
Combining the Transcorrelated Method with Full Configuration
Interaction Quantum Monte Carlo: Application to the Homogeneous
Electron Gas
Hongjun Luo*,† and Ali Alavi*,†,‡

†Max-Planck-Institut for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
‡Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

ABSTRACT: We suggest an efficient method to resolve electronic cusps in
electronic structure calculations through the use of an effective trans-
correlated Hamiltonian. This effective Hamiltonian takes a simple form for
plane wave bases, containing up to two-body operators only, and its use
incurs almost no additional computational overhead compared to that of the
original Hamiltonian. We apply this method in combination with the full
configuration interaction quantum Monte Carlo (FCIQMC) method to the
homogeneous electron gas. As a projection technique, the non-Hermitian
nature of the transcorrelated Hamiltonian does not cause complications or
numerical difficulties for FCIQMC. The rate of convergence of the total
energy to the complete basis set limit is improved from −M( )1 to

−M( )5/3 , where M is the total number of orbital basis functions.

1. INTRODUCTION
Electron correlation can be roughly classified into static and
dynamic correlation. In conventional configuration descriptions
of the many-body wave function, the two different types of
electron correlation are treated in the same way, i.e., by linear
expansion in terms of Slater determinants.1 Although such a
configuration description offers a natural and efficient way to deal
with static correlation, it does not however treat dynamic
correlation efficiently and thus usually leads to a slow
convergence to the complete basis limit (CBL). The main
problem is that, because of the Coulomb singularity of the
electronic interaction, the short-range dynamic correlation
introduces nonsmoothness into the many-body wave function,
which cannot be approximated efficiently by orbital product
expansions. This problem is even more severe for those methods
aiming at high accuracy, such as full configuration interaction
(FCI) methods and high-order coupled-cluster methods. On the
other hand, the nonsmoothness of the many-body wave function
can be locally resolved and is expressed as the well-known Kato
cusp condition2
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Incorporating this property into the construction of many-body
wave functions should in principle speed up convergence to the
CBL.
One way of incorporating the cusp condition is to introduce

explicitly correlated basis functions for the expansion of the many
body-wave function. In the last few decades, various explicit
correlation methods (e.g., R12 and F12 methods3−9) have been

suggested and have achieved a high level of success. The main
feature of these methods is that, instead of the conventional
approximation of the cusp in terms of orbital product expansions,
electron pair geminal functions are directly used in the
construction of the basis of the many-body wave function.
These geminal functions describe the cusps very efficiently,
although they also make the involved calculations highly
nonlinear. For example, in these calculations one has to deal
with various kinds of orthogonality constraints, which lead to
multielectron integrals (three, four, and even higher body
electron integrals). These integrals are usually approximated by
resolution of identity (RI) techniques.3−5,10

Electron cusps can also be efficiently described by using the
Jastrow ansatz11

Ψ = Φ = ···τeR R R r r r( ) ( ), ( , , , )N
R( )

1 2 (2)

where Φ is an antisymmetric reference function and τ is a
symmetric pair correlation factor
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The correlation factor can be constructed to fulfill the cusp
condition (1), and thus, the regularity of the reference functionΦ
is higher than that of the wave function Ψ. Fournais et al.12 have
proven that the correlation factor can improve the regularity of
the wave function from C0,1 to C1,1. In Appendix A, we will show
that this will lead to an acceleration of basis convergence for
three-dimensional non-spin-polarized systems from M−1 to
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M−5/3.13 For size consistency to be guaranteed, the correlation
factor has to take an exponential form. This makes the Jastrow
ansatz highly nonlinear, and any variational treatment leads to
extremely high-dimensional integrals. Presently, the Jastrow
ansatz is primarily used in various quantum Monte Carlo
methods, such as variational Monte Carlo (VMC) and diffusion
Monte Carlo (DMC) methods,16−18 where the involved
integrals can be evaluated directly in the high dimensional
space. The exponential correlation factor has also been treated by
various expansions, such as the linked cluster expansion,19,20

