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Density fitting for the decomposition of three-electron integrals
in explicitly correlated electronic structure theory

Seiichiro Ten-no
Graduate School of Information Science, Nagoya University, Chikusa-ku Nagoya, 464-8601 Japan

Frederick R. Manby
School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom

~Received 12 May 2003; accepted 20 June 2003!

It is shown that the convergence of R12-type explicitly correlated electronic structure theories can
be improved by rearranging the three-electron integrals before using a resolution of the identity to
decompose them into expressions involving only two-electron integrals. The new scheme is
illustrated for some test systems within the explicitly correlated second order many-body
perturbation theory. ©2003 American Institute of Physics.@DOI: 10.1063/1.1600431#

I. INTRODUCTION

In calculations of molecules with post-Hartree-Fock
methods, it is laborious to handle the large basis sets that are
required to obtain converged orbital-based configuration in-
teraction~CI! calculations. The exact wave function at small
r 12 obeys the cusp condition,1 and the description of this
cusp converges slowly with respect to the maximum angular
momentum in the one-electron basis. Various alternatives to
pure orbital-based methods have been proposed, and it was
proven long ago that the inclusion of two-electron basis
functions in the CI expansion leads to greatly improved
convergence.2

The penalty is the introduction of three- and four-
electron integrals, which are so numerous that applications
are restricted to light atoms and very small molecules. The
key to any practical explicitly correlated method lies in the
efficient handling of the many-electron integrals. Thus, for
example, the weak orthogonality functional can be used to
eliminate all four-electron integrals from explicitly correlated
MP2 theory with Gaussian-type geminals~GTG!.3 Transcor-
related methods4,5 ~in which there has been recent interest in
conjunction with multi-determinantal treatments6,7! introduce
a three-particle operator into the Hamiltonian, but no higher-
rank operators arise. Even calculations which require only
three-electron integrals rapidly become impractical for large
systems, and the only class of methods which have tran-
scended the restriction to very small molecules are those
which rely on the resolution of the identity~RI! to break up
many-electron integrals into sums of products of two-
electron integrals.8

Henceforward, we denote orthonormalized occupied,
virtual, and general orbitals in a given basis set asi j ...,
ab..., andpq..., respectively. In MP2 methods with an ex-
plicitly correlated geminal,f 12, the construction of the Hyl-
leraas functional requires the evaluation of three-electron in-
tegrals in the direct

^ i j uX12P2f 12u i j &5(
k

^ i jk uX12f 13u ik j & ~1!

and exchange forms

^ i j uX12P2f 12u j i &5(
k

^ i jk uX12f 13u jki &, ~2!

wherePn is a one-electron projector in the occupied space,

Pn5(
i

u i ~n!&^ i ~n!u. ~3!

The two-body operator,X12, can take the form of the single
commutator,K12

(L)5@T11T2 , f 12#, or of the Coulomb repul-
sion, r 12

21. In R12 methods one choosesf 125r 12, but one
can alternatively expandf 12 as a linear combination of
GTGs.3,9 The use of the transcorrelated Hamiltonian4–7 dis-
penses with the requirement of the integrals with the Cou-
lomb operator because of the commutability betweenf 12 and
the local potential in the original Hamiltonian. The advan-
tages of GTGs over linearr 12 terms are firstly that the many-
electron integrals have relatively simple forms,10 and sec-
ondly that the short-ranged nature of Gaussians may confer
numerical and computational advantages in larger systems.
The three-electron integrals in R12 methodscan be calcu-
lated explicitly for atoms,11 but in either case it is disadvan-
tageous to maintain the three-electron integrals in full as
their number increases prohibitively with the size of the one-
electron basis.

Klopper and Kutzelnigg avoided the explicit generation
of three-electron integrals by the use of the resolution of the
identity ~RI! in their R12 method to give

^ i jk uX12f 13u ik j &5(
p

^X12&pk
i j ^ f 12& i j

pk , ~4!

^ i jk uX12f 13u jki &5(
p

^X12&pk
i j ^ f 12& j i

pk , ~5!

where we have used the abbreviated notation for the inte-
grals,^X12& rs

pq5^pquX12urs&. In Eqs.~4! and ~5! the equali-
ties hold only for an infinite set of orbitalsp; nonetheless,
useful approximations arise when the RI is carried out either
with the original set of MOs or with an auxiliary RI basis.12

Since the two-electron integrals in the RI expressions in-
volve three occupied orbitals, the maximum angular momen-
tum required in the RI basis becomes 3Locc for the highest
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occupied angular momentum,Locc, in an atomic calculation.
Thuss-, f-, andi-functions contribute for systems withs-, p-,
and d-occupied shells, respectively. This is the main bottle-
neck in RI methods, especially for the treatment of mol-
ecules with heavy atomic elements.

