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Computational method of many-electron integrals over explicitly correlated
Cartesian Gaussian functions
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Derivation of recurrence formulas for general many-electron overlap, nuclear attraction, and
electron repulsion integrals over explicitly correlated Cartesian Gaussian functions is presented. The
recurrence formulas are derived in a similar way as the derivation of molecular two-electron
integrals over Cartesian Gaussian functions by Obara and Saika. As a result, the formulas expressing
the many-electron integrals of higher angular momentum as a linear combination of those of lower
angular momentum are obtained. An algorithm for computation of the general many-electron
integrals by means of the recurrence formulas is also shown. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1332990#

I. INTRODUCTION

To compute accurate atomic and molecular wave func-
tions, one must take electron correlation effects into account.
The configuration interaction~CI! method1 is used exten-
sively for this purpose. The CI wave function is a linear
combination of antisymmetrized products of one-electron
functions, and its coefficients are determined by the Ritz
variational method. The CI method is conceptually very
simple, and is mathematically exact if a complete set of one-
electron functions is used. However, in actual computations,
the CI wave function must be confined to expansion by finite
one-electron functions. This restriction causes the slow con-
vergence of the CI wave functions and total energies. The
main source of the slow convergence is that the description
of probability amplitude at small interelectronic distance by
one-electron functions is difficult. One must use functions
explicitly including interelectronic distances to obtain com-
pact and energetically accurate wave functions.

In 1928, Hylleraas obtained a very accurate ground state
energy of the He atom by a wave function explicitly includ-
ing powers of the interelectronic distancer 12 and showed
that the interelectronic distance enables extremely compact
and energetically accurate wave functions to be obtained.2

This method, referred to as Hylleraas-type method, has been
extended to two-electron molecules by James and Coolidge,3

Kołos and Wolniewicz,4 and Clementiet al.5 For application
to larger systems, there have been calculations of Li and Be
atoms by Kleindienst and Lu¨chow6 and Sims and Hagstrom,7

respectively. However, application of the Hylleraas-type
method to many-electron systems is very difficult due to the
appearance of many-electron integrals, the calculation of
which being very laborious. For example, the formulas of
three- and four-electron integrals for molecular systems ob-
tained by Clementiet al.5 include multidimensional numeri-
cal integrations.

Another function explicitly including the interelectronic
distances is the ‘‘explicitly correlated Gaussian function’’

~ECGF!, which was independently introduced by Boys8 and
Singer.9 ECGF is defined as a product of Gaussian functions
and Gaussian-type correlation factors. In particular, ECGF
with Cartesian angular factors are called ‘‘explicitly corre-
lated Cartesian Gaussian function’’~ECCGF!. As a variant
of ECCGFs, there is the Gaussian-type geminal~GTG!,
which is ECCGF with only one Gaussian-type correlation
factor, exp(2br12

2 ). The advantage of ECGFs is that the
many-electron integrals needed in calculations of atomic and
molecular wave functions can be expressed in compact forms
involving the incomplete Gamma function. There have been
many applications of ECGFs because of this advantage.
Early applications are calculations of two-electron systems
by Lester and Krauss10 and Longstaff and Singer.11 Subse-
quent applications of ECGFs have been made by Pan and
King,12 Salmon and Poshusta,13 Adamowicz and Sadlej,14

Szalewicz et al.,15–17 Kozlowski and Adamowicz,18 and
Cencek and Rychlewski.19 In particular, weak orthogonal
~WO! pair correlation techniques for the use of GTGs devel-
oped by Szalewiczet al.15 are suitable for application to
many-electron systems, and have been applied to ten-
electron systems.16,17 Since computational methods using
ECGFs are suitable for application to many-electron sys-
tems, further development of those is hoped.

There have been several formulas of the many-electron
integrals over ECGFs needed in atomic and molecular com-
putations. Boys,8 Singer,9 Kozlowski and Adamowicz,18 and
Cencek and Rychlewski19 have obtained formulas of the
many-electron integrals over ECGFs with zero angular mo-
menta. These formulas can only be applied to restricted sys-
tems. Formulas of the many-electron integrals over ECCGFs
with higher angular momenta have been obtained by three
groups. Lester and Krauss10 and Persson and Taylor20 have
obtained formulas of up to three- and four-electron integrals
over GTGs, respectively. Persson and Taylor have derived
the formulas in a similar manner to McMurchie and
Davidson.21 The general many-electron integrals over EC-
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CGFs for an arbitrary number of electrons have been ob-
tained by Kozlowski and Adamowicz by using the raising
operators that transform spherical ECGFs into ECCGFs.22

Their formulas are very complicated, and evaluation of them
would be laborious.