random phase approximations (RPA),21 and Fermi hypernetted
chain (FHNC) method.22,23 These sophisticated methods are
highly nonlinear and difficult to implement in practical
calculations.
For an efficient treatment of the exponential correlation factor,

a relatively simple method, the transcorrelated (TC) meth-
od,24−31 was suggested by Boys andHandy roughly half a century
ago. By using a similarity transformation, e−τĤeτ, the exponential
correlation factor is removed from the involved equations. The
original TC method of Boys and Handy was designed for the
single-determinant Jastrow ansatz and contains two equations for
the calculation of the correlation factor τ and the orbitals,
respectively. Initial calculations demonstrated that this method
can efficiently recover much of the correlation energy. On the
other hand, the resulting non-Hermitian effective Hamiltonian
cannot prevent the energy from falling below the exact one. The
lack of a variational bound is considered a severe problem and has
hampered broad application of the TC method for quite a long
time.
Recently, there has been renewed interest in the development

of the TC method. Ten-no used the TC Hamiltonian in the
perturbation and coupled electron-pair approximations.32 In this
approach, the correlation factor τ is a fixed local geminal
satisfying the cusp condition, and the reference function is
treated by conventional configuration expansions. The reference
functionΦ is much smoother than the many-body wave function
Ψ, and as a consequence, the configuration expansion of Φ
converges much faster. The price to pay is the introduction of a
three-body operator in the effective Hamiltonian as well as
various numerical problems due to non-Hermiticity. The non-
Hermiticity problem is more severe for self-consistent
optimization methods. Hino et al. suggested using the
biorthogonal basis to deal with the TC Hamiltonian.33 Umezawa
et al. optimized the orbitals by minimizing the energy
variance.34,35 Luo has suggested a general variational method
for simultaneous optimizations of the correlation factor and
reference function.36,37 Yanai et al. used a truncated canonically
transformedHamiltonian to eliminate the non-Hermiticity of the
effective Hamiltonian.38,39 Grüneis et al. recently offered a
detailed discussion on the choice of correlation factors.40

In this work, we incorporate the TC method into the full
configuration-interaction quantum Monte Carlo (FCIQMC)
method,41−43 aiming at highly accurate calculations on periodic
systems. FCI in principle provides the most accurate description
of the wave function, within an orbital representation, and the
results are usually used to benchmark other calculation results.
However, FCI methods are also extremely expensive with the
computational cost scaling exponentially with respect to the
system size. On the other hand, the extremely large FCI
expansion is also very sparse so that the vast majority of
expansion coefficients are essentially zero. This sparsity,
however, usually has no regular pattern, especially for strongly
correlated systems. The recently developed FCIQMC method

and its “initiator” adaptation (i-FCIQMC)42,44 offers a way to
detect and make use of this sparsity. This method is based on
Monte Carlo simulations of the dynamic evolution of the many-
body wave function with imaginary time

Ψ = Ψ =− ̂ −t t( ) e ( 0)t H E( )0 (4)

which leads to the ground state wave function in the long-time
limit Ψ0 = Ψ(t → ∞). The FCI expansion coefficients are
simulated by a set of walkers that evolve over imaginary time. In
the long-time limit, a steady distribution of the walkers is reached,
and the corresponding projection energy, in the large-walker
limit, converges to the FCI energy.With this method, FCI quality
calculations have been achieved on larger molecular systems45

and even periodic systems.43 F12 methods have also been
combined with the FCIQMC technique45,46 as universal a
posteriori corrections47,48 involving contractions of the one- and
two-body matrices with F12 integrals.
For periodic systems, plane waves are usually the most

