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The effect of the electron—electron cusp on the convergence of configuration interaction (CI) wave
functions is examined. By analogy with the pseudopotential approach for electron—ion interactions,
an effective electron—electron interaction is developed which closely reproduces the scattering of
the Coulomb interaction but is smooth and finite at zero electron—electron separation. The exact
many-electron wave function for this smooth effective interaction has no cusp at zero electron—
electron separation. We perform CI and quantum Monte Carlo calculations for He and Be atoms,
both with the Coulomb electron—electron interaction and with the smooth effective electron—
electron interaction. We find that convergence of the CI expansion of the wave function for the
smooth electron—electron interaction is not significantly improved compared with that for the
divergent Coulomb interaction for energy differences on the order of 1 mHartree. This shows that,
contrary to popular belief, description of the electron—electron cusp is not a limiting factor, to within

chemical accuracy, for CI calculations. © 2001 American Institute of Physics.

[DOI: 10.1063/1.1383585]

I. INTRODUCTION

The primary difficulty in solving the Schrodinger equa-
tion for many-electron systems arises from the presence of
the electron—electron interaction, which results in a problem
nonseparable in the electron coordinates. Configuration inter-
action (CI) calculations use an expansion of the many-body
wave function in configuration state functions (CSF) given
by spin coupled sums of determinants built from single-

particle orbitals. Onegofythescentralydifficuitiessforsthescons

— isesfromt
have an appropriate cusp at electron coalescences so that the
infinite Coulomb interaction term is exactly cancelled by an
opposite divergence of the kinetic energy.'’

It is often stated in the literature that failure of the CI
expansion to reproduce the correct electron cusp, i.e., the
short-range part of the Coulomb hole, leads to a slow con-
vergence in the energy with respect to the number of CSF’s.?
While this has been shown?” in the asymptotic regime (i.c.,
very large angular momentum [/ and energy errors of the
order of 10~° Hartree), it is not clear that it applies in the
practical regime (mHartree accuracy) for multielectron
systems.

Explicit inclusion of terms in the interelectronic distance
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(r1, methods)*!? or the use of correlated (geminal) Gaussian
basis functions'? significantly improve the convergence of a
CI calculation. For the helium atom, the inclusion of r,
terms’ yields an expansion in partial waves converging
asymtotically as 17° or better, instead of a slow [ >, where [
is the maximum angular momentum in the expansion. Baker
et al.'* also showed that using basis functions with the same
analytic structure as the true wave function (depending on
powers and logarithms of r,) leads to a reduced expansion
length. The success of methods explicitly including r, terms
has been attributed to their correct description of the short-
range part of the interaction.

A completely different point of view, taken by Gilbert in
1963," is that the difficulty of CI wave functions in describ-
ing short-range effects of the cusp are energetically unimpor-
tant and that the benefit of the explicitly correlated approach
is that the entire Coulomb hole, with a size on the order of
the atomic orbitals, is much easier to describe in terms of
interelectronic coordinates. Gilbert’s suggestion appears to
have received little attention and the idea that smoothing out
the Coulomb potential and removing the cusp altogether will
automatically lead to an improved CI convergence has been
stated in the literature.”'® However, no systematic studies of
the effect of the electron cusp on CI energy convergence at
the level of interest for chemical accuracy (1 mHartree for
total energies) have been presented.

In this paper, we explore whether a significant improve-
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ment in the convergence of the CI expansion is obtained
when the true Hamiltonian is replaced by one which has a
smooth and finite electron—electron interaction (pseudo-
interaction) at short distances and, consequently, smooth
eigenfunctions with no cusps.

correlation? The poor treatment of the interelectron cusp in
the CI expansion is not a limiting factor at the mHartree level
of accuracy on the total energy. To further confirm this result,
we calculate the energy within quantum Monte Carlo (QMC)
for the true electron—electron interaction with accurate wave
functions which explicitly contain interelectronic coordi-
nates, and then deliberately remove the short-range correla-
tion term related to the cusp, keeping other parts of the wave
function unchanged. We find that the removal of the cusp has
a very small effect on the variational energy. Finally, we
demonstrate that the convergence behavior of the CI expan-
sion as a function of angular momentum in the range practi-
cal for many applications (/<<6) is largely unaffected by the
smoothing of the electron cusps.

In Sec. II, we describe the pseudopotential used for the
electron—electron interaction and briefly present the QMC
and CI methods. In Sec. III, we report the QMC and CI
energies for He and Be atoms using the true and pseudo
electron interaction. In Appendices A and B, we discuss the
numerical generation and accuracy of the electron pseudo-
interaction, and in Appendix C we define a short-range cor-
relation term which can be associated with it. In Appendix D,
we briefly discuss the evaluation of two-electron integrals for
the pseudo-interaction.