In this article, we propose a novel decomposition
scheme for the three-electron integrals using density fitting.
The method reduces the maximum angular momentum re-
quired in the RI expansion from 3Locc to 2Locc . We present
the formulation in the following section. Numerical results
are shown in Sec. III for the calculations of some atoms and
molecules.

II. COMBINING THE RI APPROACH WITH DENSITY
FITTING

In the present work on improving the convergence of the
RI, orbital products are approximately represented as

f i~r !f j~r !>(
A

di j
AJA~r !, ~6!

whereJA(r ) anddi j
A are auxiliary basis functions and expan-

sion coefficients, respectively, and we have assumed the or-
bitals to be real. To distinguish the expansion of the density
with the RI in explicitly correlated methods, we refer to the
former as density fitting. Since the basic idea of density fit-
ting was first introduced by Boys and Shavitt,13 such ap-
proximations have been used for improving the efficiency of
the computation and manipulation of electron repulsion inte-
grals in density functional theory,14 MP2,15 and other
theories.16 One of us~FRM! has recently introduced a den-
sity fitted MP2-R12 theory which has essentially the same
numerical properties as the original MP2-R12 formulation,
but at a fraction of the cost.17

There exist efficient ways to determinedi j
A for specific

purposes, but the simplest expression utilizes the three-center
overlap integrals with orthonormalized auxiliary functions,

di j
A5^ i uAu j &5E drf i~r !JA~r !f j~r !. ~7!

The key in the present improvement of the RI approach is to
combine the orbitals in a coordinate shared by the pair of
two-body operators. For a spatial operator,X125r 12

21, one
can move an orbital from the ket to the bra to give the inte-
gral identity

^ i jk ur 12
21f 13u ik j &5^~ i i ! jkur 12

21f 13u1k j&, ~8!

which can then be resolved using the RI to give

^ i jk ur 12
21f 13u ik j &5(

p
^~ i i ! j ur 12

21upk&^pku f 12u1 j &, ~9!

where the symbol, 1, as an orbital index means that the or-
bital is made unity.

Applying density fitting to avoid the five-index integral
in Eq. ~9!, the three-electron integrals can be expressed as

^ i jk ur 12
21f 13u ik j &5(

pA
dii

A^r 12
21&pk

A j^ f 12&1 j
pk , ~10!

^ i jk ur 12
21f 13u jki &5(

pA
di j

A^r 12
21&pk

A j^ f 12&1i
pk , ~11!

in the direct and exchange forms. Then the maximum angu-
lar momentum required for the RI in Eqs.~10! and ~11! is
reduced from 3Locc to 2Locc in the atomic limit; the integrals
with the operator,f 12, involve just two occupied orbitals
besides the auxiliary function,p. Thus for s-, p-, and
d-occupied shells, we requires-, d-, andg-functions instead
of s-, f-, and i-functions in the RI expansion.

For the integrals with the operator,X125K12
(L) , using the

fact that the operator includes at most one differential opera-
tor, the sum of integrals is rewritten as,

^pqruK12
~L ! f 13ustu&1^sqruK12

~L ! f 13uptu&

5^1qruK12
~L ! f 13u~ps!tu&1^~ps!qruK12

~L ! f 13u1tu&. ~12!

Then we obtain the desired expressions of direct and ex-
change components substituting the indices and using the
completeness insertion,

^ i jk uK12
~L ! f 13u ik j &5

1

2 (
pA

dii
A~^K12

~L !&pk
1 j ^ f 12&A j

pk

1^K12
~L !&pk

A j^ f 12&1 j
pk!, ~13!

^ i jk uK12
~L ! f 13u jki &52(

p
^K12

~L !&pk
j j ^ f 12& i i

pk

1(
pA

di j
A~^K12

~L !&pk
1 j ^ f 12&Ai

pk

1^K12
~L !&pk

A j^ f 12&1i
pk!. ~14!

The first term of the exchange integral in Eq.~14! has the
form of a standard RI decomposition. However, the maxi-
mum angular momentum is usually much less than 3Locc

since the integrals involve the same occupied indices. For
atoms saturated in degenerate shells, the vector coupling co-
efficients survive just forl 50 in the total energy because of
the independent summation over the coincident orbitals. As a
result, onlyLocc is required in the auxiliary basis for a satu-
rated energy with RI. It should be noted that the transcorre-
lated Hamiltonian involves only three-electron integrals in
the commutator form for which the migration of an orbital is
more straightforward,

^pqru@K12
~L ! , f 13#ustu&5(

A
dps

A ^Aqru@K12
~L ! , f 13#u1tu&.

