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Exact diagonalization expansions of Bose or Fermi gases with contact interactions converge very slowly due
to a nonanalytic cusp in the wave function. Here we develop a transcorrelated approach where the cusp is treated
exactly and folded into the many-body Hamiltonian with a similarity transformation that removes the leading-
order singularity. The resulting transcorrelated Hamiltonian is not Hermitian but can be treated numerically with
a standard projection approach. The smoothness of the wave function improves by at least one order and thus the
convergence rate for the ground-state energy improves. By numerical investigation of a one-dimensional gas of
spin- 1

2 fermions we find the error in the transcorrelated energy to scale as M−3 with a single-particle basis of M

plane waves compared to M−1 for the expansion of the original Hamiltonian and M−2 using conventional lattice
renormalization.
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I. INTRODUCTION

In recent years there has been increasing interest in the
experimental realization of strongly correlated quantum
gases with bosonic or fermionic ultracold atoms [1–5].
Their theoretical description is difficult [6,7] and efficient
numerical methods are required to describe the system
reliably and accurately. One straightforward approach is to
diagonalize the Hamiltonian in a Fock basis, i.e., a finite basis
of appropriately symmetrized products of single-particle
wave functions [8–15]. Besides the energy, this approach
also provides convenient access to the full wave function
from which all system properties can be computed. With the
recently developed full configuration interaction quantum
Monte Carlo method [16] it has become possible to solve
much larger problems than with conventional, deterministic
approaches [17–19]. Nevertheless, the exact diagonalization
in Fock space is computationally expensive as the size of
the many-particle Fock basis grows combinatorially with
the number of particles and the size of the single-particle
basis. Moreover, the convergence towards exact results with
increasing the size of the single-particle basis is painfully
slow for short-range interacting ultracold atoms. Specifically,
for a one-dimensional model with δ function interactions,
which models ultracold atoms in a tightly confining trap [20],
the energy converges to the exact result with an error that
scales as M−1 with a basis set of M plane waves, or M−1/2

*jeszenszki.peter@gmail.com
†H.Luo@fkf.mpg.de
‡A.Alavi@fkf.mpg.de
§J.Brand@massey.ac.nz

with a basis set of harmonic-oscillator eigenfunctions [11].
The reason for this slow convergence is the fact that the
short-range interaction induces a cusp into the many-body
wave functions at particle coalescence, i.e., whenever two
particles meet [20,21]. Mathematically, the wave function
belongs to the differentiability class C0, i.e., it is continuous
but its first derivative is discontinuous. Approximating such a
shape of the wave function by linear combinations of products
of smooth single-particle functions is highly inefficient.

One possible way to improve energy estimates in a finite
basis set is to renormalize the parameters of the Hamiltonian
[22–24]. This approach is closely related to the concept of
a running coupling constant in quantum field theory, where
the coupling constant depends on a momentum cutoff [25]. In
two- and three-dimensional systems with contact interaction
it is necessary to renormalize the interaction constant with the
basis size (momentum cutoff) in order to avoid divergences.
While this is not necessary in one dimension, adjusting the
interaction strength can still improve convergence properties
[23]. The simplest possibility is to adjust the interaction
constant such as to yield the exact value of the ground-state
energy for two interacting particles from a calculation in the
truncated basis. We are not aware whether the improved con-
vergence rate of a many-body calculation has been determined
before, but in Sec. III we report numerical results for three
and six fermions that indicate that the convergence rate of the
energy error improves by one order from M−1 to M−2. Renor-
malizing the coupling strength based on an exactly solvable
limit of the many-body problem was proposed in Ref. [23]
and the possibility of adjusting the dispersion relation of the
kinetic-energy part of the Hamiltonian in order to improve
the convergence rate was discussed in Refs. [24,26] for two-
and three-dimensional Fermi gases. In a similar spirit as the
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renormalization of the coupling constant, a more elaborate
effective Hamiltonian approach has been used to speed up the
convergence of few-particle calculations in harmonic trapping
potentials [27,28]. Other approaches to optimize the finite-
basis representation of the wave function have suggested mod-
ifying the cutoff procedure for the exact diagonalization pro-
cedure [29], or scaling the single-particle basis function [30].

A different way to improve the convergence properties of
a basis set expansion is to use basis functions that explicitly
depend on the interparticle distances instead of a Fock basis
[31–34]. However, the cost of the determination of the matrix
elements exponentially increases with the number of particles
restricting the applicability of the method to the few-particle
regime.

The route that we follow in this work is to introduce a
Jastrow factor eτ [35] in order to capture the short-range
behavior of the exact N -particle wave function �

�(x1, x2, . . . , xN ) = eτ�(x1, x2, . . . , xN ), (1)

τ =
N∑

k<l

u(xk − xl ), (2)

where the correlation factor τ depends on the pairwise sepa-
ration distances of particles. The function u(x) is designed to
describe important two-particle correlations of �, while the
function � is much smoother. Jastrow factors as in Eq. (1) are
frequently used in variational and diffusion quantum Monte
Carlo approaches for ultracold atoms [36–40], ab initio nu-
clear physics [41], the electronic structure of atoms, molecules
[42,43], and solid-state materials [44,45].

In this paper we follow the transcorrelated approach [46],
where the Jastrow factor is folded into the Hamiltonian.
Starting from the stationary Schrödinger equation

Ĥ� = E�, (3)

and using Eq. (1) we obtain the transcorrelated Schrödinger
equation

e−τ Ĥ eτ︸ ︷︷ ︸
H̃

� = E�, (4)

where the transcorrelated Hamiltonian H̃ = e−τ Ĥ eτ is re-
lated to the original Hamiltonian Ĥ by a similarity trans-
formation and thus shares the same eigenvalue spectrum.
The transcorrelated method has already been widely used for
computations of atomic, molecular [46–49], and solid-state
properties [50,51], where typically the emphasis has been on
finding an optimized correlation factor τ , while � is taken as
a simple reference function with the correct particle exchange
symmetry, e.g., a Slater determinant. Here, we follow the idea
of Ref. [52] where the function u(x) is designed to exactly
reproduce the singular short-range behavior of the exact wave
function �, while the transcorrelated function � is expanded
in a Fock basis. The transcorrelated Schrödinger Eq. (4) is
then solved as an exact diagonalization problem. Reference
[52] demonstrated that an improved convergence rate and
highly accurate energies for the homogeneous Coulomb gas
could be achieved with this approach.

In the following, we concentrate on a one-dimensional
quantum gas of bosons or fermions with contact interactions.
By constructing a correlation factor with an appropriate cusp,
we show that the smoothness of the transcorrelated wave
function is improved by at least one order, i.e., from C0

to C1 where the first derivative is continuous. For spinless
bosons where the wave function is symmetric under pairwise
particle exchange, the transcorrelated wave function even im-
proves further to C2, i.e., the second derivative is continuous
as well. The explicit and exact form of the transcorrelated
Hamiltonian is derived in real space, and in momentum space
in second quantization. Three-particle interactions occur as a
consequence of the similarity transformation. While a useful
approximation is developed that only requires evaluation of
effective two-particle terms, it is also shown that convergence
to exact results for the energy can be achieved with a purely
one- and two-body effective Hamiltonian if the correlation
factor is appropriately adjusted with the basis set size. While
the transcorrelated approach developed here is not restricted
to ground states or the absence of trapping potentials, we
specifically consider the cases of the homogeneous gas of
spin- 1

2 fermions and spinless bosons and compare with exact
solutions based on the Bethe ansatz [21,53–55].

