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Computational method of many-electron integrals over explicitly correlated
Cartesian Gaussian functions
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Derivation of recurrence formulas for general many-electron overlap, nuclear attraction, and
electron repulsion integrals over explicitly correlated Cartesian Gaussian functions is presented. The
recurrence formulas are derived in a similar way as the derivation of molecular two-electron
integrals over Cartesian Gaussian functions by Obara and Saika. As a result, the formulas expressing
the many-electron integrals of higher angular momentum as a linear combination of those of lower
angular momentum are obtained. An algorithm for computation of the general many-electron
integrals by means of the recurrence formulas is also shown20@L American Institute of
Physics. [DOI: 10.1063/1.1332990

I. INTRODUCTION (ECGP, which was independently introduced by Bbwsd

. Singer? ECGF is defined as a product of Gaussian functions
To compute accurate atomic and molecular wave func-

tions, one must take electron correlation effects into accounf".lnd Gaussian-type correlation factors. In particular, ECGF

The configuration interactioriCl) method is used exten- :N'tth dc(? rtttasn'_:m aGnguIar_ facftorstgrmeE((::a(!goII:) i\xphmtly _cortre—
sively for this purpose. The CI wave function is a linear ated Lartesian aussian functio - AS a varian

combination of antisymmetrized products of one—electronOf _EC(.:GFS’ there S the Gaussmn—ty_pe gemi(@nc), .
hich is ECCGF with only one Gaussian-type correlation

functions, and its coefficients are determined by the Rit2" > )
variational method. The CI method is conceptually very/@ctor. xptfriy). The advantage of ECGFs is that the

simple, and is mathematically exact if a complete set of oneMmany-electron integra}ls needed in calculatiqns of atomic and
electron functions is used. However, in actual computationgn@lecular wave functions can be expressed in compact forms
the CI wave function must be confined to expansion by finitd"volving the incomplete Gamma function. There have been
one-electron functions. This restriction causes the slow cof@ny applications of ECGFs because of this advantage.
vergence of the Cl wave functions and total energies. Th&arly applications are calculations of two—glectron systems
main source of the slow convergence is that the descriptioRY Lester zland.Kraué% and Longstaff and Singéf. Subse-
of probability amplitude at small interelectronic distance byduent applications of ECGFs have been made by Pan and
one-electron functions is difficult. One must use functionsking,'? Salmon and Poshustd,Adamowicz and Sadlef,
explicitly including interelectronic distances to obtain com- Szalewicz et al,*>~*" Kozlowski and Adamowic2? and
pact and energetically accurate wave functions. Cencek and Rychlewsk?. In particular, weak orthogonal

In 1928, Hylleraas obtained a very accurate ground stat€/VO) pair correlation techniques for the use of GTGs devel-
energy of the He atom by a wave function explicitly includ- oped by Szalewiczt al*® are suitable for application to
ing powers of the interelectronic distancg, and showed Mmany-electron systems, and have been applied to ten-
that the interelectronic distance enables extremely compaélectron system&:'’ Since computational methods using
and energetically accurate wave functions to be obtsinedECGFs are suitable for application to many-electron sys-
This method, referred to as Hylleraas-type method, has begems, further development of those is hoped.
extended to two-electron molecules by James and Coofidge, There have been several formulas of the many-electron
Kotos and WolniewicZ,and Clementet al® For application  integrals over ECGFs needed in atomic and molecular com-
to larger systems, there have been calculations of Li and Bputations. Boy$,Singer] Kozlowski and Adamowic2® and
atoms by Kleindienst and lamow? and Sims and Hagstrom, Cencek and RychlewsKi have obtained formulas of the
respectively. However, application of the Hylleraas-typemany-electron integrals over ECGFs with zero angular mo-
method to many-electron systems is very difficult due to thementa. These formulas can only be applied to restricted sys-
appearance of many-electron integrals, the calculation ofems. Formulas of the many-electron integrals over ECCGFs
which being very laborious. For example, the formulas ofwith higher angular momenta have been obtained by three
three- and four-electron integrals for molecular systems obgroups. Lester and Krau§sand Persson and Tayf8rhave
tained by Clementeét al® include multidimensional numeri- obtained formulas of up to three- and four-electron integrals
cal integrations. over GTGs, respectively. Persson and Taylor have derived