In the present paper, we derive recurrence formulas of
the general many-electron integrals over ECCGFs for an ar-
bitrary number of electrons, and establish an efficient recur-
sive computational method of them. These recurrence formu-
las have recursive forms with respect to the angular momenta
of ECCGFs in the integrals. For derivation of the recurrence
formulas, we employ the method of Obara and Saika23,24and
Hondaet al.,25 i.e., the derivation method of efficient recur-
rence formulas for molecular two-electron integrals over
Cartesian Gaussian functions.

In the next section, the characteristics of ECCGF are
presented, and recurrence formulas for many-electron over-
lap, nuclear attraction, and electron repulsion integrals over
ECCGFs are derived by the aid of the characteristics of
ECCGF. Then, Sec. III discusses our recurrence formulas for
the many-electron integrals over ECCGFs and outlines an
algorithm for the recursive computation of the many-electron
integrals by means of them.

II. RECURRENCE FORMULAS FOR MANY-ELECTRON
INTEGRALS OVER EXPLICITLY CORRELATED
CARTESIAN GAUSSIAN FUNCTIONS

A. Explicitly correlated Cartesian Gaussian function

An N-electron explicitly correlated Cartesian Gaussian
function ~ECCGF! GN($ l%) is denoted as a product of the
Cartesian Gaussian functions with centers$Rk% and
Gaussian-type correlation factors as follows:

GN~$ l%!5)
k51

N

)
m5x,y,z

~r k2Rk!m
l km exp~2akur k2Rku2!

3expS 2 (
i 51

N21

(
j 5 i 11

N

b i j ur i2r j u2D , ~1!

where the correlation exponents$b i j % satisfy

b i j 5H b j i ~ iÞ j !

0, ~ i 5 j !
, ~2!

$ l%[( l1 ,...,lN), and lk is a set of three nonnegative integers
l kx , l ky , and l kz ,

lk5~ l kx ,l ky ,l kz!. ~3!

lk is closely related to the angular momentum quantum num-
ber, andu lku5 l kx1 l ky1 l kz is equal to the angular momentum
quantum number of thek-th electron. Hereafter, we refer to
ECCGF with (k51

N u lku50 and 1 ass- and p-type ECCGF,
respectively.

ECCGFs satisfy the differential relation

]

]r km
GN~$ l%!522akGN~ l1 ,...,lk11m ,...,lN!

1 l kmGN~ l1 ,...,lk21m ,...,lN!

22(
i 51

N

bki~r k2r i !mGN~$ l%!, ~4!

wherer km is them component ofr k , and1m is defined by

1m5~dm,x ,dm,y ,dm,z! ~5!

with Kronecker’s deltas. Using the decomposition relation

~r k2r i !m5~r k2Rk!m2~r i2Ri !m1~Rk2Ri !m , ~6!

Eq. ~4! can be rewritten as

]

]r km
GN~$ l%!

522S ak1(
i 51

N

bkiDGN~ l1 ,...,lk11m ,...,lN!

12(
i 51

N

b ikGN~ l1 ,...,l i11m ,...,lN!1 l kmGN~ l1 ,...,

lk21m ,...,lN)22(
i 51

N

b ik~Rk2Ri !mGN~$ l%!. ~7!

As ur kmu goes to infinity, the exponential factor of ECCGF
decreases to zero much faster than the increase of the angular
factor Pk51

N Pm5x,y,z(r k2Rk)m
l km. Then we have

GN~$ l%!→0 S ur kmu→`,ak1(
i 51

N

b ik.0D . ~8!

Relation~8! leads to

E
2`

`

drkm

]

]r km
GN~$ l%!50. ~9!

This relation plays an important role in the derivation of the
recurrence formulas of the manyelectron integrals over
ECCGFs.

B. Derivation of recurrence formulas

When one computes the matrix elements of the nonrela-
tivistic Hamiltonian ofN-electron systems by ECCGFs the
N-electron overlap integral (SN), nuclear attraction integral
(UN), electron repulsion integral (EN), and kinetic integral
(KN) are required:

SN~$ l%u$ l8%!5E dr1 ...E drNGN~$ l%!GN8 ~$ l8%!, ~10!

UN~$ l%u$ l8%!5E dr1 ...E drN

3GN~$ l%!ur p2Vu21GN8 ~$ l8%!, ~11!