This allows for easy benchmarking of our numerical re-
sults, which are presented for the spin- 1

2 Fermi gas in a plane-
wave basis. We find that the convergence rate of the energy
error is improved by the transcorrelated method from M−1 to
M−3 in a basis of M single-particle functions.

This paper is organized as follows. After introducing the
original Hamiltonian with δ interactions and discussing the
wave function cusp in Sec. II A, we construct an appropriate
correlation factor in Sec. II B before deriving the explicit form
of the transcorrelated Hamiltonian in real space in Sec. II C.
In Sec. II D we show that the correlation factor improves the
smoothness of the wave function by one or two orders before
providing an analytical estimate for the convergence rate of
the energy in Sec. II E. Discussing the momentum space form
of the transcorrelated Hamiltonian in second quantization
and a convenient approximation for the three-body term in
Sec. II F concludes the theory part II. Numerical results for
spin- 1

2 fermions are presented in Sec. III. After introducing
the methods used in Sec. III A, we present calculations of
the energy error for two particles in Sec. III B, for three
particles in Sec. III C, and for six particles in Sec. III D before
concluding in Sec. IV.

II. THEORY

A. One-dimensional quantum gas with contact interaction:
Cusp of the wave function

We consider a gas of N quantum particles of mass m in
one spatial dimension. Either a single or several spin flavors of
bosons or fermions may be present. The particles interact with
a contact (zero-range) interaction, which can be represented
by a Dirac delta potential in the Hamiltonian

Ĥ = − h̄2

2m

N∑
i=1

[
∂2

∂x2
i

+ V (xi )

]
+ g

∑
i<j

δ(xi − xj ), (5)

053627-2



ACCELERATING THE CONVERGENCE OF EXACT … PHYSICAL REVIEW A 98, 053627 (2018)

where xi is the spatial coordinate of the ith particle and V (x)
a smooth external potential. The external trapping potential
V (x) does not change the singlular properties of the wave
function, which are dominated by the contact interaction term.
For this reason, we will omit the potential V (x) for many
examples, which allows the comparison to exact solutions
obtained by the Bethe ansatz, e.g., for spinless bosons [21]
and spin- 1

2 fermions [53,54]. Our transcorrelated approach for
improving the smoothness of the wave function, however, is
not restricted to the homogeneous system and the asymptotic
convergence rates that we report in this work are not affected
by smooth external potentials.

The Hamiltonian (5) can be realized with ultracold atoms
in a tightly confining wave-guide-like trapping potential [20].

The potential strength g can be expressed through a one-
dimensional scattering length a as

g = −2h̄2

ma
. (6)

The contact interaction can be also expressed as boundary
condition for the wave function at coalescence, i.e., when
two particles meet [21]. Note that fermions only feel the
presence of the contact interaction term between different spin
flavors due to the Pauli exclusion principle. Near the coales-
cence point the wave function takes the form (in analogy to
Refs. [24,56,57])

�(x1, x2, . . . )
xij →0= (

a − |xij |
)
Aij (Xij , x1, . . . , xi−1, xi+1, . . . , xj−1, xj+1, . . . ) + O(xij ), (7)

where xij = xi − xj is the relative and Xij = (xi + xj )/2 is
the center-of-mass coordinate relating to the pair with the ith
and j th particles. The O(xij ) term is regular at coalescence.
For fermions the function Aij (Xij , x1, . . . ) is equal to zero if
both particles i and j belong to the same spin flavor due to
the Pauli exclusion principle, which also means that they do
not feel the contact interaction. The term a − |xij | in Eq. (7)
describes a cusp in the wave function with a discontinuity in
the first derivative and a singularity in the second derivative.
The wave function thus belongs to the differentiability class
C0. The cusp in the wave function further has the consequence
that the Fourier transform of the wave function to momentum
space has k−2 tails for large k and, thus, the single-particle
momentum distribution falls off as k−4, as is well known
for quantum gases in one dimension with contact interactions
[57].

B. Correlation factor for 1D system with contact interaction

In this work we follow a similar procedure to Ref. [52]
and design the correlation factor τ of Eq. (2) such that the
boundary condition (7) is satisfied automatically. To this end
it is sufficient to require the function u(x) to have the form

u(x)
x→0= u(0) − 1

a
|x| + O(x2). (8)

This restriction is enough to obtain the correct boundary
condition, which can be seen by substituting Eq. (8) into the
Jastrow factor

eτ =
⎛
⎝ ∏

k �=i,l �=j

eu(xkl )

⎞
⎠eu(0) e− 1

a
|xij |+O(x2

ij )︸ ︷︷ ︸
1− 1

a
|xij |+O(x2

ij )

. (9)

It is convenient to define the correlation factor in momen-
tum space to have the correct large-k dependence and a simple
cutoff for small k

ũ(k) =
{

2
ak2 if |k| � kc,

0 if |k| < kc,
(10)

where the parameter kc sets an inverse length scale. The
advantages of choosing this specific form of the correlation
factor will become fully clear in the following sections. An
important feature is the free parameter kc, which controls
the size of the correlation factor and becomes important for
suppressing three-particle contributions in the transcorrelated
Hamiltonian. The function u(x) can be obtained by the inverse
Fourier transform u(x) = (2π )−1

∫
exp(−ikx)ũ(k)dk, as

u(x) = 2

aπ

(
cos (kcx)

kc

+ x Si(kcx) − π

2
|x|
)

, (11)

where Si(x) is the sine integral function [58]. The function
u(x) is found to be smooth except at the origin. Considering
the case when x is close to zero we obtain the expression

u(x) = 2

akcπ
− 1

a
|x| + O(x2), (12)

which satisfies the condition (8).
The Jastrow factor with u(x) from Eq. (11) is shown in

Fig. 1. Close to the coalescence point it resembles the absolute
value function, as is expected from Eqs. (7) and (9). It can be
also read from these equations that the slopes of the two sides
of the absolute value function linearly depend on the inverse
of the scattering length. When the scattering length tends to
infinity the slope goes to zero and the cusp disappears. This is
the noninteracting limit.

The parameter kc adjusts the width of the Jastrow factor. As
we choose larger momentum cutoff in the momentum space it
makes the function narrower in real space.

The physically relevant information about the scattering
length comes exclusively from the cusp of the Jastrow factor
near the coalescence point. The long-range behavior is an
artifact from the definition (10). Since the long-range part
of the correlation factor is smooth, however, it is easier to
correct it with the Fock-space expansion of the transcorre-
lated wave function �. Moreover, the long-range part can be
easily damped by increasing the parameter kc. In Sec. III we
will numerically examine the accuracy of the transcorrelated
method and we will show that it improves the efficiency of the
numerical approach.
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(a)

(b)

FIG. 1. Jastrow factor exp[u(x )] with u(x ) from Eq. (11). (a)
Attractive and (b) repulsive interactions with parameter values for
as and kc as indicated.

C. Transcorrelated Hamiltonian in real space

The explicit form of the effective Hamiltonian in Eq. (4)
can be determined from the expansion

H̃ = Ĥ + [Ĥ , τ ] + 1
2 [[Ĥ , τ ], τ ] + · · · . (13)

The external and the particle-particle interaction potentials
commute with the function τ as they can be expressed as
a function of the particle positions. The only nonzero com-
mutators come from the kinetic term, where only the first
three terms are different from zero. Thus the expansion (13)
terminates to yield

H̃ = Ĥ − h̄2

2m

∑
i

[
∂2

∂x2
i

, τ

]
− h̄2

4m

∑
i

[[
∂2

∂x2
i

, τ

]
, τ

]
.

