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Call for another Seward: Optimization of F12 integral evaluation
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Explicitly correlated F12 theories have been developed in the past decades to rectify the slow convergence
of dynamical electron correlation models with basis size, in which additional two-electron integrals over
F12 kernels are required. This article reviews some existing algorithms for these integrals, including the
author’s attempt, and leave an open question: what will be the most efficient algorithm (and who wants to
implement it into a tightly optimized code)?

1 Introduction

In 1867, William H. Seward (the 24th United States Secretary of State) pur-
chased Alaska, the western frontier at that time, from Russia for 2 cents per
acre. Back then, the purchase was mocked by the public as ”Sewards’s Ice-
box” [1]. After 150 years, however, his decision has proven right: Alaska
is now known for its huge reserves of natural resources. Therefore, he has
been a symbol of being bold to do what one believes is important yet is
apparently useless.

In early 1990’s, Lindh and coworkers have worked on electron repul-
sion integral (ERI) evaluation [2], which they wrote was “an exhausted
scientific area with no room for innovation.” They named the code seward.
Their effort has nonetheless turned out to be very valuable; all the users of
molcas and molpro have benefited from his efficient integral routine, sav-
ing much time and perhaps increasing their number of publications. It is
amazing that seward is still among the most efficient integral routines after
almost two decades.

There is yet another western frontier in theoretical chemistry: F12 in-
tegrals. Explicitly correlated R12 or F12 theories, which originate from
Kutzelnigg’s seminal work in 1985 [3], have been successful to amelio-
rate the slow convergence of the conventional electron correlation methods
with respect to basis size [4, 5, 6]. They introduce the so-called correla-
tion factor which explicitly depends on the electron–electron distance ri j to
properly describe electronic wave functions around the coalescence of two
electrons. In early developments, a linear function [ f (r12) = r12] was used
for the correlation factor; in 2004, however, Ten-no introduced a short-
ranged Slater-type geminal function (STG) [ f (r12) = e−γr12 ] [7], which
has been shown to improve both accuracy and numerical stability over a
linear function and exclusively used in the community. In F12 theories
with the so-called approximation C [8], one needs to evaluate four types of
two-electron integrals,

(pq|rs)S ≡

"
dr1dr2φp(r1)φq(r1) f (r12)φr(r2)φs(r2), (1)

(pq|rs)Y ≡

"
dr1dr2φp(r1)φq(r1)

f (r12)
r12

φr(r2)φs(r2), (2)

(pq|rs)U ≡

"
dr1dr2φp(r1)φq(r1)U12φr(r2)φs(r2), (3)

(pq|rs)X ≡

"
dr1dr2φp(r1)φq(r1) f (r12)2φr(r2)φs(r2), (4)

where U12 is the double commutator of f (r12) with the kinetic operator

U12 = 1
2 [ f (r12), [− 1

2∂
2
1 −

1
2∂

2
2, f (r12)]]. (5)

φp(r1) is a one-electron Cartesian Gaussian basis function centered at Pp,

φp(r1) = xlp ymp znp exp(−ζp ||r1 − Pp ||
2). (6)

This article is intended to provide a (non-self-contained) overview of the
existing algorithms to evaluate these integrals and to leave a question on
the best algorithm for those integrals.

2 Background

2.1 Electron repulsion integrals

Before going into the details on the F12 integrals, let us briefly review
some algorithms for ERI evaluation. Since the ERIs are fundamental
quantities on which all the electronic structure theories are based, a large
amount of effort has been devoted for the efficient evaluation of ERIs:

(pq|rs) ≡
"

dr1dr2φp(r1)φq(r1)r−1
12 φr(r2)φs(r2). (7)

The key is to use the integral representation of the integral kernel proposed
by Boys more than a half century ago [9]:

r−1
12 =

2
π1/2

∫ ∞

0
e−r2

12u2
du. (8)

After simple algebra, one obtains [10],

(pq|rs) = η

∫ 1

0
weri(t)Ix(t)Iy(t)Iz(t)dt, weri(t) =

e−Tt

2
√

t
, (9)

where Ix, Iy, and Iz are monic polynomials of t. η and T , as well as I’s,
are dependent on the position, exponent, angular numbers, and contraction
coefficient of the Gaussian functions. A recent paper by Flocke et al. [11]
is pedagogical to understand this transformation.