Another function explicitly including the interelectronic the formulas in a similar manner to McMurchie and
distances is the “explicitly correlated Gaussian function” Davidson?! The general many-electron integrals over EC-
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CGFs for an arbitrary number of electrons have been ob-

tained by Kozlowski and Adamowicz by using the raising WGN({I}):_ZakGN(Il’---i|k+ 10-0n)
operators that transform spherical ECGFs into ECC&Fs. K
Their formulas are very complicated, and evaluation of them Rl PPLCIN T e BN V)|
would be laborious. N

In the present paper, we derive recurrence formulas of 2 (o=t Guldl 4
the general many-electron integrals over ECCGFs for an ar- .21 AN 1)), @

bitrary number of electrons, and establish an efficient recur- : . '
sive gomputational method of them. These recurrence formuV-Vhererk“ 's the . component of, and1, is defined by
las have recursive forms with respect to the angular momenta  1,= (3, x:6,y+6,.2) ®)
of ECCGFs in the integrals. For derivation of the recurrenc
formulas, we employ the method of Obara and SZikhand
Hondaet al,?® i.e., the derivation method of efficient recur- (re=ri) .= (re— Ry .= (ri=Ry) , + (R, —=Ry) ., (6)
rence formulas for molecular two-electron integrals OVErEq, (4) can be rewritten as

Cartesian Gaussian functions.

In the next section, the characteristics of ECCGF are ¢
presented, and recurrence formulas for many-electron ovepry,
lap, nuclear attraction, and electron repulsion integrals over
ECCGFs are derived by the aid of the characteristics of
ECCGF. Then, Sec. lll discusses our recurrence formulas for
the many-electron integrals over ECCGFs and outlines an
algorithm for the recursive computation of the many-electron
integrals by means of them.

&uith Kronecker's deltas. Using the decomposition relation

Gn({Ih)

=2

N
ak+i:21 :Bki) Gn(lp,.lkt1,,.000N)

N
+225 BiGn(l - Jit 1)+ Gl

N
b= Ly ) =22 Bu(Re— RGN, (D)
Il. RECURRENCE FORMULAS FOR MANY-ELECTRON =1
INTEGRALS OVER EXPLICITLY CORRELATED As |ry,| goes to infinity, the exponential factor of ECCGF

CARTESIAN GAUSSIAN FUNCTIONS decreases to zero much faster than the increase of the angular

A. Explicitly correlated Cartesian Gaussian function faCtorHEﬂH#:X,y’Z(rk— Rk)ll';/‘. Then we have
An N-electron explicitly correlated Cartesian Gaussian N
function (ECCGPH Gy({l}) is denoted as a product of the Gn({I}H)—0 |fkﬂ|—>°°,ak+z Bik>0]. 8
Cartesian Gaussian functions with centef&,} and =t
Gaussian-type correlation factors as follows: Relation(8) leads to
N F dre, ——Gy({I)=0 ©)
rk — UpN = VU.
I % ®
Gu{h=11 TI (r=Ro,*expt—andre—Ryf?) M
s This relation plays an important role in the derivation of the
N-1 N recurrence formulas of the manyelectron integrals over
X ex _21 . .+1:8ij|ri_rj|2 : (1)  ECCGFs.
i=1 j=i

. . B. Derivation of recurrence formulas
where the correlation exponerfig;;} satisfy

When one computes the matrix elements of the nonrela-

B (i#]) tivistic Hamiltonian of N-electron systems by ECCGFs the
3”:‘ e ' 2) N-electron overlap integralSy), nuclear attraction integral
0, (i=)) (Uy), electron repulsion integraE(), and kinetic integral

(Kyn) are required:
{}=(4,...ly), andly is a set of three nonnegative integers

hoor Teys andliz, SN({I}HV}):I drl---f dryG{IH G, (10
=l Ty 1 k) - 3
=il he) S uanln= [
I, is closely related to the angular momentum quantum num- % IRV Py
ber, andly| =14+ 1y, + I, is equal to the angular momentum Cr({hlrp= VI Gh{I'D, (3
guantum number of thk-th electron. Hereafter, we refer to )
ECCGF with=}_,|I,|=0 and 1 ass- and p-type ECCGF, En({I}{! }):J drl---J dry

respectively.
o 4 i i i i XGn{ID[ry—rg 1GLHI'D, (12
ECCGFs satisfy the differential relation N p— g N
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and respectively. When some of the angular momentum indices
are different from those inSy({I}|{I'}), Un({I}{I'}),
KN({|}|{|/})ZJ drl---f dry Eq({{1'}), andKy({IH{I'}), only the distinct indices wil
be given, and thuSy(ly,... Ik, +1,,....I5[{I'}), for instance,
XGN({I})(—%Vﬁ)G,Q({I’}), (13)  will be designated a$y(lx+1,|). The kinetic integral can