The remaining commutators can be calculated analytically
[46,52],

H̃ = Ĥ −
∑

i

[
1

2

∂2τ

∂x2
i

+ ∂τ

∂xi

∂

∂xi

+ 1

2

(
∂τ

∂xi

)2
]

h̄2

m
. (14)

As it can be seen from the term ∂τ
∂xi

∂
∂xi

in the summation on
the right-hand side, the resulting effective Hamiltonian is not
Hermitian. As a consequence, the left and right eigenvectors

are different and connected by the linear transformation

|�L〉 = e2τ |�〉,
where |�L〉 is the adjoint of the left eigenvector and |�〉 is
the right eigenvector. Since the transcorrelated transformation
of Eq. (4) is a similarity transformation, the effective Hamil-
tonian H̃ nevertheless has the same real-valued eigenvalue
spectrum as the original (Hermitian) Hamiltonian Ĥ .

Properties such as correlation functions or expectation
values of general operators can be expressed through the
transcorrelated wave function as

〈�|Â|�〉 = 〈�|eτ Âeτ |�〉
〈�|e2τ |�〉 . (15)

Evaluating such expectation values involves high-dimensional
integrals, which is usually prohibitive in a Fock basis. If the
correlation factor is small, however, one can make use of the
cumulant expansion,

〈�|eτ Â eτ |�〉
〈�|e2τ |�〉 = 〈�|Â|�〉c + 〈�|{Â, τ }|�〉c

+ 1

2
〈�|{{Â, τ }, τ }|�〉c + · · · , (16)

to obtain approximate results. Here {·, ·} is the anticommuta-
tor and 〈�| · · · |�〉c denotes the cumulant of operator products
[59].

D. Smoothness of the transcorrelated wave function

The transcorrelated transformation improves the smooth-
ness of the wave function, which eventually leads to faster
convergence of the basis expansion. Here we consider two
interacting particles in a smooth and separable external poten-
tial, where we will prove that the transcorrelated eigenfunc-
tion is at least C1, i.e., it can be differentiated at least once
with a continuous derivative. In the case of additional even
exchange symmetry of the wave function, the smoothness
further improves to C2, i.e., the second derivative of the wave
function is also continuous. This is an improvement to the
eigenfunctions of the original Hamiltonian which are only C0.

We consider two particles, e.g., two bosons, or fermions
in different spin states, and introduce the center-of-mass and
relative coordinates

X = 1√
2

(x1 + x2), (17)

x = 1√
2

(x1 − x2), (18)

respectively. For convenience, we assume that the smooth
external trapping potential V (x) is further separable, as it is
the case for harmonic trapping potentials frequently employed
for ultracold atoms:

2∑
i=1

V (xi ) = v(x) + V (X). (19)

It follows that the Hamiltonian of Eq. (5) can be written as the
sum H = HCOM + Hrel, with terms that only depend on either
the center-of-mass or relative coordinate, respectively. The
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Schrödinger equation (3) is thus solved with a wave function
of the form

�(x1, x2) = χ (X)ψ (x), (20)

and eigenvalue E = ECOM + Erel. The equation for the
center-of-mass motion is free of singular operators and thus
leads to a smooth wave function χ (X). The equation for the
relative motion, however, contains the particle-particle contact
interaction[

− h̄2

2m

∂2

∂x2
+ v(x) + g√

2
δ(x)

]
ψ = Erelψ. (21)

The wave function of relative motion ψ (x) is not smooth but
rather has a cusp as we discussed earlier in Sec. II A.

Since we are only interested in the smoothness properties
at the particle coalescence point x = 0, we may take the
simplified correlation factor

τ (x) = −
√

2

a
|x|, (22)

which has the same small-x expansion up to first order as the
function of Eq. (11). Applying the transcorrelated similarity
transformation Eq. (4) with ψ (x) = exp[τ (x)]φ(x), the δ-
function interaction term is eliminated. The transcorrelated
Schrödinger equation for the relative coordinate then can be
written in the form

− h̄2

2m

d2φ

dx2
=

√
2h̄2

ma
S(x)

dφ

dx
− v(x)φ + E′φ, (23)

where a constant term from the first derivative of τ has been
absorbed as a shift in the energy E′ = Erel + h̄2/2ma2, and

S(x) = d|x|
dx

=
{

1, x > 0,

−1, x < 0.
(24)

In order to examine the smoothness of the function φ(x),
we follow the idea of Kato [60] by designing an elementary
solution of d2

dx2 ,

G(x) = |x|
2

ζ (x), (25)

where ζ is a sufficiently smooth function that equals 1 for
|x| � 1 and zero for |x| > 2. Then we have

d2

dx2
G(x) =

{
δ(x), |x| < 1,

S(x)ζ ′(x) + |x|
2 ζ ′′(x), otherwise.

We apply a convolution with respect to G on both sides of
Eq. (23),

G ∗
(

d2

dx2
φ

)

= −2G ∗
(√

2

a
S(x)

dφ

dx
− m

h̄2 v(x)φ + mE′

h̄2 φ

)
,

and we find the leading singular term for φ,

φ(x) = −2
√

2

a

∫ ∞

−∞

|x − y|
2

ζ (x − y)S(y)φ′(y)dy

+ smooth part.
Using partial integration we obtain an integral equation that
depends on φ(x) instead of its derivative:

φ(x) =
√

2

a

∫ ∞

−∞
[S(y − x)S(y)ζ (x − y)

+ 2|x − y|δ(y)ζ (x − y)

+ |x − y|S(y)ζ ′(x − y)]φ(y)dy + smooth part.

By noticing that S(y − x)S(y) = 1 in the whole integration
domain except (0, x) or (x, 0) (depending on whether x > 0
or x < 0), we obtain

φ(x) = 2
√

2

a

{
xζ (x)φ(0) − ∫ x

0 φ(y)ζ (x − y)dy + smooth part, x > 0,

−xζ (x)φ(0) − ∫ 0
x

φ(y)ζ (x − y)dy + smooth part, x < 0.

Hence φ(x) is continuous. Since the singularity only takes
place at x = 0, we can simply take ζ (x) = 1 for small vari-
ables. Then we get the expressions for the first, second, and
third derivatives (φ′ ≡ dφ/dx)

φ′(x) = 2
√

2

a

{
φ(0) − φ(x) + smooth part, x > 0,

−φ(0) + φ(x) + smooth part, x < 0,
(26)

φ′′(x) = 2
√

2

a

{−φ′(x) + smooth part, x > 0,

φ′(x) + smooth part, x < 0,
(27)

φ′′′(x) = 2
√

2

a

{−φ′′(x) + smooth part, x > 0,

φ′′(x) + smooth part, x < 0.
(28)

It follows from Eq. (26) that the first derivative φ′ is
continuous and thus the relative wave function is C1. Since
the center-of-mass wave function χ (X) is smooth, it follows

that also the full wave function �(x1, x2) of Eq. (20) is at least
C1.