appropriate basis functions. However, their smooth and nonlocal
properties make the slow convergence in the description of
electronic cusps an even more severe problem. This problem is
tremendously enhanced in FCIQMC with large basis sets aiming
to reach the CBL. In this work, we design an explicit correlation
method to resolve this problem in such calculations. In
FCIQMC, the matrix elements of the interaction operators
(e.g., the two-body Coulomb operators, etc.) are used intensively
and thus have to be either stored efficiently or calculated
repeatedly on the fly. One advantage of the plane wave basis is
that the two-body Coulomb matrix can be simply evaluated and
need not be stored, alleviating the memory bottlenecks
associated with storing the 4-index integrals of large systems.
We would like to keep this advantage, so that the application of
the intended explicit correlation method will not be limited to
small systems. This requires that the involved effective potential
and its matrix elements should be as simple as possible. In the
next section, we will describe the new TC method designed for
plane wave basis. In section 3, we will present our initial test
calculations on three-dimensional homogeneous electron gas
models, and this will be followed by some conclusions and
discussion in section 4.

2. METHOD
Following the idea of Ten-no,32 for a given N electron system
with a given basis set, we take a fixed correlation factor τ in the
Jastrow ansatz (2) and try to determine the reference functionΦ
by approximately solving an eigenvalue equation

̂ Φ = ΦH ETC (5)

where the effective Hamiltonian, the transcorrelated Hamil-
tonian, has a finite Baker−Campbell−Hausdorff expansion, up to
a double commutator, owing to the fact that the correlation
factor τ(R) is purely a function of the spatial coordinates of the
electrons

∑

τ τ τ

τ τ τ

̂ ≡ ̂

= ̂ + ̂ + ̂

= ̂ − ▽ + ▽ ·▽ + ▽

τ τ−

⎜ ⎟
⎛
⎝

⎞
⎠

H e He

H H H

H

[ , ]
1
2

[[ , ], ]

1
2

( )
1
2

( )
i

i i i i

TC

2 2

(6)

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.7b01257
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/acs.jctc.7b01257


Here, the TC Hamiltonian is non-Hermitian owing to the
presence of the single commutator term [Ĥ,τ]. For any
eigenvalue of such operators, the corresponding left and right
eigenvectors are usually different. In solving this type of
eigenvalue equation, approximations based on a variational
treatment are usually troubled by the non-Hermitian nature of
the matrix. Projection methods, however, such as the Power
method, provide a route forward for such matrices.49 Unlike
standard FCI methods, the FCIQMCmethod is not a variational
method but rather a stochastic version of the Power method. For
the Jastrow ansatz, the time evolution of the wave function can be
represented as

Ψ = Φτt e t( ) ( ) (7)

Φ = Φ =− ̂ −t t( ) e ( 0)t H E( )TC 0 (8)

where eq 8 can be simply derived from eq 4.
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It is worth noting that eq 8 is not constructed based on the
eigenvalue eq 5, where one may get frustrated due to the non-
Hermiticity and lack of variational bounds on ĤTC. The
equivalence of eq 4 and eq 8 reveals that methods based on
these equations (such as FCIQMC) can handle properly the
non-Hermiticity due to such a kind of similarity transformations.
Following eq 8, the FCIQMC method can be directly used for
the TC Hamiltonian ĤTC. The only difference is that here we are
dealing with non-Hermitian operators such that the involved
matrix elements are nonsymmetric. In calculations of these
matrix elements, the operators should not be mixed up with their
Hermitian conjugates (i.e., these operators should only be
applied to the right-hand side).
For periodic systems, the orbital basis functions to be used are

plane waves

ϕ =
Ωσ

·er( )
1 i

p
p r

,
0 (10)

where ω0 is the formal volume of the infinite system. All
operators in the effective Hamiltonian can then be represented in
terms of second quantization.50 The fixed correlation factor,
assumed to be spin-independent, can be expressed as
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where u ̃0(k) = ∫ eik·ru0(r) d3r is the Fourier transformation of u0.
Here, the two-body correlation factor is assumed to be a function
of rij = ri − rj due to translational symmetry. Similarly, for the
other required two-body operators, we have the following
expressions
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where Ŵ is the electronic (Coulomb) potential. The double
commutator in eq 6 is more complicated and gives rise to a three-
body operator and a two-body operator
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where denotes Fourier transformation. A complete treatment
of the three-body operator would be expensive, and we would
like to treat it only approximately.
Periodic systems are usually treated by the supercell

approach18 where the infinite system is approximated by
periodically arranged replicas of a finite cell Ω = L3. Because of
this artificial periodic boundary condition, the p vector of the
plane wave basis (10) is discretized (i.e., = ∈πp n n,