) , ) be reduced a linear combination of the overlap integrals as
wherep#q, V is any nuclear centeGy({l'}) is an ECCGF  ¢51ows:

having{ay}, {Bi;}, {Ri}, and{l’}. For the sake of simplic-

ity, hereafter we abbreviateSy({I}/{I'}), Un{I}H{I'}), _
EVITD, and Ku(HID a8 S, Uy, Bv, andky, <03, Ko (49

N N N N
KN#=221 cpij; c:;)jsN(|i+1M||j'+1ﬂ)+2D;mi=2l cpisN(|i+1M|)+20,m2)1 ChisSu(l +1,)

~15,D},Snu(ly= 1, —17,Dp,Sn(|l,—1,)+2D,,D} Sy

pu= pu=N pu= pu
N N
—1} ;1 cpisN(|i+|M||;,—1M)—|Wi§1 ChiSn(lp= 1,1/ +1,)+ 31,17 Sn(lp— 1,117 —1,), (15)
|
where respectively, where=+—1, ky=(Kpy,Kpy,Kpr), and kg
N = (Kpgx:Kpqy:Kpga)- The reduction operators fdsy, Uy,
Cpi= ap+,—21 ﬁpj) 8.1 Bpi» (16) andEy are defined as
N Re= lim lim , (23
r ' 2 ’ Y kp~>0 kpq"o
Cpi= ap+j:1 Bpj | Op.i~ Bpis (17
N = 2y-1 -2 ; n, i
Ry(n)=(27?) fdk k=2 I (iky )™ lim (24
DDM:; Bpi(Rp=Ri) 1 (18) TP Sy Kpg—0
and and
N
DpM=i:El ﬂpi(Rp—Ri )M (19 RE(n)E(Zﬂ_Z)—lj dkqu;qz H (ikpq,u)n'u' lim,
H=XY,Z —
We derive recurrence formulas for the integrals Egs. (25)

(10), (11), and(12). Although the recurrence formula for the

kinetic integral can be derive@ee the Appendixit is more  respectively, wher®=(0,0,0, n denotes a set of nonnega-
effective to compute the kinetic integral as the linear combi+tive integersn,, ny, andn,,

nation of the overlap integrals. To accomplish our aim, we

define a common integranidy and reduction operators for n=(n,,n,,n,) (26)
Sy, Uy, andEy. The common integrand is defined as e

INEIFH{I D) =exdlikp(r,— V) +ikpo(rp—rg)] and we refer ta as the auxiliary index. Using the integrand
o Eq. (20) and the reduction operators Eq23), (24), and
XGn({H G- (20) (25), the integrals Eq910), (11), and(12) can be written as
Equation (20) includes two Fourier kernels epif,(r,
—V)] and expikyq(r,—rq)] of the Fourier transformation SvAHI D =R {1} (27)
of the Coulomb interactions
U =Ry (O {1 N (28)
|rp—v|—1=(2w2)—1f dkok, Zexliky(r,—V)]  (21)
and
and
En{BH{I"H =Re(O)[{}{I"}n, (29)

|rp—rq|—1=(2w2)—1f dKpokpa €XHiKpg(rp=Tg)],
(22 with
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o= [ aree [ dnanion. 30

We refer to[{I}|{I'}]y as theN-electron basic integral. It is

notice that the target integrals Eq28) and(29) haven=0.

First, we differentiate the integrand EQO) with respect

tory, (k=1,..N and u=x,y,z). Using Eq.(7), we obtain

N
dly
=— + ) +
T 2| iZlﬁk.)lNuk )
N
-2 a;<+i§l ﬁlgi)|N(|||;+1M)+|k#|N(|k—1M|)

N
+I&,,,IN(|Ia—1,L>—2i§1 {Bi(R«—Ri) .+ B

><(RI/<_ Ril)u}l N+{ikk,u,5p,k+ ikpq,u( 5p,k_ 5q,k)}| N -

(31
In(|lg+1,) can be transformed into
IN(le+1,)=(r—Rp) LIy
={(re— R ut (R—Rp)
=In(k+ L)+ (Re—Ri) I n - (32)

