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Similarity transformation of the Hubbard Hamiltonian using a Gutzwiller correlator leads to a non-Hermitian
effective Hamiltonian, which can be expressed exactly in momentum-space representation and contains three-
body interactions. We apply this methodology to study the two-dimensional Hubbard model with repulsive
interactions near half filling in the intermediate interaction strength regime (U/t = 4). We show that at optimal or
near optimal strength of the Gutzwiller correlator, the similarity-transformed Hamiltonian has extremely compact
right eigenvectors, which can be sampled to high accuracy using the full configuration interaction quantum
Monte Carlo (FCIQMC) method and its initiator approximation. Near-optimal correlators can be obtained using
a simple projective equation, thus obviating the need for a numerical optimization of the correlator. The FCIQMC
method, as a projective technique, is well suited for such non-Hermitian problems, and its stochastic nature can
handle the three-body interactions exactly without undue increase in computational cost. The highly compact
nature of the right eigenvectors means that the initiator approximation in FCIQMC is not severe and that large
lattices can be simulated, well beyond the reach of the method applied to the original Hubbard Hamiltonian.
Results are provided in lattice sizes up to 50 sites and compared to auxiliary-field QMC. New benchmark results
are provided in the off-half-filling regime, with no severe sign problem being encountered. In addition, we show
that methodology can be used to calculate excited states of the Hubbard model and lay the groundwork for the
calculation of observables other than the energy.
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I. INTRODUCTION

The fermionic two-dimensional Hubbard model [1–3] with
repulsive interactions is a minimal model of itinerant strongly
correlated electrons that is believed to exhibit extraordinarily
rich physical behavior. Especially in the past thirty years,
it has been intensively studied as a model to understand
the physics of high-temperature superconductivity observed
in layered cuprates [4]. Its phase diagram as a function of
temperature, interaction strength, and filling includes antifer-
romagnetism, the Mott metal-insulator transition, unconven-
tional superconductivity [5] with d-wave pairing off half fill-
ing, striped phases, a pseudogap regime, and charge and spin
density waves [6]. Confronted with such a plethora of physical
phenomena, accurate numerical results are indispensable in
resolving various competing theoretical scenarios.
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Unfortunately the numerical study of the 2D Hubbard
model has proven extraordinarily challenging, particularly in
the off-half-filling regime with intermediate-to-strong interac-
tion strengths U/t = 4-12. Major difficulties include severe
sign problems for quantum Monte Carlo (QMC) methods,
while the 2D nature of the problem causes convergence dif-
ficulties for density matrix renormalization group (DMRG)
[7–9] based methodologies which have otherwise proven
extremely powerful in 1D systems. Nevertheless extensive
numerical studies have been performed with a variety of
methods, such as variational [10–14], fixed-node [15–17],
constrained-path auxiliary field [18–20], determinantal [21]
and diagrammatic [22] QMC, dynamical [23–25] and varia-
tional [26,27] cluster approximations (DCA/VCA), dynami-
cal mean-field theory (DMFT) [28–32], density matrix renor-
malization group (DMRG), and variational tensor network
states [33,34]. Thermodynamic limit extrapolations have been
carried out with the aim of assessing the accuracy of the
methodologies in various regimes of interaction, filling factor,
and temperature [35–37]. On the other hand each of these
methods incurs systematic errors which are extremely difficult
to quantify and there is an urgent need to develop methods in
which convergence behavior can be quantified internally.

In this paper, rather than attempting a direct numerical
attack on the 2D Hubbard Hamiltonian with a given technique,
we ask whether there is an alternative exact reformulation of
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the problem, the solution of which is easier to approximate
than that of the original problem. If this is the case (and this is
obviously highly desirable), it should be demonstrable within
the framework of a given technique, without reference to any
other method. The physical basis for any observed simplifica-
tion should be transparent. Such an approach turns out to be
possible, at least for intermediate interaction strengths, based
on a Gutzwiller nonunitary similarity transformation of the
Hubbard Hamiltonian.

The Gutzwiller ansatz [2,38] and Gutzwiller approxima-
tion [39–43] are intensively studied methods to solve the
Hubbard model. The parameter of the ansatz is usually op-
timized to minimize the energy expectation value by vari-
ational Monte Carlo schemes [44,45] based on a single
Fermi-sea reference state. It has been long realized that
the simple Gutzwiller ansatz misses important correlations
[46–48], especially in the strong-interaction regime of the
Hubbard model. More general, Jastrow-like [49] correlators,
including density-density [50] and holon-doublon [51,52],
have been proposed to capture more physical features within
the ansatz. In addition the Fermi-sea reference function has
been extended to Hartree-Fock (HF) spin density waves [53]
and BCS [54] wave functions [11,55–62] including antiferro-
magnetic [14,63] and charge order [64]. Recently there have
been developments of a more efficient diagrammatic expan-
sion of the Gutzwiller wave function (DE-GWF) [61,65],
extensions of the Gutzwiller approximation to quasiparticle
excitations [66] and linear response quantities [67], and the
combination with the Schrieffer-Wolff transformation [68] to
capture Mott physics beyond the Brinkman-Rice scenario.

An alternative strategy is to use a Gutzwiller correlator to
perform a nonunitary similarity transformation of the Hub-
bard Hamiltonian, whose solution can be well approximated
using a Slater determinant. Such an approach is reminiscent
of the quantum chemical transcorrelated method of Boys and
Handy [69,70], as well as Hirschfelder [71], in which a non-
Hermitian Hamiltonian is derived on the basis of a Jastrow
factorization of the wave function.

This idea was applied by Tsuneyuki [72] to the Hubbard
model by minimizing the variance of the energy based on
projection on the HF determinant. Scuseria and coworkers
[73] and Chan et al. [74] have recently generalized to general
two-body correlators and more sophisticated reference states,
where the correlator optimization was not performed in a
stochastic variational Monte Carlo manner, but in the spirit of
coupled-cluster theory, by projecting the transformed Hamil-
tonian in the important subspace spanned by the correlators.

These methods have in common that they are based on a
single reference optimization of the correlation parameters
and thus the energy obtained is on a mean-field level. We
instead would like to fully solve the similarity-transformed
Hamiltonian in a complete momentum-space basis. We will
use a single reference optimization, based on projection
[73,74], to generate a similarity-transformed Hamiltonian
(non-Hermitian with 3-body interactions), whose ground-state
solution (right eigenvector) will be using the projective full
configuration interaction quantum Monte Carlo (FCIQMC)
[75] method.

The remainder of the paper is organized as follows:
In Sec. II we recap the derivation of the Gutzwiller

similarity-transformed Hubbard Hamiltonian and the projec-
tive solution based on the restricted Hartree-Fock determinant.
We also present analytic and exact diagonalization results,
to illustrate the influence of the transformation on the en-
ergies and eigenvectors. In Sec. III we recap the basics of
the FCIQMC method and necessary adaptations for its ap-
plication to the similarity-transformed Hubbard Hamiltonian
in a momentum-space basis, named similarity-transformed
FCIQMC (ST-FCIQMC). In Sec. IV we benchmark the ST-
FCIQMC method for the exact diagonalizable 18-site Hub-
bard model and present ground- and excited-state energies.
We observe an increased compactness of the right eigenvec-
tor of the non-Hermitian transformed Hamiltonian. We also
compare the results obtained with our method for nontrivial
36- and 50-site lattices, at and off half filling, with interaction
strengths up to U/t = 4. In Sec. V we conclude our findings
and explain future applications for observables other than the
energy and correct calculation of left and right excited-state
eigenvectors.

II. THE SIMILARITY-TRANSFORMED HAMILTONIAN

We would like to solve for the ground-state energy of the
two-dimensional, single-band Hubbard model [1–3] with the
Hamiltonian in a real-space basis,

Ĥ = −t
∑
〈i j〉,σ

a†
i,σ a j,σ + U

∑
l

nl,↑nl,↓, (1)

a(†)
i,σ being the fermionic annihilation (creation) operator for

site i and spin σ , nl,σ the number operator, t the nearest-
neighbor hopping amplitude, and U � 0 the on-site Coulomb
repulsion. We employ a Gutzwiller-type ansatz [2,40,76] for
the ground-state wave function

|�〉 = gD̂ |�〉 = eτ̂ |�〉 , with (2)

τ̂ = ln gD̂ = J
∑

l

nl,↑nl,↓ and 0 � g � 1, (3)

where D̂ is the sum of all double occupancies in |�〉, which
are repressed with 0 � g � 1 → −∞ < J � 0.

In the Gutzwiller ansatz, |�〉 is usually chosen to be a
single-particle product wave function [2,77], |�0〉, such as
the Fermi-sea solution of the noninteracting U = 0 system,
or other similar forms such as unrestricted Hartree-Fock spin
density waves [53] or superconducting BCS wave functions
[55]. The parameter J is usually optimized via variational
Monte Carlo (VMC) [42], minimizing the expectation value

EVMC = min
J

〈�0|eτ̂ Ĥeτ̂ |�0〉
〈�0|e2τ̂ |�0〉 . (4)

In this work, however, |�〉 is taken to be a full configuration
interaction (CI) expansion in terms of Slater determinants

|�〉 =
∑

i

ci |Di〉 (5)
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with which we aim to solve an equivalent exact eigenvalue
equation

e−τ̂ Ĥeτ̂ |�〉 = H̄ |�〉 = E |�〉 , with (6)

H̄ = −t
∑
〈i j〉,σ

e−τ̂ a†
i,σ a j,σ eτ̂ + U

∑
l

nl,↑nl,↓; (7)

H̄ denotes a similarity-transformed Hamiltonian. Equation (6)
is obtained by substituting Eq. (2) as an eigenfunction ansatz
into Eq. (1) and multiplying with e−τ̂ from the left, and due to
[ni,σ , τ̂ ] = 0. The similarity transformation of Eq. (1) moves
the complexity of the correlated ansatz for the wave function
|�〉 into the Hamiltonian, without changing its spectrum. It
is a nonunitary transformation, and the resulting Hamiltonian
is not Hermitian. Such similarity transformations have been
introduced in quantum chemistry [69,71,78] in the context of a
Slater-Jastrow ansatz, were it is known as the transcorrelated
method of Boys and Handy. It was first applied to the Hubbard
model by Tsuneyuki [72]. The transcorrelated method has
been quite widely applied in combination with explicitly
correlated methods in quantum chemistry [79–82], with ap-
proximations being employed to terminate the commutator
series arising from the evaluation of e−τ̂ Ĥeτ̂ [83,84]. The
explicit similarity transformation of the Hubbard Hamiltonian
(1) with a Gutzwiller (2) [72,85] or more general correlator
[73,74], which can be obtained without approximations due
to a terminating commutator series, has been solved on a
mean-field level [72]. In the present work, we will not restrict
ourselves to a mean-field solution, but solve for the exact
ground state of H̄ with the FCIQMC method [75,86].

A. Recap of the derivation of H̄

Tsuneyuki [72] and Scuseria et al. [73] have provided
a derivation of the similarity-transformed Hubbard Hamilto-
nian, based on the Gutzwiller and more general two-body
correlators, respectively. Their derivations result in a Hamil-
tonian expressed in real space. Here we go one step further
and obtain an exact momentum-space representation of the
similarity-transformed Hamiltonian, which is advantageous in
the numerical study of the intermediate correlation regime. In
this representation, the total momentum is an exact quantum
number, resulting in a block-diagonalized Hamiltonian. This
is computationally useful in projective schemes, especially
where there are near degeneracies in the exact spectrum close
to the ground state, which can lead to very long projection
times and be problematic to resolve. Additionally, it turns out
that even in the intermediate-strength regime, the ground-state
right eigenvector is dominated by a single Fermi determinant
for the half-filled system. This is in stark contrast with the
ground-state eigenvector of the original Hubbard Hamilto-
nian, which is highly multiconfigurational in this regime.