EN~$ l%u$ l8%!5E dr1 ...E drN

3GN~$ l%!ur p2rqu21GN8 ~$ l8%!, ~12!
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and

KN~$ l%u$ l8%!5E dr1 ...E drN

3GN~$ l%!~2 1
2¹p

2!GN8 ~$ l8%!, ~13!

wherepÞq, V is any nuclear center,GN8 ($ l8%) is an ECCGF
having $ak8%, $b i j8 %, $Rk8%, and$l8%. For the sake of simplic-
ity, hereafter we abbreviateSN($ l%u$ l8%), UN($ l%u$ l8%),
EN($ l%u$ l8%), and KN($ l%u$ l8%) as SN , UN , EN , and KN ,

respectively. When some of the angular momentum indices
are different from those inSN($ l%u$ l8%), UN($ l%u$ l8%),
EN($ l%u$ l8%), andKN($ l%u$ l8%), only the distinct indices will
be given, and thusSN( l1 ,...,lk11m ,...,lNu$ l8%), for instance,
will be designated asSN( lk11mu). The kinetic integral can
be reduced a linear combination of the overlap integrals as
follows:

KN5 (
m5x,y,z

KNm , ~14!

KNm52(
i 51

N

Cpi(
j 51

N

Cp j8 SN~ l i11mu l j811m!12Dpm8 (
i 51

N

CpiSN~ l i11mu!12Dpm(
i 51

N

Cpi8 SN~ u l i811m!

2 l pmDpm8 SN~ lp21mu!2 l pm8 DpmSN~ u lp821m!12DpmDpm8 SN

2 l pm8 (
i 51

N

CpiSN~ l i1 lmu lp821m!2 l pm(
i 51

N

Cpi8 SN~ lp21mu l i811m!1 1
2l pml pm8 SN~ lp21mu lp821m!, ~15!

where

Cpi5S ap1(
j 51

N

bp jD dp,i2bpi , ~16!

Cpi8 5S ap81(
j 51

N

bp j8 D dp,i2bpi8 , ~17!

Dpm5(
i 51

N

bpi~Rp2Ri !m , ~18!

and

Dpm8 5(
i 51

N

bpi8 ~Rp82Ri8!m . ~19!

We derive recurrence formulas for the integrals Eqs.
~10!, ~11!, and~12!. Although the recurrence formula for the
kinetic integral can be derived~see the Appendix!, it is more
effective to compute the kinetic integral as the linear combi-
nation of the overlap integrals. To accomplish our aim, we
define a common integrandI N and reduction operators for
SN , UN , andEN . The common integrand is defined as

I N~$ l%u$ l8%!5exp@ ikp~r p2V!1 ikpq~r p2rq!#

3GN~$ l%!GN8 ~$ l8%!. ~20!

Equation ~20! includes two Fourier kernels exp@ikp(r p

2V)# and exp@ikpq(r p2rq)# of the Fourier transformation
of the Coulomb interactions

ur p2Vu215~2p2!21E dkpkp
22 exp@ ikp~r p2V!# ~21!

and

ur p2rqu215~2p2!21E dkpqkpq
22 exp@ ikpq~r p2rq!#,

~22!

respectively, where i5A21, kp5(kpx ,kpy ,kpz), and kpq

5(kpqx ,kpqy ,kpqz). The reduction operators forSN , UN ,
andEN are defined as

RS[ lim
kp→0

lim
kpq→0

, ~23!

RU~n![~2p2!21E dkpkp
22 )

m5x,y,z
~ ikpm!nm lim

kpq→0
~24!

and

RE~n![~2p2!21E dkpqkpq
22 )

m5x,y,z
~ ikpqm!nm lim

kp→0
,

~25!

respectively, where05~0,0,0!, n denotes a set of nonnega-
tive integersnx , ny , andnz ,

n5~nx ,ny ,nz!, ~26!

and we refer ton as the auxiliary index. Using the integrand
Eq. ~20! and the reduction operators Eqs.~23!, ~24!, and
~25!, the integrals Eqs.~10!, ~11!, and~12! can be written as

SN~$ l%u$ l8%!5RS@$ l%u$ l8%#N , ~27!

UN~$ l%u$ l8%!5RU~0!@$ l%u$ l8%#N , ~28!

and

EN~$ l%u$ l8%!5RE~0!@$ l%u$ l8%#N , ~29!

with

1117J. Chem. Phys., Vol. 114, No. 3, 15 January 2001 Many electron integrals
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@$ l%u$ l8%#N[E dr1 ...E drNI N~$ l%u$ l8%!. ~30!

We refer to@$ l%u$ l8%#N as theN-electron basic integral. It is
notice that the target integrals Eqs.~28! and~29! haven50.

First, we differentiate the integrand Eq.~20! with respect
to r km ~k51,...,N andm5x,y,z!. Using Eq.~7!, we obtain

]I N

]r km
522S ak1(

i 51

N

bkiD I N~ lk11mu!

22S ak81(
i 51

N

bki8 D I N~ u lk811m!1 l kmI N~ lk21mu!

1 l km8 I N~ u lk821m!22(
i 51

N

$bki~Rk2Ri !m1bki8

3~Rk82Ri8!m%I N1$ ikkmdp,k1 ikpqm~dp,k2dq,k!%I N .