Il. COMPUTATIONAL METHODS
A. Electron—electron pseudo-interaction

When modifying the short-distance electron—electron in-
teraction, we wish to keep the intermediate- and long-range
correlation properties of the many-body eigenstates un-
changed. This will allow us to isolate systematically the ef-
fects of the short-range cusp-like behavior in the wave func-
tion. To achieve this, our new (smooth) interaction should
ideally have electron—electron scattering properties identical
to the true interaction for all energies. If this were the case
all many-electron eigenvalues would be identical for both
interactions. While this ideal cannot be exactly realized, we
expect that a potential with the same scattering properties as
the true interaction over a sufficiently wide range of scatter-
ing energies will give many-electron eigenvalues very close
to the true ones.

This goal for electron—electron scattering is analogous to
the problem of electron—ion scattering addressed in the well-
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FIG. 1. Norm-conserving electron pseudo-interaction (solid line) and
smooth interaction V. (dashed line), each with a cut-off radius r,=0.25 a.u.
(indicated by a vertical dotted line), and the true 1/r interaction (dash—dot
line), as functions of the electron separation r.

established pseudopotential method.'” In that approach, the
aim is to produce a smooth electron—ion potential which
reproduces the single-particle eigenvalues of the true system
over a range of energies, and has the same single-particle
wave functions outside some suitably chosen cut-off radius
r.. Such pseudopotentials are generated for the isolated
atom but may then be used with a high level of accuracy in
molecules and solids. In solids, the smoothness of the poten-
tial greatly improves the convergence of plane-wave expan-
sions for single-particle orbitals.'®

Following the success of norm-conserving pseudopoten-
tial methods in the context of the electron—ion scattering
problem, we generate a norm-conserving pseudo-interaction
for the two-electron scattering problem, which will replace
the true e?/r electron—electron interaction inside a cut-off
radius r.. Since the electron—electron interaction is repul-
sive and has no bound states for an isolated pair of electrons,
we use, with some minor modifications, the generalized
norm-conserving method devised by Hamann'® to generate
pseudopotentials for electron—ion interactions at unbound,
scattering state energies. The numerical details of this ap-
proach are presented in Appendix A.

In Fig. 1, we show a pseudo-interaction potential Vg
generated by this approach, along with the true e?/r interac-
tion and a smooth but not norm-conserving interaction,
Ve(r)y=e?erf(r/r.)/r, as used by Savin and co-workers®
in a different context. In Appendix B, the accuracy of such
scattering potentials in reproducing the exact eigenstate en-
ergies is analyzed qualitatively using first-order perturbation
theory. In Appendix C, we define a short-range interelec-
tronic correlation term, which can be directly related to the
replacement of the divergent Coulomb interaction with a
smooth norm-conserving interaction.

B. Quantum Monte Carlo calculations

We employ QMC methods to determine accurate ener-
gies both for the Coulomb and the pseudo-interaction. The
wave functions ¥ used in QMC are of the form given in Ref.
21 and explicitly depend on the interelectronic coordinates.







1628 J. Chem. Phys., Vol. 115, No. 4, 22 July 2001

They include parameterized terms to describe electron—
nucleus, electron—electron, and electron—electron—nucleus
correlation, as follows:

\IIZ(E anlDi)J(r,,rj,rU). (1)

D! and D! are the Slater determinants of single particle or-
bitals for the spin-up and down electrons, respectively, and J
is a Jastrow factor of the form

J(r; oI 7rij):].:.[ eXP(Ai)li_j[ eXp(Bij)].;[ eXP(Pij),

2)
where A is an electron—nuclear term (which could be omitted
if a sufficiently large single particle basis were used in con-
structing the determinantal part), B is an electron—electron
term incorporating the cusp at small r;;, and P is a smooth
function of the electron coordinates, r; and r i, as discussed
in detail in Ref. 21. For the pseudo-interaction calculations,
the B term is omitted. The parameters in the determinant and
Jastrow factor are optimized within QMC using the variance
minimization method** and the accuracy is tested at the
variational level. The wave function is then used in diffusion
Monte Carlo (DMC), which produces the best energy within
the fixed-node approximation (i.e., the lowest-energy state
with the same nodes as the trial wave function).

For a given interaction, this method yields the exact ei-
genvalue (within statistical sampling noise) for the ground
state of the He isoelectronic series since the singlet ground-
state wave function of a two-electron system is nodeless. For
He, only one determinant is used in the wave function. For
the Be atom, the 25 and 2p configurations are included in
the determinantal part of the wave function and DMC gives
the best energy subject to the fixed-node condition. To isolate
the effect of the pseudo-interaction from the fixed-node ap-
proximation, we keep the nodal structure of the wave func-
tion fixed while modifying the electron—electron interaction.

