.99 !69.84" "459.46 !88.41" "493.03 !94.87" "502.49 !96.69" "519.7
Ne "228.30 !58.83" "329.10 !84.80" "361.51 !93.15" "370.93 !95.58" "388.1
F2 "476.06 !64.28" "642.57 !86.76" "696.69 !94.07" "712.28 !96.18" "740.6

Ave. % ¯ 65.4 ¯ 87.6 ¯ 94.5 ¯ 96.6 ¯
MP2-geminala CH2(1A1) "196.76 !93.74" "206.38 !98.33" "208.75 !99.45" "209.42 !99.77" "209.9

H2O "337.57 !93.33" "354.93 !98.02" "359.61 !99.31" "361.23 !99.76" "362.1
NH3 "304.89 !94.42" "317.39 !98.29" "321.02 !99.41" "322.49 !99.87" "322.9
HF "357.89 !93.06" "376.24 !97.83" "381.74 !99.26" "383.61 !99.74" "384.6
N2 "509.30 !94.86" "528.94 !98.52" "534.33 !99.52" "536.00 !99.83" "536.9
CO "492.35 !94.74" "512.11 !98.54" "517.37 !99.75" "518.94 !99.85" "519.7
Ne "361.18 !93.06" "379.25 !97.72" "385.00 !99.20" "387.01 !99.72" "388.1
F2 "692.36 !93.49" "725.96 !98.02" "735.84 !99.36" "739.07 !99.79" "740.6

Ave. % ¯ 93.8 ¯ 98.2 ¯ 99.4 ¯ 99.8 ¯
R12-MP2/A!c CH2(1A1) "198.69 !94.66" "205.50 !97.90" "208.96 !99.55" "209.31 !99.72" "209.9

H2O "337.74 !93.27" "353.83 !97.72" "358.49 !99.00" "360.53 !99.57" "362.1
NH3 "303.28 !93.92" "316.43 !98.00" "320.32 !99.20" "321.93 !99.70" "322.9
HF "358.77 !93.28" "374.27 !97.31" "379.35 !98.63" "381.65 !99.23" "384.6
N2 "509.90 !94.97" "527.57 !98.26" "533.64 !99.39" "536.06 !99.84" "536.9
CO "491.97 !94.66" "510.78 !98.28" "517.03 !99.49" "519.04 !99.87" "519.7
Ne "233.73d !60.22" "368.48 !94.94" "381.17 !98.21" "386.37 !99.55" "388.1
F2 "692.40 !93.49" "722.36 !97.54" "731.48 !98.77" "736.90 !99.50" "740.6

Ave. % ¯ 94.0 ¯ 97.4 ¯ 99.0 ¯ 99.6 ¯
aMP2 and MP2-geminal results using numerical quadratures. h functions are not included for X#5.
bReferences 26 and 50.
cReference 26.
dThe value is excluded in Ave. %. See the text.
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geminal is not fair with such a small basis set, and the Ne
result is excluded for the average percentages in Table III.
With this exception, the convergences of the two explicitly
correlated methods are very similar to each other. It is em-
phasized that MP2-geminal fully replies on the cusp condi-
tions and has no variational parameter to minimize the Hyl-
leraas energy functional in the explicitly correlated part.

C. Reaction enthalpies

It is of interest to see how MP2-geminal improves en-
ergy differences. Comprehensive studies for atomization en-
ergies and reaction enthalpies through CCSD!T" with various
basis sets have been reported.54,55 Here we examine the MP2
components of the reaction enthalpies. To complete the reac-
tions, additional calculations are performed for H2 , CH4 ,
C2H4 , HNC, HCN, N2H2 , CH2O, HNO, H2O2 , HOF, CO2
and O3 using the same scheme and the basis sets through
cc-pCVQZ. The geometrical parameters optimized at
CCSD!T"/cc-pCVQZ are taken from Ref. 55 for O3 and from
Ref. 50 for the others. The calculated energy components are
given in Table V. The asymptotic limits of MP2 energies are
estimated accurately by the two-point extrapolation scheme,
pcV!XY"Z,56 where X and Y are cardinal numbers of basis
sets used for the extrapolation. The total energies of MP2-
geminal with aug-cc-pCVQZ are slightly higher than the ex-
trapolated results of pcV!56"Z. The differences involve the
incompleteness of the Hartree–Fock energies with the basis
set amounting at most to 3.7mEh for H2O2 .