Substituting Eq(32) into Eq. (31), Eq. (31) becomes

al N
—=—2| A+, By
=1

Wk# {IN(|k+1M|)+Rk,uIN}

N
+2241 Biil In(li+ 1.1+ RiuIn} + I n(le— 1,.])
i Nk 1) +{2Py, + ik, 85
+ ikpq,u( 5p,k_ 5q,k)}| N

whereAj=a;+af , Bjj=j;+ B, andPy, is the u com-
ponent of a vector

(33

Pk=akRk+ aIQR(( (34)

Next, we integrate both sides of E@3) overrq,...ry.

The left-hand side of Eq.33) becomes zero due to the rela-

S. L. Saito and Y. Suzuki

[+ 1IN+ Rl In
0 =7 [|2+1M|]N+R2M[|]N
T 4N .
0 [Int 1.0 It Rl In

I|M[|1_1M|]N+l:,I.M[“:/L_l,u]N
_E I2,u['2_1,u|]N+Ié,u[llé_l,u]N
2 .

|N;L[IN_1},L|:|N+|,,\|,LL[||’,\I_1,(L]N

P1#[|]N+%{ikp,u.5p,l+ Kpgu(8p.1— 89,0 In
P2,u[|]N+ %{ikp,uépzfikpq,u( 5p,2_ 5q,2)}[|]N

PN,u,[l]N+ %{ikp,uép,N"' ikqu( é\p,N_ 5q,N)}[|]N

(36)
with
A+ By, —Biy —Bin
—B1 A+ =L By, —Bon
ZNE . : .
—Bin —Bon An+ =By
(37)

Zy is anN XN nonsingular symmetric matrix which consists
of the exponents oGy ({l}) and G ({l'}). Hence, the in-
verse matringl of Zy exists, which is a symmetric matrix.
Multiplying both sides of Eq(36) by Zy* from the left, we
obtain the recurrence formulas folg+1,,|1y:

1 N
(et 2l In=5 2, (2 glliulli = LulIn

N
+|i,#[||j,_1,u]N}+[]§=:1 (Zﬁl)ijJM

1o
_Rk,u [|]N+§{(ZN )kplkp,u

+iKpau(Zy Dkp— (ZN DM In.— (38)

Operation of the reduction operators E@7), (28), and(29)
on both sides of Eq(38) yields the recurrence formulas for
Sy, Uy, andEy, respectively. As a result, the recurrence

tion Eq. (9). Then we can obtain one set of equations forormulas forSy, Uy, andEy can be written as

[het L/ (k=1,2,...N):
N

0=| A+ By
=1

{[|k+1,u|]N+ Rk,u[|:|N}

N
—;l Biid [+ L In+ Riul Ind = 31l = Ll In

+1 |;,u,[| III<_ 1,u:|N}_ %{Zpkﬂ+ ikpuép,k
+1Kpqu(Fp k= g1 [ In-

In matrix representation, E435) (k=1,2,...N) is written as
follows:

(39

N
1 .
Xn(let 1,))= 51_21 (Zy il Xn(l = 1,0
+Ij’#XN(|Ij’—1M)}

N
+ jgl (ZNYkPj = Ruu | Xnt Yn,
(39

where Xy({I}[{I"'}) stands forSy({I}[{I'}), Un({I}|{l'}:n),
and Ey({I}{1'}:n), andYy({1}{I'}) is defined as follows:
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Xy=Sv: Yn({H{I'H=0, (40) N

1
Xn(lle+ 1) =5 2 (ZaDill k(= L)
Xn=Un: YA D =3ZgHoUn(I Y in+ 1), ) ,
n=Un nAHID = 2(Zy DepUn(HH{ }in+1,) 1 'Hm;(N(“j_lﬂ)}

1 (ZyYHiPia— Riy  Xnt i -
Xn=Eni YD =HZ e (Za i) SRR

(44)
XEn{IH{I'}n+1,). (42) The recursive computation of tié-electron integrals is car-
ried out by Eqs(39) and(44) or by Egs.(39) and(43).
Equation (39) is called the “vertical recurrence relation.” C- Initial integrals for the recurrence formulas
Operation of the reduction operators E@3), (24), and(25) Initial integrals for recursive computations of
on both sides of Eq(32) integrated over,...,ry yields SWAB{Y,  UnEIH{I'}:0), and En({I}{I'}:0) are
Su({0H{0}), Un({0}{0}n), and Ex({0}|{0}:n), respec-
XN(|||’(+1,¢L)=XN(|k+ 1;L|)+(Rk_ R X (43) tively. The initial integrals are closely related to the