C. Configuration interaction calculations

The CI calculations are performed using the Monte
Carlo configuration interaction (MCCI) method.>?* In a
MCCI calculation, a coefficient threshold c,;, is defined,
configurations are randomly generated, and, after a varia-
tional calculation, coefficients of magnitude below c;, are
rejected. This procedure is repeated until a desired degree of
convergence in the CI calculation is achieved. A full CI
(FCI) calculation can be obtained for c,,;,,=0. The fact that
the MCCI procedure does not rely on a pre-selection of
CSF’s makes it well-suited for our study: The dynamical
selection of configurations allows for rejection of CSF’s
which may no longer be needed with the smooth electron
interaction.

For use in the CI approach, the pseudo-interaction V/ is
represented (in Hartree atomic units) as a sum of the smooth
function V; plus n; Gaussian terms, as follows:

VPS(r):w—F,ZI c;exp(—d;ir?). (3)
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FIG. 2. He atom ground-state energy E as a function of cut-off radius r, ,
obtained from DMC calculations using various forms of the electron—
electron interaction: (a) the norm-conserving pseudo-interaction V,, (solid
line); (b) the smooth interaction V. (dashed line). The curves are polyno-
mial fits to the calculated DMC values, as discussed in the text. The hori-
zontal line shows the exact value (Ref. 26) for the He ground state. Also
shown are variational energies, with the true Coulomb interaction, upon
removal of the electron cusp (see Appendix C) from the wave function used
in the DMC calculations (dotted line).

This reproduces the 1/r tail of the Coulomb interaction and
the smooth, finite form of the pseudo-interaction at short
distances. The parameters c¢; and d; are found by least-
squares fitting (for radii »<<3r,) to the numerical potential,
generated as described in Appendix A. For the CI results
presented below, the potential was fitted using n5;=9. QMC
calculations of the He atom energy with the numerical po-
tential and with the fitted potential show a negligible differ-
ence (less than 0.02 mHartree for all values of r.<1 a.u.).

Evaluation of the pseudo-interaction V,(r) can be
implemented in codes for Gaussian integral calculation since
it is possible to compute the two-body matrix elements both
of exp(—dr?) and erf(r/r.)/r in the CI basis. Matrix ele-
ments of the interaction erf(r/r_.)/r for all s-type basis func-
tions have already been given in Ref. 20. For both types of
interaction, a simple modification to the integral codes is
possible if the standard two-electron integrals are calculated
using the method of Rys quadrature.”> Details of two-body
integral evaluation with the modified form of the electron
interaction are given in Appendix D.

lll. He AND Be ATOMIC ENERGIES
WITH PSEUDO-INTERACTIONS

To test the impact of the interelectron cusp on the en-
ergy, we calculate the total energies of He and Be atoms,
replacing the true 1/r electron interaction with the norm-
conserving pseudo-interaction V(r), generated for various
values of the cut-off radius r,.. For comparison, we also
present results for the smooth but not norm-conserving po-
tential V(r)=erf(r/r.)/r. The results in this section are
obtained from QMC and CI calculations.

A. Ground state of the He atom

In Fig. 2, we show the singlet ground state energies of
the He atom calculated with a norm-conserving electron—
electron interaction V¢ generated as in Sec. II, for various
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TABLE I. Calculated correlation energy for the He atom with a cc-pVQZ basis set, as a function of
cut-off radius r, and the CI coefficient threshold c,;, . The energy units are mHartree. The right-hand column
(HF — QMC) shows the full correlation energy [i.e., the difference between the Hartree—Fock energy, calculated
with this basis, and QMC (exact) energy]. The percentages indicated are the fractions of the full CI correlation

energy for each value of .

Te Cmin
(aw)  3x107%  2x107*  1x107*  1x107*  1x10°* 0.0 HF - QMC
0.95 2.15 15.10 12.98 18.72 18.96 18.96 19.56
11.01% 7721% 66.36% 95.69% 96.94% 96.95% 100.00%
0.80 6.09 18.45 16.93 25.11 25.16 25.16 25.76
23.66% 71.64% 65.74% 97.48% 97.67% 97.67% 100.00%
0.50 8.64 2723 32.79 36.32 36.32 36.32 37.18
23.24% 73.24% 88.19% 97.69% 97.69% 97.69% 100.00%
0.20 14.07 2893 3527 4075 4075 4075 4193
33.57% 69.00% 84.13% 97.20% 97.20% 97.20% 100.00%
0.10 937 28.98 3535 40.89 40.89 40.89 42.18
22.22% 68.71% 83.80% 96.94% 96.94% 96.94% 100.00%
0.00 2744 30.61 36.09 40.90 40.90 40.90 4221
65.01% 72.52% 85.50% 96.90% 96.90% 96.90% 100.00%

values of the cut-off radius .. The values obtained from
QMC (exact) calculations are shown. We also plot the ener-
gies calculated using the V_(r) interaction. The horizontal
line indicates the exact energy E,= —2.903 724 Hartree for
the true Coulomb interaction.?