Table VI summarizes the MP2 contributions to the reac-
tion enthalpies. It is found that MP2-geminal betters the
agreement of MP2 enthalpies with pcV!56"Z extrapolation.
The mean displacement of MP2-geminal is less than 1 kJ/
mol at aug-cc-pCVTZ, which is A1 order of magnitude
smaller than MP2 without explicitly correlated functions.
The augmentation from aug-cc-pCVTZ to aug-cc-pCVQZ
does not show prominent improvements in the MP2-geminal
result. This might be due to slight differences between the
MP2-geminal and pcV!56"Z calculations in geometrical pa-
rameters or some other reasons. The maximum displacement
of MP2-geminal with aug-cc-pCVDZ, is approximately
equivalent to the accuracy of orbital-based MP2 with the
aug-cc-pCVQZ set.

IV. CONCLUSION

We have presented the rational generator capable of
dealing with the s- and p-wave cusp conditions, which is
applied to the explicitly correlated MP2 method in conjunc-
tion with frozen Gaussian-type geminals. Additionally, nu-
merical quadratures were introduced in the implementation
of the explicitly correlated method. We discussed their con-
vergences and scaling properties for the necessary two- and
three-electron integrals. Although we have used the product
angular grid to examine the convergences, more efficient
Lebedev quadrature will be introduced in the near future.

It is also worthwhile to investigate possible schemes for
four-electron integrals with numerical quadratures. The par-

TABLE IV. Convergence of MP2 energy for the first selection with aug-cc-pCVXZ sets (mEh).a

Method System X#D !%" X#T !%" X#Q !%" X#5 !%" Limit

MP2 CH2(1A1) "151.81 !72.32" "188.71 !89.90" "201.00 !95.86" "204.52 !97.44" "209.9
H2O "259.24 !71.59" "324.15 !89.52" "345.64 !95.46" "351.58 !97.09" "362.1
NH3 "237.70 !73.62" "292.09 !90.46" "309.85 !95.96" "315.10 !97.58" "322.9
HF "263.64 !68.55" "339.83 !88.36" "364.84 !94.86" "371.11 !96.23" "384.6
N2 "394.41 !73.46" "483.19 !90.00" "513.59 !95.66" "520.93 !97.03" "536.9
CO "376.35 !72.42" "464.80 !89.44" "495.70 !95.38" "503.23 !96.83" "519.7
Ne "249.90 !64.39" "337.29 !86.91" "365.16 !94.09" "371.83 !95.81" "388.1
F2 "510.65 !68.95" "655.76 !88.54" "702.68 !94.88" "713.82 !96.38" "740.6
Ave. % ¯ 70.7 ¯ 89.1 ¯ 95.3 ¯ 96.8 ¯

MP2-geminal CH2(1A1) "200.22 !95.39" "207.82 !99.01" "209.32 !99.72" "209.64 !99.88" "209.9
H2O "350.45 !96.78" "359.35 !99.24" "361.35 !99.79" "361.74 !99.90" "362.1
NH3 "311.67 !96.52" "320.54 !99.27" "322.23 !99.79" "322.83 !99.98" "322.9
HF "373.14 !97.02" "381.27 !99.13" "383.65 !99.75" "384.16 !99.89" "384.6
N2 "516.02 !96.11" "531.85 !99.06" "535.58 !99.75" "536.43 !99.91" "536.9
CO "500.42 !96.29" "514.78 !99.05" "518.39 !99.75" "519.22 !99.91" "519.7
Ne "376.02 !96.89" "383.79 !98.89" "386.72 !99.65" "387.55 !99.86" "388.1
F2 "717.44 !96.87" "733.91 !99.10" "738.66 !99.74" "739.80 !99.89" "740.6
Ave. % ¯ 96.5 ¯ 99.1 ¯ 99.7 ¯ 99.9 ¯