N-electron integrals ovestype ECCGFs. We derive the
N-electron basic integral first. It is straightforward to obtain
This is the so-called “horizontal recurrence relation.” Sub- the initial N-electron basic integral. Integrating the integrand
stituting Eq.(39) into Eq. (43), we obtain another vertical Eg. (20) with I,=I,=0 (k=1,...N) overrq,...,ry, we ob-
recurrence formula tain the initial N-electron basic integral

N

71_N 3/2
[{0}|{0}1N=<ﬂ) exp 2] (zmi,-Pin—;l (iR + R/ %) +ikp,

; (Z,]l)ijj—V] +ikpq; {(Zﬁl)Jp

1 1 1
—(ZnjatPi— 7 (Znppka = 5 {2 pp~ (ZnDpatkpkog™ 71(ZNDpp— 220N pat (Zn M agtkpg| . (49)

where|Zy| is the determinant oZ,. Operating the reduc- and
tion operator Eq(23) on both sides of Eq(45), we obtain
the initial integral

En({0}{0}:n)

N\ 32 _ . n
SN({O}|{0}):(|7ZT_|) exr{Z (ZyY)iPiP; :(2772)7181\1({()”{0})[ dkqupqzul:[yz (Kpgu) ™
N ij Y,
N 1 -1 -1 -1 2
-3 (aiRi2+ai,Ri,2)}- (46) XEX[{—Z{(ZN Jpp~ 2(ZN ) pgT (Zn ) qqtKpg
i=1
N
This is the same as the overlap integral obtained by Boys. +ikqu21 {(Za Y= (ZaHigtPi |, (48)

In a similar way, operation of the reduction operators
Egs.(24) and (25) on both sides of Eq45) yields

respectively. Since these integrals mutually have the same

Un({0H{0}:n) structure, we can write these integrals as the common form

:(2172)’1SN({0}|{0})f dkpk, 2 Xn({0}{0}:n) = (27%) Sy ({0} {0} W(n) (49

_ 1 with
x 11 (.kpﬂ)nuxex;{—z(le)ppkg

w=XY,2

W(n)=fdkk‘2 I1 (ikM)”ueX;{—ékzﬂkQ},

(47 w2 0

N
; -1
+|kp[j=1 (ZyhHpP—V
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whereQ andZ depend orlJ or Ey as follows: other hand, the last term in E¢39) depends on the same
N type of N-electron integral as in Eq$40)—(42). The hori-
Xy=Uyn: Q=2 (ZyYP -V, (51  zontal recurrence formula E¢43) only depends on centers
j=1 of ECCGFs, and its structure does not depend on the type of
7=(z3Y (52) N-electron integral. Equatio@3) is an extension of the hori-
N TP zontal recurrence formula obtained by Head-Gordon and
N Pople?’
_ . _ -1 -1 pie
Xn=En: Q_,Zl {(ZnD)ip— (ZN )il Py (53 The N-electron integrals Eq910)—(12) are calculated

recursively by Egs(39) and (44) or by Egs.(39) and (43).
Z=(Z\Ypp—2(Z\Ypgt (ZyYgq- (B4 The use of Eq(39) and(43), i.e., the use of the vertical and
horizontal recurrence formulas, has been shown as an effi-

Equation(50) is rewritten as ) X X X
cient computation algorithm of molecular two-electron inte-

_ g |\ 2 Z ., . } grals over contracted Gaussian functions by Head-Gordon
W(n)_,u:l:[,y,z &QM) f dkk ex;{ 4K TIkQJ. and Poplé’ The advantages of employing the horizontal re-
(55) currence formula are as followgl) determination of the
Integrating Eq.(55) overk by the aid of the relation required intermediate integrals is straightforwa(@) com-
L putation of the intermediate integrals is reduced if one uses
exr(—akz)=2ak2J dtt 3 exg —at 2k?), (56)  contracted functions. Here we employ the method which
0 combined the vertical and horizontal recurrence formulas.
and rewriting by the incomplete Gamma function We show an algorithm for computation of thieelectron
integrals Eqs(10)—(13). Computation of theN-electron in-
F.(a)= fltzm exg —at?)dt, (57) tegrals is carried out in the following three steps: First, the
0 parametersZy®, |Zy|, and =N (ZyHiP (k=1,...N)