As seen in Eq. (7) we need to compute the following
transformation,

F̂ (x) = e−xτ̂ a†
i,σ a j,σ exτ̂ , (8)

which can be done by introducing a formal variable
x and performing a Taylor expansion (cf. the Baker-
Campbell-Hausdorff expansion). The derivatives of (8) can be

calculated as

F̂ ′(0) = [a†
i,σ a j,σ , τ̂ ] = J

∑
l

[ a†
i,σ a j,σ , a†

l,σ al,σ ]nl,σ̄

= Ja†
i,σ a j,σ (n j,σ̄ − ni,σ̄ ),

F̂ ′′(0) = [[ a†
i,σ a j,σ , τ̂ ], τ̂ ] = J [ a†

i,σ a j,σ (n j,σ̄ − ni,σ̄ ), τ̂ ]

= J2ai,σ a j,σ (n j,σ̄ − ni,σ̄ )2,

F̂ (n)(0) = [[ a†
i,σ a j,σ , τ̂ ], . . . , τ̂ ]

= Jnai,σ a j,σ (n j,σ̄ − ni,σ̄ )n. (9)

With this closed form (9) the Taylor expansion can be summed
up as F̂ (1) = a†

i,σ a j,σ eJ (n j,σ̄ −ni,σ̄ ) and Eq. (6) takes the final
form of [72,73,85]

H̄ = −t
∑
〈i j〉,σ

a†
i,σ a j,σ eJ (n j,σ̄ −ni,σ̄ ) + U

∑
l

nl,↑nl,↓. (10)

Due to the idempotency of the (fermionic) number operators,
n2

i,σ = ni,σ , we have for m � 1

(n j,σ − ni,σ )2m−1 = n j,σ − ni,σ , and

(n j,σ − ni,σ )2m = n j,σ + ni,σ − 2ni,σ n j,σ . (11)

With Eq. (11) the exponential factor in Eq. (10) can be
calculated as

eJ (ni,σ −n j,σ ) = 1 +
∞∑

m=1

J2m−1

(2m − 1)!
(n j,σ − ni,σ )

+
∞∑

m=1

J2m

(2m)!
(n j,σ + ni,σ − 2ni,σ n j,σ )

= 1 + sinh(J )(n j,σ − ni,σ ) + [cosh(J ) − 1]

× (nj,σ + ni,σ − 2ni,σ n j,σ )

= 1 + (eJ − 1)n j,σ + (e−J − 1)ni,σ

− 2[cosh(J ) − 1]ni,σ n j,σ . (12)

With Eq. (12) we can write the final similarity-transformed
Hamiltonian as

H̄ = Ĥ − t
∑
〈i j〉,σ

a†
i,σ a j,σ {(eJ − 1)n j,σ̄ + (e−J − 1)ni,σ̄

− 2[cosh(J ) − 1]ni,σ̄ n j,σ̄ }. (13)

Formulated in a real-space basis the additional factor in
Eq. (13) is simply a nearest-neighbor density-dependent
renormalization of the hopping amplitude. For large inter-
action U/t 	 1, as already pointed out by Fulde et al.
[46], the simple ansatz (2) shows the incorrect asymptotic
energy behavior, E ∼ −t2/(U ln U ) instead of E ∼ −t2/U
[47,48], proportional to the magnetic coupling of the Heisen-
berg model for U/t 	 1, due to the missing correlation be-
tween nearest-neighbor doubly occupied and empty sites. The
Gutzwiller ansatz does however provide a good energy esti-
mate in the low to intermediate U/t regime. For these values
of U/t the momentum-space formulation is a better suited
choice of basis, due to a dominant Fermi-sea determinant and
thus a single reference character of the ground-state wave
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function. Thus we transform Eq. (13) with

a†
l,σ = 1√

M

∑
k

e−iklc†
k,σ , (14)

with M being the size of the system and c(†)
k,σ

the annihilation
(creation) operator of a state with momentum k and spin σ

into a momentum-space representation. The terms of Eq. (13)
become

∑
〈i j〉,σ

a†
i,σ a j,σ n j,σ̄ = 1

M

∑
pqk,σ

εp−kc†
p−k,σ c†

q+k,σ̄ cq,σ cp,σ , (15)

∑
〈i j〉,σ

a†
i,σ a j,σ ni,σ̄ = 1

M

∑
pqk,σ

εpc†
p−k,σ

c†
q+k,σ̄

cq,σ̄ cp,σ , (16)

∑
〈i j〉,σ

a†
i,σ a j,σ ni,σ̄ n j,σ̄ = 1

M2

∑
pqskk′,σ

εp−k+k′c†
p−k,σ c†

q+k′,σ̄ c†
s+k−k′,σ̄ cs,σ̄ cq,σ̄ cp,σ , (17)

with εk being the dispersion relation of the lattice. The original Hubbard Hamiltonian in k space is

Ĥ = −t
∑
k,σ

εknk,σ + U

2M

∑
pqk,σ

c†
p−k,σ c†

q+k,σ̄ cq,σ̄ cp,σ , (18)

while the similarity-transformed Hamiltonian in k space is a function of the correlation parameter J ,

H̄ (J ) = −t
∑
k,σ

εknk,σ + 1

M

∑
pqk,σ

ω(J, p, k)c†
p−k,σ c†

q+k,σ̄ cq,σ̄ cp,σ

+ 2t
cosh(J ) − 1

M2

∑
pqskk′,σ

εp−k+k′c†
p−k,σ

c†
q+k′,σ̄ c†

s+k−k′,σ̄ cs,σ̄ cq,σ̄ cp,σ , (19)

ω(J, p, k) = U

2
− t[(eJ − 1)εp−k + (e−J − 1)εp]. (20)

Compared to the original Hubbard Hamiltonian in k space
(18), H̄ (19) has a modified 2-body term and contains an
additional 3-body interaction, which for k = 0 gives rise to
parallel-spin double excitations. These are not present in the
original Hamiltonian. As mentioned above, in contrast to
other explicitly correlated approaches [87] this is an exact
similarity transformation of the original Hamiltonian and
does not depend on any approximations. Hence the spectrum
of this Hamiltonian is the same as that of (1). Unlike the
canonical transcorrelation ansatz of Yanai and Shiozaki [79]
which employs a unitary similarity transformation, the result-
ing Hamiltonian (19) is not Hermitian (the non-Hermiticity
arising in the two-body terms), and hence its spectrum is not
bounded from below. Variational minimization approaches
are not applicable. The left and right eigenvectors differ, and
form a biorthogonal basis 〈�L

i | �R
j 〉 = 0 for i �= j. Tsuneyuki

circumvented the lack of a lower bound of H̄ by instead
minimizing the variance of H̄ ,

min〈�HF |[H̄ − 〈H̄〉]2|�HF 〉, (21)

which is zero for the exact wave function and positive other-
wise, to determine the optimal Jvar.

Projective methods such as the power method [88], or a
stochastic variant such as FCIQMC [86], can converge the
right/left eigenvectors by multiple application of a suitable
propagator, without recourse to a variational optimization
procedure, and this is the technique we shall use here. Since
the matrix elements of (19) can be calculated analytically
and on-the-fly, the additional cost of the 3-body term is no
hindrance in our calculations and we do not need to apply

additional approximations, unlike other explicitly correlated
approaches [89,90]. While complicating the calculation of
observables other than the energy, due to the need to have
both the left and right eigenvector of the now non-Hermitian
Hamiltonian (19), the difference between the left and right
eigenvectors actually proves to be beneficial for the sampling
of the ground-state wave function in the FCIQMC method.
This will be numerically demonstrated below in Sec. II C.
As a side note, the use of more elaborate correlators, such
as density-density [50] or holon-doublon [51,52,91], is no
hindrance in the real-space formulation of the Hubbard model
and is currently being investigated [92], but in the momentum-
space basis would lead to even higher order interactions and
have not been further explored.

B. Analytic results for the Hubbard model

As a starting point we optimize the strength of the corre-
lation factor, controlled by the single parameter J from the
ansatz (2), by projecting the single determinant eigenvalue
equation [H̄ (J ) − E ] |�HF 〉 = 0 to the single basis of the
correlation factor [73,74,85]

〈(τ̂ − 〈τ̂ 〉)†H̄〉HF = 〈τ̂ †H̄〉c = 0, (22)

where 〈. . .〉c denotes a cumulant expression, where only
linked diagrams are evaluated. HF denotes the state with all
orbitals with |k| � kF being doubly occupied and kF being
the Fermi surface. Equation (22) is similar to a coupled-cluster
equation. We simply report the results here [further informa-
tion on the solution of Eq. (22) can be found in Appendix A].
For an infinite system at half filling, and only considering the
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TABLE I. Ground-state energy per site for the half-filled 16 × 16 square lattice with periodic (PBC) and mixed (anti)periodic (ABPC)
boundary conditions along the (y) x axis. Thermodynamic limit extrapolations (TDL) for various values of U/t obtained with AFQMC [36]
are denoted as E (TDL)

Ref . Results obtained by evaluating Eq. (22) and Eqs. (23) and (24) are noted as E (TDL)
J . The optimal value of J is also shown.

All energies are in units of t .

U/t = 2 U/t = 4 U/t = 6 U/t = 8

PBC APBC PBC APBC PBC APBC PBC APBC

Eref −1.174203(23) −1.177977(20) −0.86051(16) −0.86055(16) −0.65699(12) −0.65707(20) −0.52434(12) −0.52441(12)
EJ −1.151280 −1.166370 −0.76354 −0.77769 −0.42855 −0.44160 −0.12848 −0.14051
EJ/Eref % 98.0 99.0 88.7 90.4 65.3 67.2 24.5 26.8
Jopt −0.29233 −0.28957 −0.56284 −0.55787 −0.80107 −0.79460 −1.00701 −0.99956

ETDL
ref −1.1760(2) −0.8603(2) −0.6567(3) −0.5243(2)

ETDL
J −1.1609 −0.7686 −0.4203 −0.0943

ETDL
J /Eref % 98.7 89.4 64.0 18.0

JTDL
opt −0.29025 −0.55911 −0.79621 −1.00142

two-body contribution of Eq. (22), we can express the optimal
J which fulfils Eq. (22), and the corresponding total energy
per site, as (see Appendix B)

JTDL
opt = sinh−1

(
− 5Uπ6

288t (16 + π4)

)
, (23)

ETDL
J = −t

64

4π2
+ U

4
− tJTDL

opt
2
(

16

4π2
+ 64

π6

)
. (24)

The results of Eqs. (22)–(24) compared with auxiliary-field
QMC (AFQMC) results [36] on a 16 × 16 half-filled square
lattice are shown in Table I, for various values of U/t . The
superscript (TDL) denotes thermodynamic limit results from
Eqs. (23) and (24) for both the energy and J parameter, and
an absent superscript refers to the solution of Eq. (22) for the
actual finite lattices. At half filling AFQMC does not suffer
from a sign problem [93] and is numerically exact. One can
see that the results obtained from Eqs. (22)–(24) capture most
of the correlation energy for low U/t as expected. For larger
U/t , due to the missing correlation between empty and doubly
occupied sites in the ansatz (2), the energies progressively
deteriorate compared to the reference results. The optimal
value Jopt is also displayed in Table I. We use these values
of J obtained by solving Eq. (22) as a starting point for
our FCIQMC calculations to capture the remaining missing
correlation energy.

To compare this most basic combination of an on-site
Gutzwiller correlator and a single restricted Hartree-Fock
determinant as a reference in Eq. (22) we show in Table II the
percentage of the energy obtained with this method to more
elaborate correlators and reference states, for different system
sizes M, numbers of electrons nel , and interaction strengths
U/t . E(S)UGST in Table II denotes an on-site Gutzwiller corre-
lator with a (symmetry-projected) unrestricted Hartree-Fock
reference state [85]. At half filling and U/t � 4 we can
capture more than 80% of the energy obtained with a more
elaborate reference determinant. Off half filling the recovered
energy is above 90% up to U/t = 4. For a more dilute filling
of 〈n〉 = 0.8, for M = 100 and U/t = 2, the energies agree
to better than 99%. Although the absolute error in energy
increases off half filling, as already mentioned in Refs. [73,85]
the relative error actually decreases [11,44,94], as can be

seen in the comparison with the AFQMC reference results
[35,36,73,95], Eref in Table II. As expected, for U/t > 4
the results from Eq. (22) drastically deteriorate compared to
E(S)UGST .

ER/UJ in Table II refer to energies obtained with re-
stricted/unrestricted Hartree-Fock reference states with a
general two-body correlator [73], which includes all pos-
sible density-density correlations in addition to the on-site
Gutzwiller factor. The comparison with ERJ shows that, as
already found in Ref. [73], the Gutzwiller factor is by far the
most important term in a general two-body correlator for low
to intermediate values of U/t � 4, with an agreement of over

TABLE II. Fraction of the total energy obtained with the
Gutzwiller ansatz (2) based on the Hartree-Fock determinant (22)
compared with a Gutzwiller correlator with an unrestricted Hartree-
Fock reference EUGST and subsequent symmetry projection ESUGST

[85] and a general two-body correlator with a Hartree-Fock ref-
erence ERJ and unrestricted Hartree-Fock reference EUJ [73] and
numerically exact AFQMC reference results [35,36,73,95] for dif-
ferent numbers of sites M, numbers of electrons nel , and interaction
strengths U/t .