Even stronger results follow when the wave function
is known to be symmetric under particle exchange, i.e.,
�(x1, x2) = �(x2, x1). This is manifestly the case when the
particles are spinless bosons but also for the ground state of
distinguishable particles if the Hamiltonian is symmetric (e.g.,
as well for fermions with different spin quantum numbers
in the absence of spin-dependent terms in the Hamiltonian).
From the symmetry of � it then follows that the relative
wave function is even, φ(x) = φ(−x), and, as a consequence,
its first derivative is an odd function. From Eq. (26) it can
be seen that the first derivative is also continuous, which
means that it must have a node at the origin, i.e., φ′(0) = 0.
Using this fact it can be seen from Eq. (27) that the second
derivative is continuous as well, and the third derivative is
the first one where a discontinuity may appear. In this case
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of even particle exchange symmetry, the transcorrelated wave
function is thus C2, i.e., the smoothness have improved by two
orders compared to the original wave function �(x1, x2).

These results derived for two particles can be expected
to carry over to multiparticle wave functions since the only
singular term in the Hamiltonian is two-particle interaction
in the form of a Dirac δ. For spinless bosons the multi-
particle wave function is symmetric under the exchange of
an arbitrary pair of particle coordinates. Hence we expect
the transcorrelated multiparticle wave function to be C2 and
thus have improved smoothness by two orders compared to
the original wave function. We have checked this property
by explicitly constructing the two- and three-particle wave
functions of the Lieb-Liniger model of interacting bosons in a
one-dimensional box with periodic boundary conditions [21],
and found that the transcorrelated wave functions have con-
tinuous first and second derivatives while the third derivatives
are discontinuous.

For fermions the wave function has to be antisymmetric
under the exchange of fermions, which carries over to an
antisymmetry of the spatial wave function under exchange of
two-particle coordinates with the same spin (like-spin pairs
are thus not affected by the δ interaction). Pairs of particles
with opposite spin are affected by the δ interaction but, for
more than two (spin- 1

2 ) fermions, the wave function is in
general not symmetric under the exchange of the coordinates.
Thus it is expected that the transcorrelated wave function is
C1 with a discontinuous second derivative. We have explicitly
constructed the ground-state wave function for three fermions
(one spin-↑ and two spin-↓) in the Yang-Gaudin model of in-
teracting fermions in a box with periodic boundary conditions
and verified that the second derivative of the transcorrelated
wave function has a discontinuous jump at the coalescence
of different-spin particles. We will discuss further numerical
evidence for the C1 nature of the transcorrelated three-particle
wave function for fermions in Sec. III C.

E. Convergence rate for ground-state energy

In the numerical procedure we have to truncate the many-
particle Hilbert space and work with a finite basis. Let us
consider the case where we truncate the single-particle Hilbert
space with a momentum cutoff kmax and otherwise perform an
exact diagonalization. We want to estimate the size of the error
δE = E − Ea that is made by replacing the exact energy E by
the eigenvalue Ea obtained in the truncated basis with cutoff
kmax.

Let us write

H̃ |�〉 = E|�〉 (29)

for the eigenvalue equation in full Hilbert space and

H̃PP |�a〉 = Ea|�a〉 (30)

for the approximate, truncated eigenvalue equation solved
by the computer. Here, we have introduced the truncated
Hamiltonian H̃PP = PH̃P , where P is the projector onto the
N -particle linear space spanned by the Fock states constructed
from plane waves with momentum −kmax � k � kmax. Noting
that H̃ is not necessarily Hermitian and has a left eigenvector

equation 〈
�L

a

∣∣H̃PP = Ea
〈
�L

a

∣∣, (31)

we may obtain an expression for the energy error δE from
projecting Eq. (29) onto 〈�L

a |. Simple manipulation yields

δE
〈
�L

a

∣∣�〉 = 〈
�L

a

∣∣H̃PQ|�〉, (32)

where H̃PQ = PH̃Q and Q = 1 − P is the projector onto
the complement of the projected space, i.e., where at least
one momentum is |k| > kmax. We may choose 〈�L

a |�〉 = 1
as a normalization condition for the approximate eigenstate
and are thus left with evaluating the overlap on the right-hand
side of Eq. (32). Let us, for simplicity, consider the situation
of Sec. II D of two particles in the relative motion frame and
assume that the exact wave function decays with a power law

�(k) ∼ k−α (33)

with an integer exponent α � 1. Then we obtain

δE = 〈
�L

a

∣∣H̃PQ|�〉

∼
∫ kmax

k0

dp

∫ ∞

kmax

dq �L
a (p)q−αH̃pq, (34)

where we have replaced the summation of momenta by in-
tegrals and the projection operators determine the range of
integration. We have applied a small momentum cutoff k0,
which is related to the inverse system size. The expression
(34) is general enough to apply both to the original exact
diagonalization problem of the Hamiltonian (5) and to the
transcorrelated Schrödinger equation (4).

1. Standard method

The original Hamiltonian (5) for two particles in the rela-
tive motion frame can be written in momentum space with the
matrix elements

Hpq = h̄2p2

m
δpq + g, (35)

where the off-diagonal term results from the short-range inter-
action and couples any momenta equally. The diagonal term
of the kinetic energy does not contribute in Eq. (34) and we
are left with∫ kmax

k0

dp

∫ ∞

kmax

dq �L
a (p)q−αH̃pq = k−α+1

max
g

α

∫ kmax

k0

dp �L
a (p).

(36)

Since the p integral is finite, the scaling of the energy error
becomes

δE ∼ k−α+1
max (37)

= k−1
max, (38)

where in the last equality we have used the result from
Sec. II D that α = 2 as a consequence of the C0 cusp of the
exact wave function with δ function interactions.
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2. Transcorrelated method

In the transcorrelated approach, the δ function interac-
tion is removed and replaced by the less singular operator
S(x) d/dx as discussed in Sec. II D. The matrix elements of
the transcorrelated Hamiltonian in momentum space become

H̃pq = h̄2p2

m
δpq + 2

√
2g

q sin2[L(p − q )/4]

p − q
. (39)

We want to use Eq. (34) in order to estimate the energy error.
For the purpose of the integral the sin2 factor may be replaced
by 1

2 . This yields

δE ∼
√

2g

∫ kmax

k0

dp �L
a (p)F (α − 1), (40)

where the q integral can be separately performed as

F (n) =
∫ ∞

kmax

dq
q−n

p − q
. (41)

For integer-valued n � 1 it is easy to show that F (n) has the
series representation

F (n) =
∞∑

ν=0

pν

(n + ν)kn+ν
max

. (42)

In order to evaluate the p integral in Eq. (40) it is rele-
vant to estimate the p dependence of the left eigenfunction
�L

a (p). Since the left eigenfunction of the transcorrelated

Hamiltonian does not benefit from the removal of the cusp
by the Jastrow factor it will have the same asymptotics of the
original relative wave function, i.e., �L

a (p) ∼ p−2. Now the
integral (40) can be done term by term for the power series.
The asymptotic scaling turns out to be dominated by the first
term, which gives

δE ∼ k−α+1
max . (43)

This is the same result as the expression (37) for the original
short-range interaction, i.e., the scaling of the energy error is
completely determined by the large-k asymptotics of the wave
function.