R12-MP2/A! CH2(1A1) "201.21 !95.86" "207.52 !98.87" "209.48 !99.80" "209.87 !99.99" "209.9
H2O "363.30 !100.33" "359.64 !99.32" "361.72 !99.90" "362.15 !100.01" "362.1
NH3 "309.59 !95.88" "320.11 !99.14" "322.55 !99.89" n.a.b ¯ "322.9
HF "360.00 !93.60" "380.58 !98.95" "383.94 !99.83" "384.67 !100.01" "384.6
N2 "514.07 !95.74" "531.80 !99.05" "536.01 !99.83" "537.83 !100.17" "536.9
CO "496.35 !95.51" "514.46 !98.99" "518.93 !99.85" "519.84 !100.03" "519.7
Ne "367.65 !94.73" "383.94 !98.93" "386.87 !99.68" "388.44 !100.09" "388.1
F2 "705.67 !95.28" "734.93 !99.23" "739.08 !99.79" "740.78 !100.02" "740.6
Ave. % ¯ 95.9 ¯ 99.1 ¯ 99.8 ¯ 100.0 ¯

aSame as Table III.
bNot available.
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tial wave convergence of the commutator between the gen-
erator and exchange operator is (L!1)"5.23 The MP2-R12
method employed integrals with two indices of auxiliary
functions.26 In the case of numerical quadratures, however, at
least one electronic coordinates of the Coulomb operator
should be integrated explicitly due to the divergent form of
the potential at a coincident grid point. The method incorpo-
rating with RI35 is therefore more practical to this secondary
contribution though some inspection is necessary for accu-
racy.

Most of the other explicitly correlated methods optimize
two-electron basis set parameters. The present result implies
that the gain of such optimization is small and the matter of
basis set incompleteness is essentially recovered by imposing
the appropriate cusp conditions. This feature is important for
various extensions of explicitly correlated methods. The uni-

tary invariant formulation requires O6 scaling, which is trac-
table in MP2 and coupled-cluster !CC" theory. The method,
however, becomes formidable when the occupation spreads
in the entire orbital space as in CC linear response theory.
The explicit use of cusp condition was discussed in the initial
R12 method for the He-like atoms.5 The rational generator
supplies a more general and robust principle for many appli-
cations.

Finally we mention the performance of the present
method. The use of numerical quadratures becomes more
advantageous as the system size increases. With our prelimi-
nary code, the MP2-geminal calculation of C2H2 with the
aug-cc-pCVQZ set took 687 CUP seconds on a 1.6 GHz
Centrino notebook computer with the allowance of 240 MB
memory, while an additional 1047 and 1204 s were required

TABLE V. Convergences of the second order perturbation, HF and MP2 energies for the additional selection of molecules.a