~31!

I N(u lk811m) can be transformed into

I N~ u lk811m!5~r k2Rk8!mI N

5$~r k2Rk!m1~Rk2Rk8!m%I N

5I N~ lk11mu!1~Rk2Rk8!mI N . ~32!

Substituting Eq.~32! into Eq. ~31!, Eq. ~31! becomes

]I N

]r km
522S Ak1(

i 51

N

BkiD $I N~ lk11mu!1RkmI N%

12(
i 51

N

Bki$I N~ l i11mu!1RimI N%1 l kmI N~ lk21mu!

1 l km8 I N~ u lk821m!1$2Pkm1 ikpmdp,k

1 ikpqm~dp,k2dq,k!%I N , ~33!

whereAi5a i1a i8 , Bi j 5b i j 1b i j8 , and Pkm is the m com-
ponent of a vector

Pk5akRk1ak8Rk8 . ~34!

Next, we integrate both sides of Eq.~33! over r1 ,...,rN .
The left-hand side of Eq.~33! becomes zero due to the rela-
tion Eq. ~9!. Then we can obtain one set of equations for
@ lk11mu#N (k51,2,...,N):

05S Ak1(
i 51

N

BkiD $@ lk11mu#N1Rkm@ u#N%

2(
i 51

N

Bki$@ l i11mu#N1Rim@ u#N%2 1
2$ l km@ lk21mu#N

1 l km8 @ u lk821m#N%2 1
2$2Pkm1 ikpmdp,k

1 ikpqm~dp,k2dq,k!%@ u#N . ~35!

In matrix representation, Eq.~35! (k51,2,...,N) is written as
follows:

S 0
0
]

0
D5ZNS @ l11 lmu#N1R1m@ u#N

@ l211mu#N1R2m@ u#N

]

@ lN11mu#N1RNm@ u#N

D
2

1

2 S l lm@ l121mu#N1 l 1m8 @ u l1821m#N

l 2m@ l221mu#N1 l 2m8 @ u l2821m#N

]

l Nm@ lN21mu#N1 l Nm8 @ u lN8 21m#N

D
2S P1m@ u#N11

2$ ikpmdp,11 ikpqm~dp,12dq,1!%@ u#N

P2m@ u#N1 1
2$ ikpmdp,21 ikpqm~dp,22dq,2!%@ u#N

]

PNm@ u#N1 1
2$ ikpmdp,N1 ikpqm~dp,N2dq,N!%@ u#N

D ,

~36!

with

ZN[S A11( i 51
N B1i 2B12 ¯ 2B1N

2B12 A21( i 51
N B2i ¯ 2B2N

] ] � ]

2B1N 2B2N ¯ AN1( i51
N BNi

D .

~37!

ZN is anN3N nonsingular symmetric matrix which consists
of the exponents ofGN($ l%) and GN8 ($ l8%). Hence, the in-
verse matrixZN

21 of ZN exists, which is a symmetric matrix.
Multiplying both sides of Eq.~36! by ZN

21 from the left, we
obtain the recurrence formulas for@ lk11mu#N :

@ lk11mu#N5
1

2 (
j 51

N

~ZN
21!k j$ l j m@ l j21mu#N

1 l j m8 @ u l j821m#N%1H (
j 51

N

~ZN
21!k jPj m

2RkmJ @ u#N1
1

2
$~ZN

21!kpikpm

1 ikpqm~~ZN
21!kp2~ZN

21!kq!%@ u#N . ~38!

Operation of the reduction operators Eqs.~27!, ~28!, and~29!
on both sides of Eq.~38! yields the recurrence formulas for
SN , UN , and EN , respectively. As a result, the recurrence
formulas forSN , UN , andEN can be written as

XN~ lk11mu!5
1

2 (
j 51

N

~ZN
21!k j$ l j mXN~ l j21mu!

1 l j m8 XN~ u l j821m!%

1H (
j 51

N

~ZN
21!k jPj m2RkmJ XN1YN ,

~39!

whereXN($ l%u$ l8%) stands forSN($ l%u$ l8%), UN($ l%u$ l8%:n),
andEN($ l%u$ l8%:n), andYN($ l%u$ l8%) is defined as follows:
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XN5SN : YN~$ l%u$ l8%!50, ~40!

XN5UN : YN~$ l%u$ l8%!5 1
2~ZN

21!kpUN~$ l%u$ l8%:n11m!,
~41!

XN5EN : YN~$ l%u$ l8%!5 1
2$~ZN

21!kp2~ZN
21!kq%

3EN~$ l%u$ l8%:n11m!. ~42!

Equation ~39! is called the ‘‘vertical recurrence relation.’’
Operation of the reduction operators Eqs.~23!, ~24!, and~25!
on both sides of Eq.~32! integrated overr1 ,...,rN yields

XN~ u lk811m!5XN~ lk11mu!1~Rk2Rk8!mXN . ~43!