Specifically, for the smooth transcorrelated wave function
of class C2 for the case of completely symmetric wave
functions (bosons or fermions with different spin quantum
numbers only), we have α = 4 and thus the expected scaling
of the energy error with the momentum cutoff is

δE ∼ k−3
max. (44)

F. Transcorrelated Hamiltonian in second quantization
and three-body term

In the following we examine the homogeneous system in
a discrete plane-wave basis. In order to examine the matrix
elements of the transcorrelated Hamiltonian, let us rewrite
Eq. (14) in second quantized form [52],

H̃ = h̄2

2m

∑
kσ

k2 a
†
k,σ ak,σ +

∑
pqk

σσ ′

Tpqk�σσ ′ a
†
p−k,σ a

†
q+k,σ ′ aq,σ ′ ap,σ +

∑
pqs

kk′
σσ ′

Qkk′�σσ ′a
†
p−k,σ a

†
q+k′,σ a

†
s+k−k′,σ ′as,σ ′aq,σ ap,σ , (45)

where a
†
k,σ create a one-particle plane-wave state with mo-

mentum k and spin σ , L is the length of the unit cell, and
�σσ ′ = δσσ ′ for bosons and �σσ ′ = 1 − δσσ ′ for fermions.
The tensors T and Q can be expressed explicitly with the
correlation factor,

Tpqk = g

L
+ h̄2

mL

(
k2ũ(k) − (p − q )kũ(k) + W (k)

L

)
,

W (k) =
∑
k′

(k − k′)k′ũ(k − k′)ũ(k′), (46)

Qkk′ = −k′kũ(k)ũ(k′)h̄2

2mL2
.

The summation in Eq. (46) contains infinitely many terms.
It can be evaluated exactly. The results and derivations are
detailed in the Appendix.

Treating the three-body term in the explicit calculation is
cumbersome. In order to improve the numerical efficiency we
approximated this term with an effective two-body term. For
the approximation we considered only the diagonal part of
the three-body term, where momentum exchanges are equal
to each other (k = k′). We can recognize the number operator

(
∑

sσ a
†
sσ̄ asσ̄ ). Its effect can be evaluated in advance,∑
pqsk

σσ ′

Qkk�σσ ′a
†
p−k,σ a

†
q+k,σ a

†
s,σ ′as,σ ′aq,σ ap,σ |�〉

=
∑
pqk

σ

QkkNσ a
†
p−k,σ a

†
q+k,σ aq,σ ap,σ |�〉,

where Nσ = Nσ = N − 2 for bosons and Nσ = N − Nσ for
fermions. This approximation is very closely related to the
random phase approximation (RPA) [61,62]. The approxi-
mated Hamiltonian with only one- and two-body terms can
be given in the form

H̃ATB = h̄2

2m

∑
kσ

k2 a
†
k,σ ak,σ

+
∑
pqk

σ �= σ̄

Tpqk�σσ ′a
†
p−k,σ a

†
q+k,σ̄ aq,σ̄ ap,σ

+
∑
pqk

σ

QkkNσ a
†
p−k,σ a

†
q+k,σ aq,σ ap,σ , (47)
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where the “ATB” index in the Hamiltonian stands for “ap-
proximate three body.” In the two-particle case and in the
limit when the system is noninteracting, this approximation
becomes irrelevant, because the three-body term does not have
any effects.

III. NUMERICAL EXAMINATIONS

A. Methods and implementation

In this section we study numerically the homogeneous
spin- 1

2 Fermi gas in one dimension with Hamiltonian of
Eq. (5) with V (x) = 0 in a box of length L with periodic
boundary conditions (ring configuration) for two to six par-
ticles. Exact solutions for this system are available using the
Bethe ansatz [53,54], which we use to calculate exact refer-
ence energies. We then diagonalize the original Hamiltonian
(5) and the transcorrelated Hamiltonian (47) with approxi-
mated three-body terms. To this end we use a single-particle
basis with M plane waves truncated according to

|k| � kmax ≡ M − 1

2

2π

L
, (48)

and construct the full multiparticle Fock basis with dimension
(M

N↑)(M

N↓), where N↑ and N↓ are the spin-up and spin-down
particle numbers. We then express the Hamiltonian as a matrix
in this finite Fock basis and numerically obtain the ground-
state energy and eigenvector (often referred to as “exact
diagonalization”).

We also compare our results with the lattice renormal-
ization approach [22,23]. The truncated plane-wave basis
expansion discretizes real space by creating an underlying
reciprocal lattice. The lattice renormalization approach then
adjusts the potential strength g of the discretized δ interaction
in order to recover the correct scattering amplitude for two
particles [22] or, equivalently, yield the correct two-particle
ground-state energy to leading order [23]. In order to apply
this approach, one simply replaces the interaction constant g

in the Hamiltonian (5) by the renormalized coupling constant

g̃ = g

1 + g

g0

, (49)

where

g0 = Mπ2h̄2

mL
≈ kmaxπh̄2

m
. (50)

While the exact diagonalization of the Hamiltonian (5)
in the Fock bases with or without renormalized interaction
strength can be calculated with any diagonalization algorithm,
the transcorrelated method has an additional complication due
to the non-Hermiticity of the transcorrelated Hamiltonian.
We apply power iterations to obtain the ground-state energy
and eigenvector [63], which can be done for non-Hermitian
eigenvalue problems. The power method can be scaled to
very large Hilbert spaces with the stochastic implementation
provided by the full configuration interaction quantum Monte
Carlo [16,64]. Very recently, this approach was combined with
the transcorrelated method for the homogeneous electron gas
[52].
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FIG. 2. Two particles with attractive interaction
(g = −10h̄2/mL): the error of the approximate ground-state
energy vs the number of one-particle basis functions M , on
linear-log scale. “diag”: exact diagonalization of the Hamiltonian
(5); “renorm”: with renormalized interaction constant of Eq. (49);
“tcorr”: transcorrelated Hamiltonian of Eq. (45); “kc”: truncation
parameter for fixed correlation factor of Eq. (10).

B. Two particles

The convergence of the energy with respect to the size of
the single-particle basis is shown in Figs. 2 and 3 for two parti-
cles (one spin-up and one spin-down fermion or, equivalently,
two spinless bosons) with attractive and repulsive interactions,
respectively. The two-particle system has the advantage that
the three-body interaction term in the transcorrelated Hamil-
tonian of Eq. (45) does not contribute and thus the effects
of the transcorrelated transformation on the two-particle in-
teractions can be studied in isolation without the need for
further approximations. The energy error δE ≡ E − EBethe

is calculated as the difference of the numerically obtained
approximate value and the exact ground-state energy value
obtained from the Bethe ansatz [53,54]. The energy obtained
by exact diagonalization of the original Hamiltonian of Eq. (5)
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FIG. 3. Two particles with repulsive interaction (g = 10h̄2/mL):
the error of the ground-state energy vs the number of one-particle
basis functions M on linear-log scale. Legend labels as in Fig. 2.
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FIG. 4. Power-law convergence with fixed correlation factor—
two particles with attractive interaction (g = −10h̄2/mL): the error
of the ground-state energy vs the number of single-particle basis
functions M on a log-log scale for different values of the kc pa-
rameter (“trcorr”). Exact diagonalization (“diag”) and renormalized
results (“renorm”) are shown for comparison (cf. Fig. 2). “Slope”:
approximate exponent of fitted power law δE ∼ M slope.

in the truncated Fock basis (“diag”) is found to converge
linearly with the inverse number M−1 of one-particle basis
functions in Figs. 4 and 5, which agrees with the theoretical
prediction of Eq. (38) in Sec. II E.

The transcorrelated approach (“trcorr”) is seen to gener-
ally improve upon the exact diagonalization results. From
Sec. II E we also may expect a faster convergence rate of
δE ∼ M−3 (since the two-particle ground-state wave function
is symmetric under particle exchange). From the numerical
results presented in Figs. 6 and 7 we see that this is the
case asymptotically for basis sets that are large enough to
resolve the modified singular feature of the transcorrelated
wave function.
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M in a log-log plot. Legend labels as in Fig. 4.
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one-particle basis functions M in a log-log plot. Legend labels as in
Fig. 4. “β” parameter for scaled correlation factor of Eq. (51).