The calculated QMC energies for V,, and V. in Fig. 2
are fitted with polynomial expansions of the form: E(r.)
=Egt+ar’+bri+cri+dri+er®. As discussed in Appen-
dix B, any potential which differs from the exact 1/r inter-
action would be expected, from first-order perturbation
theory, to converge at least quadratically in r,. to the exact
energy E, for small r.. Since V., is not explicitly con-
structed to eliminate first-order errors in V .(r)— 1/r, qua-
dratic convergence is seen for V and the fitting parameters
are: a=—0.3279, b=-0.3839, ¢=0.6758, d=—0.2622,
and e=0. On the other hand, the norm-conserving pseudo-
interaction construction of Sec. II A explicitly ensures that
the first-order perturbation correction to the energy is zero.
The He ground-state energy as a function of r, using V, can
indeed be fitted without the quadratic term, and even the
cubic term proves to be small, the polynomial coefficients
being: a=0, =0.0188, ¢=-0.1023, d=0, and e
=0.0280. For He, the energies obtained using V(r) are
within 1 mHartree of the energy computed with the true Cou-
lomb interaction for values of r.<<0.4 a.u. Since the typical
electron—electron distance in the He ground state is of the
order of 1 a.u., these results indicate that the first peak of the
electron pair-distribution function provides a good measure
of how large a cut-off radius r, may be used to obtain accu-
rate total energies with V((r): r. should be approximately
half the radius at which this first peak occurs. The same
criterion for the largest allowed r. value was found to hold
for other systems (not shown), viz. the He triplet state, the
He isoelectronic series, and multielectron atoms. In a quali-
tative way, this condition is similar to the criterion used in
the generation of electron—ion pseudopotentials, where the
cut-off radius is chosen to be inside the peak of the valence
electron density.

Also shown in Fig. 2 are the variational energies (with
the true Coulomb electron—electron interaction) obtained for

the He ground state by removing the electron cusps from the
accurate trial wave function which was determined by vari-
ance minimization for use in the DMC calculations, as speci-
fied in Eq. (C1). This trial wave function includes consider-
able variational freedom in the interelectronic terms and
obtains 100% of the correlation energy. As can be seen in
Fig. 2, removal of the cusp out to radii of 0.5 a.u. causes
little degradation of the quality of the energy obtained with
this wave function. Thus the success of interelectronic terms
in obtaining good variational energies is not primarily due to
their description of the short-range cusp behavior.

This trend is further borne out when we look at the con-
vergence of partial CI expansions within a given single-
particle basis set for the MCCI method. The CI calculations
were performed with the correlation consistent polarized va-
lence double-zeta (cc-pVDZ), triple-zeta (cc-pVTZ),
quadruple-zeta (cc-pVQZ), and quintuple-zeta (cc-pV5Z) ba-
sis sets of Dunning?’ with the electron interaction Vs for
various values of .. All four basis sets show similar behav-
ior and we present only the cc-pVQZ results in detail. Table
I shows the correlation energy obtained as a function of cut-
off radius r. for various values of the expansion coefficient
threshold c,,;,. The full CI result is obtained when ¢,
=0.0. For larger values of the cut-off radius r,. (upper rows
of table), the total correlation energy is smaller, as the varia-
tion of the interaction V,; becomes smaller around the typi-
cal separation distance of the electrons. However, the frac-
tion of the correlation energy which is recovered at a given
CI threshold level c;, depends little on the value of r,..

Figure 3 shows the number of CSF’s in the CI expansion
as a function of cut-off radius r,. for various values of the
expansion coefficient threshold c;,. For values of ¢;,>3
X 1072, one is quickly reduced to a few CSF’s and finally to
the Hartree—Fock solution. As with the correlation energies,
for a given threshold c;, , the number of CSF’s shows rela-
tively little change for values of r. between O and 0.95.
Again, it is worth bearing in mind that the typical electron—
electron separation is 1 a.u. and that a cut-off radius r,
=0.95 represents a very smooth interaction. Thus, removal
of electron cusps does not result in a significant reduction in
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FIG. 3. The number of configuration state functions (CSF) in the CI expan-
sion for the He atom with the cc-pVQZ basis set as a function of 7, . Results
are presented for coefficient thresholds ¢, of 0.03, 0.02, 0.01, 0.001, and
0.0001.

the number of contributing configurations in the CI expan-
sion.