~15!

The reason why the term, which is unable to be dealt with
the density fitting, appears in Eq.~14! is concerned with the
fact that the single excitations due to the geminal are pro-
jected out in the explicitly correlated wavefunction. Such
inclusion of singles will be discussed elsewhere.

III. RESULTS AND DISCUSSIONS

We apply the new decomposition with density fitting
~DF! to the second order many-body perturbation theory
with strongly orthogonal functions of frozen GTG in addi-
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tion to the usual orbital products. The second order correc-
tion in the Hylleraas energy functional is in the form,

DEV
~2!52DEN

~2!12DEZ
~2! , ~16!

DEN
~2!5(

SM
(
i> j

~ci j
~S,M !!2^$ i j %~S,M !uK12

~L !~Q1* Q2*

2Q1Q2! f 12u$ i j %~S,M !&, ~17!

DEZ
~2!5(

SM
(
i> j

ci j
~S,M !^$ i j %~S,M !ur 12

21~Q1* Q2*

2Q1Q2! f 12u$ i j %~S,M !&, ~18!

whereQn* and Qn are one-electron projectors in the virtual
spaces for the complete and given basis sets, respectively,
$ i j %(S,M ) denotes the spin-adapted antisymmetrized pair
functions, andci j

(S,M ) are variational parameters. The quan-
tum numbers take the values, (S,M )5(0,0), ~1,0!, ~1,61!
for iÞ j and (S,M )5(0,0) for i 5 j .9 The commutator in-
volving the exchange operator is neglected as in the MP2-
R12-A approximation.8 All three energy corrections become
identical,DEV

(2)5DEN
(2)5DEZ

(2) , when the geminal is exact
outside the Hilbert space spanned by the given basis set,

~Q1* Q2* 2Q1Q2!~ci j
~S,M !K12

~L !1r 12
21!u$ i j %~S,M !&

50, ; i jSM. ~19!

Thus the ratio,

x5DEZ
~2!/DEN

~2! , ~20!

which becomes unity in the above condition, is a good mea-
sure to indicate the appropriateness of geminals. According
to the expansion,

Q1* Q2* 512P12P21P1P2 , ~21!

the functionals are divided as

DEN
~2!5DEN

~2!@1#2DEN
~2!@P11P2#1DEN

~2!@P1P2#

2DEN
~2!@Q1Q2#, ~23!

where

DEN
~2!@O#5(

SM
(
i> j

~ci j
~S,M !!2

3^$ i j %~S,M !uK12
~L !O f12u$ i j %~S,M !&, ~24!

and a similar expression forDEZ
(2) . In Eq. ~23!, the specific

terms which are approximated using the RI are those involv-
ing just one occupied projector,Pn . Hence, the quantity,

t 5DEN
~2!@Q1* P21P1Q2* #22DEZ

~2!@Q1* P21P1Q2* #

5DEN
~2!@P11P2#22DEZ

~2!@P11P2#14DEZ
~2!@P1P2#,

~25!

which we refer to as the RI index, measures the contribution
to the energy that arises directly from the RI. In Eq.~25!, the
term, DEN

(2)@P1P2#, vanishes becauseK (L) is an anti-
hermitian. Deviations in the RI index between the calcula-
tions in the given basis set and in an essentially complete
basis set can therefore be used as a guide to the accuracy of
the RI. The exact energy for a given basis and a givenf 12 can
then be estimated as

ĒV
~2!5EV

~2!2Dt, ~26!

using the deviation of the index,Dt5t2 t̄, from t̄ com-
puted using an augmented basis set.

Throughout this paper, we use a template geminal,f 12
t ,

expanded as a linear combination of 10 Gaussian-type func-
tions. The coefficients are determined in such a way that the
Coulomb repulsion multiplied by a short-range weight
Gaussian is suppressed in the similarity transformed
Hamiltonian.6,7 For the exponents, we use an even-tempered
sequence in the range between 106 and 0.5 and the weight
Gaussian has the exponent, 5. The template geminal,f 12

t , is
further transformed with a scaling parameter,cZ , according
to

f ~r 12;cZ!5
f t~cZr 12!

cZ
. ~27!