This is the so-called ‘‘horizontal recurrence relation.’’ Sub-
stituting Eq. ~39! into Eq. ~43!, we obtain another vertical
recurrence formula

XN~ u lk811m!5
1

2 (
j 51

N

~ZN
21!k j$ l j mXN~ l j21mu!

1 l j m8 XN~ u l j821m!%

1H (
j 51

N

~ZN
21!k jPj m2Rkm8 J XN1YN .

~44!

The recursive computation of theN-electron integrals is car-
ried out by Eqs.~39! and ~44! or by Eqs.~39! and ~43!.

C. Initial integrals for the recurrence formulas

Initial integrals for recursive computations of
SN($ l%u$ l8%), UN($ l%u$ l8%:0), and EN($ l%u$ l8%:0) are
SN($0%u$0%), UN($0%u$0%:n), and EN($0%u$0%:n), respec-
tively. The initial integrals are closely related to the
N-electron integrals overs-type ECCGFs. We derive the
N-electron basic integral first. It is straightforward to obtain
the initial N-electron basic integral. Integrating the integrand
Eq. ~20! with lk5 lk850 (k51,...,N) over r1 ,...,rN , we ob-
tain the initialN-electron basic integral

@$0%u$0%#N5S pN

uZNu D
3/2

expF(
i j

~ZN
21! i j PiPj2(

i 51

N

~a iRi
21a i8Ri8

2!1 ikpH(
j

~ZN
21! jpPj2VJ 1 ikpq(

j
$~ZN

21! jp

2~ZN
21! jq%Pj2

1

4
~ZN

21!ppkp
22

1

2
$~ZN

21!pp2~ZN
21!pq%kpkpq2

1

4
$~ZN

21!pp22~ZN
21!pq1~ZN

21!qq%kpq
2 G , ~45!

where uZNu is the determinant ofZN . Operating the reduc-
tion operator Eq.~23! on both sides of Eq.~45!, we obtain
the initial integral

SN~$0%u$0%!5S pN

uZNu D
3/2

expF(
i j

~ZN
21! i j PiPj

2(
i 51

N

~a iRi
21a i8Ri8

2!G . ~46!

This is the same as the overlap integral obtained by Boys.8

In a similar way, operation of the reduction operators
Eqs.~24! and ~25! on both sides of Eq.~45! yields

UN~$0%u$0%:n!

5~2p2!21SN~$0%u$0%!E dkpkp
22

3 )
m5x,y,z

~ ikpm!nm3expF2
1

4
~ZN

21!ppkp
2

1 ikpH (
j 51

N

~ZN
21! jpPj2VJ G , ~47!

and

EN~$0%u$0%:n!

5~2p2!21SN~$0%u$0%!E dkpqkpq
22 )

m5x,y,z
~ ikpqm!nm

3expF2
1

4
$~ZN

21!pp22~ZN
21!pq1~ZN

21!qq%kpq
2

1 ikpq(
j 51

N

$~ZN
21! jp2~ZN

21! jq%Pj G , ~48!

respectively. Since these integrals mutually have the same
structure, we can write these integrals as the common form

XN~$0%u$0%:n!5~2p2!21SN~$0%u$0%!W~n! ~49!

with

W~n!5E dkk22 )
m5x,y,z

~ ikm!nm expF2
Z

4
k21 ikQG ,

~50!
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whereQ andZ depend onUN or EN as follows:

XN5UN : Q5(
j 51

N

~ZN
21! jpPj2V, ~51!

Z5~ZN
21!pp , ~52!

XN5EN : Q5(
j 51

N

$~ZN
21! jp2~ZN

21! jq%Pj , ~53!

Z5~ZN
21!pp22~ZN

21!pq1~ZN
21!qq . ~54!

Equation~50! is rewritten as

W~n!5 )
m5x,y,z

S ]

]Qm
D nmE dkk22 expF2

Z

4
k21 ikQG .

~55!

Integrating Eq.~55! over k by the aid of the relation

exp~2ak2!52ak2E
0

1

dtt23 exp~2at22k2!, ~56!

and rewriting by the incomplete Gamma function

Fm~a!5E
0

1

t2m exp~2at2!dt, ~57!

the functionW becomes

W~n!54p3/2Z21/2 )
m5x,y,z

S ]

]Qm
D nm

F0S Q2

Z D . ~58!

To obtain the recurrence formula for the auxiliary index
n, we replaceF0 by Fm of the function Eq.~58! as follows:

Wm~n!54p3/2Z21/2 )
m5x,y,z

S ]

]Qm
D nm

FmS Q2

Z D . ~59!