We next demonstrate that removal of the electron cusp
does not significantly change the convergence properties of
CI expansions as the highest angular momentum quantum
number is increased in the single particle basis sets. In Fig. 4,
FCI energies for He are displayed against increasing basis set
size in the correlation consistent series from Dunning, and
hence increasing angular momentum number in the basis.
The convergence in the FCI energy with increasing basis set
size is compared for electron interaction VPS, with values of
the cut-off radius r, from O to 0.8. Fitting these energies to a
function similar to the asymptotic form derived in Ref. 2,

a b
E= EO + 17 + F N (4)
where L is the maximum angular momentum in the basis,
gives best values of a=~0.038 and b~ —0.022 for each value
of r.<0.2 and gives a=~0.02 and b~—0.01 for r.=0.5.
Thus, the predominant 1/L* convergence of the energy is
present for all values of r. investigated here.

-2.88

-2.89F
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291 .

E (Hartree)

=292~ =
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FIG. 4. Full CI energies E for the ground-state He atom as a function of L,
the maximum angular momentum in the basis set used, calculated using the
electron interaction V,; with values of the cut-off radius . from 0 to 0.8.
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FIG. 5. Be atom ground-state energy E as a function of cut-off radius r, ,
obtained from (a) DMC calculations using the norm-conserving pseudo-
interaction V/, (solid line); (b) variational calculations using the true Cou-
lomb interaction upon removal of the electron cusp from the trial wave
function (see Appendix C) used in the DMC calculation (dashed line).

Although the asymptotic form in Eq. (4) fits the results
well, the parameters a and b do not have the asymptotic
values, a=0.025 and b=0.008, found for the angular mo-
mentum convergence associated with the short-range cusp.?
Two factors cause this discrepancy: (i) not only higher angu-
lar momentum functions are added as L is increased in the
Dunning basis sets; (ii) more importantly, we are not near the
asymptotic regime, where expansion of the short-range cusp
would be the dominant energy correction.

B. Ground state of the Be atom

The qualitative nature of the CI energy convergence seen
in the previous section is not special to the He atom. Figure
5 shows the DMC calculated ground-state energies of Be for
various cut-off radii 7. . Because of the much smaller radius
of the 1s orbital in Be, compared to He, the energetically
appropriate cut-off radius r. for the pseudo-interaction is
substantially smaller. Also shown in Fig. 5 are the variational
energies obtained for the Be ground state by removing the
electron cusps [as defined in Eq. (C1)] from the accurate trial
wave function which was determined by variance minimiza-
tion for use in the DMC calculations. This trial wave func-
tion includes interelectronic terms and obtains 99.5% of the
correlation energy. Removal of the cusp causes significant
degradation of the quality of the wave function only for r,
>0.3 atomic units, which is comparable to the typical sepa-
ration of the 1s electrons. Thus, in Be, as in He, the success
of interelectronic terms in obtaining good variational ener-
gies is not primarily due to their description of the short-
range cusp behavior.

CI calculations using basis sets with s- and p-functions
(the TZP basis of Ahlrichs er al?®), s-, p-, and d-functions
(6-311g**), s-, p-, d-, and f-functions (the ANO basis of
Widmark et al*®) and s-, p-, d-, f-, and g-functions (i.e., the
ANO basis, augmented with a g-function with exponent 1.2)
were carried out. The values of the CI coefficient threshold
¢ min Were taken to be 1072, 1072, and 10 * for all basis sets.
Calculations were carried out at cut-off radii r, of 0 (i.e.,
Coulomb interaction), 0.1 and 0.2 a.u.
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TABLE II. Calculated correlation energy, as a function of cut-off radius r.
and CI coefficient threshold ¢, , for the Be atom with the TZP basis set.
All energies are in mHartree. The right-hand column shows the QMC cor-
relation energy (i.e., the difference between the Hartree—Fock energy for
this basis and the QMC energy) for each value of the cut-off radius r, . The
percentages indicated are the fractions of the QMC correlation energy for
each value of r, .

re Cmin

(a.u.) 1x1072 1x1073 1x1074 HF — QMC

0.20 51.63 60.91 61.61 99.39
51.94% 61.28% 61.99% 100.00%

0.10 51.55 60.81 61.53 95.01
54.26% 64.01% 64.76% 100.00%

0.00 56.42 61.51 62.01 94.89
59.46% 64.82% 65.35% 100.00%

In Tables II and III we present the correlation energy for
Be, obtained with the TZP and ANO basis sets, respectively.
Figure 6 shows the number of CSF’s as a function of the
cut-off radius r,. for various values of the CI coefficient
threshold c;, in the MCCI approach. We see that, especially
at the higher levels of accuracy (i.e., small ¢ y;,), neither the
fraction of the correlation energy obtained nor the number of
CSF’s used depend strongly on the cut-off radius r.. As we
saw in the He atom, removing the divergence of the Cou-
lomb electron interaction does not substantially change the
CI energy convergence at this level of accuracy.