M nel U/t %EUGST %ESUGST %ERJ %EUJ %Eref

16 14 2 97.34 97.03 99.69 97.30 96.79
16 14 4 92.81 91.70 99.02 93.07 90.75
16 14 8 72.68 70.16 92.28 73.84 66.60
16 16 2 80.85 80.75 99.82 93.77 93.16
16 16 4 81.84 80.18 98.57 82.61 80.24
16 16 8 21.37 20.19 47.54 21.81 20.08

36 24 4 99.67 98.26
36 24 8 98.72 93.53
64 28 4 99.74 99.19
64 44 4 99.77 98.38

100 80 2 100.00 99.98 99.84
100 80 4 99.85 99.61 97.43
100 100 2 97.69 97.56 97.27
100 100 4 88.50 88.08 87.39
100 100 6 65.70 65.19 64.04
100 100 8 25.01 24.76 23.89
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FIG. 1. Top: L2 norm of the HF state c2(L/R)
HF and within the HF

determinant and double excitations, L(L/R)
(0,2) , for a half-filled 6-site

Hubbard chain with periodic boundary conditions at U/t = 4 and
k = 0 for the left |�L

0 〉 and right |�R
0 〉 ground-state eigenvector of

H̄ as a function of −J . Bottom: The Hartree-Fock energy EHF (J ) =
〈�HF |H̄ (J )|�HF 〉 as a function of −J . The dash-dotted line indicates
the exact ground-state energy Eex for this system, and since H̄ is not
Hermitian EHF can drop below the exact energy. Also indicated are
the results of minimizing the variance of the energy of the similarity-
transformed Hamiltonian Evar by Tsuneyuki [72], the result of solv-
ing Eq. (22) EHF (Jopt ), and the result from a VMC optimization EVMC

[96]. The vertical dashed line indicates Jmax, where L2
(0,2) of |�R

0 〉 is
maximal. All energies are in units of t and the two panels share the
x axis.

98% with ERJ . Off half filling, as can be seen in the N =
36, nel = 24, and U/t = 8 case, the relative error remains
small even for large interaction. The comparison with the
available AFQMC reference results [35,36,73,95], Eref , shows
that the solution of Eq. (22) with an on-site Gutzwiller corre-
lator and a restricted Hartree-Fock reference, retrieves above
80% of the energy for U/t � 4. This gives us confidence that
the optimal J obtained by this method is appropriate in the
context of the Gutzwiller similarity-transformed Hamiltonian,
which we further solve with the FCIQMC method.

C. Exact diagonalization study

Due to the non-Hermitian nature of H̄ (19) the left and
right ground-state eigenvectors |�L/R

0 〉 differ, and depending
on the strength of the correlation parameter J they can have
a very different form. The most important characteristic for
the projective FCIQMC method is the compactness of the
sampled wave function. As a measure of this compactness
we chose the L2 norm of the exact |�L/R

0 〉 contained in

the leading HF determinant |�HF 〉 and double excitations
|�ab

i j 〉 = c†
ac†

bcic j |�HF 〉 (spin-index omitted) thereof, i.e., the
sum over the squares of the coefficients of these determinants:
L2

(0,2) = c2
0 +∑

i< j,a<b c2
i jab.

As a simple example, in the top panel of Fig. 1 we show the
coefficient of the Hartree-Fock determinant c2

HF and L2
(0,2) of

|�0〉 for the 1D half-filled 6-site Hubbard model with periodic
boundary conditions at U/t = 4 and k = 0, as a function of
the correlation parameter J . J = 0 corresponds to the original
Hamiltonian (18). In the bottom panel of Fig. 1 the Hartree-
Fock energy EHF and results of minimizing the variance of the
energy Evar by Tsuneyuki [72], EHF (Jopt ) with Jopt obtained by
solving Eq. (22), and variational Monte Carlo (VMC) results
[96] EVMC are shown. Due to the fact that H̄ is not Hermitian
any more, and hence not bounded by below, EHF can drop
below the exact ground-state energy Eex, also displayed in
Fig. 1, so following Tsuneyuki [72] we termed the energy axis
“pseudoenergy.” There is a huge increase in c2

HF and the L2
(0,2)

norm of the |�R
0 〉 until an optimal value of Jmax, close to the

Jopt obtained by solving Eq. (22), see Table VI, where L2
(0,2) ≈

1, followed by a subsequent decrease. The result obtained by
minimizing the energy variance Evar is higher in energy and
farther from Jmax than Jopt. And, although EVMC is closer to
Eex, the optimized correlation parameter obtained by VMC is
also farther from Jmax than Jopt. At the same time c2

HF and
L2

(0,2) of |�L
0 〉 show a monotonic decrease with increasing −J .

This shows that the amount of relevant information contained
within the HF determinant and double excitations thereof
can be drastically increased in the right eigenvector, while
decreased in the left one. For the calculation of the energy,
where only the right eigenvector is necessary, a more efficient
sampling with the stochastic FCIQMC method should be
possible.

III. THE FCIQMC METHOD

The FCIQMC [75,86] method is a projector Monte Carlo
method, based on the integrated imaginary-time Schrödinger
equation

∂ |�〉
∂t

= −Ĥ |�〉
∫

dt−−→ |�0〉 ∝ lim
t→∞ e−t Ĥ |�(t = 0)〉 , (25)

where t is an imaginary-time parameter and |�(t = 0)〉 is
an arbitrary initial wave function with nonzero overlap with
|�0〉. One obtains the ground-state energy and wave function
by repeatedly applying a first-order difference approximated
projector of (25) to the initial state

|�0〉 = lim
n→∞[1̂ − 
t (Ĥ − ES 1̂)]n |�(0)〉 , (26)

for 
t < E−1
W [97], with EW = Emax − E0 being the spectral

width of Ĥ . If the energy shift ES = E0, convergence to a non-
diverging and nonzero solution can occur. In practice the shift
is dynamically adapted to keep the walker number, explained
below, constant, which corresponds to keeping the L1 norm
of the sampled wave function constant. If the sampled wave
function is a stationary solution to the projector, adapting
ES (t ) to keep the L1 norm constant guarantees ES (t ) → E0.

|�(t )〉 is expanded in an orthonormal basis of Nd Slater de-
terminants, |�(t )〉 = ∑Nd

i ci(t ) |Di〉, and the working equation
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for the coefficients ci is

ci(t + 
t ) = {1 − 
t[Hii − ES (t )]}ci(t ) − 
t
Nd∑
j �=i

Hi jc j (t ).

(27)

Equation (27) governs the dynamics of a population of Nw

signed walkers, which stochastically sample the ground-state
wave function |�0〉. Since the number of states, Nd , grows
combinatorially with system size, only a stochastic “snapshot”
of |�0〉 is stored every iteration, where only states occupied
by at least one walker are retained. The diagonal term of
Eq. (27), 1 − 
t (Hii − ES ), increases or decreases the number
of walkers on state i. The shift energy ES (t ) is dynamically
adapted after the chosen number of walkers Nw is reached to
keep it constant over time. The off-diagonal term, −
tHi j ,
creates new walkers from an occupied determinant i to a
connected state j. The sum is sampled stochastically by only
performing one of these “spawning” events with a probability

pspawn = 
t |Hi j |/p( j|i), (28)

and the sign of the new walker is −sgn(Hi j ). At the end
of each iteration, walkers with opposite sign on the same
determinant, which is a reflection of the fermionic sign prob-
lem, are removed from the simulation. For sufficiently many
walkers the sign problem can be controlled for many systems.
In the intermediate to high interaction regime of the Hub-
bard model, the number of necessary walkers is proportional
to the Hilbert space size, making this “original” FCIQMC
method impractical. The initiator approximation i-FCIQMC
[75] overcomes this exponential bottleneck at the cost of
introducing an initiator bias. It does so by allowing only
walkers on determinants above a certain population threshold
ninit to spawn onto empty determinants (thereby dynamically
truncating the Hamiltonian matrix elements between low-
population determinants and empty ones). This is the source
of the initiator error, which can be systematically reduced by
increasing the walker population. Nevertheless, convergence
can be slow, especially if the ground-state wave function is
highly spread out over the Hilbert space, as is often the case
for strongly correlated systems. On the other hand, conver-
gence can be rapidly obtained if the ground-state eigenvector
is relatively compact, and does not require any prior knowl-
edge of this fact, nor of the nature of the compactness. In fact,
it is precisely for this reason that the similarity transformations
can be of use in the i-FCIQMC method.

In addition to the shift energy ES (t ), a projected energy

EP(t ) = 〈Dref |Ĥ |�(t )〉
〈Dref |�(t )〉 , (29)

with |Dref〉 being the most occupied determinant in a simu-
lation, is an estimate of the ground-state energy, if |�(t )〉 ≈
|�0〉. An improved estimate (with a smaller variance) can also
be obtained by projection onto a multideterminant trial wave
function 〈�trial|,

Etrial(t ) = 〈�trial|Ĥ |�(t )〉
〈�trial|�(t )〉 , (30)

where 〈�trial| is obtained as the eigenvector of a small sub-
space diagonalized similarity-transformed Hamiltonian. This
is particularly useful in open-shell problems, where there
are several dominant determinants in the ground-state wave
function, and as a result Etrial(t ) can exhibit notably smaller
fluctuations than EP(t ).

A. The ST-FCIQMC approach

In variational approaches the lack of a lower bound of
the energy due to the non-Hermiticity of the similarity-
transformed Hamiltonian poses a severe problem. As a projec-
tive technique, however, the FCIQMC method has no inherent
problem sampling the right ground-state eigenvector, obtain-
ing the corresponding eigenvalue by repetitive application of
the projector (26). Additionally, the increased compactness
of |�R

0 〉 observed in Sec. II C, due to the suppressed double
occupations via the Gutzwiller ansatz, tremendously benefits
the sampling dynamics of i-FCIQMC. On the other hand, the
implementation of the additional 3-body term in (19) neces-
sitate major technical changes to the FCIQMC algorithm. We
changed the NECI [98] code to enable triple excitations. Due to
momentum conservation and the specific spin relations (σσ σ̄ )
of the involved orbitals and efficiently analytically calculable
3-body integrals of (19), these could be implemented without
a major decrease of the performance of the algorithm. In fact
the contractions of the 3-body term in (19), namely k = 0 �
k′ = 0 � k = k′ � q + k′ = s, lead to an O(M ) additional
cost of the 2-body matrix element, which have the largest
detrimental effect on the performance. [There is an O(M2)
scaling for the diagonal matrix elements, coming from the
k = k′ = 0 contraction, but this has a negligible overall effect,
since we store this quantity for each occupied determinant,
and is thus is not computed often.] The additional cost for 2-
body integrals is similar to the calculation of 1-body integrals
in conventional ab initio quantum chemistry calculations and
unavoidably hampers the performance, but is manageable.
Surprisingly, the performance penalty, due to the additional
three-body interactions, decreases with increasing strength of
the correlation parameter J . This is due to the following fact:
the performance of the FCIQMC method depends heavily
on the “worst-case” |Hi j |/p(i| j) ratio, where p(i| j) is the
probability to spawn a new walker on determinant |Di〉 from
|Dj〉 and |Hi j | is the absolute value of the corresponding
matrix element 〈Di|Ĥ |Dj〉. The time step 
t of the FCIQMC
simulation is on-the-fly adapted to ensure the “worst-case”
product remains close to unity, 
t |Hi j |/p(i| j) ≈ 1. Due to
the M2 increased number of nonzero matrix elements in the
similarity-transformed Hamiltonian (19), the time step 
t for-
mally scales as O(M−5)—momentum conservation decreases
the scaling by a factor of M—instead of O(M−3) for the origi-
nal Hubbard Hamiltonian (18). However, although numerous,
the 3-body terms are easier to calculate and sampled less
often, due to their relatively small magnitude and the actually
important scaling measure is the necessary number of walkers
to achieve a desired accuracy, which is tremendously reduced
for the similarity-transformed Hamiltonian.

An optimal sampling in FCIQMC would be achieved, if for
every pair (i, j) : p(i| j) ≈ |Hi j | and thus 
t ≈ min(1, E−1

W ).
Since H̄ is not Hermitian, the off-diagonal matrix elements are
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FIG. 2. Histogram of |H̄i j |/pi j ratios for the half-filled, 50-site,
U/t = 4 Hubbard model with periodic boundary conditions for
uniform, weighted, and mixed generation probabilities.

not uniform, as in the original Hamiltonian (18). We therefore
need to ensure an efficient sampling by a more sophisticated
choice of p(i| j). Additionally we can separate p(i| j) into a
probability to perform a double (triple) excitation pD(1 − pD)
since there are still no single excitations in (19), due to mo-
mentum conservation. This split into doubles or triples gives
us the flexibility, in addition to 
t , to also adapt pD during
run time to bring |Hi j |/p(i| j) closer to unity. We observed
that with increasing correlation parameter J the dynamically
adapted probability to create triple excitations increased, thus
reducing the detrimental additional cost to calculate 2-body
matrix elements.