W(n) is equal toW0(n). We obtain the recurrence relation

Wm~n11m!52
2Qm

Z
Wm11~n!2

2nm

Z
Wm11~n21m!

~60!

after differentiation of the integrand ofFm(Q2/Z) with re-
spect toQm . W0(n) can be evaluated from the values of
Wm(0), which areFm(Q2/Z) (m50,1,2,...,unu). Then, the
initial integrals forUN andEN are evaluated by Eqs.~49! and
~60!. Although evaluation ofFm is a time-consuming step,
there are efficient computation methods forFm .21,23,26

III. DISCUSSION

We have derived the recurrence formulas~39!, ~43!, and
~44! for the N-electron integrals over ECCGFs by means of
the method of Obara and Saika23,24 and Hondaet al.,25 i.e.,
the derivation method of efficient recurrence formulas for
molecular two-electron integrals over Cartesian Gaussian
functions. Our vertical recurrence formula forE2 with b12

50 is essentially the same as that obtained by Hondaet al.
The vertical recurrence formula Eq.~39! @or Eq. ~44!# ex-
presses theN-electron integrals of higher angular momentum
as a linear combination of theN-electron integrals of lower
angular momentum. The first two terms in Eq.~39! are the
same forms as in the case of anyN-electron integrals. On the

other hand, the last term in Eq.~39! depends on the same
type of N-electron integral as in Eqs.~40!–~42!. The hori-
zontal recurrence formula Eq.~43! only depends on centers
of ECCGFs, and its structure does not depend on the type of
N-electron integral. Equation~43! is an extension of the hori-
zontal recurrence formula obtained by Head-Gordon and
Pople.27

The N-electron integrals Eqs.~10!–~12! are calculated
recursively by Eqs.~39! and ~44! or by Eqs.~39! and ~43!.
The use of Eqs.~39! and~43!, i.e., the use of the vertical and
horizontal recurrence formulas, has been shown as an effi-
cient computation algorithm of molecular two-electron inte-
grals over contracted Gaussian functions by Head-Gordon
and Pople.27 The advantages of employing the horizontal re-
currence formula are as follows:~1! determination of the
required intermediate integrals is straightforward;~2! com-
putation of the intermediate integrals is reduced if one uses
contracted functions. Here we employ the method which
combined the vertical and horizontal recurrence formulas.

We show an algorithm for computation of theN-electron
integrals Eqs.~10!–~13!. Computation of theN-electron in-
tegrals is carried out in the following three steps: First, the
parametersZN

21, uZNu, and ( i 51
N (ZN

21)kiPi (k51,...,N)
needed in the recursive computation are calculated and
stored. Subsequently, the overlap and kinetic integrals are
computed. Since the kinetic integral is the linear combination
of the overlap integrals, the kinetic integrals should be evalu-
ated along with the overlap integrals. Finally, the nuclear
attraction and electron repulsion integrals are computed after
evaluation of the overlap integrals because the initial inte-
grals ofUN andEN requireSN($0%u$0%).

Calculation of ZN
21 and uZNu is straightforward if N

<3. However, calculation ofZN
21 and uZNu becomes more

laborious asN increases. InN>4, calculation ofZN
21 and

uZNu has to be performed by an efficient method, e.g., the LU
decomposition method, unlessZN has a special structure.

The overlap integrals are calculated in the following two
steps:

~1! Computation of the initial integralsSN($0%u$0%).
~2! Computation of the target integrals by means of the ver-

tical and horizontal recurrence formulas.

The initial overlap integrals must be stored because they are
required in the computation of the initialUN andEN . If only
s-type ECCGFs are used, evaluation ofSN’s by means of the
recurrence formula is needless. However, since the kinetic
integral is built up by the overlap integrals over ECCGFs
with higher angular momenta, the overlap integrals over
p-type ECCGFs must be computed even if onlys-type
ECCGFs are used. To obtain the target integral
SN( l1 ,...,lNu l18 ,...,lN8 ), one has to generate the intermediate
integrals SN( l1 ,...,lNu0,...,0);SN( l11 l18 ,...,lN1 lN8 u0,...,0)
by the vertical recurrence formula Eq.~39!, and the target
integral is calculated from the intermediate integrals by the
horizontal recurrence formula Eq.~43!. As an illustration, we
have shown calculation scheme ofSN(xk

2uxk
2) by means of

the vertical and horizontal recurrence formulas in Fig. 1.
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Here we abbreviatedSN($0%u$0%) as SN(u), and explicitly
wrote angular factors inSN . We will use the same notation
for UN andEN below.