IV. CONCLUSIONS

In this paper we have directly explored the effect of the
electron cusp on the convergence of the energy for CI wave
functions. To do so, we introduced a fictitious electron—
electron interaction which, unlike the true Coulomb poten-
tial, does not diverge at electron coalescences and therefore
has many-body eigenfunctions which are smooth there. The
smooth potential is obtained by a method analogous to the
well-established treatment of electron—ion interactions with
smooth, norm-conserving pseudopotentials. These give scat-
tering properties very similar to the true potential and im-
prove the convergence of plane-wave expansions for single-
particle wave functions. By analogy, one might expect that a
similar treatment of the electron—electron interaction would
improve the convergence of CI expansions.

For the He and Be atoms, we have compared the CI
expansions of wave functions for the true, Coulomb interac-
tion and for smooth pseudo-interactions between the elec-
trons. We have also compared the variational energies of

TABLE III. Calculated correlation energy for the Be atom with the ANO
basis set. The notation is the same as in Table II.

re Cmin

(a.u.) 1X1072 1x1073 1X1074 HF-QMC

0.20 53.40 7135 74.13 90.39
59.07% 78.93% 82.01% 100.00%

0.10 4254 7197 74.80 94.43
45.05% 76.22% 79.21% 100.00%

0.00 58.46 72.30 74.66 93.91
62.25% 76.99% 79.50% 100.00%
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highly accurate wave functions containing r, terms, where
the cusp condition is exactly satisfied, with the energy for the
same wave functions, from which the cusp has been deliber-
ately removed out to a given radius.

The main result of our study is that a description of the
electron cusp as such is not a limiting factor in calculating
correlation effects with configuration interaction methods at
the mHartree level of accuracy. We are led to this conclusion
since the replacement of the divergent Coulomb interaction
with a finite interaction leaves the convergence properties
largely unchanged. The slow convergence of CI expansions
in this energy range must be attributed to medium-range cor-
relations, which are present for both types of electron inter-
action. The results obtained by explicitly removing the cusp
from accurate variational wave functions support this conclu-
sion, showing that the cusp of the wave function is not en-
ergetically important. This is found, even when cusplike be-
havior is removed out to a distance of half the typical
interelectronic separation.

When describing correlation effects with explicit 7,
methods, it is a mistaken notion to assign the improvement in
convergence to their ability to describe the short-range cusp.
Rather, the improvement in convergence at the mHartree
level must be understood in terms of a better description of
medium-range correlations when expressed in interelectronic
coordinates. This fact must be considered when developing
theoretical treatments of the electronic correlation problem.
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APPENDIX A: GENERATION OF ELECTRON PSEUDO-
INTERACTIONS

The procedure for constructing the electron pseudo-
interaction V¢ follows Hamann’s construction'® of general-
ized norm-conserving pseudopotentials for electron—ion
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FIG. 6. The number of configuration state functions (CSF) in the CI expan-
sion for the Be atom with TZP and ANO basis sets. Results are presented for
coefficient thresholds c,;,, of 0.01, 0.001, and 0.0001 at cut-off radii r. of
0.0,0.1, and 0.2 a.u.
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scattering, with two modifications: (i) only two particles are
involved in the generation of the electron—electron pseudo-
interaction, so that we do not need to include screening po-
tentials; (ii) because we are solving the scattering problem in
the center-of-mass frame of the electrons and use the relative
coordinate r of the electrons, the mass of the electron is
replaced by the reduced mass for the two-electron system. In
Hartree atomic units, the interaction potential is V(r)=1/r
and the reduced mass is 1/2. The radial Schrodinger equation
for the relative motion of two electrons is then

d*u, (1(1+1)

r2

02 +(V—el))ul=0, (A1)
where u,;(r) is r times the wave function in the relative co-
ordinates, with angular momentum [ and energy ¢; (the ki-
netic energy of the separated electrons in the center-of-mass
frame).