When we perform the spawning step in FCIQMC we
first decide whether to perform a double excitation with
probability pD or a triple excitation with probability 1 − pD.
Then we pick two or three electrons mn(l ) from the starting
determinants (|Dj〉) uniformly, with probability pelec. For a
double excitation, due to momentum conservation, we only
need to pick one unoccupied orbital, since the second is fixed
to fulfill km + kn = ka + kb. To guarantee p(i| j) ∼ |Hi j | we
loop over the unoccupied orbitals a in |Dj〉 and create a
cumulative probability list with the corresponding matrix
elements |Hi j (mn, ab)| and thus pick the specific excitation
with p(i| j) ∼ |Hi j |. The cost of this is O(M2), due to the
loop over the unoccupied orbitals ∼ M and the O(M ) cost
of the double excitation matrix element calculation. For triple
excitations the procedure is similar, except we pick 3 elec-
trons mσ , nσ , lσ̄ with pelec; then we pick orbital aσ̄ of the
minority spin uniformly with pa = 1/nholes and pick orbital
bσ weighted from a cumulative probability list proportional to
|Hi j |. The third orbital cσ is again determined by momentum
conservation km + kn + kl = ka + kb + kc. As opposed to
double excitations, this is only of cost O(M ), due to the loop
over unoccupied orbitals in |Dj〉 to determine bσ . We term this
procedure as the weighted excitation generation algorithm.

TABLE III. Ratios of the time step 
t , time per iteration titer ,
and aborted nabort and accepted excitations naccept of the different
excitation generation probabilities compared to the original (J = 0)
method with uniform choice of open orbitals as a reference for the
half-filled, 50 site, U/t = 4 Hubbard model with periodic boundary
conditions.

J Method %
t %titer %nabort %naccept

0 weighted 100.00 240.12 0.00 100.00
�= 0 uniform 21.02 169.33 93.72 77.31
�= 0 mixed 35.55 719.22 40.14 130.64
�= 0 weighted 45.01 1506.72 0.00 165.29

An alternative and simpler algorithm is to pick the unoc-
cupied orbitals in a uniform way. This decreases the cost per
iteration, but also leads to a worse worst-case Hi j/pi j ratio
leading to a decreased time step 
t . Figure 2 shows the
histogram of the |H̄i j |/pi j ratios for the weighted procedure,
described above, the uniform choice of empty orbitals, and
a mixed method for the half-filled 50-site Hubbard model at
U/t = 4. In the mixed method, the O(M2) scaling double
excitations in the weighted scheme are done in a uniform
manner, while the O(M ) scaling triple excitations are still
weighted according to their matrix element |H̄i j |. Longer tails
in a distribution indicate the need for a lower time step to en-
sure 
t |H̄i j |/pi j ≈ 1. It is apparent that the mixed scheme pos-
sesses the optimal combination of favorable |H̄i j |/pi j ratios
similar to the weighted method, with manageable additional
cost per iteration, shown in Table III. Table III shows the rela-
tive difference of the time step 
t , time per iteration titer, num-
ber of aborted excitations nabort, and acceptance rate naccept of
the different methods compared to the original J = 0 uniform
sampled half-filled, 50-site Hubbard model with U/t = 4.
While there is a 7-fold increase of the time per iteration of the
mixed scheme compared to the original uniform one, the time
step is almost a third larger and the accepted rate of spawning
events a third higher. nabort indicates those spawning attempts
which originally are proposed in the uniform scheme, but are
finally rejected, due to zero matrix elements, or are Fermi
blocked. This quantity is also decreased by more than a half in
the mixed method compared to the uniform original scheme.
naccept indicates the number of accepted proposed spawning
events and is directly related to pspawn (28). The choice of
the excitation generator is therefore not straightforward and
depends on the interaction strength and J: the uniform scheme
performs better than expected at small U/t , while the mixed
scheme performs better at large U/t .

IV. RESULTS

We assessed the performance of initiator ST-FCIQMC
(i-ST-FCIQMC) for different Hubbard lattices, as a function
of the Gutzwiller correlation factor J . As a starting guide for J ,
we use Jopt obtained by solving Eq. (22) for the specific lattice
size M, number of electrons nel , and interaction strength U/t ,
and calculate the ground-state and excited-state energies with
i-ST-FCIQMC. In particular, we were interested in the rate
of convergence of the energy with respect to walker number,
or in other words, how quickly the initiator error disappeared
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FIG. 3. The error of the energy per site |eJ − eex| for the half-
filled, 18-site Hubbard model for the original J = 0 and different
strengths of the correlation parameter J at k = 0 for U/t = 2 (left)
and U/t = 4 (right) versus the walker number Nw . The dashed lines
indicate the statistical errors of the Nw = 106 results with ninit = 1.2
for U/t = 2 and of the Nw = 5 × 107 with ninit = 2.0 for U/t = 4.
The exact reference results were obtained by Lanczos diagonaliza-
tion [99].

with increasing walker number. The optimal values of J for
each studied system can be found in Table VI in Appendix A.
All energies are given per site and in units of the hopping
parameter t and the lines in Figs. 3 to 7 are guides to the eye.

A. 18-site Hubbard model

We first study the 18-site Hubbard model on a square lattice
with tilted boundary conditions (see Fig. 8), which can be
exactly diagonalized: at half filling and zero total momentum
(k = 0) it has a Hilbert space of ∼108 determinants. All the
exact reference results were obtained by a Lanczos diago-
nalization [99]. For this system ST-FCIQMC could be run
either in “full” mode or with the initiator approximation, i-ST-
FCIQMC. This enables us to assess to two separate questions,
namely the performance of i-ST-FCIQMC with regards to
initiator error on the one hand, and compactness of the wave
functions resulting from the similarity transformation (with-
out the complicating effects of the initiator approximation),
on the other.

Figure 3 shows the error (on a double-logarithmic scale) of
the energy per site in the initiator calculation, as a function of
walker number. The left panel shows results for the U/t = 2
system. As one can see there is a steep decrease in the error
and even with only 104 walkers, for a correlation parameter of
J = −1/4 (close to the Jopt) the error is below 10−4. At 106

walkers it is well below 10−6, almost two orders of magnitude
lower than the original (i.e., J = 0) Hamiltonian at this value
of Nw. This also confirms the assumption that the chosen
ansatz for the correlation function (2) is particularly useful
in the low-U/t regime.
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FIG. 4. L2 norm captured within the HF determinant c2(L/R)
HF and

additionally double excitations, L2
(0,2), for the half-filled, 18-site Hub-

bard model at U/t = 4 for the left and right ground-state eigenvec-
tors of the non-Hermitian similarity-transformed Hamiltonian (19)
as a function of −J . The results were obtained by a noninitiator ST-
FCIQMC calculation. |�L〉 was sampled by running the simulation
with positive J , which corresponds to conjugating H̄ . Jmax indicates
the position of the maximum of L2

(0,2) and Jopt is the result of solving
Eq. (22).

Results for an intermediate strength, U/t = 4, are shown
in the right panel of Fig. 3. Compared to the U/t = 2, more
walkers are needed to achieve a similar level of accuracy. The
two sources for this behavior are as follows.

First, i-FCIQMC calculations on the momentum-space
Hubbard model are expected to become more difficult with
increasing interaction strength U/t , due to the enhanced mul-
ticonfigurational character of the ground-state wave function.
Second, the chosen correlation ansatz (2) is proven to be
more efficient in the low-U/t regime [46]. Nevertheless, the
results shown in Fig. 3 show a steep decrease in the double-
logarithmic plot of the error with increasing walker number.
The decrease is steeper for J = −1/2, close to the analytic
result obtained with Jopt = −0.5234470. For J = −1/2, at
walker numbers up to 5 × 107, we are to within error bars
at the exact result. At a walker number of 107 there is a two
orders of magnitude difference in the error of the J = −1/2
and J = 0 result.

To confirm the more compact form of the right ground-
state eigenvector, mentioned in Sec. II C, we performed two
analyses. First was the study of the L2 norm captured within
the HF determinant c2(L/R)

HF and additionally double excita-
tions, L2

(0,2), for the ST-FCIQMC wave function. In Fig. 4
L2

(0,2) of the left and right ground-state eigenvectors of the
half-filled, 18-site, U/t = 4 Hubbard model as a function of
−J are shown. The results were obtained by running full
noninitiator ST-FCIQMC calculations to avoid any influence
of the initiator error. The left eigenvector was obtained by run-
ning with positive J , which corresponds to a conjugation of H̄ ,

H̄ (J )† = (e−τ̂ Ĥeτ̂ )† = eτ̂ Ĥe−τ̂ = H̄ (−J ), (31)
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18-site, U/t = 4, k = 0 Hubbard model for different values of J . The
inset shows the tail of the same data on a logarithmic scale.

since Ĥ† = Ĥ and τ̂ † = τ̂ . And,

H̄† |�L〉 = E |�L〉 , with |�L〉 = e−τ̂ |�〉 . (32)

Similarly to the exact results for the 6-site model in Fig. 1, the
right eigenvector shows a huge compactification compared
to the original J = 0 result, going from 0.65 to over 0.9 for
L2

(0,2). The “optimal” value of J = Jmax = −0.57444831,
where L2

(0,2) is maximal, is close to the analytically obtained
Jopt = −0.5234470, indicating that we can simply use Jopt

without further numerical optimization of J , and still be close
to optimal conditions.

Figure 5 shows the L2 norm contained in each excitation
level relative to the HF determinant for the half-filled, 18-
site, U/t = 4 Hubbard model for different values of J . For
J = −1/2 there is a huge increase in the L2 norm of the HF
determinant, indicated by an excitation level of 0, while it
drops off very quickly for higher excitation levels and remains
one order of magnitude lower than the J = 0 result above an
excitation level of 5.

Our second analysis on the compactness of |�R
0 〉 consisted

of running truncated CI [100] calculations, analogous to the
CISD, CISDTQ, etc., methods of quantum chemistry. Here
we truncate the Hilbert space by only allowing excitation
up to a chosen value ntrunc relative to the HF determinant.
Figure 6 shows the error of the energy per site as a function
of ntrunc for different J . For J = −1/2 we are below 10−4

accuracy already at only quintuple excitation, which is two
orders of magnitude lower than the original J = 0 result at this
truncation level. The error bars in the inset of Fig. 6 are from
the ntrunc = 8 simulations for each value of J , which do not
differ much from ntrunc = 5 to ntrunc = 8 for each simulation.
Already at sextuple excitations we are well within error bars of
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FIG. 6. Error of the energy per site versus the excitation level
truncation ntrunc in the half-filled, 18-site, U/t = 4, k = 0 Hubbard
model for different values of J . The inset shows the absolute error
on a logarithmic scale. The dashed lines in the inset indicate the
statistical error for the ntrunc = 8 results for each value of J .

the exact result for J = −1/2, with an error that is two orders
of magnitude smaller than the J = 0 result.

1. Off-half-filling 14 e− in 18 sites

We have also investigated the applicability of the i-ST-
FCIQMC method to the off-half-filling case, and also to
excited-state calculations. To this end we calculated the
ground, first, and second excited states of the 14 e− in the
18-site, U/t = 4, k = 0 system. Such a system can be pre-
pared by removing 4 electrons (2 α and 2 β spins) from
the corners of the Fermi-sea determinant, and using this as a
starting point for an i-ST-FCIQMC simulation. Excited states
are obtained by running multiple independent runs in parallel
and applying a Gram-Schmidt orthogonalization to a chosen
number of excited states [101]

|�i(t + 
t )〉 = P̂i(t + 
t )[1 − 
t (Ĥ − ES,i )] |�i(t )〉 ,

(33)

with P̂i(t ) being the orthogonal projector

P̂i(t ) = 1 −
∑
j<i

|� j (t )〉 〈� j (t )|
〈� j (t )|� j (t )〉 with Ej < Ei. (34)

However, since the set of right eigenvectors |�R
i 〉 of a non-

Hermitian operator are not guaranteed to be orthogonal, we
cannot rely on the projected energy estimate (29) as an
estimate for the excited state energy. By orthogonalizing

each eigenvector 〈�E
i |�R

j 〉 != 0 for i �= j (i and j indicate
the excited states), the sampled excited states will in general
not be identical to the exact right eigenvectors of H̄ . On the
other hand, since the spectrum of H̄ does not change due to
the similarity transformation (6), the shift energy ES in (33),
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FIG. 7. Energy per site error compared to exact Lanczos results [99] for the 14 e− in the 18-site, U/t = 4, k = 0 Hubbard model for the
(a) ground, (b) first excited, and (c) second excited state as a function of walker number Nw . All three panels share the x and y axes. The dashed
lines indicate the statistical errors of the Nw = 107 for each value of J .

dynamically adapted to keep the walker number constant,
remains a proper estimate for the excited-state energy. This
interesting fact is developed further in Appendix C. Addi-
tionally, if the excited state belongs to a different spatial or
total-spin symmetry sector the overlap with the ground state
is zero, so our excited-state approach within the FCIQMC
formalism, via orthogonalization, correctly samples these or-
thogonal excited states.