L
2 3), and

to make the basis finite, we take a cutoff |p| ≤ kc.
In the supercell approach, u0 and w0 have to fulfill the periodic

boundary conditions. The periodic w0 is usually constructed via
periodic summation.18 Following the same idea, we construct the
periodic correlation factor u0 by applying the periodic summation
on a local function u

∑= +
∈

u u Lr r n( ) ( )
n

0
3 (16)

However, such summations are not practically needed if we work
in k-space because
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The only thing that needs to be taken care of is that the inverse
Fourier transformation of u0 does not exist, and instead, there is a
Fourier series
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The two-body operator (▽u0)
2 is very important for the short-

range correlation and is closely related to the infinite summation
of all ladder diagrams in the linked cluster expansion.20 By taking
the periodic summation, (▽u0)

2 can be expressed as
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whose Fourier transformation is now
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As explained before, the correlation factor τ is designed here
mainly to capture the short-range cusp. In the short-range limit,
we have the asymptotic solution50

π
̃ = − ∼ ∞u kk

k
( )

4
, when4 (21)

which is the cusp condition expressed in the k-space. This
expression is derived for unlike spin pairs, whereas for electron
pairs with the same spin ̃ ∼ − πu k( )

k
2

4 . In principle, we can use

any kind of local function u in the TC calculation as long as it
satisfies the cusp condition. However, because we intend to
introduce approximations in the treatment of the three-body
term, we want u to be small and to vanish in the CBL. Therefore,
we design the following correlation factor
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where kc is the cutoff parameter of the basis set. The idea behind
this construction is simple: because the wave function can already
be described by a configuration description up to the given level
of resolution (characterized by kc), it is only needed to be
improved in the finer region of resolution by means of the
correlation factor. In real space, the above correlation factor
becomes
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where ∫= −
∞

x xsi( ) d
x

x
x

sin is the sine integral. A sketch of u(r)

is presented in Figure 1, which looks like a small “hole” with
depth = −2/πkc and width ∼ π/kc. Taylor expansion of u in the
small r region can be calculated for the leading terms

π
= − + + ···u r

k
r

( )
2

2c (24)

where the second term satisfies the cusp condition for unlike spin
pairs. In the large r region, the magnitude of u(r) decades like 1/
r2.
In principle, we can also use a spin-dependent correlation

factor, namely to reduce the correlation factor for parallel spin
pairs by one-half. However, the existence of exchange “holes”
between parallel-spin electrons keeps them largely apart anyway,
and as a consequence, the system energy is not very sensitive to
the cusp between such pairs. Therefore, the use of spin-
dependent correlation factors does not significantly improve the
convergence rate of energy. Rather, spin-dependent Jastrow
factors induce undesirable spin contamination51 into the wave
function so that the wave function cannot be an eigenstate of S2.
With the above short-ranged correlation factor, we can largely

ignore the complicated three-body operator in eq 15 and take
only a simple RPA type contribution from it. This contribution is
represented by a two-body operator
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which is generated by a contraction of the as+k−k′,σ″
† as,σ″ pairs in eq

15 (i.e., by a summation of those terms where k = k′). This term
makes the dominant contribution of the three-body operator to
the long-range correlation and is closely related to the
summation of all ring diagrams in the linked cluster
expansion.52−54 In the current method, the correlation factor is
short ranged, and therefore, the contribution of these terms will
be very small. In the applications studied in this paper, namely the
homogeneous electron gas in the rs range from 0.5 to 5, this
contribution was less than 1% of the total correlation energy. We
nevertheless keep it in the method for two reasons: first, it partly
recovers the three-body contributions, and second, it can be used
to estimate the magnitude of error due to the missing three-body
terms. Last but not least, the use of this term incurs almost no
extra computational cost.
Putting all terms together, we have the following two-body

effective potential
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where w̃(k) is the original Coulomb potential