It is more complicated than the case of the overlap inte-
gral to generate the initial and intermediate integrals forUN

and EN . The target integral EN($ l%u$ l8%) requires
Pm5x,y,z(Lm11) initial integrals with the auxiliary indices
resulting from all possible combinations ofnm50,...,Lm(m
5x,y,z), whereLm5(k51

N ( lk1 lk8)m . For example, initial in-
tegralsEN(u:nxnynz) needed in computation ofEN(xkuyk)
are EN(u:000), EN(u:100), EN(u:010), andEN(u:110). The
targetUN($ l%u$ l8%) also requiresPm5x,y,z(Lm11) initial in-
tegrals with the same auxiliary indices asEN(u:n) for
EN($ l%u$ l8%). The initial integrals forUN andEN are gener-
ated by Eqs.~49! and ~60!, and the targetUN and EN are
evaluated by the recurrence formulas Eqs.~39! and ~43! in
the same way asSN . As an illustration, we have shown
calculation scheme ofEN(xk

2uxk
2) by the vertical and horizon-

tal recurrence formulas in Fig. 2.
The recurrence formulas can be applied to calculation of

the expectation values ofd(r p2V) and d(r p2rq) because
these two operators can be expressed with the Fourier trans-
formations

d~r p2V!5~2p!23E dkp exp@ ikp~r p2V!# ~61!

and

d~r p2rq!5~2p!23E dkpq exp@ ikpq~r p2rq!#, ~62!

which are similar to those ofur p2Vu21 and ur p2rqu21, re-
spectively. Integrals required in calculation of the expecta-
tion values ofd(r p2V) andd(r p2rq) are

Ddp
5E dr1 ...E drNGN~$ l%!d~r p2V!GN8 ~$ l8%! ~63!

and

Ddpq
5E dr1 ...E drNGN~$ l%!d~r p2rq!GN8 ~$ l8%!, ~64!

respectively. The reduction operators forDdp
andDdpq

are

Rdp
~n![~2p!23E dkp )

m5x,y,z
~ ikpm!nm lim

kpq→0
~65!

and

Rdpq
~n![~2p!23E dkpq )

m5x,y,z
~ ikpqm!nm lim

kp→0
, ~66!

respectively. Calculation ofDdp
andDdpq

is carried out the
same recurrence formulas asUN andEN , respectively. Op-
erating the reduction operators Eqs.~65! and ~66! on Eq.
~45!, initial integrals ofDdp

andDdpq
become

DX~$0%u$0%:n!5~2p!23SN~$0%u$0%!W8~n! ~67!

with

W8~n!5E dk )
m5x,y,z

S ]

]Qm
D nm

expS 2
Z

4
k21 ikQD ,

~68!

whereX5dp or dpq , Z andQ are the same as those ofUN

andEN for Ddp
andDdpq

, respectively, i.e., Eqs.~51!–~54!.
Evaluation of the initial integrals is carried out by the rela-
tion

W8~n11m!52
2Qm

Z
W8~n!2

2nm

Z
W8~n21m! ~69!

with

W8~0!5S 4p

Z D 3/2

expS 2
Q2

Z D . ~70!

The relation Eq.~69! is the same form as Eq.~60!.
Finally, we suggest a modification of two interesting

Hylleraas-type wave functions by the use of Gaussian-type
correlation factors. One of them is a Hylleraas-type molecu-
lar wave functionCOH by Obara and Hirao.28 COH is defined
as a product of a correlation factorFsymmetric which is sym-
metric with respect to exchange of electrons and an antisym-
metrized product of orbitalsFantisymmetric:

COH5FsymmetricFantisymmetric. ~71!

They have writtenFsymmetricas

Fsymmetric5expS (
p

(
i , j

ci jp ur i2r j up

1(
p

(
I

nuclei

(
i

ciIp ur i2RI upD , ~72!

where ci jp and ciIp are variational constants. We suggest
replacingFsymmetricas follows:

FIG. 1. Recursive calculation scheme of the target overlap integral
SN(xk

2uxk
2).
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Fsymmetric511expS 2(
p

(
i , j

ci jp ur i2r j u2

2(
p

(
I

nuclei

(
i

ciIp ur i2RI u2D . ~73!

The other is ‘‘linked Hylleraas-CI’’ wave functionCKL by
Kleindienst and Lu¨chow,6 which is defined as

CKL5F01(
p

(
i , j

F i j
~p! f ~ i jp !

1(
p,q

(
i , j ,k, l

F i jkl
~pq! f ~ i jp ! f ~klq!, ~74!

with

f ~ i jp !5ur i2r j up. ~75!

Similarly, we suggest employing

f ~ i jp !5exp~2b i j
~p!ur i2r j u2!. ~76!

Applications of the originalCOH andCKL to many-electron
systems are not practical due to cumbersome many-electron
integrals over Hylleraas-type functions. On the other hand,
the modifiedCOH and CKL require many-electron integrals
over ECCGFs, and can be more easily applied to many-
electron systems.