Figure 7 shows the energy per site error of the ground,
first, and second excited states of the 14 e− in the 18-site,
U/t = 4, k = 0 system, compared to exact Lanczos reference
results [99] for different values of J versus the walker number
Nw, obtained via the shift energy ES,i. All states show a
similar behavior of the energy per site error. The closer J
gets to the optimal value of Jopt = −0.557941 for U/t = 4,
which is determined for E0; one observes that more than an
order of magnitude fewer walkers are necessary to achieve
the same accuracy as the J = 0 case. This is true for all
the states considered. For E1, the energy difference of the
Nw = 107 and J = −1/2 calculation is already within the
statistical error of 10−5, hence the nonmonotonic behavior.
The size of the absolute error of these states is comparable to
the absolute error of the half-filled, 18-site, U/t = 4 system,
shown in the right panel of Fig. 3. Since, without a chemical
potential, the total ground-state energy per site of the nel = 14
system, e(14)

0 = −1.136437, is lower than the half-filled one,
e(18)

0 = −0.958466, the relative error is in fact smaller off half
filling. As already mentioned above and shown in Tables I
and II, the projective solution based on the restricted Hartree-
Fock determinant (22) also yields smaller relative errors off
half filling. These results give us confidence to also apply
the i-ST-FCIQMC method to systems off half filling and for
excited-state energy calculations.

2. Symmetry analysis

As mentioned above, the set of right eigenvectors of a
non-Hermitian operator is in general not orthogonal, except
when the eigenvectors belong to different irreducible rep-
resentations and/or total spin symmetry sectors. Here we

investigate the interesting influence of the similarity trans-
formation on the symmetry properties of the truncated low-
energy subspace of the 14e− in the 18-site system with total
k = 0. There are 8 important low-energy determinants with
the 5 lowest energy k points double occupied and 4 e−
distributed among the 4 degenerate orbitals of the corner of
the square k1 = (−1,−1), k2 = (1,−1), k3 = (−1, 1), and
k4 = (1, 1) to preserve the total k = 0 symmetry. This is
illustrated in Fig. 8, where filled red circles indicate the doubly
occupied k points and half-filled green circles the singly
occupied ones. The point group of the square lattice is D4h.
There are 2 closed-shell determinants in this set, with opposite

FIG. 8. The three different square lattices studied in this pa-
per. The 18- and 50-site lattices have tilted periodic boundary
conditions with lattice vectors R1 = (3, 3), R2 = (3, −3) and R1 =
(5, 5), R2 = (5,−5), respectively. The 36-site lattice is studied with
periodic and mixed, periodic along the x axis and antiperiodic
boundary conditions along the y axis. The filled red circles in the
18-site lattice indicate the doubly occupied states and the half-filled
green circles the singly occupied states in the subspace studied in
Sec. IV A 2.
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TABLE IV. Irreducible representations and spin symmetry of the
ground state E0 and first two excited states E1, E2 of the U/t = 4,
k = 0, 14 e− in the 18-site Hubbard model for the full and subspace
solutions for different values of J . For a large enough correlation
parameter J the ground state of the low-energy subspace resembles
the correct symmetry structure as for the full solution.

E0 E1 E2

Full 1A1g
5B1g

1B2g

J = 0 subspace 5B1g
1A1g

1B2g

J = −0.72 subspace 1A1g
5B1g

1B2g

k points doubly occupied and 6 open-shell determinants with
all 4 corners of the Brillouin zone singly occupied. Without a
correlation parameter all these 8 determinants are degenerate
in energy, while with J �= 0 this degeneracy is lifted. To study
the low-energy properties of this system we diagonalized H̄
in this subspace. Table IV shows the results. We found that
with J = 0 the ground state of this subspace has a different
spatial and spin symmetry, 5B1g, than the ground state of
the full system, which belongs to 1A1g. At approximately
J ≈ −0.71 there is a crossover and the subspace ground
state changes to 1A1g symmetry. The first excited state in the
subspace is then the 5B1g, which is also the symmetry of the
first excited state of the full system and the second excited
state is of 1B2g symmetry, the same as the second excited
state of the not truncated system. Therefore the similarity
transformation not only ensures a more compact form of the
ground- and excited-state wave functions, but also correctly
orders the states obtained from subspace diagonalizations. The
implication is that, in the off-half-filling Hubbard model, the
structure of the ground state has very important contribu-
tions arising from high-lying determinants, so much so that
they are necessary to get a qualitatively correct ground-state

wave function (i.e., one with the correct symmetry and spin).
With the similarity-transformed Hamiltonian, however, this is
not the case. Even small subspace diagonalizations yield a
ground-state wave function with the same symmetry and spin
as the exact one. In other words, the similarity transformation
effectively downfolds information from higher-lying regions
of the Hilbert space to modify the matrix elements between
the low-lying determinants. Since the structure of the ground-
state eigenvector already has the correct symmetry (and there-
fore signs) in small subspaces, the rate of convergence of the
solution with respect to the addition of further determinants is
much more rapid. We believe this is a crucial property which
leads to the observed greatly improved convergence rate of the
i-ST-FCIQMC method in the off-half-filling regime.

B. Results for the 36- and 50-site Hubbard models

To put the i-ST-FCIQMC method to a stern test, we applied
it to two much larger systems, namely 36-site and 50-site
lattices, which are well beyond the capabilities of exact di-
agonalization. In the case of the 36-site (6 × 6) lattice, we
considered two boundary conditions, namely fully periodic
(PBC) and a mixed periodic-antiperiodic (along the x and
y axes, respectively), the latter being used in some studies
to avoid degeneracy of the noninteracting solution [11]. We
considered two fillings, namely half filling and 24e−, at U/t =
2 and U/t = 4. The optimal Jopt was determined by solving
Eq. (22) and is listed in Table VI in Appendix A. For the 6 × 6
by lattice we compared our results to AFQMC calculations
[36], which are numerically exact at half filling [93]. The
results are shown in Table V. While the original i-FCIQMC
method shows a large error even at walker numbers up to
Nw = 5 × 108 the i-ST-FCIQMC method agrees with the
AFQMC reference to within 1σ error bars in all but one case
(PBC U/t = 4 half filled), where the agreement is within 2σ .
Even in that case the energies agree to better than 99.8%. The

TABLE V. Zero-temperature, k = 0 ground-state energy results for the 36-site and 50-site Hubbard models for various interaction strengths
U/t , numbers of electrons nel , and periodic (PBC) and mixed (anti)periodic boundary conditions along the (y) x axis, obtained with the initiator
FCIQMC and the i-ST-FCIQMC method compared with available (CP-)AFQMC and linearized-AFQMC reference results [36,95,106–108].
The differences from the AFQMC reference energies are displayed as 
E . The correlation parameter J was chosen close to the optimal Jopt

obtained by solving Eq. (22) listed in Table VI of Appendix A for the specific U/t value. An initiator threshold of ninit = 2.0 was chosen and
convergence of the energy up to a walker number of Nw = 109 was checked.

M U/t nel BC Eref i-FCIQMC 
EJ=0 i-ST-FCIQMC 
EJ

36 4 24 APBC − 1.155828(40) − 1.159285(24)
36 4 24 PBC − 1.18525(4) − 1.182003(57) 0.003247(97) − 1.1852109(52) 0.000039(45)
36 2 36 APBC − 1.208306(56) − 1.2080756(39) 0.000230(60) − 1.2082581(17) 0.000048(58)
36 2 36 PBC − 1.15158(14) − 1.149734(95) 0.00185(24) − 1.151544(18) 0.00004(16)
36 4 36 APBC − 0.87306(56) − 0.847580(84) 0.025480(64) − 0.872612(50) 0.00045(61)
36 4 36 PBC − 0.85736(25) − 0.82807(87) 0.0293(11) − 0.85625(30) 0.00111(55)

50 1 50 PBC − 1.43718(11) − 1.4371801(18) 0.00000(11) − 1.43724130(44) − 0.00006(11)
50 2 50 PBC − 1.22278(17) − 1.220590(16) 0.00219(19) − 1.2228426(80) − 0.00006(18)
50 3 50 PBC − 1.03460(30) − 1.023064(35) 0.01154(34) − 1.034788(18) − 0.00019(32)
50 4 50 PBC − 0.879660(20) − 0.83401(15) 0.04565(17) − 0.880657(60) − 0.000997(80)
50 4 48 PBC − 0.93720(15) − 0.89610(12) 0.04110(27) − 0.93642(40) 0.00078(55)
50 4 46 PBC − 0.9911420(86) − 0.95550(15) 0.03564(24) − 0.990564(89) 0.00058(18)
50 4 44 PBC − 1.037883(59) − 1.006483(38) 0.031400(97) − 1.037458(47) 0.00043(11)
50 4 42 PBC − 1.079276(66) − 1.053756(64) 0.02552(13) − 1.078908(69) 0.00037(14)
50 4 26 PBC − 1.115640(20) − 1.113874(16) 0.001766(36) − 1.1159016(39) − 0.000262(24)
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TABLE VI. Jopt obtained by solving Eq. (22) for the specific lattice sizes, fillings, and U/t values used in this paper. Jex is the value that
sets the J-dependent Hartree-Fock energy, EHF

J , to the exact energy, if available, or to the AFQMC reference energies for larger systems.

M U/t nel Jopt Jex eex eJ eJ/eex (%)

6 4 6 −0.67769 −0.74282 −0.61145 −0.56306 92.1
18 2 18 −0.27053 −0.28536 −1.32141 −1.31697 99.7
18 4 18 −0.52345 −0.57472 −0.95847 −0.92697 96.7
18 4 14 −0.55794 −0.62474 −1.13644 −1.09786 96.7
36 2 36 −0.30485 −0.45423 −1.15158 −1.09840 95.4
36a 2 36 −0.28683 −0.31783 −1.20831 −1.19904 99.3
36 4 36 −0.58521 −0.79141 −0.85736 −0.71675 83.6
36a 4 36 −0.55295 −0.65181 −0.87306 −0.81145 92.9
36a 4 24 −0.53570 −1.13399
36b 4 24 −0.52372 −0.57014 −1.18530 −1.16457 98.3
50 1 50 −0.14290 −0.15357 −1.43718 −1.43561 99.9
50 2 50 −0.28298 −0.30852 −1.22278 −1.21523 99.4
50 3 50 −0.41788 −0.46639 −1.03460 −1.01278 97.9
50 4 50 −0.54600 −0.63177 −0.87966 −0.82601 93.9
50 4 48 −0.54945 −0.62810 −0.93720 −0.88954 94.9
50 4 46 −0.55208 −0.62227 −0.99114 −0.95008 95.9
50 4 44 −0.54772 −0.61530 −1.03788 −1.00016 96.4
50 4 42 −0.54324 −0.60263 −1.08002 −1.04765 97.0
50 4 26 −0.51076 −0.56162 −1.11564 −1.09946 98.6

aAntiperiodic BC along y axis.
bOpen-shell k = 0 reference.

small discrepancy could be due to this system being strongly
open shell, making equilibration more challenging.

The 50-site Hubbard lattice corresponds to a 5
√

5 × 5
√

5
tilted square, which has been widely investigated using the
AFQMC method. We considered half-filling and various
off-half-filling, nel = 26, 42, 44, 46, and 48 cases for U/t =
1, 2, 3, and 4 and calculated the ground-state energy. The
optimal J are listed in Table VI in Appendix A. This system
size, especially with increasing U/t and off half filling, was
previously unreachable with the FCIQMC method. We com-
pare our half-filling results to AFQMC [93,102,103] reference
values, which do not have a sign problem at half filling
[93]. The remaining sources of error are extrapolation to
zero temperature and finite steps, both of which are expected
to be very small. Off half filling, exact AFQMC results
are not available, and we compare against constrained-path
AFQMC (CP-AFQMC) [104,105] and linearized AFQMC
(L-AFQMC) [106].

Table V shows the results for various fillings and U/t
values of the reference calculations, the original i-FCIQMC
and the i-ST-FCIQMC methods. We converged our results
for this system size up to a walker number of Nw = 109. We
can see that the original i-FCIQMC method performs well for
the weakly correlated half-filled U/t = 1 system, but fails to
reproduce the reference results at U/t = 2 for this system size,
and the discrepancy worsens with increasing interaction. The
i-ST-FCIQMC method on the other hand agrees within error
bars with the reported reference calculation up to U/t = 3 at
half filling. Similarly to the half-filled 36-site lattice, the i-
ST-FCIQMC results are slightly below the AFQMC reference
results at U/t = 4, which could be a finite-temperature effect
of the AFQMC reference results.