System

EV
(2)/mEh HF/Eh MP2-geminal/Eh MP2/Eh

D AD AT AQ AQ pV6Zb AQ pcV6Zb pcV!56"Zb

H2 "33.27 "33.89 "34.24 "34.23 "1.133 46 "1.1336 "1.167 69 "1.168 "1.168
CH4 "260.79 "264.51 "272.34 "273.66 "40.216 37 "40.2171 "40.490 03 "40.487 "40.491
C2H2 "429.78 "434.37 "450.93 "454.31 "76.854 66 "76.8556 "77.308 94 "77.304 "77.311
C2H4 "457.43 "463.20 "478.49 "481.61 "78.069 67 "78.0707 "78.551 28 "78.546 "78.553
HNC "459.73 "466.63 "482.01 "485.49 "92.899 23 "92.9003 "93.384 72 "93.379 "93.387
HCN "472.95 "479.08 "495.10 "498.58 "92.914 65 "92.9157 "93.413 23 "93.407 "93.415
N2H2 "543.86 "553.69 "570.69 "574.38 "110.048 33 "110.0497 "110.622 72 "110.616 "110.625
CH2O "533.53 "544.02 "559.52 "563.06 "113.921 67 "113.9234 "114.484 73 "114.478 "114.487
HNO "580.40 "592.50 "609.33 "613.26 "129.847 94 "129.8498 "130.461 20 "130.454 "130.464
H2O2 "647.17 "668.17 "686.00 "690.08 "150.848 58 "150.8523 "151.538 66 "151.533 "151.544
HOF "666.83 "690.20 "707.49 "711.94 "174.819 68 "174.8230 "175.531 62 "175.524 "175.536
CO2 "817.70 "832.72 "855.98 "861.74 "187.722 54 "187.7252 "188.584 29 "188.574 "188.588
O3 "1005.76 "1027.41 "1052.42 "1058.88 "224.362 72 "224.3661 "225.421 61 "225.410 "225.427

aD, AD, AT and AQ abbreviate the cc-pCVDZ and aug-pCVXZ !X#D,T,Q" sets, respectively.
bReference 54.

TABLE VI. MP2 components of reaction energies.a

Reaction

MP2 MP2-geminal MP2

D AD AT AQ D AD AT AQ pcV!56"Za

CO!H2 → H2CO "7.9 "16.0 "24.9 "26.9 "20.8 "25.5 "27.6 "27.4 "27.7
HNC →HCN "33.2 "31.9 "33.2 "33.8 "34.7 "32.7 "34.4 "34.4 "34.2
H2O!F2 → HOF!HF 20.0 16.7 14.4 12.7 13.7 11.9 11.8 11.6 11.9
N2!3H2 → 2NH3 200.5 2.4 "13.1 "16.6 "1.8 "14.8 "17.1 "16.2 "17.3
N2H2 → N2!H2 "7.2 3.4 10.4 12.2 3.4 9.9 12.1 12.0 12.3
C2H2!H2 → C2H4 18.6 14.4 16.2 16.9 14.7 13.3 17.5 18.1 18.0
CO2!4H2 → CH4!2H2O 58.7 23.3 5.3 3.3 38.9 7.6 5.1 6.1 4.7
CH2O!2H2 → CH4!H2O 16.0 1.0 "8.5 "9.9 4.5 "8.3 "9.7 "9.2 "9.8
CO!3H2 → CH4!H2O 8.1 "15.0 "33.4 "36.8 "16.3 "33.8 "37.2 "36.6 "37.5
HCN!3H2 → CH4!NH3 124.8 24.9 13.7 12.7 18.6 12.0 13.0 14.1 13.3
H2O2!H2 → 2H2O "7.9 "16.0 "24.9 "26.9 "20.8 "25.5 "27.6 "27.4 "27.7
HNO!2H2 → H2O!NH3 119.4 9.6 "1.2 "4.5 11.7 "4.8 "5.5 "4.9 "5.7
C2H2!3H2 → 2CH4 31.5 23.2 21.7 23.2 21.0 18.4 23.5 25.3 25.0
CH2!H2 → CH4 "65.9 "67.3 "75.2 "77.6 "80.8 "79.8 "79.8 "79.0 "79.4
F2!H2 → 2HF 44.2 28.0 21.3 16.4 25.8 13.2 14.7 14.6 14.6
2CH2 → C2H4 "144.8 "143.4 "155.8 "161.6 "167.8 "164.8 "165.0 "165.3 "165.9
O3!3H2 → 3H2O 277.7 231.2 212.5 205.6 243.8 204.1 202.4 203.5 203.0

2!8E!1 46.7 12.9 3.6 1.2 11.5 2.1 0.4 0.5 ¯
8Emax 217.8 28.2 10.1 4.3 40.8 6.6 1.5 1.4 ¯
aSame as Table V.
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for the conventional self-consistent field and MP2 calcula-
tions without numerical integrations. Most of the CPU time
in the MP2-geminal step is spent for the calculation of kernel
functions for K1g