APPENDIX: RECURRENCE FORMULAS FOR KINETIC
INTEGRAL

In this Appendix, we derive recurrence formula for the
kinetic integral. Let us define an integrand of the kinetic
integral as

TN~$ l%u$ l8%!5GN~$ l%!S 2
1

2
¹p

2DGN8 ~$ l8%!; ~A1!

then the kinetic integral is

KN~$ l%u$ l8%!5E dr1 ...E drNTN~$ l%u$ l8%!. ~A2!

FIG. 2. Recursive calculation scheme of the target electron repulsion integralEN(xk
2uxk

2).
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The recurrence formula for the kinetic integral can be de-
rived in a similar way as derivation for the other integrals.

First, we differentiate the integrand Eq.~A1! with re-
spect tor km ~k51,...,N andm5x,y,z!. Then we obtain

]TN

]r km
522S Ak1(

j 51

N

Bk jD $TN~ lk11mu!1RkmTN%

12(
j 51

N

Bk j$TN~ l j11mu!1Rj mTN%1 l kmTN~ lk21mu!

1 l km8 TN~ u lk821m!12PkmTN12Cpk8 LN , ~A3!

where

LN~$ l%u$ l8%!5GN~$ l%!
]

]r pm
GN8 ~$ l8%!. ~A4!

For above manipulation, we used the relation

2 1
2¹p

2r kmGN8 5r km~2 1
2¹p

2!GN8 2dp,k

]

]r pm
GN8 . ~A5!

Integrating both sides of Eq.~A3! overr1 ,...,rN , the left
hand side of Eq.~A3! becomes zero due to the relation Eq.
~9!. Then we can obtain one set of equations forKN( lk
11mu) (k51,...,N) as follows:

05S Ak1(
j 51

N

Bk jD $KN~ lk11mu!1RkmKN%

2(
j 51

N

Bk j$KN~ l j11mu!1Rj mKN%2 1
2$ l kmKN~ lk21mu!

1 l km8 KN~ u lk821m!%2PkmKN2Cpk8 MN , ~A6!

where

MN~$ l%u$ l8%![E dr1 ...E drNLN~$ l%u$ l8%!. ~A7!

We refer toMN($ l%u$ l8%) as the auxiliary kinetic integral.
Solving one set of Eq.~A6! for KN( lk11mu), we obtain

KN~ lk11mu!

5
1

2 (
j 51

N

~ZN
21!k j$ l j mKN~ l j21mu!

1 l j m8 KN~ u l j821m!%1H (
j 51

N

~ZN
21!k jPj m2RkmJ

3KN1(
j 51

N

~ZN
21!k jCp j8 MN . ~A8!

Subsequently, we derive recurrence formula for
MN($ l%u$ l8%). Differentiating the integrand Eq.~A4! of MN

with respect tor km , we obtain

]LN

]r km
522S Ak1(

j 51

N

Bk jD $LN~ lk11mu!1RkmLN%

12(
j 51

N

Bk j$LN~ l j11mu!1Rj mLN%

1 l kmLN~ lk21mu!1 l km8 LN~ u lk821m!

12PkmLN22Cpk8 GN~$ l%!GN8 ~$ l8%!. ~A9!

In the same way, we obtain the recurrence formula for
MN($ l%u$ l%) as follows:

MN~ lk11mu!5
1

2 (
j 51

N

~ZN
21!k j$ l j mMN~ l j21mu!1 l j m8 MN

3~ u l j821m!%1H (
j 51

N

~ZN
21!k jPj m2RkmJ MN

2(
j 51

N

~ZN
21!k jCp j8 SN . ~A10!

The target kinetic integral can be calculated by means of the
recurrence formulas Eqs.~A8! and ~A10!.

The initial auxiliary integralMN($0%u$0%) is obtained by
integration of the integrand Eq.~A4! with lk5 lk850 (k
51,...N) over r1 ,...,rN as follows:

MN~$0%u$0%!52(
i 51

N

CpiSN~$1pm%u$0%!

12DpmSN~$0%u$0%!, ~A11!

where $1pm%[(01 ,...,1pm ,...,0N). We find the initial inte-
gral KN($0%u$0%) from Eq. ~15! as follows:

KN~$0%u$0%!5 (
m5x,y,z

KNm~$0%u$0%! ~A12!

52(
i 51

N

Cpi(
j 51

N

Cp j8 SN~$1im%u$1j m%!

12Dpm8 (
i 51

N

CpiSN~$1im%u$0%!

12Dpm(
i 51

N

Cpi8 SN~$0%u$1im%!

12DpmDpm8 SN~$0%u$0%!. ~A13!

MNm($0%u$0%) and MN($0%u$0%) are built up by the overlap
integrals overs- andp-type ECCGFs.
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