In the generation of a pseudopotential, the true potential
and pseudopotential become identical outside a suitably cho-
sen cut-off radius r. and are constructed to have identical
scattering phase shifts and energy derivative of the phase
shift at a reference energy €;. A smooth pseudo wave func-
tion wup(r) is generated numerically to ensure ‘“‘norm-
conservation,” i.e., u,(R.) =u;(R.) and

wau (r)dr= fkwu (r)%dr (A2)
0 ps 0 ! s

for all R..>r. . In practice, we choose R..~2.5r., as in Ref.
19. Given u,, , a smooth, finite pseudopotential V/ is gener-
ated by inversion of the Schrodinger Eq. (Al) for r<R.,
with u; and V substituted by u,, and V , respectively. We
follow the steps exactly as given in Sec. II of Ref. 19, except
where the reduced mass enters in the final inversion, slightly
modifying Eq. (12) of Hamann’s work.

In the norm-conserving pseudopotential approach, differ-
ent scattering potentials are often generated for different val-
ues of the angular momentum /. The full many-body wave
function is anti-symmetric with respect to exchange of any
two electrons. Thus, if the two electrons have parallel spin,
the orbital part of the wave function must have odd parity
and the allowed angular momentum / must be odd. Thus, the
dominant parallel-spin scattering has /= 1. For singlet (anti-
parallel) scattering, the orbital part is symmetric and / must
be even, with dominant allowed angular momentum /=0.
Following the usual pseudopotential approach, we might
then expect to generate a parallel-spin scattering potential
using /=1 and an anti-parallel-spin scattering potential using
[=0. In practice, we find that the /=0 potential gives good
scattering for both angular momenta and the use of separate
parallel- and anti-parallel-spin potentials is unnecessary.

Since ¢ is positive, the wave function will oscillate for
large r, and if a node occurs for r<<R., , the inversion of the
Schrodinger equation will fail. Thus, the joint requirements,
that r. be sufficiently large to produce a smooth pseudo-
interaction and that R,.=2.5r,, effectively limit the maxi-
mum reference energy €; at which the pseudo-interaction
construction is possible.
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We find that the pseudo-interaction is transferable (i.e.,
has very similar scattering strength to the true interaction) for
energies over a wide range about the reference energy €;, as
found previously for electron—ion pseudopotentials. In par-
ticular, we find that transferability is best for energies less
than the reference energy at which the pseudopotential was
generated. This would suggest that the best reference energy
to use is the largest energy compatible with the procedure for
inversion of the radial Schrodinger equation, a choice con-
firmed by calculations of many-body eigenstates using
pseudo-interaction potentials generated with different values
of the reference energy.

APPENDIX B: FIRST-ORDER PERTURBATION
ANALYSIS OF PSEUDO-INTERACTIONS

In this Appendix, we consider the first-order error in the
energy expected for a typical, arbitrary smooth electron—
electron potential which is equal to the exact interaction 1/r
outside some (adjustable) cut-off radius r.. We will assume
that the potential is (at least approximately) of the form

V,C(r)=riU(r/rc), (B1)

where U(r/r_) is some universal function independent of r,. .
Clearly both the true interaction 1/r and the smooth interac-
tion V¢ are of this form exactly. V, is also approximately of
this form. Thus, the difference AV between the interaction
V,L.(r) and the true electron—electron interaction 1/r is of the

same form
1
AV(r)=r—AU(r/rc), (B2)

where AU(p) is zero for p>1.
Replacing the true electron—electron interaction with
V,C(r) then gives rise to a first-order energy error

56<1>:<qf|Av|\p>:<\If|(v,g— ;>|‘I'>, (B3)

where |W) is the eigenstate of the many-electron system. If
P(r) is the electron pair distribution function (averaged at
the pair separation distance r), the energy error may be re-
written as

® 1
SetV= f P(r) —AU(r/rC)47Tr2dr
0

re

=r; f lP(up)AU(prpzdp. (B4)
0

If r. is sufficiently small and the pair-distribution function
P(r) does not tend to zero at r=0, then P(r.p) may be
replaced by P(0) in the integral and 56(')~KP(0)1"3 for
small 7., where K is a constant for the type of interaction,
defined by

KEflAU(p)Mszdp. (B5)
0
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The construction of V,; ensures that the energy error is iden-
tically zero for the two-electron scattering at the reference
energy, and therefore, K=0 for Vps. However, for an arbi-
trary smooth interaction (such as V), K will not be zero.

APPENDIX C: SHORT-RANGE CORRELATION TERM
OBTAINED FROM NORM-CONSERVING
POTENTIAL

In the generation of the norm-conserving potential dis-
cussed in Appendix A, we obtained a pseudo wave function
Ups(r), which is a solution to the radial Schrodinger equation
at the scattering energy ¢, for the pseudo-interaction, and the
wave function u,(r), which is the corresponding solution for
the true Coulomb interaction. The ratio J,=u,;/up of these
two functions has the correct electron cusp (i.e., logarithmic
derivative of — 1/4 or — 1/2 for parallel or anti-parallel spins,
respectively, at ¥=0) and tends rapidly to 1 for r>r.. This
function J;, may be said to contain the short-range cusp
behavior of the Coulomb scattering solution, since it repre-
sents the difference between the scattering wave function for
the divergent potential and that for the finite pseudo-
interaction.