(Q) and Z1g !see Appendix B". Currently,
these functions are computed explicitly and accumulated in-
side the loop!s" over primitive geminals. The development of
interpolation schemes for the functions will improve this step
significantly. This line of work is in progress.
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APPENDIX A: CONNECTION TO THE
TRANSCORRELATED METHOD

Let us start with the CC equations for the similarity
transformed Hamiltonian

2/!H̃ exp!T "!/1#EN , !A1"

2B l!H̃ exp!T "!/1c#0, !A2"

H̃#exp!"ḠN"H exp!ḠN", !A3"

where B l denotes excited determinants, T is in the usual ex-
citation operator form, and ḠN is the generator without the
vacuum amplitude

ḠN#Ḡ"2/!Ḡ!/1. !A4"

Assigning first order in perturbation to ḠN , the order-by-
order expansion of the CC equations supplies the second
order energy expression

EN
!2 "#2/!#H0 ,ḠN$!ḠN!T !1 ""!/1!2/!VT !1 "!/1 , !A5"

and the first order wave operator equation

2B l!#H0 ,T !1 "$!/1#"2B l!V!#H0 ,ḠN$!/1. !A6"

The excitations by the generator and cluster operator are di-
vided into singles and doubles components

ḠN!/1#!Ḡ1!Ḡ2"!/1, !A7"

T !1 "!/1#!T1
!1 "!T2

!1 ""!/1. !A8"

The assumption that the HF reference is the exact solution of
H0 eliminates the sum of singles in the complete basis

#H0 ,Ḡ1!T1$!/1#0, !A9"

to leave just the double substitutions as meaningful terms

EN
!2 "#2/!#H0 ,ḠN$Ḡ2!/1!2/!!#H0 ,ḠN$!V "T2

!1 "!/1.
!A10"

Substitution of the explicit expression of the first order am-
plitudes

2aa
!ab

!a jai/!T !1 "!/1#
2#ab$!r12

"1!7̄12!# i j $1
6 i!6 j"6a"6b

, !A11"

we arrive at the second order energy expression

EN
!2 "#'

i% j
$ 2# i j $!7̄12Q1*Q2*Ḡ12!# i j $1

!'
a%b

2# i j $!7̄12!r12
"1!#ab$12#ab$!r12

"1!7̄12!# i j $1
6 i!6 j"6a"6b

%
#E !2 "!8EN

!2 " . !A12"

The obtained correction is just that in Eq. !32" with the op-
posite sign. The transcorrelated method essentially treats the
kinetic energy part of the electron correlation and is con-
nected to the Hylleraas type expansion via the virial-type
theorem. For a nonperturbative treatment, H̃ is generally
nonterminating due to the permutation operators in the gen-
erator. However, the use of the s-wave cusp condition, irre-
spective of the spin multiplicities of pair functions,

Ḡ12#
1
2r12!O!r12

2 ", !A13"

brings terminating and nontrivial expansions because triplet
pairs have no amplitude at coalescence. In this case, the in-
crement by an augmentation of basis set is not necessarily
negative especially for a geminal in which the r12 behavior is
extrapolated to long-range distances, although the asymptotic
limit is identical to the Hylleraas energy functional.

APPENDIX B: INTEGRAL EVALUATION

All of the operators in the three-center integrals required
in the present explicitly correlated MP2 theory are expressed
by Gaussian-type functions

f 1g#'
G

Ng

cG exp!"=Gr1g
2 ", !B1"

"!91 f 1g"#"'
G

Ng

cG#91 exp!"=Gr1g
2 "$ , !B2"

"!91 f 1g"•91#"'
G

Ng

cG#91 exp!"=Gr1g
2 "$•91 , !B3"

"!91
2 f 1g"#"'

G

Ng

cG!4=G
2 r1g

2 "6=G"#exp!"=Gr1g
2 "$ ,

!B4"

"!91 f 1g"•!91 f 1g"#"'
GG!