Figure 1. A sketch of the correlation factor u(r).
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In eq 27, the last term coming from ▽u k(( ) )( )2 is only a
function of k and can be easily prepared and stored before the
FCIQMC simulation. Unlike other terms, this term is nonzero at
k = 0. Practical implementation of this TC method in FCIQMC
calculations is straightforward. We need only to replace the pure
electronic Coulomb potential w̃ with the TC effective potential
w̃eff, and this requires only a very small modification of the
existing code. Because calculation of the Coulomb potential
makes up only a very small portion of the total computational
cost of the FCIQMC method, use of the effective potential will
not make the computations more expensive.

3. RESULTS

Homogeneous electron gases (HEG) are important models for
the investigation of electron correlation in solids. They also play a
fundamental role in the development of density functional theory
(DFT).55 These models have been intensively studied by
variational and diffusion quantumMonte Carlo simulations.56−60

The DMC method is very efficient and can be applied to fairly
large systems. On the other hand, this method does not solve the
problem completely, owing to the fixed-node approximation,
even though this can be reduced by means of back-flow and
multideterminant techniques. The FCIQMCmethod contains in
principle no bias and offers a way to investigate the fixed node
error. Recently, the FCIQMC method has been used to
investigate the three-dimensional HEG model.61−63 Because of
the cusp singularity of the wave functions, the calculation suffers

from slow convergence with respect to the basis size with the
error of the calculated energy being proportional toM−1,M being
the total number of basis functions. Extrapolations based on this
M−1 behavior are used to estimate the results in the CBL. For an
accurate result, calculations need to be performed on fairly large
basis sets to reach the M−1 regime, and the computational cost
increases sharply with basis size.
To study the efficiency of the new TC method, we have

performed calculations on the same 3D HEG systems as
investigated in the previous studies.61,62 Two different supercell
sizes are used, containing 14 and 54 electrons, respectively. For
the 14 electron cell, calculations are carried out on four different
densities with Wigner−Seitz radius rs = 0.5, 1.0, 2.0, and 5.0,
respectively. For the 54 electron cell, we can only obtain
converged results for rs = 0.5 and 1.0 because the required total
number of walkers increases rapidly with rs. We use the initiator-
FCIQMC (i-FCIQMC) method with the initiator parameter set
to 3.0. In addition, we used the semistochastic method64 using
the |D| = 10000 leading determinants in the deterministic space65

as implemented in the NECI code.66

In Figure 2(a), the total correlation energy as a function ofM−1

is presented for the 14 electron system with rs = 0.5, where the
two different results are calculated by FCIQMCmethod with the
effective TC Hamiltonian (FCIQMC-TC) and the original
FCIQMC method, respectively. Here, M, the number of spin
orbital basis functions, is chosen to be 114, 186, 358, 514, 778,
and 1850, respectively. The FCIQMC result shows an
asymptotic linear convergence with respect to M−1, whereas
the result of FCIQMC-TC has a higher order of convergence.
According to the theoretical analysis in Appendix A, the best
asymptotic convergence we can expect isM−5/3. We also present
the same results in Figure 2(b) as functions ofM−5/3. The result

Figure 2. (a) Total correlation energy as a function ofM−1 calculated by FCIQMC and FCIQMC-TCmethods for the 14 electron system with rs = 0.5.
(b) The same results but presented as a function of M−5/3.