Moreover, if W(ry,...,ry) is a many-electron wave
function (e.g., one which has inter-electronic coordinates
r;; explicitly included) with the correct electron cusps, the
function

V=) [T, (@)
is smooth at electron coalescences but has very similar elec-
tron correlations for r;;>r.. The wave function W has the
electron cusp behavior of the original wave function W re-
moved inside the cut-off radius r,., but is otherwise the same
as V. Thus, the energy difference (¥ |H| V) —(V|H| V) is
a good measure of the energy cost of removing the electron
cusp behavior for r<r. from a correlated wave function,
while keeping other aspects of the wave function (e.g., any
benefits there may be to the inclusion of interelectronic co-
ordinates in the form of the trial function) unchanged.

APPENDIX D: EVALUATION OF TWO-ELECTRON
GAUSSIAN INTEGRALS WITH PSEUDO-
INTERACTIONS

In this Appendix, we give details of the evaluation of
two-electron Gaussian basis set integrals for the electron in-
teractions, Vs and V,, and their incorporation into existing
electron integral programs.

For the interaction V.., the necessary modification of
two-electron integrals for all s-type basis functions have been
given by Savin.” We do not use Savin’s approach, but rather
directly modify the Rys quadrature approach of Dupuis, Rys,
and King,” to obtain matrix elements for the interaction V.
in place of those for 1/r, . To evaluate two-electron integrals
for the pseudo-interaction V,,, we use the form given in Eq.
(3). This involves the evaluation of integrals with the inter-
action V. and a sum of Gaussian terms. In codes (e.g., the
ARGOS code’') which use the Rys quadrature® approach for
the evaluation of two-electron integrals with the Coulomb
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interaction, these Gaussian terms are already evaluated in an
intermediate stage and may be used in the present context.

Let us define two-electron integrals of the Coulomb in-
teraction as

1
— ¢>k¢>z)
2

(¢i¢j

1
EJ f ¢i(r1)¢j("1)r—12¢k(”2)¢1("2)d”1drz,

for Gaussian basis functions
di(r)=exp(—a|r—R|H T (x—x;)mi
X,¥,2

The Rys scheme represents the 1/r, term in Gaussian inte-
gral form, to obtain

2 (- 2.2
b | = \/;jo du(¢i¢j|exp(_u ”12)|¢’k¢1)~
(D1)

1
12

(¢i¢j

This integral is then transformed to an integral over the vari-
able ¢, where t*=u?/(p+u®) and 1/p=1/(a;+ a;)+1/(a;
+ al)

(D2)

1 1
(¢i¢’j P ¢k¢1> = Jo Py (t)exp(—X1?)dt,
where P, is a polynomial and X = p|r,—rg|*. Here, r, and
rp are the usual weighted-average centers of the Gaussian
orbital pairs (i,j) and (k,/), respectively, as given in Ref. 25.
The integration over ¢ is then evaluated exactly by an n-point
quadrature formula

n

1
— ¢k¢1> = E Pr(t)W,,
12 1

a=

(dndy

where 7,(X) and W ,(X) are determined as in Ref. 25.

We observe that the interaction V ; may be written in
exactly the same form as in Eq. (D1), replacing the upper
limit of integration (u=02c) with u=1/r.. This changes the
upper limit of integration in the variable ¢ from 1 to ¢,
=1/yl+ prz in Eq. (D2). To use directly the Rys quadrature
approach, we further transform to the variable ' =1¢/z., to
obtain

erf(r,/r,)

1
<¢i¢j ¢k¢l):lcf0 PL(fcf,)eXP(_thtlz)dl',

Iz

which can be evaluated as

(¢i¢j

where the quadrature points 7, and weights W, are found by
defining X' =X12, t}=t.1,(X"), and W, =1,W (X").

We can similarly evaluate the Gaussian terms in the rep-
resentation of V. Defining the integrand in Eq. (D),
Fu)=(¢;b,|exp(—1’ri,)| ). we see that Py (1,)W,
=3A,Fu,), where u’/p=12/(1—1>) and A,=(2/\m)
X[ (p+u?)** plexp[Xu*/(p+u*)]W,X). One may directly

erf(ri,/r,)

¢k¢z) :;::1 P (t,)W,,

I'12
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modify this finite-point quadrature summation to evaluate
two-electron integrals for the Gaussian terms, replacing n
withng, A, with ¢;, and ui with d; . We have applied these
modifications to the two-electron integrals within the ARGOS
code, part of the COLUMBUS program package.3 !
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