1. Correlation factor with fixed parameter kc

In Figs. 4 and 5 the data labeled with kc values are
obtained with fixed correlation factors and variable number
of single-particle basis functions M . The smallest value, kc =
2π/L, shows significantly improved energy errors following
the power law δE ∼ M−3 for all considered basis set sizes
M � 5. Increasing the correlation factor cutoff kc leads to an
overall smaller correlation factor due to fewer Fourier com-
ponents contributing, and an associated smaller length scale
for its real-space version u(x) of Eq. (11). Unsurprisingly,
the smaller correlation factors are less effective in reducing
the energy error for the small (fixed-size) basis sets. However,
when the number of single-particle functions M is increased,
all curves collapse onto the same asymptotic power law with
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FIG. 7. Correlation factor with sliding parameter kc—two par-
ticles with repulsive interaction (g = 10h̄2/mL) with sliding kc:
the error of the ground-state energy vs the number of one-particle
basis functions M in a log-log plot. Legend labels as in Fig. 4. “β”
parameter for scaled correlation factor of Eq. (51).
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δE ∼ M−3. From our numerical data we find that the correla-
tion factor is fully effective when kmax � 3kc for the attractive
case of Fig. 4 and kmax � 2kc for repulsive interactions as
seen in Fig. 5, where kmax = (M/2 − 1)2π/L determines the
number of single-particle functions M .

2. Correlation factor with sliding parameter kc

The observation that the correlation factor is fully effective
when kmax is larger than a value determined by kc suggests
that it makes sense to adjust kc with the size of the basis set M

(or, equivalently, kmax), in order to find the smallest correlation
factor necessary, for given basis set size M , to fully reap the
benefits of the accelerated convergence of the transcorrelated
approach. We thus introduce a way of scaling the correlation
factor cutoff kc with the basis set size according to

kc = βkmax. (51)

A similar way of scaling the correlation factor with the size
of the single-particle basis set was previously suggested in
Ref. [52] (with fixed β = 1) in order to control the size of
the three-body term in the transcorrelated Hamiltonian. We
will discuss this issue in Secs. III C and III D. In Figs. 6 and
7 we show, respectively, the energy error obtained with this
approach for different values of β. Our data suggest that each
value of β leads to a different power law, until the value of β

is small enough to reach the theoretical limit with δE ∼ M−3.
Reducing the value of β further does not change the power
law. We also see that different values of β are needed to reach
the theoretical limit depending on the nature of the interaction.

3. Comparison with the renormalization approach

Energies obtained with renormalized interaction strength
according to Eq. (49) are also shown in Figs. 2–7 for compar-
ison. The renormalization method works well for estimating
the ground-state energy for two particles, which is not sur-
prising because the renormalized coupling constant is deter-
mined by comparison with an exact solution to a two-particle
problem. We here find that the energy error scales again
as δE ∼ M−3. Even though the scaling is the same as the
transcorrelated method, we find that the prefactors are differ-
ent (leading to different off-sets of the curves in Figs. 6 and 7).
It is interesting to note that the transcorrelated approach works
better than the renormalized one for attractive interactions
but worse for repulsive interactions. This is probably due to
the Jastrow factor resembling the bound-state wave function
that dominates the ground state for attractive interactions (see
Fig. 1). Since the prefactor of the transcorrelated energy error
certainly depends on the details of the cutoff procedure used
in Eq. (10), it could probably be further reduced by optimizing
this procedure.

4. Single-particle momentum density

In order to obtain information about the approximate wave
function, we calculate the single-particle momentum density

ρσ (k) = 〈a†
k,σ ak,σ 〉, (52)
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FIG. 8. Single-particle momentum density ρ(k) for two particles
with attractive interactions g = −10h̄2/mL, with M = 139 on a log-
log scale showing the transition from the k−4 behavior of the original
Hamiltonian to the k−8 asymptotics of the effective Hamiltonian
as an effect of the correlation factor. Legend labels as in Fig. 4.
Asymptotic power laws from approximate fits to the large-k tails
as indicated. The data from exact diagonalization with the bare
interaction (“diag”) and renormalized interaction (“renorm”) are
indistinguishable on the scale of the plot.

where the expectation value is taken with respect to the finite
basis set approximation of either the original ground state |�〉
or the transcorrelated eigenstate |�〉, respectively.

The results for two particles, shown in Fig. 8, are indepen-
dent of the spin σ and the sign of k. The momentum distri-
bution of the original ground state |�〉 shows a clear power-
law decay ∼k−4 for almost the entire momentum interval
shown in the figure. As discussed in Sec. II A, this behavior is
expected, since the momentum density contains the square of
the wave function, which possesses k−2 tails as a consequence
of the cusp in real space [57]. The renormalization method
leads to the same power law for the momentum density,
since the analytic properties of the wave function are not
changed.

The momentum distributions of the transcorrelated ground
state |�〉 are seen to decay much faster for large k and asymp-
totically converge to a power law of k−8. This observation
is consistent with the analytic results about the smoothness
of the transcorrelated wave function of Sec. II D. Improving
the smoothness (differentiability class) of the real-space wave
function by one order also decreases the power law of the
large-k tail in momentum space by one order. Thus the C2

character of the transcorrelated two-particle wave function
implies ∼k−4 scaling of the wave function and thus ∼k−8

scaling of the momentum density. The parameter kc defines an
inverse length scale characterizing the “size” of the correlation
factor. For larger length scales the correlation factor does
not have any significant effect and hence the momentum
density follows the original k−4 power law for k < kc. For
smaller length scales (larger k) there is a transition region
after which the smoothing effect of the correlation factor
on the transcorrelated wave function becomes fully effective.
In this regime of the smallest length scales (large k), the
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FIG. 9. Three fermions (two spin-up and one spin-down) with
attractive interactions g = −10h̄2/mL: the error of the ground-
state energy vs the number of one-particle basis functions M on
a linear-log scale. The labels “diag”, “renorm”, and “tcorr” stand
for the exact diagonalization, renormalization, and transcorrelated
approaches, respectively. The correlation factor cutoff kc is linearly
scaled with M according to Eq. (51).

short-range correlations are suppressed and the momentum
density shows a 1/k8 decay. Smaller correlation factors
(corresponding to larger kc) reach the asymptotic scaling at
larger wave numbers, which is expected because the wave-
length of the basis functions needs to be small enough to
resolve the features of the smaller correlation factor in order
to take advantage of the improved smoothness of the wave
function.

A remarkable feature of Fig. 8 is that the momentum
density of the transcorrelated wave function for kc = 20π/L

and kc = 40π/L coincides with the momentum density of the
original wave function accurately for the smaller values of k

up to critical value that is approximately given by kc. This
means that the exact momentum density can be extracted from
Eq. (15) for the small wave numbers already from the first
term of the expansion (16), i.e.,

〈�|a†
kak|�〉 ≈ 〈�|a†

kak|�〉. (53)

Increasing kc will further increase the range of wave numbers
(equivalently decrease the length scale) over which the mo-
mentum density is accurately approximated.