Ng

4=G=G!cGcG!r1g
2

$exp#"!=G!=G!"r1g
2 $ , !B5"

r1g
"1#

2
!4 )

0

:

du exp!"u2r1g
2 ", !B6"

Z12#
2

!4 'G
Ng

cG)
0

:

exp#"!=G!u2"r1g
2 $ . !B7"

First, we present formulas for the basic integrals
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!n!l!n̄"#) dr0c!r"R;= ,n"0c!r"rg ;=T ,l"

$0c!r"R̄; =̄ ,n̄" !B8"

of Cartesian Gaussian functions

0c!r;= ,n"#xnxynyznz exp!"=r2". !B9"

The Cartesian orbitals are transformed to spherical Harmon-
ics after the calculation of integrals in each of the shell pairs.
For the basic integrals, the Obara–Saika recurrence
relations57,58 reduce to

!n!17 : "##!P"R"7!!rg"P"C!=T"$! : "

!
1"C!=T"

2Z #n7!n"17 : "! n̄7! n̄"17 : "

!l7! l"17 : "$ , !B10"

! l!17 : "#!P"rg"#1"C!=T"$! : "!
1"C!=T"

2Z #n7!n

"17 : "! n̄7! n̄"17 : "!l7! l"17 : "$ , !B11"

where the colons in parentheses abbreviate unchanged indi-
ces from !n!l!n̄", and the parameters are defined by

Z#=! =̄ , !B12"

P#
=R! =̄R̄

Z , !B13"

C!=T"#
=T

Z!=T
. !B14"

The integral over s functions is given by

!0!0!0̄"!0 "#S1
!0 "#1"C!=T"$

3/2 exp#"TC!=T"$ , !B15"

S1
!0 "#$4Z % 3/2 exp'"

==̄

Z !R"R̄"2( , !B16"

T#Z!P"rg"2. !B17"

The above equations are independent in each Cartesian com-
ponent, 7#x ,y ,z , which can be calculated separately for a
given =T or a discrete quadrature point as in the Rys
polynomial.59 Since only C is dependent on the exponent,
=T , in the recurrence relations, summations over the Gauss
operators exp("=Tr1g

2 ) lead to the contracted recurrence rela-
tions

#n!17 :$!m "#!P"R"7# :$!m "!!rg"P"# :$!m!1 "

!
1
2Z ## :$$7

!m " , !B18"

# l!17 :$!m "#!P"rg"!# :$!m ""# :$!m!1 ""!
1
2Z ## :$$7

!m " ,

!B19"

## :$$7
!m "#n7!#n"17 :$!m ""#n"17 :$!m!1 ""

! n̄7!# n̄"17 :$!m ""# n̄"17 :$!m!1 ""

!l7!# l"17 :$!m ""# l"17 :$!m!1 "", !B20"

for the auxiliary integrals

#n!l!n̄$!m "#) )!O "!=T"C
m!=T"!n!l!n̄"d=T , !B21"

where )(=T) is an arbitrary weight function characterizing
the spherically symmetric operator

O#) )!O "!=T"exp!"=Tr1g
2 "d=T . !B22"

The angular momentum indices are increased from the ker-
nel functions

#O$!m "?#0!0!0̄$!m "#S1
!0 ") )!O "!=T"Dm!T ,=T"d=T ,

!B23"

Dm!T ,=T"#Cm!=T"#1"C!=T"$
3/2 exp#"TC!=T"$ .