needed in the recursive computation are calculated and
stored. Subsequently, the overlap and kinetic integrals are
computed. Since the kinetic integral is the linear combination
of the overlap integrals, the kinetic integrals should be evalu-
ated along with the overlap integrals. Finally, the nuclear
attraction and electron repulsion integrals are computed after
5 \n o? evaluation of the overlap intengIs because the initial inte-
_ u grals of Uy and Ey require Sy({0}]{0}).
Wa(n) =472 1/2M=1_X[,y,z (@) Fm(?) 9 Calculation of Zy* and |Z{N1|} Es}straightforward if N
. . . =< 3. However, calculation oZ " and|Zy| becomes more

W(n) is equal toWy(n). We obtain the recurrence relation laborious asN increases. IrN;4, cal(|:ul'\;1|tion ofz;;! and
|Zn| has to be performed by an efficient method, e.g., the LU
decomposition method, unlegs, has a special structure.
(60) The overlap integrals are calculated in the following two

after differentiation of the integrand &% ,,(Q2/Z) with re-  StepPS:

spect toQM'. Wy(n) can2 be evaluated from the values of (1) Computation of the initial integralSy({0}|{0}).
Wy(0), which areF,(Q%Z) (m=0,1,2,..|n[). Then, the (2) Computation of the target integrals by means of the ver-

the functionW becomes
a \"u
W(n)=4732Z-12 ] (—) Fo
M=XY,Z aQ,u,

To obtain the recurrence formula for the auxiliary index
n, we replace~g by F, of the function Eq(58) as follows:

Q2
&l

(58)

n,U«
= Wm+ l( n- 1;1,)

2Q 2
Win(n+1,) = = £ Wy a(n) — =

initial integrals forU andEy are evaluated by Eq&9) and tical and horizontal recurrence formulas.

(60). Although evaluation of, is a time-consuming step,

there are efficient computation methods Fay.>*>%2° The initial overlap integrals must be stored because they are
required in the computation of the initily andEy . If only

IIl. DISCUSSION stype ECCGFs are used, evaluationSpfs by means of the

We have derived the recurrence formulas), (43), and recurrence formula is needless. However, since the kinetic

(44) for the N-electron integrals over ECCGFs by means ofiNtégral is built up by the overlap integrals over ECCGFs
the method of Obara and Safea* and Hondaet al.25 i.e. with higher angular momenta, the overlap integrals over

the derivation method of efficient recurrence formulas forP-tyPé ECCGFs must be computed even if orsyype
molecular two-electron integrals over Cartesian GaussiafCCGFs are used. To obtain the target integral
functions. Our vertical recurrence formula f&s with B,  Sn(l1.---In[l1....ly), one has to generate the intermediate
=0 is essentially the same as that obtained by Heetdad.  integrals Sy(ly,...In[0,...,0)~Sy(I1+17,... Iy +1§[0,...,0)
The vertical recurrence formula E9) [or Eq. (44)] ex- by the vertical recurrence formula E(B9), and the target
presses thdl-electron integrals of higher angular momentumintegral is calculated from the intermediate integrals by the
as a linear combination of thid-electron integrals of lower horizontal recurrence formula EGL3). As an illustration, we
angular momentum. The first two terms in E§9) are the have shown calculation scheme S,t](xﬂxﬁ) by means of
same forms as in the case of axyelectron integrals. On the the vertical and horizontal recurrence formulas in Fig. 1.
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) and
Sw(wil) Sn(wgl) ————— Sn(l)

() S sN<a:k|‘)'/ D4yy= | s | ArGu(tID AT, 1 GUU'D, (6

respectively. The reduction operators Dgp andD 5pq ATE

(a) Vertical recursive calculation . . .
Rtgp(n)s(zw)* fdkp H (iKp,) ™ lim (65
HEXYZ Kpg—0
and
Sn(aileR) = Sn(aRlzr) < Snlzkl)

Rgpq(n)z(zw)*f dkoq II  (ikpg)™ lim,  (66)
M=XY,Z

Sy (22|zk) Sn(z3]) -

Sn(2]) respectively. Calculation ®5p and Dapq is carried out the
A same recurrence formulas big, andEy, respectively. Op-
erating the reduction operators Ed65) and (66) on Eq.