We investigated the half-filled, 50-site, U/t = 4 system
further by performing the convergence of a truncated CI

expansions, similarly to the 18-site lattice. The results are
shown in Fig. 9. The convergence with excitation level trunca-
tion shows that convergence occurs from above, and at 6-fold
excitations we are converged to statistical accuracy to the fully
unconstrained simulation. The energy at 6-fold truncation
is indeed slightly below the AFQMC result, although the
discrepancy is small (approximately 0.1%). It is intriguing
that the CI expansion of the 50-site lattice is converged at 6-
fold excitations, which is the same as observed for the 18-site
lattice. This suggests that linear solutions to the similarity-
transformed Hamiltonian may be size-consistent to a greater
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FIG. 9. The energy per site versus the excitation level truncation
ntrunc in the half-filled, 50-site, U/t = 4, k = 0 Hubbard model.
AFQMC reference [108] and nontruncated i-ST-FCIQMC results are
also shown. Similarly to the 18-site system at half-filling (Fig. 6), the
energies are well converged at 6-fold excitations.
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degree than similar truncations to the original untransformed
Hamiltonian. This question however is left for a future study.

For U/t = 4 off half filling the i-ST-FCIQMC energies
are consistently slightly above the reference AFQMC results.
However the approximations in the off-half-filling AFQMC
calculations can lead to energies below the exact ones. For
example [95], CP-AFQMC on a 4 × 4 lattice with 14 e−
and U/t = 4 gives an energy of −0.9863(1) compared to an
exact energy of −0.9840, i.e., an overshoot of 0.2%. Similar
overshoots are observed at other fillings. In the off-half-
filling regime in the 50-site system at U/t = 4, CP-AFQMC
overshoots our i-ST-FCIQMC results by similar amounts.
Therefore our results are in line with ED results for smaller
lattices, and thus represent a new set of benchmarks for the
off-half-filling 50-site Hubbard model.

V. DISCUSSION, CONCLUSION, AND OUTLOOK

We have used a projective solution based on the restricted
Hartree-Fock determinant to obtain an optimized Gutzwiller
correlation parameter. For low to intermediate interaction
strength, this method generally recovers over 80% of the
ground-state energy. Based on this mean-field solution we
derived a similarity-transformed Hubbard Hamiltonian, gen-
erated by the Gutzwiller ansatz, in a momentum-space basis.
We solved for the exact ground- and excited-state energies of
this non-Hermitian operator with the FCIQMC method. We
have shown that the right eigenvector of the non-Hermitian
Hamiltonian has a dramatically more compact form, due to
suppression of energetically unfavorable double occupancies,
via the Gutzwiller ansatz. This increased compactness of the
right eigenvectors allowed us to solve the Hubbard model
for system sizes, which were previously unreachable with the
i-FCIQMC method. We benchmarked our results with highly
accurate AFQMC reference results and find extremely good
agreement at and off half filling up to interaction strengths of
U/t = 4. We hope this combination of a similarity transfor-
mation based on a correlated ansatz for the ground-state wave
function and subsequent beyond mean-field solution with
FCIQMC can aid the ongoing search for the phase diagram
of the two-dimensional Hubbard model in the thermodynamic
limit.

An important extension of the present work will be to
compute observables other than the energy. To compute the
expectation values of operators Ô which do not commute
with the Hamiltonian we need additionally to obtain the left
eigenvector of the non-Hermitian H̄ with the ansatz 〈�L| =
〈�| e−τ̂ :

〈�| Ĥ = 〈�| e−τ̂ H = E 〈�| e−τ̂ . (35)

The expectation value of the similarity-transformed operator
Ō = e−τ̂ Ôeτ̂ with |�R/L〉 yields the desired

〈�L|Ō|�R〉
〈�L|�R〉 = 〈�|eτ̂ e−τ̂ Ôeτ̂ e−τ̂ |�〉

〈�|eτ̂ e−τ̂ |�〉 = 〈Ô〉. (36)

As already observed in Sec. IV A, applying H̄ with −J yields
the left eigenvector |�L〉 = eτ̂ |�〉. To perform this in the
FCIQMC we only need to run two independent simulations
in parallel, as is already done in replica-sampling of reduced
density matrices [109], where the two runs use an opposite

sign of the correlation parameter J . Observables, Ô, which
commute with the chosen Gutzwiller correlator [ τ̂ , Ô ] = 0,
such as the double occupancy 〈n↑n↓〉, can be calculated by
the 2-body reduced density matrix obtained with the left and
right eigenvector

pq,rs = 〈�L|c†
pc†

qcscr |�R〉, (37)

with normalized 〈�L|�R〉 = 1 and p, q, r, and s denoting
spin-orbital labels in the momentum space. Noncommuting
observables, [ τ̂ , Ô ], have to be similarity-transformed Ō =
e−τ̂ Ôeτ̂ and might require higher-order density matrices.

Simultaneous calculation of the left eigenvectors |�i
L〉 also

allows us to obtain the correct excited-state wave functions,
in addition to the already-correct excited-state energy via the
shift energy ES,i mentioned in Sec. IV A 1 and Appendix C, in
the following manner: For m excited states we run 2m simula-
tions in parallel, where every odd numbered calculation solves
for a right eigenstate |�i

R〉, which is orthogonalized against
all |� j

L〉 with Ej < Ei. And vice versa, every even numbered
simulation solves for a left eigenvector |�i

L〉, orthogonalized
against each |� j

R〉 with Ej < Ei. In this shoelace manner m
left and right excited state eigenvectors are obtained based
on the biorthogonal property of left and right eigenvectors of
non-Hermitian operators 〈�i

L|� j
R〉 = 0 for i �= j. Results on

observables other than the energy and correct left and right
eigenvectors of excited states will be reported in future work.

To perform accurate thermodynamic-limit extrapolations,
we also need to reduce the finite-size errors of the kinetic
term in Eq. (7). This can be done by twist-averaged boundary
conditions [36,110–112], which are readily applicable for the
similarity-transformed Hamiltonian in FCIQMC, and will be
reported in future work.
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APPENDIX A: OPTIMIZATION OF J

As mention in Sec. II B, similarly to the optimization of
coupled-cluster amplitudes [113], we want to solve for the
single parameter J of the ansatz (2) by projection. Projecting
the ansatz on 〈�HF | would yield us the energy EHF

J :

〈�HF | e−τ̂ Ĥeτ̂︸ ︷︷ ︸
H̄

|�HF 〉 = EJ . (A1)

And projecting onto 〈�HF | τ̂ †

〈�HF | τ̂ †H̄ |�HF 〉 = EHF
J 〈�HF |τ̂ †|�HF 〉, (A2)

where 〈τ̂ †〉HF �= 0 only for k = 0 terms in the momentum-
space representation of τ̂ :

τ̂ = J

M

∑
p,q,k,σ

c†
p−k,σ c†

q+k,σ̄ cq,σ̄ cp,σ . (A3)

Combining Eqs. (A1) and (A2) yields

〈(τ̂ − 〈τ̂ 〉)†H̄〉HF = 0, (A4)
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where the diagonal, k = 0 terms cancel. (In the language
of the coupled-cluster approach an equivalent expression to
Eq. (A4) is 〈τ̂ †H〉c = 0, where 〈. . .〉c denotes a cumulant
expression over linked diagrams [114] only.) To optimize
J based on a single determinant |�HF 〉 we need to solve
Eq. (A4), which can also be seen as a projection of the eigen-
value equation (H̄ − E ) |�HF 〉 = 0 on the single basis of the
correlation factor τ̂ . The remaining contributing contractions
(k �= 0) of (A4) of H̄ are

〈τ̂ †H̄〉c = 1

M2

∑
pqk,σ

np,σ nq,σ̄ (1 − np−k,σ )(1 − nq+k,σ̄ )

×

⎧⎪⎨
⎪⎩ω2(J, p, k)︸ ︷︷ ︸

2-body

+2t
cosh J − 1

M

⎡
⎢⎣Nσ̄ (εp + εp−k )︸ ︷︷ ︸

3-body RPA

−
∑

s

(εp+q−s + εp−q−k+s)ns,σ̄︸ ︷︷ ︸
3-body exchange

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (A5)

Equation (A5) can be evaluated directly, or since τ̂ |�HF 〉 =
cHF |�HF 〉 +∑

i ci |Di〉 corresponds to all the double excita-
tion on top of the Hartree-Fock determinant, it is the sum of all
the double excitation matrix elements with the Hartree-Fock
determinant. The diagonal contribution again cancels with the
〈τ̂ 〉 term in Eq. (A4). The specific optimal J values for the
lattice sizes, fillings, and U/t values used in this study are
listed in Table VI.

APPENDIX B: ANALYTIC OPTIMIZATION OF J IN THE
THERMODYNAMIC LIMIT AT HALF FILLING

For an infinite system at half filling, we define

T0(k) = 1

M

∑
q

�(εF − εq)�(εq+k − εF ), (B1)

T1(k) = 1

M

∑
p

�(εF − εp)�(εp−k − εF )
∑

d

ei(p−k)·d,

(B2)

T2(k) = 1

M

∑
p

�(εF − εp)�(εp−k − εF )
∑

d

eip·d. (B3)

The 2-body contributions of Eq. (22) can be expressed as

U

2

1

M

∑
k

T 2
0 (k) − t

M

[
(eJ − 1)

∑
k

T0(k)T1(k) + (e−J − 1)

×
∑

k

T0(k)T2(k)

]
= 0. (B4)

In the thermodynamic limit (M → ∞) the summation in the
expression of the Tm factors (B1)–(B3) becomes integrals:

1

M

∑
q

−→ 1

(2π )d

∫
dd q.

For an unpolarized system at half filling, the factor �(εF − εq)
leads to a square region in the kx-ky plane and Tm(k) integrals
can be easily calculated after a rotation of coordinates:

k′
x = 1√

2
(kx − ky), k′

y = 1√
2

(kx + ky). (B5)

With this rotation, T0 is found to be symmetric with respect
to k′

x → −k′
x and k′

y → −k′
y, so it reduces to a function of |kx|

and |ky|:

T0(k) = 1

(2π )2

∫
�(εF − εq)�(εq+k − εF )d2q (B6)

= 1

(2π )2

(∫ −π/
√

2+|k′
x |

−π/
√

2

∫ π/
√

2

−π/
√

2+|k′
y|

dq′
xdq′

y (B7)

+
∫ π/

√
2

−π/
√

2+|k′
x |

∫ −π/
√

2+|k′
y|

−π/
√

2
dq′

xdq′
y

)
(B8)

= 1

(2π )2
[
√

2π (|k′
x| + |k′

y|) − 2|k′
xk′

y|] (B9)

= 1

(2π )2

[
π (|kx − ky| + |kx + ky|) − ∣∣k2

x − k2
y

∣∣]. (B10)

With the coordinate rotation (B5), the integrand of T1 can be
factorized as∑

d

ei(p−k)·d = cos(px − kx ) + cos(py − ky)

= cos

[
1√
2

(p′
x − k′

x ) + 1√
2

(p′
y − k′

y)

]

+ cos

[
1√
2

(p′
x − k′

x ) − 1√
2

(p′
y − k′

y)

]

= 2 cos

[
1√
2

(p′
x − k′

x )

]
cos

[
1√
2

(p′
y − k′

y)

]
,

and T1 can also be found as a function of |kx| and |ky|:

T1(k) = 16

(2π )2

[
cos

(
kx − ky

2

)
cos

(
kx + ky

2

)
− 1

]
. (B11)

In a similar way T2 can be calculated as

T2(k) = 16

(2π )2

[
1 − cos

(
kx − ky

2

)
cos

(
kx + ky

2

)]
= −T1(k). (B12)

The exchange part of the three-body contribution in (22) to
the correlation energy can be calculated as [using here again
the rotation (B5) for p]

1

M2

∑
pqkσ

(
np,σ nq+k,σ̄ nq,σ̄

∑
d

cos(p · d)eik·d
)

= 1

M

∑
pkσ

(
np,σ

(
1

2
− T0(k)

)∑
d

cos(p · d)eik·d
)

= 2M

(2π )4

∫∫ π/
√

2

−π/
√

2
d p′

xd p′
y

∫∫ π

−π

dkxdky

×
(

1

2
− 1

(2π )2

(
π (|kx − ky| + |kx + ky|) − ∣∣k2

x − k2
y

∣∣))

075119-15



WERNER DOBRAUTZ, HONGJUN LUO, AND ALI ALAVI PHYSICAL REVIEW B 99, 075119 (2019)

(
cos

(
p′

x + p′
y√

2

)
cos(kx ) + cos

(
p′

x − p′
y√

2

)
cos(ky)

)

= 32M

π6
. (B13)

The final results are

T0(k) = 1

(2π )2

(
π (|kx − ky| + |kx + ky|) − ∣∣k2

x − k2
y

∣∣),
(B14)

T1(k) = 16

(2π )2

[
cos

(
kx − ky

2

)
cos

(
kx + ky

2

)
− 1

]
,

(B15)

T2(k) = −T1(k), (B16)

and the summations can also be calculate as integrals:

1

M

∑
k

T 2
0 (k) = 5

72
, (B17)

1

M

∑
k

T0(k)T1(k) = −16 + π4

π6
. (B18)

JTDL
opt can be obtained by solving

5U

144
+ t

16 + π4

π6
(eJ − e−J ) = 0, (B19)

which, for small U/t , can be approximated as

JTDL
opt = argsinh

(
− 5U

288t
× π6

16 + π4

)
≈ −0.14717

U

t
.