C. Three fermions

In order to study the role of the three-body term and the
effects of approximations we need to consider more than
two particles. It is also interesting to study the efficacy of
renormalizing the interaction strength in a multiparticle sys-
tem, as Eq. (49) was derived considering only two interacting
particles.

We consider three spin- 1
2 fermions with two spin-up and

one spin-down particles with attractive interactions. The en-
ergy error compared to the exact Bethe-ansatz solution for
the various approximations is shown in Fig. 9. Here (and in
other figures) the lines connecting data points are a guide
to the eye only. Where connecting lines are omitted in the
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FIG. 10. Relevance of three-body terms—three fermions (two
spin-up and one spin-down) with attractive interactions g =
−10h̄2/mL with constant kc: the error of the ground-state energy
vs the number of one-particle basis functions M in a log-log plot.
Legend labels as in Fig. 9. The label “no 3-body” means that the
three-body term was omitted from the transcorrelated Hamiltonian
Eq. (45), while for “ATB”-labeled data the three-body term is ap-
proximated as per Eq. (47).

logarithmic plot, a sign change of the error has occurred,
i.e., the approximate energy curve crosses the exact one. The
energy error from the exact diagonalization of the original
Hamiltonian (5) is shown for reference in Figs. 9 and 11(a). As
expected it follows the power-law scaling ∼k−1. The approach
of renormalizing the interaction strength for a given basis set
size by Eq. (49) is shown in Figs. 9 and 11(a), and clearly
demonstrates power-law scaling ∼M−2. The convergence rate
has decreased by one order compared to the two-particle case.
This can be understood by the fact that the renormalized
interaction strength was determined by solving a two-particle
problem.

1. Correlation factor with fixed parameter kc:
Bias from the approximation of the three-body term

Results from the transcorrelated approach with fixed cutoff
parameter kc are shown in Fig. 10. Since we are not including
the full three-body terms in our diagonalization procedure,
the results converge to a finite value, which quantifies the
contribution of the neglected three-body terms. It can be seen
that the approximate inclusion of the three-body term as per
Eq. (47) (labeled “ATB”) leads to smaller errors than the
complete neglect of three-body contributions [“no 3-body”;
Eqs. (45) and (46) with Qkk′ = 0]. By increasing the value
of kc, the three-body error decreases dramatically providing
a more accurate approximation for the energy. This can be
understood as follows: increasing kc reduces the length scale
associated to the correlation factor and with it the range of the
newly generated terms in the effective Hamiltonian, including
the three-body term. In a dilute gas, the significance of the
three-body terms thus diminishes.

2. Correlation factor with sliding parameter kc:
Treatment of the three-body term

We may expect that scaling the parameter kc of the correla-
tion factor with the size of the basis set as per Eq. (51) is a way
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FIG. 11. Power-law convergence with sliding correlation param-
eter kc—three fermions (two spin-up and one spin-down) with at-
tractive interactions g = −10h̄2/mL: the error of the ground-state
energy vs the number of one-particle basis functions M in a log-log
plot. Legend labels as in Fig. 9. The label “no 3-body” means that the
three-body term was omitted from the transcorrelated Hamiltonian
Eq. (45), while for “ATB”-labeled data the three-body term is ap-
proximated as per Eq. (47). Where these labels are not indicated the
results of the two approaches are indistinguishable from each other
on the scale of this plot.

to asymptotically eliminate the error introduced by neglecting
or approximating the three-body term and converge to exact
results. Figures 9 and 11 show that this is indeed the case
(and a similar observation was previously made in Ref. [52]).
Data for different values of the scaling factor β in Eq. (51) all
show algebraic convergence to the exact ground-state energy.
The numerically extracted power-law exponents vary, with
generally a smaller value of β resulting in faster convergence
in the asymptotic (large M) regime. As in the case for two
particles in Fig. 6, the fastest convergence is reached with β �
1
3 yielding the approximate power law δE ∼ M−3. As seen in
Fig. 11(b), decreasing the factor β below this value does not
yield a further improvement of the asymptotic power law but,
on the other hand, leads to larger errors for smaller basis sets
(due to the smaller correlation factor being less effective in
capturing pair correlations). It is also seen from the data in
Fig. 11 that the approximate treatment of the three-body term
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FIG. 12. Single-particle momentum density ρ↓(k) for the minor-
ity spin component for three fermions (two spin-up, one spin-down)
with attractive interactions of g = −10h̄2/mL and M = 139 on a
log-log scale. Labels as in Fig. 9. Asymptotic power laws from
approximate fits to the large-k tails as indicated. The data from exact
diagonalization with the bare interaction (“diag”) and renormalized
interaction (“renorm”) are indistinguishable on the scale of the plot.

(“ATB”) of Eq. (47) does not change the asymptotic power
law, or even the value of the energy error in the asymptotic
regime, but it does improve the energy error for smaller basis
sets. We conclude that the value of β = 1

3 and the inclusion of
approximate three-body terms gives the best performance.

3. Single-particle momentum density

The single-particle momentum density ρ↓(k) is shown in
Fig. 12 and shows similar features as seen in the two-particle
case of Fig. 8. The original ground-state wave function for
three fermions leads to a ∼k−4 algebraic decay of the momen-
tum density as in the case of two particles, or more generally,
for the Bose gas [57]. The transcorrelated ground state |�〉,
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FIG. 13. Six fermions (three spin-up and three spin-down) with
attractive interactions g = −10h̄2/mL: the error of the ground-state
energy vs the number of one-particle basis functions M on a linear-
log scale. Labels as in Figs. 9 and 11.
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FIG. 14. Six fermions (three spin-up and three spin-down) with
repulsive interaction g = 10h̄2/mL: the error of the ground-state
energy vs the number of one-particle basis functions M on a linear-
log scale. Labels as in Figs. 9 and 11.

however, asymptotically decays as ∼k−6, which is slower by
two orders than in the two-particle case. This observation
suggests that the wave function has the differentiability class
C1, i.e., is less smooth by one order than the two-particle
wave function. This result provides further evidence for the
conclusion of Sec. II D that the transcorrelated fermionic
multiparticle wave function is C1.

The remarkable result from the numerical investigation
of the three-fermion system is that the ground-state energy
convergence ∼M−3 is faster than expected from the an-
alytical estimates of Sec. II E 2. The analytical arguments
as well as the numerical analysis of the momentum den-
sity of the transcorrelated wave function indicate that the
large momentum asymptotics scale as �(k) ∼ k−3, which, by
Eq. (43), should lead to an energy error scaling as δE ∼ M−2.
The faster-than-expected convergence of the transcorrelated
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FIG. 15. Power-law convergence with sliding correlation param-
eter kc—six fermions (three spin-up and three spin-down) with
attractive interactions g = −10h̄2/mL: the error of the ground-state
energy vs the number of one-particle basis functions M on a log-log
scale. Labels as in Figs. 9 and 11.
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FIG. 16. Power-law convergence with sliding correlation param-
eter kc—six fermions (three spin-up and three spin-down) with
repulsive interaction g = 10h̄2/mL: the error of the ground-state
energy vs the number of one-particle basis functions M on a log-log
scale. Labels as in Figs. 9 and 11.

energy is well supported by the data shown in Fig. 11 and
comes as a pleasant surprise.

D. Six fermions

We also examined the spin-balanced six-particle system
in order to study the convergence properties for the larger
particle number. Figures 13–16 show the convergence of the
energy error for attractive and repulsive interactions, respec-
tively. The picture for the convergence rates of the different
approximations is largely consistent with the results for three
fermions. Exact diagonalization of the original Hamiltonian
yields an M−1 convergence, as expected, and also the con-
vergence rate of M−2 for the renormalization approach has
not changed compared to three particles. This confirms that
the faster convergence of the renormalization method in the
two-particle system is a special case.