One way of evaluating ERI is to rewrite Eq. (9) as

(pq|rs) = η

N∑
m=0

imFm(T ), (10)

Fm(T ) =

∫ 1

0
tmweri(t)dt, (11)

where N is the sum of angular numbers of the basis functions and im are
dependent on the parameters of the basis functions. Fm(T ) are basic inte-
grals called Boys functions, which can formally be obtained by the upward
recurrence relation

Fm(T ) = 1
2T

[
(2m − 1)Fm−1(T ) − e−T

]
, (12)

F0(T ) =
√

π
4T erf(

√
T ). (13)

although it is very numerically unstable in practice. Therefore, interpola-
tion or Taylor expansion using tabulated values is often used in standard
packages. The Head-Gordon–Pople algorithm (HGP) [12] has introduced
an efficient way to compute im by rearranging the original recurrence for-
mula of Obara and Saika (OS) [13].

The other approach is to rewrite Eq. (9) as a discrete sum over Gaussian
quadrature grid [14], called Rys quadrature [15, 16, 17],

(pq|rs) = η

dN/2e∑
g

wgIx(tg)Iy(tg)Iz(tg). (14)
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The positions tg and weights wg of quadrature grid are obtained formally
by Fm(T ) with 0 ≤ m ≤ N; owing to numerical instability, however,
interpolation of tabulated data is usually used to determine the grid (see
Sec. 3.1).

Among the fastest in the world is the seward package by Lindh and
coworkers [2]. They have introduced an efficient algorithm to build up
I’s in the Rys-quadrature algorithm (Hamilton and Schaefer proposed a
similar algorithm independently [18]).

2.2 F12 integrals with an STG-nG

A popular approach to F12 integrals at the moment, which has been used in
molpro, turbomole, and mpqc, is to expand an STG to a linear combination
of n Gaussian-type geminals or GTGs (STG-nG) as

e−γr12 =

Ng∑
i=1

cie−αir2
12 . (15)

Usually Ng = 6 is used for practical applications. Among others, the one
proposed by Alrichs [19] is very efficient; it is based on the fact that the
Obara–Saika recurrence relation [13] (and hence HGP relation [12]) holds
for any combined GTG and Coulomb integrals. The basic integrals can
be explicitly written as follows [20]. For (pq|rs)S , (pq|rs)X , (pq|rs)Y , and
(pq|rs)U

H(S )
n (ρ,T ) =

Ng∑
i

ηie−ρiT , (16)

H(X)
n (ρ,T ) =

Ng∑
i=1

i∑
j=1

(2 − δi j)ηi jρ
n
i je
−ρi jT , (17)

H(Y)
n (ρ,T ) =

Ng∑
i=1

η̃ie−ρiT
n∑

m=0
nCmρ

n−m
i ρ̂m

i Fm(ρ̂iT ), (18)

H(U)
n (ρ,T ) =

Ng∑
i=1

i∑
j=1

(2 − δi j)η̄i jρ
n−1
i j (ai j + bi jT − nρ̂i j)e−ρi jT . (19)

ρ’s contain all the information on the exponents of GTGs. The definition
of ρi, ρi j, etc. is out of the scope of this article; interested readers should
refer to Ref. [20]. The F12 integrals can be obtained simply by replacing
Fm(T ) with these quantities in ERI evaluation codes, since the recurrence
formula stays the same. The implementation of F12 integrals based on Al-
richs’ algorithm has been reported by Höfener et al. [20] in turbomole and
recently also by Knizia as an efficient F12 integral core of molpro [21].

We note in passing that there has been an attempt called hyper-prism
by Lambrecht and Head-Gordon [22]. Valeev has implemented a similar
scheme with computer algebra and automated tuning [23].

2.3 F12 integrals with a genuine STG

The evaluation of F12 integrals using an STG has been invented by Ten-no
in his ingenious work in 2004 [7]. It is based on the integral representation
of the Yukawa potential,

e−γr12

r12
=

2
π1/2

∫ ∞

0
e−u2r2

12−
γ2

4u2 du, (20)

which can be derived by successive application of Fourier and Laplace
transformation to the Yukawa potential. By a similar transformation to
that for ERI, one obtains [7]

(pq|rs)Y = η

∫ 1

0
twslater(t)Ix(t)Iy(t)Iz(t)dt, wslater(t) =

e−Tt+U(1−t−1)

2t
√

t
.