(B20)

At half filling Hartree-Fock energy of the original Hubbard
Hamiltonian (18), with k = 0 in the two-body term,

EJ=0
HF =

〈
−t
∑
k,σ

εknk,σ

〉
HF

+ U

2

〈
1

M

∑
p,q,σ

np,σ nq,σ̄

〉
HF

,

(B21)

results to

EJ=0
HF = M

(
−t

64

(2π )2
+ U

4

)
(B22)

in the thermodynamic limit (TDL). The additional contribu-
tions arising due to the similarity transformation

EJ
HF =

〈
−2t

cosh(J − 1)

M

∑
p,q,σ

εpnp,σ nq,σ̄

〉
HF

−
〈

2t
cosh(J − 1)

M2

∑
p,q,k,σ

εp+knp,σ nq+k,σ̄ nq,s̄

〉
HF

(B23)

can be estimated, with cosh(J − 1) ≈ J2 for small J and
Eq. (B13), as

EJ
HF ≈ −tJ2M

(
16

(2π )2
+ 64

π6

)
. (B24)

Hence, the energy per site in the TDL for an unpolarized
system at half filling is given by

ETDL
opt = −t

64

(2π )2
+ U

4
− tJ2

(
16

(2π )2
+ 64

π6

)
. (B25)

APPENDIX C: EXCITED STATES

As discussed in Sec. IV A 1 the right eigenvectors of
a non-Hermitian operator H̄ |�R

i 〉 = Ei |�R
i 〉 are in general

not orthogonal to each other. And hence the way excited
states are obtained with the FCIQMC method [101] should in
general not be applicable to excited states of a non-Hermitian
operator, since they are sampled by orthogonalizing the nth
excited state to all lower energy states m < n. But it turns
out that we are still able to use the dynamically adapted shift
energy ES

i of Eq. (33) as a valid estimator for the excited
state energies. In Fig. 10 the difference from the exact energy,
obtained by the projected ep and shift es energy estimator,
for the first 10 states of the 1D 6 e− in the 6-site, periodic,
U/t = 4, k = 0 Hubbard model with a correlation parameter
J = −0.1 is shown. Also shown is the difference of the sum
of the overlap of the ith excited states to all lower-lying states
j with Ej < Ei, for the exact right eigenvectors obtained by
exact diagonalization and the sampled eigenvectors within
FCIQMC:


Oi =
∑

j

∣∣〈�ex
i

∣∣�ex
j

〉− 〈
�

qmc
i

∣∣�qmc
j

〉∣∣ ∀ j : Ej < Ei.

(C1)

As mentioned 〈�R
i |�R

j 〉 �= 0 is possible for non-Hermitian
operators, and is the case for states 3,4, and 5 shown in Fig. 10,

0 1 2 3 4 5 6 7 8 9
state

10−5

10−4

10−3

10−2

10−1

Δ

(a)ep − eex
es − eex
σ̄p
σ̄s

ΔO

FIG. 10. Error of the first 10 eigenstate energies obtained by the
projected energy ep and shift energy es for the 6 e− in the 6-site
1D periodic Hubbard model at U/t = 4 and k = 0 compared to
exact diagonalization results. The horizontal dashed lines indicate
the averaged statistical errors. The green pluses show the difference
of the exact overlaps from the overlaps obtained within FCIQMC; see
Eq. (C1). A correlation parameter of J = −0.1, initiator threshold of
ninit = 1.2, and maximum walker number of Nw = 105 were used.
(a) Exact overlap is ill defined due to degeneracy of states 6 and 7.
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indicated by a large value of 
Oi, since within FCIQMC

the incorrect 〈�qmc
i |�qmc

j 〉 != 0 is tried to be enforced. The
partially incorrect wave-function form is additionally marked
by an large error in the projected energy ep compared to the
exact result.

But as the ith excited state is only orthogonalized to all
the lower-lying excited states to converge to the next higher
energy governed by the dynamics (26) and the spectrum of
the Hamiltonian (1), which is unchanged by the similarity
transformation (6), the shift energy remains a good energy
estimator. This can clearly be seen in Fig. 10, as the shift
energy is a good estimate of all the targeted eigenstates.

The only exception in Fig. 10, which could be misleading,
is state number 7, which appears to have a large error in

Oi, but the projected energy is still a good estimator for
the energy. This comes from the fact that states 6 and 7
are actually degenerate and thus the exact eigenvectors |�ex

6 〉
and |�ex

7 〉 obtained by LAPACK [115] are an arbitrary linear
combination and could be chosen to both be orthogonal to
the states i < 6. The nth excited state in FCIQMC is obtained
[101] by

|�n(t + δt )〉 = P̂n(t + δt )
[
1 − δt

(
Ĥ − ES

n

)] |�n(t )〉 (C2)

with

P̂n(t ) = 1 −
∑
m<n

|�m(t )〉 〈�m(t )|
〈�m(t )|�m(t )〉 , Em < En, (C3)

being the Gram-Schmidt projector, which removes all con-
tributions of lower-lying states |�m〉 and thus orthogonalizes
|�n〉 to each state with Em < En. For the set of right eigenvec-
tors of a non-Hermitian Hamiltonian the assumption of them
being orthogonal to each other does not hold in general. So
this method of obtaining the excited states of H̄ should in
principle not work. But the results above indicate that the shift
energy still provides a correct energy estimate.

To see why the shift energy is a valid estimate for the exact
excited states energy, let us look at the right eigenvalue equa-
tion for a general (Hermitian or non-Hermitian) Hamiltonian
Ĥ for the ith excited state

Ĥ |�i〉 = Ei |�i〉 , (C4)

where |�i〉 is the ith right eigenvector of Ĥ . We now want to
show that there exists a vector |�i〉, which is a eigenvector of
the composite operator P̂iĤ with the same eigenvalue Ei,

P̂iĤ |�i〉 = Ei |�i〉 , (C5)

where P̂i is the Gram-Schmidt projector (C3) and |�0〉 =
|�0〉, which creates an orthonormal basis out of the linear-
independent but not necessarily orthonormal set {|�i〉}. We
assume all states to be normalized. Multiplying Eq. (C4) with
P̂i from the left, we obtain

P̂iĤ |�i〉 = EiP̂i |�i〉 = Ei |�i〉 → |�i〉 = P̂i |�i〉 . (C6)

And we assume |�i〉 to be the desired eigenvector of P̂iĤ . To
show that we plug (C6) into Eq. (C5),

P̂iĤ |�i〉 = P̂iĤ P̂i |�i〉 = P̂iĤ

(
|�i〉 −

∑
j<i

〈� j |�i〉 |� j〉
)

= EiP̂i |�i〉 −
∑
j<i

b jiP̂iĤ |� j〉

= Ei |�i〉 −
∑
j<i

b jiP̂iĤ |� j〉 , (C7)

with bi j = 〈� j |�i〉. We can express |� j〉 in Eq. (C7) and all
subsequent appearances of |�k〉 with k < i as |�k〉 = P̂k |�k〉
until we reach |�0〉. So the remaining thing to show is that
P̂i |� j〉 = 0 for i > j.

For i > j

P̂i |� j〉 = |� j〉 −
∑
k<i

〈�k|� j〉︸ ︷︷ ︸
δ jk

|�k〉 = 0, with i > j,

(C8)

is easy to show since {|� j〉} is an orthonormal basis. We prove
P̂i |� j〉 = 0, j < i by induction. For i = 1 we have

P̂1 |�0〉 = |�0〉 − 〈�0|�0〉 |�0〉 = 0. (C9)

Let us assume P̂i |� j〉 = 0 for i < j; performing the induction
step i → i + 1 yields

j < i : P̂i+1 |� j〉 = P̂i |� j〉︸ ︷︷ ︸
=0

−〈�i|� j〉 |�i〉

= −〈�i| P̂†
i︸︷︷︸

=P̂i

|� j〉 |�i〉 = 0, (C10)

j = i : P̂i+1 |�i〉 = P̂i |�i〉︸ ︷︷ ︸
=|�i〉

−〈�i|�i〉 |�i〉

= |�i〉 − 〈�i| P̂i︸︷︷︸
=P̂2

i

|�i〉 |�i〉

= |�i〉 − 〈�i|�i〉 |�i〉 = 0, (C11)

where we used the Hermiticity P̂†
i = P̂i and idempotency

P̂2
i = P̂i of the projection operator. With P̂i |� j〉 = 0 Eq. (C7)

gives the desired

P̂iĤ |�i〉 = Ei |�i〉 . (C12)

And this eigenvector |�i〉 of the composite operator P̂iĤ is
the stationary vector we sample in FCIQMC. Since it has the
same eigenvalue Ei, we obtain the correct excited-state energy
estimate from the shift energy ES

i in the propagator (C2). The
same argument holds for the long-time limit of the projection

Q̂i
(
ES

i

) |�i〉 = [
1 − 
t

(
Ĥ − ES

i

)] |�i〉 = |�i〉 , (C13)

with stationary |�i〉 for ES
i = Ei. There is an eigenvector |�i〉

of the composite operator

P̂iQ̂i
(
ES

i

) |�i〉 = |�i〉 (C14)
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for ES
i = Ei with

|�i〉 = Pi |�i〉 , since P̂iQ̂i
(
ES

i

) |�i〉 = P̂i |�i〉 . (C15)

This |�i〉 is sampled by the walkers in a FCIQMC simulation
and the shift energy ES

i (t ) is adapted to keep the walker
population fixed. The projected energy is in general not a good
energy estimate, since

EP
i = 〈Di|Ĥ |�i〉

〈Di|�i〉 = 〈DI |ĤP̂i|�i〉
〈DI |P̂i|�i〉

= 〈DI |Ĥ
(
1 −∑

j<i |� j〉 〈� j |
)|�i〉

〈DI |�i〉 −∑
j<i 〈DI |� j〉〈� j |�i〉

= EicI,i −∑
j<i bi j〈DI |Ĥ |� j〉

cI,i −∑
j<i dI, jbi j

= EicI,i −∑
j<i bi jdI, jEP

j

cI,i −∑
j<i dI, jbi j

(C16)

with cI,i = 〈DI |�i〉, bi j = 〈� j |�i〉, dI, j = 〈DI |� j〉
(C17)

and |DI〉 being the reference determinant of state i. With
Eq. (C16) and knowledge of the exact eigenfunctions {|�i〉}
the excited-state energy could be calculated as

Ei =
⎡
⎣EP

i

⎛
⎝cI,i −

∑
j<i

dI, jbi j

⎞
⎠+

∑
j<i

bi jdI, jE
P
j

⎤
⎦c−1

I,i .

(C18)

For states where 〈DI |�i〉 ≈ cI,i and bi j ≈ 0 the projected
energy remains a good estimator for the exact Ei. But es-
pecially in cases where the exact right eigenvectors are not
orthogonal to all lower-lying ones, as demonstrated in Fig. 10,

the projected energy should not be trusted. Another correction
for the projected energy would be

EP
i = 〈DI |Ĥ |�i〉

〈DI |�i〉 (C19)

〈DI |�i〉EP
i = 〈DI |ĤP̂i|�i〉 = 〈DI |�I〉Ei

−
∑
j<i

〈� j |�i〉 〈DI |Ĥ |� j〉︸ ︷︷ ︸
=〈DI |� j〉EP

j

(C20)

→ Ei = 〈DI |�i〉EP
i +∑

j<i 〈� j |�i〉〈DI |� j〉EP
j

〈DI |�i〉 (C21)

with 〈DI |�i〉 = 〈DI |�i〉 +
∑
j<i

〈� j |�i〉〈DI |� j〉 (C22)

→ Ei = 〈DI |�i〉EP
i +∑

j<i 〈� j |�i〉〈DI |� j〉EP
j

〈DI |�i〉 +∑
j<i 〈� j |�i〉〈DI |� j〉 . (C23)

where we can estimate the overlap 〈� j |�i〉 from the orthogo-
nalization procedure.