FIG. 1. Profiles of scaled geminal functions,f 12 , for
various values of the scaling parameter,cZ .
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Figure 1 shows some profiles off (r 12;cZ) with different
scaling parameters. The effective radius of the explicitly cor-
related function varies with changingcZ whereas the slope of
1/2 at r 1250 is maintained by the transformation. The en-
ergy functional can be minimized for individual pairs with
respect to multiplied coefficients.18 In this context, Klopper
developed a unitary invariant formulation to pair
functionals.19 Such a convention is not employed in this par-
ticular work to keep the short-range behavior off 12, and
hence we useci j

(0,0)51, for all singlet pairs. The triplet pairs,
S51, are antisymmetric in the spatial part to follow the
p-wave cusp condition20 and the parameters,ci j

(1,M )51/2, are
used for the pairs. The latter condition is not crucial espe-
cially for the use of a short-range geminal since the triplet
pairs have no amplitude atr 1250.

In Table I, we show the calculatedDt, x, and MBPT2
energies of Ne with the correlation consistent basis sets
~uncontracted!.21,22 The error in the RI index,Dt, is also
plotted in Fig. 2. The amplitude oft and accordinglyDt in
the approximate treatments of three-electron integrals reduce
significantly ascz increases~i.e., more localizedf 12). The
overall results of the present decomposition with DF are
more accurate than the original RI. Since the electron corre-
lation is a short-range phenomenon, the choice ofcz hardly
affects the result especially beyond the regular VTZ set. Tak-
ing the accuracy and scalability into account, it would be

advantageous to use geminals damped relatively quickly as
the present application withcz52. According to the results
with the angular components of the ACVQZ set, the absence
of the f-shell (L53) reduces the accuracy of RI by 13mEh
for cz51. As a result, the second order energies in RI be-
come 2395.07 and2399.84 mEh with the AVDZ and
AVQZ (16s10p6d) sets, respectively, which are lower than
the MP2 limit artificially. It is the manifest advantage of the
present decomposition with DF that enables us to bypass the
requirement off-functions.

The next application is the ground state Cu1, in which
the RI saturates ati-shell whereas DF requires up to
g-functions. We used the (21s15p12d8 f 4g) primitives of
the atomic natural orbitals~ANOs!23 augmented by tight
(2d2 f ) functions with the exponents, 14 400.0 (d),
3600.0 (d), 250.0 (f ), and 50.0 (f ) along with the scaling
parameter,cZ52. Table II shows the calculated pair correla-
tion energies. The present implementation without minimiz-
ing pair functionals leads to a positive correction for the
1s3d pair though the amplitude is very small. This is be-
cause the deviations from thes- andp-wave cusp conditions
are prominent for the pair, i.e., the component inDEZ

(2) is
much smaller than the corresponding one inDEN

(2) . All
MBPT2 energies of the explicitly correlated methods includ-
ing MP2-R12/A24 are in a small range compared to the con-
ventional MBPT2 energy. Most of the difference between RI

TABLE I. Errors in the index,t, the ratios,x, and the second order energies~in mEh) of Ne.

Basis set cz DtRI
a DtDF

a x EV
(2) ĒV

(2) EMP2

VDZ 1.0 241.05 212.64 0.79 2353.22 2340.6 2255.48
(9s4p1d) 2.0 216.54 0.75 1.00 2333.81 2334.6

3.0 27.89 20.65 1.17 2314.75 2314.1
VTZ 1.0 26.98 23.27 0.76 2373.61 2370.3 2321.93
(10s5p2d1f ) 2.0 23.58 20.60 0.96 2372.13 2371.5

3.0 22.14 20.19 1.13 2362.31 2362.1
VQZ 1.0 21.52 22.50 0.77 2382.23 2379.7 2351.22
(12s6p3d2f 1g) 2.0 20.87 0.00 0.88 2381.84 2381.8

3.0 20.63 20.05 1.05 2378.84 2378.8
CVTZ 1.0 25.40 22.91 0.85 2379.50 2376.6 2333.49
(12s7p3d1f ) 2.0 21.79 20.67 1.04 2373.16 2372.5

3.0 20.91 20.19 1.18 2363.80 2363.6
AVDZ 1.0 227.45 2.30 0.75 2365.27 2367.6 2278.21
(10s5p2d) 2.0 215.32 0.51 1.00 2355.25 2355.8

3.0 27.66 20.34 1.16 2336.12 2335.8
AVTZ 1.0 23.20 20.12 0.75 2378.70 2378.6 2330.17
(11s6p3d2f ) 2.0 23.24 20.28 0.95 2378.68 2378.4

3.0 22.06 20.13 1.12 2369.65 2369.5
ACVQZb 1.0 213.43 0.00 0.92 2386.35 2386.4 2320.08
(16s10p6d) 2.0 25.60 0.00 1.25 2367.82 2367.8

3.0 22.44 0.00 1.47 2352.00 2352.0
ACVQZb 1.0 0.00 0.00 0.89 2387.48 2387.5 2354.94
(16s10p6d4f ) 2.0 0.00 0.00 1.11 2382.20 2382.2