Figure 3.Total correlation energy as a function ofM−1 calculated by FCIQMC and FCIQMC-TCmethods for the 14 electron system with rs = 1.0, 2.0,
and 5.0, respectively.
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of FCIQMC-TC shows a roughly linear behavior in the large M
region, and in the smallM region, the convergence is faster. The
asymptotic M−5/3 convergence behavior offers a possibility of
extrapolations to the CBL in case of need. For the result in Figure
2, such an extrapolation is not necessary because 1850−5/3 is
already very close to the origin (∞−5/3) and the FCIQMC-TC
result has already converged at 0.1 millihartree (mEh) level.
Similar behaviors are observed for other densities of the 14

electron system. In Figure 3, the convergence with respect toM−1

of the two different calculations are presented for rs = 1.0, 2.0, and
5.0, respectively, in three plots. It turns out that, for larger rs, the
result converges faster. For rs = 1.0, the FCIQMC-TC energy has
converged within a millihartree error atM = 514, whereas for rs =
2.0 and 5.0, such a convergence can already been reached atM =
358 and 186, respectively. However, this does not mean that
simulations for larger rs’s are easier because the required number
of walkers (Nw) increases sharply with rs to reduce the initiator
error. For rs = 0.5−2.0, calculations are performed mostly with
Nw = 10

7 ∼ 108, whereas for rs = 5.0, we needNw = 10
9 already at

M = 114−358 and even Nw = 1010 atM = 514 and 778. For such
systems, to demonstrate the M−5/3 asymptotic convergence, we
have to deal with larger basis sets, which will require even larger
Nw’s, but on the other hand, such difficult calculations are not
needed for our accuracy requirement.
Computations on the 54 electron systems are much more

expensive, and with present computational resources, we can
only obtain converged results for rs = 0.5 and 1.0. For rs = 0.5,
calculations are performed with six different basis sets with M =
246 → 1850, where Nw = 108 is found to be sufficient for all of
them. For rs = 1.0, we can obtain converged results for M up to
1030. For M = 246, 358, and 514, the number of walkers Nw is
taken to be 1010, whereas forM = 778 and 1030, we need Nw = 2
× 1010. In Figure 4, the results for 54 electron systems are
presented as functions of M−5/3 for rs = 0.5 and 1.0. The
asymptotic behaviors are clearer than those of the 14 electron
systems for the FCIQMC-TC results, and extrapolations are
used to evaluate the results in the CBL.
In Table 1, the complete basis limit results are presented for all

calculated systems. The results for the 14 electron systems are
simply taken from those of the largest basis sets used. Within the
given error bars, these results are already converged to the CBL.
The results forN = 54 are obtained by extrapolation based on the
M−5/3 convergence rate. Compared with the previous FCIQMC
results, the new results agree well for the 14 electron systems with
the differences in total energies ≤1 mEh. The new results are also
in good agreement with the recent high-order coupled-cluster

study of theN = 14 electron system byNeufeld and Thom.63 The
small differences between the FCIQMC results of Shepherd et
al.62 and Neufeld and Thom63 for the 14 electron systems arise
because of the use of different extrapolation formulas to the
infinite-basis set limit, the former being based on M−1, whereas
the latter includes higher order terms (b0 + b1M

−1 + b2M
−2). This

allows the use of a larger number of points in the extrapolation
procedure (with smaller M) and leads to somewhat higher
extrapolated correlation energies, the implication being that a
simple M−1 extrapolation tends to overshoot the exact result
unless a sufficiently large M has been reached. Although the
differences are not large, this indicates that the precise form of
extrapolation is indeed consequential and provides further
motivation to try to minimize basis-set errors through analytic
means as far as possible.
ForN = 54, the new transcorrelated result at rs = 0.5 is 10 mEh

above the previous FCIQMC result of Shepherd et al.61 based on
M−1 extrapolation. At this density, the FCIQMC-TC result is
∼40 mEh below the back-flow DMC result,59 and this indicates
that the fixed-node error of the BF-DMC result is still quite large
for rs = 0.5. For rs = 1.0, the previous FCIQMC result forN = 54 is
roughly the same as the BF-DMC result, whereas the new result
is ∼10 mEh below the BF-DMC result. This reveals the fixed
nodes error decays very rapidly with rs, and we expect that at even
larger rs the fixed-node error of BF-DMCwill be even smaller and
hence can be ignored.
The effective TC potential in eq 27, now denoted as w̃eff(k, p,

q) = w̃(k) + w̃TC[u ̃](k, p, q), is constructed with u ̃(k) defined in
eq 22. Because u ̃(k) contains only high frequency terms, it might

Figure 4. Total correlation energy as a function ofM−5/3 calculated by FCIQMC and FCIQMC-TC methods for the 54 electron systems with rs = 0.5
and 1.0.