(21)

T and U are dependent on the parameters of the basis functions, and U
is proportional to γ2 at the same time. It must be emphasized that Ix is
identical to that in ERI evaluation. Moreover, Ten-no showed [7] that STG
integrals can be computed by taking the derivative with respect to γ as

(pq|rs)S = η′
∫ 1

0
(1 − t)wslater(t)Ix(t)Iy(t)Iz(t)dt. (22)

using the relation (pq|rs)S = − ∂
∂γ (pq|rs)Y . As in the ERI evaluation, we

can rewrite Eqs. (21) and (22) as

(pq|rs)Y = η

N∑
m=0

imGm(T,U), (23)

(pq|rs)S = η′
N∑

m=0

im[Gm(T,U) −Gm−1(T,U)], (24)

where im is the same quantity appearing in Eq. (10) and

Gm(T,U) =

∫ 1

0
tm−1wslater(t)dt, (25)

which is often called Ten-no’s function. He also gave a three-term recur-
rence relation to Gm(T,U) [7, 24], and implemented the OS scheme based
on Gm(T,U).

Given these equations, it is rather straightforward to introduce the Gaus-
sian quadrature scheme to F12 integrals on which our development was
based [25]. It replaces Eqs. (21) and (22) by finite sums

(pq|rs)Y = η

dN+1/2e∑
g=1

wgtgIx(tg)Iy(tg)Iz(tg), (26)

(pq|rs)S = η′
dN+1/2e∑

g=1

wg(1 − tg)Ix(tg)Iy(tg)Iz(tg). (27)

Again Ix is the same as in ERI evaluation. The quadrature grid can be
shared between Yukawa and Slater integrals of the same exponent. Owing
to the additional factor of tg and 1 − tg, the rank of quadrature is larger by
one for even N. We will return to this scheme in Sec. 3.

Using a genuine STG, one can easily show that [26]

(pq|rs)X = (pq|rs)′S , (28)

(pq|rs)U = γ2(pq|rs)′S , (29)

in which ′means that the integrals are evaluated with STG of twice the ex-
ponent 2γ, i.e., f (r12) = e−2γr12 . As we will see later, this serves a potential
advantage of using a genuine STG.

3 Our attempt using Rys-Like quadrature

In this section, the author’s attempt with a genuine STG is reviewed. In-
spired by Flocke’s work [see Sec. 3.1] [11, 27], we sought for an algorithm
to evaluate the Rys-like quadrature grid on the fly by Wheeler’s algorithm
(see below). We hoped that it could be the most efficient algorithm, which
nonetheless has not been realized so far [Sec. 3.2].

We therefore resorted to a (less elegant) interpolation scheme based on
tabulated data in Ref. [25], which is still quite efficient especially for high-
angular batches [Sec. 3.3].

3.1 Wheeler’s algorithm and ERI
Let us start with the general relationship between orthogonal polynomials
and Gaussian quadrature [28]. Given a weight function w(x) and an in-
terval [a, b] with w(x) > 0, x ∈ (a, b), there is a set of monic orthogonal
polynomials [Pn(x)] so that∫ b

a
Pm(x)Pn(x)w(x)dx = 0 (m , n), (30)

where n and m are the rank of polynomials. There are several classical
ones, for example, the Hermite polynomials w(x) = e−x2

on [−∞,∞] and
Laguerre polynomials w(x) = e−x on [0,∞]. It is very easy to show that
any orthogonal polynomials have a three-term recurrence formula:

Pn(x) = (x − αn−1)Pn−1(x) − βn−1Pn−2(x). (31)

The classical orthogonal polynomials have a closed form for α and β, while
the others do not.

An nG-point Gaussian quadrature integrates exactly the polynomials
[ f (x)] of ranks up to 2nG − 1, i.e.,∫ b

a
f (x)w(x)dx =

nG∑
g=1

P(xg)wg. (32)
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The positions xg and weights wg of quadrature grid points are connected
to αn and βn of the underlying orthogonal polynomials: Given αn and βn,
xg are the eigenvalues of the tridiagonal matrix Z,

Zi j =

{
αi i = j,
√
βk |i − j| = 1, k = max(i, j), (33)

and the weights are calculated using the first element of the associated
eigenvectors (x j,0) as wg = x2

g,0. In principle, one can obtain the quadra-

ture grid from the moment Mn(x) =
∫ b

a xnw(x)dx up to n = nG:

{Mn(x)} (0 ≤ n ≤ nG)→ {αn}, {βn} (0 ≤ n ≤ nG)→ {wg, xg}. (34)

Practically, however, the first mapping from Mn(x) to αn and βn is ill con-
ditioned and terribly numerically unstable. The Chebyshev algorithm is
usually used instead which maps {Mn(x)} (0 ≤ n ≤ 2nG) to {αn}, {βn};
this is much better than Eq. (34), but still unstable and unpractical in the
current context.