!B24"

The functions for f 12 and electric field operators are

# f 12$!m "#S1
!0 "'

G
cGDm!T ,=G", !B25"

#r1g
"1$!m "#

2S1
!0 "

!4
Fm!T ", !B26"

Fm!T "#)
0

1
d tt2m exp!"Tt2". !B27"

The integrals for (91 f 1g) and (91 f 1g)•91 can also be calcu-
lated from # f 12$ (m), since the first derivative of Gaussian-
type functions are related to those with different angular mo-
mentum indices

E

Er7
0c!r;= ,n"#"2=0c!r;= ,n!17"

!n70c!r;= ,n"17". !B28"

Substituting this into Eq. !B19" with the aid of

=T#1"C!=T"$#ZC!=T", !B29"

we obtain the expression for the differential operator inte-
grals

'n* E f 12
E!r1g"7

*n̄( !m "#"2Z!P"rg"#n! f 12!n̄$!m!1 "

"n7#n"17! f 12!n̄$!m!1 "

" n̄7#n! f 12!n̄"17$!m!1 ". !B30"

The integrals

'n* E f 12
E!r1g"7

E

E!r1g"7
*n̄( !m "

reduce to the same form by Eq. !B28".
The integrals for the operators, (91

2 f 1g) and (91 f 1g)•(91 f 1g), can be evaluated by the applications of the recur-
rence relations after the differentiation of the Gauss operator.
However, there exist more efficient methods using the fact
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that the operators are spherically symmetric. The integrals
with the square distance operator is identical to the derivative
with respect to the Gaussian exponent

!n!r1g
2 exp!"=Tr1g

2 "!n̄"#"
E

E=T
!n!exp!"=Tr1g

2 "!n̄".

!B31"

Since the recurrence relation Eq. !B18" does not contain any
exponent, =T , except for the auxiliary integrals, it is appli-
cable to the contracted object

#n!r1g
2 O!n̄$!m "#") d=T)!O "!=T"

E

E=T
Cm!=T"

$!n!exp!"=Tr1g
2 "!n̄". !B32"

Using the relation

"
EC!=T"

E=T

E

EC!=T"
#"

#1"C!=T"$
2

Z
E

EC!=T"
, !B33"

along with Eqs. !B4", !B5", !B23", and !B29" in the above
differentiation, we obtain

#"!91
2 f 1g"$!m "#"4Z*T# f 1g$!m!2 ""! 32!m "

$# f 1g$!m!1 "+, !B34"

#"!91 f 1g"•!91 f 1g"$!m "#"
1
Z $ T# f 1g!2$"!m "! 3

2 # f 1g!
2$!!m "

"m# f 1g!
2$"!m"1 "% , !B35"

f 1g!
2#4'

GG!
=G=G! exp#"!=G!=G!"r1g

2 $ , !B36"

#O$!!m "##O$!m ""#O$!m!1 ", !B37"

#O$"!m "##O$!!m ""#O$!!m!1 ". !B38"

Thus the integrals for these operators can be calculated as
those for spherically symmetric operators, f 1g and r1g

"1, just
by replacing the kernel functions.

It is relatively easy to show that the kernel functions for
Z1g are essentially linear combinations of those for Coulomb
integrals. In this way, the integrals required in the present
explicitly correlated method are of different kernel functions
but mostly with coincident linear coefficient of the recur-
rence relations. Such integrals are efficiently calculated by
use of fixed-root polynomials60

#O$!m "#'
,
R,
mW,

!O " , !B39"

where the R, are root positions, W,
(O) are the corresponding

weights for the operator O, and , ranges from 0 to the maxi-
mum value of m. In the Rys polynomial method,59 both roots
and weights are variables and thus the order of the polyno-
mial is 1/2 of the present fixed-root polynomial method. The
latter is, however, more advantageous for the present purpose
because the target integrals are expressed as the Cartesian

components independent of operators multiplied by the
weights

#n!O!n̄$!0 "#'
,
Ix!R,"Iy!R,"Iz!R,"W,

!0 " . !B40"

The integrals for different operators are calculated simulta-
neously with different weights characterizing the operators.
In this case, the rate-determining step is the generation of the
kernel functions, especially for #"(91 f 1g)•(91 f 1g)$ (m) and
#Z1g$ (m) rather than the increments of angular momentum
indices and contractions over the quadrature points.
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