Table 1. Total Correlation Energies in the Complete Basis
Limit for a Variety of N and rs Calculated with the FCIQMC-
TC Methoda

Ecorr (a.u.)

rs
(a.u.) N

FCIQMC-
TC FCIQMC62 FCIQMC63 BF-DMC

0.5 14 −0.5948(2) −0.5959(7) −0.59467(9)
54 −2.425(1) −2.435(7) −2.387(2)

1.0 14 −0.5309(2) −0.5316(4) −0.5313(2)
54 −2.134(2) −2.124(3) −2.125(2)

2.0 14 −0.4440(3) −0.444(1)
5.0 14 −0.3078(3) −0.307(1)

aExtrapolation based on M−5/3 behavior is used for the 54 electron
systems. The results are compared with the previous FCIQMC
results62,63 and back-flow DMC results.59
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be expected that the effective potential w̃TC has a weak coupling
to the low frequency basis space, and thus, this potential behaves
roughly like a constant potential in the dynamic evolution. If this
would be the case, it should be expected that the energy
difference produced by w̃TC

Δ = − ‐E t E t E t( ) ( ) ( )FCIQMC FCIQMC TC (29)

should be approximately independent of imaginary time. In
Figure 5, such energy differences for the 14 electron systems with

rs = 0.5−5.0 and on the basis M = 358 is presented for t = 0 and
∞. In the calculation, the initial wave function is always chosen as
the Hartree−Fock (HF) wave function. It can be seen that, at
high density, ΔE(0) is close to ΔE(∞), but at low density, they
are quite different. This indicates that the effective potential w̃TC
does have a coupling to the wave function, especially in the low
density region. It turns out that, for a given number of particlesN
and a given basis sizeM, ΔE(0) is independent of rs. This can be
easily understood by scaling arguments. At the HF level, the
kinetic energy∝ rs

−2 and the exchange energy∝ rs
−1, because the

corresponding operators − ∑ ▽i i
1
2

2 and ∑ij1/rij scale like rs
−2

and rs
−1, respectively. By referring to eq 6, we get the expression

of ΔE(0)

∑ τΔ = ⟨Φ | ▽ |Φ ⟩E(0)
1
2

( )
i

iHF
2

HF
(30)

On the basis of eqs 11 and 23, it is not difficult to find that
∑i(▽iτ)

2 scales as a constant of rs and, therefore, ΔE(0) does
not depend on rs.
The conclusion that the effective potential w̃TC couples to the

wave function can also be verified by looking at the difference of
the final solutions of the wave function between the two different
methods. In Figure 6, the CI coefficient of the Hartree−Fock
determinant (C0) in the final solutions of the wave function with
the two different methods is presented for different basis sets.
The results are calculated for the 14 electron system with rs = 2.0.
C0 of the FCIQMC-TC result is found to be clearly larger than
that of the FCIQMC result. This also serves as evidence that the
effective potential does couple to the wave function space. In
Figure 6, it can be found that both curves show a rough 1/√M
convergence. For the FCIQMC result, this can be easily
understood based on variational argument, that because the
energy converges like M−1, the wave function should converge

like 1/√M. As for the FCIQMC-TC result, where the energy
converges likeM−5/3, the variational argument cannot be applied
because the Hamiltonian is not fixed and itself depends on the
basis.