A much more stable way to compute the αn and βn (and hence quadra-
ture grid) is called Wheeler’s algorithm which uses a similar set of orthog-
onal polynomials. Suppose there exists a classical set of orthogonal poly-
nomials Pn(x) which obeys Pn(x) = (x − an−1)Pn−1(x) − bn−1Pn−2(x),
which is similar to the target polynomials Pn(x) (in other words, they are
defined under a similar weight and integral range). We then compute the
so-called modified moments Mn(x) =

∫ a
b Pn(x)w(x)dx, which are in turn

mapped to the quadrature grid as[
{Mn(x)} (0 ≤ n ≤ 2nG)
{an} {bn} (0 ≤ n ≤ 2nG)

]
→ {αn}, {βn} (0 ≤ n ≤ nG)→ {wg, xg}.

(35)

In the work of Flocke [11, 27], it has been shown that, to generate mod-
ified moments for Rys quadrature grid, one can use the generalized La-
guerre polynomials L−1/2(Tt) and shifted Jacobi polynomials G( 1

2 ,
1
2 , t) for

large and small T , respectively. The weight and integral range of L−1/2(Tt)
are e−Tt/2

√
t, t ∈ [0,∞] which are exact for T → ∞, while these of

G( 1
2 ,

1
2 , t) are 1/2

√
t, t ∈ [0, 1] which are exact for T → 0. Moreover,

he showed that there are efficient and stable ways to compute modified
moments (based on the three-term recurrence relation),

M (L)
n =

∫ 1

0
weri(t)L

−1/2
n (Tt)dt, (36)

M (J)
n =

∫ 1

0
weri(t)Gn( 1

2 ,
1
2 , t)dt. (37)

This finding allows us to compute Rys quadrature grid on the fly. The re-
sulting code, which is the integral core of aces iii, is at least as efficient as
seward [11].

3.2 Difficulty with F12 integrals
Inspired by the work above, the author spent some time, hoping to establish
a similar scheme for F12 integrals, which has turned out to be extremely
hard (if by any chance possible) from several reasons. One is the non-
trivial expression for modified moments with the weight function wslater(t).
As one can see, in the limit of U → 0, the Yukawa integrals reduce to ERIs
(with an additional factor t in the denominator), from which one might ex-
pect that L−1/2(Tt) and G( 1

2 ,
1
2 , t) above are also useful for a certain range

of T and U. Even though it is possible to obtain (after some algebra) the
four-term recurrence relation of Eq. (36) with weri(t) being replaced by
wslater(t), it seems not possible to derive a similar recurrence formula for
Eq. (37).

Another problem is the complicated shape of the weight function, as
shown in Fig. 1. Unlike in the Rys quadrature, the shape of the weight
function dramatically changes with parameters T and U with a moving
pole, which makes it difficult to find appropriate classical orthogonal poly-
nomials for modified moments.

3.3 Brute-force two-dimensional interpolation
One possible (and brute-force) way of overcoming the numerical instabil-
ity is to use multiple precision floating points beyond doubles. There are
standard packages gmp and mpfr, and a sophisticated wrapper mpfr c++
that provides overloaded arithmetics and mathematical functions [29]. In

our experience, 1024-bit floating points are sufficient to determine quadra-
ture grid by means of the naive Chebyshev algorithm for any T and U
values.

The obvious drawback of using multiple precisions is that computation
using them is terribly slow compared to doubles (one should recall that the
current CPU’s are designed to perform double precisions efficiently). It is
so inefficient that it cannot be used at runtime. Therefore, we decided to
compute and tabulate grid weights and positions of some selected T and
U in compile time, and resort to interpolation at runtime [25]. The run-
time interpolation is a two-dimensional one for each set of T and U, or
more precisely, two successive one-dimensional interpolations. The cost
of evaluating quadrature grids with interpolation is almost negligible for
high-angular batches [less than 4% of the entire costs for (33|33)], but
it can be a noticeable overhead (and hence not optimal) for low-angular
batches. See details in Ref. [25].

4 Discussions and Prospect

4.1 Comparison of STG and STG-nG algorithms

It is not clear which is better: the use of an STG or an STG-nG. Let us
first consider the cost of evaluating all four types of (00|00) integrals (i.e.,
integrals over s-type Gaussian basis functions). For (00|00) integrals, we
could perhaps conclude that approaches with a genuine STG are more ef-
ficient than those based on an STG-nG. With a genuine STG, one needs
to evaluate two sets of G0(T,U) and G−1(T,U) with the same T , which
involve 4 calls of exp(x), 4 calls of erfc(x), 3 calls of

√
x, and some double

float divisions. With an STG-6G, one needs 21 calls of exp(x) and 6 calls
of erfc(x), 21 calls of

√
x and some double float divisions.