(b) horizontal recursive calculation (45), initial integrals OfD5p and D5pq become

FIG. 1. Recursive calculation scheme of the target overlap integral Dx({O}l{O}:n)=(277)’3SN({O}|{0})W’(n) (67)
SNOXEIXE). .
with
’ J M z 2.
Here we abbreviate®y({0}/{0}) as Sy(|), and explicitly W (n)=J’ dk#:l:[yz (aQ ) exp(—zk +ikQ/,
wrote angular factors iy . We will use the same notation - g (68)

for Uy and Ey below.

It is more complicated than the case of the overlap intewhereX=§, or 6,4, Z andQ are the same as those 0§
gral to generate the initial and intermediate integralsdgr ~ @ndEy for D, andD , respectively, i.e., Eq351)—(54).
and Ey. The target integral Ey({I}[{l’}) requires Evaluation of the initial integrals is carried out by the rela-
IT,—xyL,+1) initial integrals with the auxiliary indices tion

resulting from all possible combinations af,=0,...L ,(x

=X,y,Z), WhereLM:EE=]_(|k+ IL)M . For eXample, |n|t|a| in- W,(n‘l‘ 1#): _ 2Q/—" W/(n)_ ZZ&Wr(n_ 1,u,) (69)

tegrals Ey(]:nynyn,) needed in computation dy(xy|yy) VA
are Ey(]:000), En(]:100), En(]:010), andEy(|:110). The
targetU({I}|{'}) also requiredI,_, , (L ,+1) initial in-
tegrals with the same auxiliary indices d&y(]:n) for A\ 32 Q2
En({I}[{I'}). The initial integrals foilJy andEy are gener- W’(O)=(?) exy{ - —) (70)
ated by Eqgs(49) and (60), and the targetUy and Ey are

evaluated by the recurrence formulas E@®) and(43) in  The relation Eq(69) is the same form as EG60).

with

the same way asy. As an illustration, we have shown Finally, we suggest a modification of two interesting
calculation scheme di(Xixj) by the vertical and horizon-  Hylleraas-type wave functions by the use of Gaussian-type
tal recurrence formulas in Fig. 2. correlation factors. One of them is a Hylleraas-type molecu-

The recurrence formulas can be applied to calculation ofyy wave function¥ o, by Obara and Hiraé® ¥ o, is defined
the expectation values af(r,—V) and 5(r,—rq) because as a product of a correlation factbi,mmericWhich is sym-
these two operators can be expressed with the Fourier trangretric with respect to exchange of electrons and an antisym-

formations metrized product of orbital® ,nisymmetric

5(I’p— V)= (2m) _3f dkp exr[ikp(rp— V)] (61) Won= Fsymmetricq)antisymmetric (72)
and They have writterF gy mmetric @S

5(rp_rq):(277)_3J dkpq exHikpg(rp—rg)], (62) Fsymmetric:eXP(E Z Cijplri— ;P

p i<

which are similar to those df ,— V| and|r,—ry| %, re- nuclei
spectively. Integrals required in calculation of the expecta- > > Ciiplri—R[P], (72)
tion values ofd(r,—V) and 6(r,—r,) are P

_ R where cj;, and c;, are variational constants. We suggest
Dﬁp_J drl"'J dryGh(ih T =VIGN{I'D (63 replacingF gymmeticas follows:
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En(z}| :000) En( | :000)

EN(Iz[ : 000)

\ En(z}| : 000) / \\

En(z2| : 100) \
\\\\EN(zkl  100)
\ En(a2| :200) \

\\EN(zks : 200)

EN(ZL'k| : 000)

En(] :100)

En(z2| : 100)

En(| :300)

En(z| :300)

/
\
/
\ En(| :200)
/
)
\

En( ] :400)

(a) vertical recursive calculation

En(z3|2% : 000) ~— En(2}|z : 000) < En(z}| : 000)
En(zi|zk : 000) < En(z}]| : 000)

En(z%] : 000)

(b) horizontal recursive calculation

FIG. 2. Recursive calculation scheme of the target electron repulsion in&gtef|xZ).