4. CONCLUSIONS
In this work, we have designed a simple but efficient
transcorrelated method for plane wave basis functions. The
effective Hamiltonian contains only several two-body operators
and thus can be easily implemented. To systematically reduce the
error due to the neglect of the three-body operator in the original
transcorrelated Hamiltonian, the correlation factor is constructed
in a natural and systematic way according to the basis set. As an
initial test, this simple effective Hamiltonian is used in FCIQMC
calculations of homogeneous electron gas models. The results
demonstrate that, with the same computational cost, this simple
method can improve the FCIQMC convergence rate from
O(M−1) to O(M−5/3).
We have also demonstrated that the effective transcorrelated

Hamiltonian does couple to the wave function and changes the
dynamic evolution of the FCIQMC simulations. This means that
the FCIQMC-TC results cannot be precisely estimated based on
an a posteriori use of the effective Hamiltonian.
The effective Hamiltonian, in principle, can also be applied to

other projection methods such as the coupled cluster method.
Because of the simple structure of the effective Hamiltonian, its
implementation should be easier than that of the usual F12
methods. We are currently working on this implementation.
Generalization of this method to other types of basis is

straightforward, and the basis-dependent correlation factors can
be constructed as follows: first, take a usual F12 factor, for
example a Slater type geminal f(r12) = exp(−γr12); then, the
correlation factor can be constructed by projection against the
current (orthonormal) basis set {ϕi, i = 1, ···, M}

∑ ϕ ϕ= | − | −u f Fr r r r r r( , ) ( ) ( ) ( )
i j

M

ij i j1 2 1 2
,

1 2
(31)

∫ ϕ ϕ= | − |F f r rr r r r( ) ( ) ( ) d dij i j1 2 1 2
3

1
3

2 (32)

The effective two-body transcorrelated potential can then be
calculated with this correlation factor. Comparing with the plane
wave basis, the expressions may become redundant. Therefore,

Figure 5. Energy differences ΔE(t) at t = 0 and t = ∞ for 14 electron
systems with M = 358 presented for all different densities rs = 0.5−5.0.

Figure 6. CI coefficient of the Hartree−Fock determinant in the final
solutions of wave function with the two different methods presented for
different basis sets. The results are calculated for the 14 electron system
with rs = 2.0.
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the induced one-body and two-body matrix elements have to be
prepared and stored. We plan to work on this in the near future.

■ APPENDIX

A Regularities and Convergence Rates
The regularity of many body wave functions Ψ is C0,1, and the
non-smoothness comes largely from the cusps between electron
pairs. (In the present analysis, we concentrate only on the
electronic cusps and ignore the electron-nuclear cusps.) For an
understanding of the relation between the regularity and the
convergence rate, it is enough to take the example of a two-
electron system, which is essentially a one-body problem in the
center of mass coordinate. Because of the electronic cusp, the
short range behavior of the exact wave function for a three-
dimensional non-spin-polarized system looks like |ψ̃(k)| ∝ k−4

for k → ∞. This means that, for a finite plane wave basis with a
cutoff at kc, the error of the wave function due to the missing
resolution for the cusp can be estimated as

δψ ̃ ∝
| | >

| | ≤

⎧
⎨⎪
⎩⎪

k
k

k
k

k

k
( )

1
,

0,

c

c

4

(33)

The error of a variational energy can then be approximated as
(ignoring any change of normalization)

∫
δ δψ δψ

δψ δψ

≈ ⟨ | ̂ | ⟩

≈ ̃ ̃

∝

E H

k k

k

k k
1
2

( ) ( ) d

1

c

2 3

3
(34)

where we have used that fact that the leading contribution comes
from the kinetic energy. By using a Jastrow factor, the regularity
of the wave function is improved to C1,1, which means that now
the first order derivatives of ψ are in C0,1. This leads to an
asymptotic short range behavior of the gradient of the reference

function ϕ|▽ | ∝ → ∞͠ −k kk( ) , for4 . Similarly, the energy
error for a finite basis set can be estimated as

∫δ δ ϕ≈ ▽ |

∝

͠E k

k

k
1
2

( ) d

1

c

2 3

5
(35)

Because the basis size M ∝ kc
3, we see that the Jastrow factor

improves the convergence rate from −M( )1 to −M( )5/3 .
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