Actually for the correct projected energy one needs to
calculate

ĒP
i = 〈DI |P̂iĤ |�i〉

〈DI |�i〉 = Ei, since P̂iĤ |�i〉 = Ei |�i〉 .

(C24)
Unfortunately the numerator of Eq. (C24) takes the following
form:

〈DI |P̂iĤ |�i〉 = 〈DI |Ĥ |�i〉 −
∑
j<i

〈DI |� j〉〈� j |Ĥ |�i〉.

(C25)
To calculate 〈� j |Ĥ |�i〉 we would need the transition (re-
duced) density matrices [t-(R)DM] between all states j < i,
and for the similarity-transformed momentum-space Hubbard
Hamiltonian even up to the 3-body t-RDM. So we have to rely
on the shift energy to yield the correct excited state energy
in the ST-FCIQMC method or apply the mentioned shoelace
technique in Sec. V.

[1] J. Hubbard, Proc. R. Soc. London A 276, 238 (1963).
[2] M. C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963).
[3] J. Kanamori, Prog. Theor. Phys. 30, 275 (1963).
[4] F. C. Zhang and T. M. Rice, Phys. Rev. B 37, 3759 (1988).
[5] E. Dagotto, Rev. Mod. Phys. 66, 763 (1994).
[6] D. J. Scalapino, in Handbook of High-Temperature Supercon-

ductivity: Theory and Experiment, edited by J. R. Schrieffer
and J. S. Brooks (Springer, New York, 2007), pp. 495–526.

[7] S. R. White and D. J. Scalapino, Phys. Rev. B 61, 6320
(2000).

[8] D. Scalapino and S. White, Found. Phys. 31, 27 (2001).
[9] S. R. White and D. J. Scalapino, Phys. Rev. Lett. 91, 136403

(2003).
[10] L. F. Tocchio, F. Becca, A. Parola, and S. Sorella, Phys. Rev.

B 78, 041101 (2008).
[11] H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 56, 1490

(1987).
[12] D. Eichenberger and D. Baeriswyl, Phys. Rev. B 76, 180504

(2007).

[13] K. Yamaji, T. Yanagisawa, T. Nakanishi, and S. Koike,
Physica C (Amsterdam, Neth.) 304, 225 (1998).

[14] T. Giamarchi and C. Lhuillier, Phys. Rev. B 43, 12943 (1991).
[15] F. Becca, M. Capone, and S. Sorella, Phys. Rev. B 62, 12700

(2000).
[16] A. C. Cosentini, M. Capone, L. Guidoni, and G. B. Bachelet,

Phys. Rev. B 58, R14685 (1998).
[17] H. J. M. van Bemmel, D. F. B. ten Haaf, W. van Saarloos,

J. M. J. van Leeuwen, and G. An, Phys. Rev. Lett. 72, 2442
(1994).

[18] S. Zhang, J. Carlson, and J. E. Gubernatis, Phys. Rev. B 55,
7464 (1997).

[19] C.-C. Chang and S. Zhang, Phys. Rev. B 78, 165101 (2008).
[20] C.-C. Chang and S. Zhang, Phys. Rev. Lett. 104, 116402

(2010).
[21] C. N. Varney, C.-R. Lee, Z. J. Bai, S. Chiesa, M. Jarrell, and

R. T. Scalettar, Phys. Rev. B 80, 075116 (2009).
[22] Y. Deng, E. Kozik, N. V. Prokof’ev, and B. V. Svistunov,

Europhys. Lett. 110, 57001 (2015).

075119-18

https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1143/PTP.30.275
https://doi.org/10.1103/PhysRevB.37.3759
https://doi.org/10.1103/PhysRevB.37.3759
https://doi.org/10.1103/PhysRevB.37.3759
https://doi.org/10.1103/PhysRevB.37.3759
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/RevModPhys.66.763
https://doi.org/10.1103/PhysRevB.61.6320
https://doi.org/10.1103/PhysRevB.61.6320
https://doi.org/10.1103/PhysRevB.61.6320
https://doi.org/10.1103/PhysRevB.61.6320
https://doi.org/10.1023/A:1004147703543
https://doi.org/10.1023/A:1004147703543
https://doi.org/10.1023/A:1004147703543
https://doi.org/10.1023/A:1004147703543
https://doi.org/10.1103/PhysRevLett.91.136403
https://doi.org/10.1103/PhysRevLett.91.136403
https://doi.org/10.1103/PhysRevLett.91.136403
https://doi.org/10.1103/PhysRevLett.91.136403
https://doi.org/10.1103/PhysRevB.78.041101
https://doi.org/10.1103/PhysRevB.78.041101
https://doi.org/10.1103/PhysRevB.78.041101
https://doi.org/10.1103/PhysRevB.78.041101
https://doi.org/10.1143/JPSJ.56.1490
https://doi.org/10.1143/JPSJ.56.1490
https://doi.org/10.1143/JPSJ.56.1490
https://doi.org/10.1143/JPSJ.56.1490
https://doi.org/10.1103/PhysRevB.76.180504
https://doi.org/10.1103/PhysRevB.76.180504
https://doi.org/10.1103/PhysRevB.76.180504
https://doi.org/10.1103/PhysRevB.76.180504
https://doi.org/10.1016/S0921-4534(98)00283-4
https://doi.org/10.1016/S0921-4534(98)00283-4
https://doi.org/10.1016/S0921-4534(98)00283-4
https://doi.org/10.1016/S0921-4534(98)00283-4
https://doi.org/10.1103/PhysRevB.43.12943
https://doi.org/10.1103/PhysRevB.43.12943
https://doi.org/10.1103/PhysRevB.43.12943
https://doi.org/10.1103/PhysRevB.43.12943
https://doi.org/10.1103/PhysRevB.62.12700
https://doi.org/10.1103/PhysRevB.62.12700
https://doi.org/10.1103/PhysRevB.62.12700
https://doi.org/10.1103/PhysRevB.62.12700
https://doi.org/10.1103/PhysRevB.58.R14685
https://doi.org/10.1103/PhysRevB.58.R14685
https://doi.org/10.1103/PhysRevB.58.R14685
https://doi.org/10.1103/PhysRevB.58.R14685
https://doi.org/10.1103/PhysRevLett.72.2442
https://doi.org/10.1103/PhysRevLett.72.2442
https://doi.org/10.1103/PhysRevLett.72.2442
https://doi.org/10.1103/PhysRevLett.72.2442
https://doi.org/10.1103/PhysRevB.55.7464
https://doi.org/10.1103/PhysRevB.55.7464
https://doi.org/10.1103/PhysRevB.55.7464
https://doi.org/10.1103/PhysRevB.55.7464
https://doi.org/10.1103/PhysRevB.78.165101
https://doi.org/10.1103/PhysRevB.78.165101
https://doi.org/10.1103/PhysRevB.78.165101
https://doi.org/10.1103/PhysRevB.78.165101
https://doi.org/10.1103/PhysRevLett.104.116402
https://doi.org/10.1103/PhysRevLett.104.116402
https://doi.org/10.1103/PhysRevLett.104.116402
https://doi.org/10.1103/PhysRevLett.104.116402
https://doi.org/10.1103/PhysRevB.80.075116
https://doi.org/10.1103/PhysRevB.80.075116
https://doi.org/10.1103/PhysRevB.80.075116
https://doi.org/10.1103/PhysRevB.80.075116
https://doi.org/10.1209/0295-5075/110/57001
https://doi.org/10.1209/0295-5075/110/57001
https://doi.org/10.1209/0295-5075/110/57001
https://doi.org/10.1209/0295-5075/110/57001


COMPACT NUMERICAL SOLUTIONS TO THE TWO- … PHYSICAL REVIEW B 99, 075119 (2019)

[23] M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke,
and H. R. Krishnamurthy, Phys. Rev. B 58, R7475 (1998).

[24] T. A. Maier, G. Alvarez, M. Summers, and T. C. Schulthess,
Phys. Rev. Lett. 104, 247001 (2010).

[25] K.-S. Chen, Z. Y. Meng, S.-X. Yang, T. Pruschke, J. Moreno,
and M. Jarrell, Phys. Rev. B 88, 245110 (2013).

[26] M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett.
91, 206402 (2003).

[27] C. Dahnken, M. Aichhorn, W. Hanke, E. Arrigoni, and
M. Potthoff, Phys. Rev. B 70, 245110 (2004).

[28] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).

[29] A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 62,
R9283 (2000).

[30] G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli, Phys.
Rev. Lett. 87, 186401 (2001).

[31] E. Gull, O. Parcollet, and A. J. Millis, Phys. Rev. Lett. 110,
216405 (2013).

[32] E. Gull, M. Ferrero, O. Parcollet, A. Georges, and A. J. Millis,
Phys. Rev. B 82, 155101 (2010).

[33] P. Corboz, Phys. Rev. B 93, 045116 (2016).
[34] F. Verstraete, V. Murg, and J. Cirac, Adv. Phys. 57, 143 (2008).
[35] J. P. F. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik, G. K.-L.

Chan, C.-M. Chung, Y. Deng, M. Ferrero, T. M. Henderson,
C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J. Millis,
N. V. Prokof’ev, M. Qin, G. E. Scuseria, H. Shi, B. V.
Svistunov, L. F. Tocchio, I. S. Tupitsyn, S. R. White, S. Zhang,
B.-X. Zheng, Z. Zhu, and E. Gull (Simons Collaboration on
the Many-Electron Problem), Phys. Rev. X 5, 041041 (2015).

[36] M. Qin, H. Shi, and S. Zhang, Phys. Rev. B 94, 085103 (2016).
[37] B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin,

R. M. Noack, H. Shi, S. R. White, S. Zhang, and G. K.-L.
Chan, Science 358, 1155 (2017).

[38] W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).
[39] M. C. Gutzwiller, Phys. Rev. 137, A1726 (1965).
[40] T. Ogawa, K. Kanda, and T. Matsubara, Prog. Theor. Phys. 53,

614 (1975).
[41] D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984).
[42] F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, Supercond.

Sci. Technol. 1, 36 (1988).
[43] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
[44] C. Gros, R. Joynt, and T. M. Rice, Phys. Rev. B 36, 381 (1987).
[45] P. Horsch and T. A. Kaplan, J. Phys. C 16, L1203 (1983).
[46] T. A. Kaplan, P. Horsch, and P. Fulde, Phys. Rev. Lett. 49, 889

(1982).
[47] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 59, 121 (1987).
[48] F. Gebhard and D. Vollhardt, Phys. Rev. Lett. 59, 1472 (1987).
[49] R. Jastrow, Phys. Rev. 98, 1479 (1955).
[50] M. Capello, F. Becca, M. Fabrizio, S. Sorella, and E. Tosatti,

Phys. Rev. Lett. 94, 026406 (2005).
[51] J. Liu, J. Schmalian, and N. Trivedi, Phys. Rev. Lett. 94,

127003 (2005).
[52] T. Watanabe, H. Yokoyama, Y. Tanaka, and J.-i. Inoue, J. Phys.

Soc. Jpn. 75, 074707 (2006).
[53] Y. M. Li and N. d’Ambrumenil, J. Appl. Phys. 73, 6537

(1993).
[54] P. W. Anderson, Science 235, 1196 (1987).
[55] B. Edegger, N. Fukushima, C. Gros, and V. N. Muthukumar,

Phys. Rev. B 72, 134504 (2005).

[56] P. Anderson and N. Ong, J. Phys. Chem. Solids 67, 1 (2006).
[57] H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 57, 2482 (1988).
[58] A. Paramekanti, M. Randeria, and N. Trivedi, Phys. Rev. Lett.

87, 217002 (2001).
[59] C. Gros, Ann. Phys. 189, 53 (1989).
[60] C. Gros, Phys. Rev. B 38, 931 (1988).
[61] J. Kaczmarczyk, J. Spałek, T. Schickling, and J. Bünemann,

Phys. Rev. B 88, 115127 (2013).
[62] D. Baeriswyl, Superconductivity from repulsion: Variational

results for the 2D Hubbard model in the limit of weak interac-
tion, arXiv:1809.04916.

[63] T. K. Lee and S. Feng, Phys. Rev. B 38, 11809 (1988).
[64] H.-X. Huang, Y.-Q. Li, and F.-C. Zhang, Phys. Rev. B 71,

184514 (2005).
[65] J. Bünemann, T. Schickling, and F. Gebhard, Europhys. Lett.

98, 27006 (2012).
[66] N. Lanatà, T.-H. Lee, Y.-X. Yao, and V. Dobrosavljević,
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