The transcorrelated approach with scaled correlation factor
cutoff kc is also here seen to converge algebraically towards
the exact ground-state energy, even though the three-body
terms have been either approximated or fully omitted. The
results indicate that a scaling factor of β = 1

2 is sufficient to
reach optimal convergence of the energy error. This indicates
that the required β factor for optimal convergence has no
strong dependence on the particle number. The six-particle
results also confirm the faster-than-expected M−3 scaling of
the transcorrelated approach that we already saw for the three-
particle and two-particle cases.

IV. CONCLUSION AND OUTLOOK

We have constructed an effective Hamiltonian based on
a transcorrelated transformation that replaces the singular
contact interaction by less singular, but non-Hermitian terms,
which also include artificial three-body interactions. We have
shown that an explicit treatment of the three-body terms can
be avoided, while nevertheless achieving fast convergence to
the exact results by scaling the correlation factor with the size
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of the single-particle basis. This scaling is controlled with
the parameter β through Eq. (51) and effectively reduces the
error due to neglected three-body terms when the basis set
is increased by reducing the size of the correlation factor.
While small values of β will lead to the optimal asymptotic
scaling of the error for large basis sets, larger values will lead
to improved benefits of the correlation factor for smaller basis
set but compromise the asymptotic scaling beyond an optimal
value. The optimal value of β was seen to depend weakly on
the sign of the interaction strength and may also depend on
the value.

Including the full three-body terms would allow one to
achieve unbiased results for a Fock-space diagonalization
even for fixed-size correlation factors. This could potentially
be useful for reducing the amount of correlation in the ef-
fective Hamiltonian, which may be beneficial for the conver-
gence of stochastic or approximate approaches. Our numerical
results indicate that the transcorrelated method improves the
convergence of the energy from M−1 of the exact diagonal-
ization of the original Hamiltonian to M−3, where M is the
number of single-particle basis functions. For two particles
we could show that the faster convergence rate originates in
the improved smoothness of the transcorrelated wave function
from C0 of the original cusplike wave function to C2. For
more than two spin- 1

2 fermions, where the smoothness of the
wave function improves only to C1, the convergence rate is
not yet fully understood.

We have also examined an alternative approach based on a
simple renormalization of the interaction constant. While not
affecting the smoothness of the wave function, this approach
improves the convergence rate of ground-state energies by one
order to M−2.

Based on such promising results for the ground state of
the one-dimensional homogeneous gas, it will be interesting
to examine the efficiency of the transcorrelated approach in a
trapped system or for excited states, where the presence of a
cusp at the two-particle coalescence causes slow convergence
[11]. Due to the non-Hermitian nature of the transcorre-
lated Hamiltonian, care must be taken when choosing an
appropriate excited-state method, but exact diagonalization

approaches, for example, are well suited. In future work we
also would like to investigate two- and three-dimensional
systems, as well as extend the treatment of the three-body
terms to include all six-index interaction terms, where we
expect improvements even more significant than those found
in the present study.
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APPENDIX: EVALUATION OF THE INFINITE
SUM IN EQ. (46)

The infinite summation is easier to evaluate if we make the
substitutions k = 2πn/L, k′ = 2πn′/L, and kc = 2πnc/L

into the sum as

W

(
2πn

L

)
= L2

a2π2

|n′|,|n−n′ |�nc∑
n′

1

n′
1

n − n′ , (A1)

where the summation index is integer.
Let us first consider the case n = 0, where the sum is

symmetric to the swap of the sign of n′. Therefore, we can
write Eq. (A1) in the following way:

W (0) = − 2L2

a2π2

∞∑
n′=nc

1

n′2 . (A2)

Using the identity of
∑∞

n′=1 = π2/6, we can expand Eq. (A2)
with finite summations, as

W (0) = − 2L2

a2π2

(
π2

6
−

nc−1∑
n′=1

1

n′2

)
.

Now let us consider the case n > 0. If n < 2nc we get the
following expression:

W

(
4πnc

L
>

2πn

L
> 0

)
= L2

a2π2

⎛
⎝ −nc∑

n′=−∞

1

n′
1

n − n′ +
∞∑

n′=n+nc

1

n′
1

n − n′

⎞
⎠, (A3)

which is supplemented by an additional term, if n � nc, as

W

(
2πn

L
� 4πnc

L

)
= L2

a2π2

⎛
⎝ −nc∑

n′=−∞

1

n′
1

n − n′ +
∞∑

n′=n+nc

1

n′
1

n− n′ +
n− nc∑
n′=nc

1

n′
1

n− n′

⎞
⎠. (A4)

Let us consider first Eq. (A3), and swap the sign of n′ in the first sum and merge all the terms, where n′ is larger than n + nc,

W

(
4πnc

L
>

2πn

L
> 0

)
= L2

a2π2

⎡
⎢⎢⎢⎢⎣−

n+nc−1∑
n′=nc

1

n′
1

n = n′ =
∞∑

n′=n+nc

1

n′

(
1

n− n′ − 1

n + n′

)
︸ ︷︷ ︸

2
n2 − n′2

⎤
⎥⎥⎥⎥⎦. (A5)
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The digamma function [ψ (x)] can be used to simplify the sum above by using the following identities:

∞∑
n′=a

1

n2 − n′2 = ψ (a − n) − ψ (a + n)

2n
, (A6)

b∑
n′=a

1

n′
1

n + n′ = ψ (1 + b) + ψ (a + n) − ψ (1 + b + n) − ψ (a)

n
, (A7)

which can be derived from the series expansion of the digamma function as

ψ (x) = −γ +
∞∑
l=0

x − 1

(l + 1)(l + x)
.

Using Eqs. (A6) and (A7), Eq. (A5) can be written in the following form:

W

(
4πnc

L
>

2πn

L
> 0

)
= 2L2

a2π2n
[ψ (nc ) − ψ (n + nc )]. (A8)

By using the following property of the digamma function:

ψ (x + 1) = ψ (x) + 1

x
,

Eq. (A8) can be written in the following numerically treatable form:

W

(
4πnc

L
>

2πn

L
> 0

)
= − 2L2

a2π2n

n+nc−1∑
n′=nc

1

n′ .

In the case of n � 2nc and n < 0, with a similar derivation, we got the following expressions:

W

(
2πn

L
� 4πnc

L

)
= − 2L2

a2π2

⎛
⎝1

n

n+nc−1∑
n′=nc

1

n′ − 1

2

n−nc∑
n′=nc

1

n′
1

n − n′

⎞
⎠,

W

(
−4πnc

L
<

2πn

L
< 0

)
= 2L2

a2π2n

nc−n−1∑
n′=nc

1

n′ ,

W

(
2πn

L
� −4πnc

L

)
= 2L2

a2π2

⎛
⎝1

n

nc−n−1∑
n′=nc

1

n′ + 1

2

−nc∑
n′=nc−n

1

n′
1

n − n′

⎞
⎠.

The asymptotic expression of W ( 2πn
L

) for large n can be also given,

W

(
2πn

L

)
= 2L2

a2π2|n| ln(|n|) + O

(
1

n2

)
, (A9)

where we use the following asymptotic expression of the digamma function:

ψ (x) = ln(x) + O

(
1

x

)
.
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