S. L. Saito and Y. Suzuki

I:symmetnc 1+exp(—% z C|]p|r|

i<j

nuclei
ST Sy ) 3

The other is “linked Hylleraas-CI"” wave functiod’, by
Kleindienst and Lohow® which is defined as

WKL=<I>O+§ Ej dPf(ijp)

v 2 PGP fkia), (74
with
f(ijp)=[ri—ryl". (75
Similarly, we suggest employing
f(ijp)=exp— B Iri—r;l). (76)

Applications of the originalV oy and ¥, to many-electron
systems are not practical due to cumbersome many-electron
integrals over Hylleraas-type functions. On the other hand,
the modified¥ , and ¥, require many-electron integrals
over ECCGFs, and can be more easily applied to many-
electron systems.

APPENDIX: RECURRENCE FORMULAS FOR KINETIC
INTEGRAL

In this Appendix, we derive recurrence formula for the
kinetic integral. Let us define an integrand of the kinetic
integral as

TN({l}l{l’})=GN({|})( - VE)G&({V}): (A1)

then the kinetic integral is

Ka(D = [ dry... | areTniony. (A2)



J. Chem. Phys., Vol. 114, No. 3, 15 January 2001 Many electron integrals 1123
The recurrence formula for the kinetic integral can be de- Ly N
rived in a similar way as derivation for the other integrals. e —2| A+ E By [ {Ln(lk+ 1M|)+ Ryuln}

ku j=1

First, we differentiate the integrand E@Al) with re-
spect tory,, (k=1,...N and u=x,y,z). Then we obtain

ITn N
=2 At 2 By {Ta(lk* L) + R, T}
ku =1
N
+2,Zl Bl Tn(lj+ 1)+ Ry, Tt + i, Tn(lk— 1,0
i Tn(k—= 1)+ 2Py, Ty +2C Ly, (A3)
where
! (9 ’ !
Lu(IHI D =Gn({I) 57— GLdI'D. (A4)
pu
For above manipulation, we used the relation
1v2 ’ 1v2 ’ J ’
_fvprk,uGN:rk;L(_Evp)GN_ép,k ﬁr_GN (AS)
pu
Integrating both sides of EGA3) overrq,...,ry, the left

hand side of Eq(A3) becomes zero due to the relation Eq.

(9). Then we can obtain one set of equations Kog(l,
+1,]) (k=1,...N) as follows:

N
0= Ak+j21 Bk]-){KN(Ik+1M|)+RkMKN}
N
=2, BilKn(lj+ L)+ RiuKnd = 3l K L)
+I|;,U,KN(|||;_1M)}_PkMKN_C[;kMN! (AG)
where
V(D= [ dry [ anaaniiy. @)

We refer toMy({I}|{I’}) as the auxiliary kinetic integral.

Solving one set of EqAB) for Ky(l+1,]), we obtain

Kn(lkt+1,0)

N
J; (ZN Yl K= 1)

N| =

N
Kl = 1)1+ J.E::l (Zn Py~ Riw
N

><KN+JZ1 (ZyHkiCpMy. (A8)

Subsequently, we derive
My({1}{I'}). Differentiating the integrand EqA4) of My
with respect tar,,,, we obtain

where{1,,}=(0y,....1,

recurrence formula for

N
+ij1 Bij{Ln(lj+1,)) + Ry ,Ln}

i Ln(e= 1) + 1 (k= 1,)
+2Py, Ln—2Co G G- (A9)

In the same way, we obtain the recurrence formula for
My({13{1}) as follows:
N

1 _ /
My(he+1,0) = Egﬁ (Zn il M= 1D+ 1, My

N
X =20k 2 (ZnPiu Ri [ M

N
_,Zl (ZyHkiChiSn- (A10)
The target kinetic integral can be calculated by means of the
recurrence formulas Eq§A8) and (A10).

The initial auxiliary integraM y({0}|{0}) is obtained by
integration of the integrand EqA4) with I, =I,=0 (k
=1,..N) overrq,...,ry as follows:

N
MN<{0}|{0}>=2§1 CoiSn({1p,H{0})

+2D,, SN{0H{0}), (A1)

,---,0n). We find the initial inte-
gral Ky({0}[{O}) from Eqg.(15) as follows:

KN<{0}>|{0}>=M§y _ Knu({0HH{OD) (A12)

N N
~23, G, ChSuLlit,
N
+ 2D'/3“i21 CpiSu({1,.}{0})

N
+20,, % ChSu{0{L,)

+2D,,D}, Sn({0H{0}). (A13)

My, ({0}{0}) and M ({0}{0}) are built up by the overlap
integrals overs- and p-type ECCGFs.
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