3.0 0.00 0.00 1.29 2375.50 2375.5
ACVQZb 1.0 0.00 0.00 0.85 2387.07 2387.1 2365.91
(16s10p6d4f 2g) 2.0 0.00 0.00 1.00 2385.93 2385.9

3.0 0.00 0.00 1.17 2382.62 2382.6

Limit 2388.1

aThe subscripts, RI and DF, denote the original RI of Kutzelnigg and Klopper and the decomposition scheme
with density fitting, respectively. The reference values of the index,t̄, are based on the calculations with the
aug-cc-pCVQZ~uncontracted! set; they are 1354.27, 447.03, and 200.98mEh in RI, and 1354.34, 447.18,
201.04mEh in DF for cz51.0, 2.0, and 3.0, respectively.

bAngular subcomponents of the reference primitive set, aug-cc-pCVQZ~uncontracted!.
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and DF, ca. 14mEh, is originating from the pairs, 2p3d,
3p3d, and 3d2. To repair this discrepancy,h- and
i-functions must be included in the RI case.

We close this section by mentioning briefly the statistical
errors in calculations of some small first-row molecules. We
performed on calculations on CH2, CH4, NH3, H2O, HF,
Ne, CO, N2 , and F2 with cc-pVDZ and cc-pVTZ basis sets

~uncontracted!. Figure 3 shows the relation between the RI
index,t, of the VTZ set forcZ52 and the absolute deviation
from it with VDZ set, ut(VDZ) 2tDF~VTZ) u. There are ap-
proximately linear relations between them and the obtained
slopes of the least square fittings are 3.00% and 0.23% in RI
and DF, respectively. The present method with DF is thus on
average more accurate by one order of magnitude than the
original RI.

IV. CONCLUSION

We have proposed a novel decomposition for the three-
electron integrals in explicitly correlated electronic structure
theories. The normal completeness insertion is applied after a

FIG. 2. Errors in the RI index in calculations on the neon atom with~aug!-cc-~C!VXZ basis sets.

TABLE II. MBPT2 pair energies ~in mEh) of
Cu1:GTO (21s15p12d8f 4g) andCz52.

Pair E(2) EV,RI
(2) EV,DF

(2) MP2-R12/Aa

1s2 233.24 236.11 236.11 236.60
1s2s 26.58 27.06 27.05 27.19
1s3s 20.99 21.05 21.05 21.08
2s2 29.33 210.74 210.74 210.81
2s3s 23.32 23.66 23.66 23.69
3s2 25.50 26.38 26.38 26.37
1s2p 235.00 237.30 237.23 238.04
1s3p 24.07 24.33 24.33 24.40
2s2p 253.72 265.32 265.32 266.10
2s3p 212.15 213.30 213.29 213.37
3s2p 214.28 215.51 215.49 215.70
3s3p 237.39 244.30 244.30 244.31
1s3d 20.45 20.23 20.23 20.51
2s3d 214.47 218.62 218.44 218.27
3s3d 271.59 284.53 284.51 284.20
2p2 2172.00 2191.40 2190.94 2192.73
2p3p 253.74 257.35 257.19 257.92
3p2 270.74 281.40 279.67 281.54

2p3d 269.81 279.68 277.26 277.98
3p3d 2298.26 2339.07 2334.22 2337.87
3d2 2510.98 2544.40 2538.96 2538.07

S 21477.60 21641.74 21628.05 21636.8

aReference 24. STO basis: 12s12p12d11f 9g9h6i .
FIG. 3. Distributions of the RI index deviations for a selection of small
first-row molecules.
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migration of an occupied orbital, and the five-index integrals
this leads to are avoided through density fitting. At the same
time, the migration of the orbital reduces the maximum an-
gular momentum required for the completeness insertion
from 3Locc to 2Locc in an atomic calculation. The scheme
with DF turned out to be more accurate by one order of
magnitude than the original RI method. It should be noted
that there are two different sources which can cause error in
DF. One is the truncation of the RI basis in the completeness
insertion and the other is that of DF basis to represent orbital
products. The RI basis is basically assumed to be complete
with finite angular momentum. Contrarily, the auxiliary basis
set for DF to reproduce orbital products can be designed
systematically for a given orbital basis set. Such a develop-
ment is quite important since all of the remaining four-center
integrals can be replaced by DF expressions as already
implemented in MP2-R12 theory with the standard RI.17

Combining the results of this work with the DF-MP2-R12
method17 will lead to a new explicitly correlated approach in
which density fitting delivers increases in both accuracy and
efficiency.
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