Next, we consider the large angular momentum limit [say, a (44|44)
batch]. In this case, the algorithm with an STG is again potentially more
efficient. With a genuine STG, one could evaluate all four integrals with
the cost three times as expensive as that of the ERI evaluation thanks to
the relation (pq|rs)U = γ2(pq|rs)X [Eqs. (28) and (29)]. This has already
nearly achieved in Ref. [25]. On the other hand, the STG-6G approach is
four times as expensive as the ERI evaluation.

For the intermediate angular momentum range, it is not clear which per-
forms better, since there is no simple way to obtain Gm(T,U) that con-
tains two parameters T and U. Ten-no has implemented a code to set up
Gm(T,U) with various combination of algorithms, which are based on the
Taylor series or continued fractions with many calls to exp(x), erfc(x), and
double float divisions [24]. The Rys-like quadrature algorithm with inter-
polation is still applicable, but the overhead is not negligible here. The
STG-6G algorithms might be competitive, or more efficient.

The fair comparison between them is further complicated since one does
not need certain classes of integrals, such as (pq|rs)U and (pq|rs)X with
one and two auxiliary functions, respectively. Moreover, the use of density
fitting [30, 31] makes the advantage of the STG approach less pronounced
for large angular quantum numbers.

4.2 An apparently useless backdoor:
inhomogeneous Helmholtz equation

It is well known that the Yukawa potential is Green’s function of the imag-
inary mass inhomogeneous Helmholtz equation (or simply, the screened
Poisson equation): (

∇2 − γ2
)

V(r) = −4πρ(r), (38)

which is analogous to the Coulomb potential which is Green’s function of
the Poisson equation. Similar to ERI evaluations through the Poisson equa-
tion (for instance, see Ref. [32]), one can obtain (pq|rs)Y by the formula
[25]

(pq|rs)Y =

∫
Vrs(r1)φp(r1)φq(r1)dr, (39)

where Vrs(r1) satisfies (∇2−γ2)Vrs(r) = −4πφr(r)φs(r).One can also eval-
uate (pq|rs)S by taking a numerical derivative of (pq|rs)Y with respect to
γ. We have implemented and confirmed this formula [25] using Becke’s
fuzzy cell grid [33, 34]. This approach is nevertheless efficient only for
Coulomb integrals in pure DFT calculations where r and s are contracted
by the density; the author has not been aware of any possible use in F12
calculations.
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T = 50,        U = 0.05

Figure 1: Weight functions for Rys and Rys-like F12 quadrature with some sets of parameters.

4.3 Possible Criticism
Unfortunately, one can easily formulate some criticisms to the exploration
for efficient F12 integral codes. First, one could argue that the efficiency
of the F12 integral evaluation is not important since the integral kernels
are all short-ranged and the number of non-zero integrals is much smaller
than that of ERIs. This is certainly true: for a large molecule, most of
the F12 integrals can be skipped by prescreening [35]. However, it is still
important to have it efficient for small systems and perhaps even for large
systems when calculated by the integral-direct mode or with the local cor-
relation approximation.

Second criticism would be that with density fitting the most time-
consuming step could be the assembly step of three center quantities, e.g.,
(ia| jb) =

∑
D(ia|D)(D| jb), where D labels auxiliary basis functions for DF,

and not the integral evaluation itself. This is again certainly true but only
for large systems. Note that CC-F12 calculations are limited to relatively
small systems. Furthermore, the use of local fitting domain [35] reduces
the cost of the assembly step, which may legitimate the development of
efficient algorithms for F12 integrals.

5 Concluding Remarks

Given the success of the F12 theories, it is now of fundamental impor-
tance to implement a tightly optimized integral routines for F12 integrals
(like seward for ERI). This would be much appreciated by increasing the
productivity of all the people in the theoretical chemistry community.

In this article, we intentionally have not concluded which (i.e., a gen-
uine STG or an STG-6G) should be used for the best algorithm. Although
it looks to the author that the former is favorable, it is still open for discus-
sions. In addition, the efficiency of integral codes is determined not only
by FLOP counts and the numbers of memory queries of the underlying al-
gorithm but also by the way how it is written [36]. One needs to consider
the cache efficiency, the numbers of function calls, loops, and condition
branches, and the affinity to recent computer hardware (such as stream-
ing SIMD extensions, general-purpose computing on graphics processing
units, and so on). As pointed out by Lindh [37], it can affect the efficiency
of molecular integral evaluation sometimes by an order of magnitude. In
this sense, automated implementation with heuristics employed by Valeev
[23] may be the way to go in a long run.

Last but not the least, we would like to emphasize that it could be an
enjoyable task to realize such an optimized code; and you will be named
“real programmer” [38].
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