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As recently shown, size extensivily of any truncated or selected CI may be obtained by a self-consistent dressing of the deter- 
minant energies. This dressing has been implemented in two direct CI algorithms and its efficiency is illustrated on a series of 
eight-electron problems for which full-Cl results are known (HF, H20, NH, in DZP basis sets). The dressing has been applied to 
Cls defined by single and double excitations on complete active spaces, single and double substitutions on selected reference 
spaces or by iterative double threshold selection. In most cases the dressing reduces the error by at least a factor of two to three 
and in selected CIs it makes it possible to save about one order of magnitude in the size of the CI. The best results are obtained 
from iteratively selected CIs, the error being lower than 5 x IO-* hat-tree for 2 X IO’ determinant CIs. 

1. Introduction 

Direct full configuration interaction (FCI) algo- 
rithms have been proposed and improved during the 
last ten years [l-3], making it possible to deal with 
up to IO9 determinants [4]. However, this limit is 
already obtained in small molecular problems (few 
electrons, small basis sets). Since, in general, highly 
excited configurations have small coefficients in the 
wavefunctions, selected Cls may be interesting. And 
actually in many problems, 1% of the configurations 
are sufficient to reach 99% of the correlation energy. 
In that spirit, two different direct selected CI algo- 
rithms have been proposed by the present authors, 
one [ 51 written in a hole-particle formalism, the 
other [6] based on the string formalism. The two 
programs appear to have similar efficiencies. 

Selected CIs face a major drawback, namely their 
size inconsistency or bad behaviour when the num- 
ber of particles increases_ The popular Davidson’s 
type corrections [ 71 which were initially proposed 
for the single and double CI (SDCI), are not reliable 
when some double excitations become of large am- 
plitude and have an unsatisfactory behaviour when 

the number of particles becomes large [ 8 1. The gen- 
eralizations to multireference singles and doubles CI 
(MRSDCI) are not strongly grounded [ 9- 111. 

This problem has recently been solved in its full 
generality - at least for the ground state - by one of 
us (JPM) and co-workers [ 121. Any selected or 
truncated CI may be made size extensive - and 
strictly separable when localized MOs are used - by 
an appropriate self-consistent dressing of the ener- 
gies of the single determinants. This dressing is easy 
to compute, as recalled in section 2 and its practical 
efficiency has already been demonstrated on a few 
numerical tests, for cases where the selected CIs in- 
clude up to quadrupole excitations. It was important 
to implement the dressing in a fully general scheme, 
and especially to combine it with direct selected CI 
algorithms. This has been done in the present work. 

The efficiency of the self-consistent size-consistent 
CI ( (SC)QZI) is studied here on three different cases: 

(1) single and double substitutions on a complete 
active space (CAS-SDCI), the complete active space 
being essentially of valence character; 

(2) single and double substituents on a selected 
multireference space (MR-SDCI); 
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(3) selected CIs coming from a two-step two- 
threshold iterative procedure. 

The numerical tests concern three problems in 
double zeta plus polarization basis set, for which full- 
CI results are available, namely 

- HF [ 131 at three interatomic distances, typical 
of a single bond breaking; 

- HZ0 [ 141 at three OH interatomic distances, the 
breaking of two single bonds leading to high com- 
ponents on a quadruply excited configuration; 

- NH3 [ 41 in its equilibrium geometry. 
The results are presented and discussed in section 

3. 

2. Brief formulation of the method 

The principle of the self-consistent size-consistent 
configuration interactions has been derived and ex- 
plained elsewhere [ 12,151. It rests on the theory of 
intermediate effective Hamiltonians [ 16,17 1. The 
set of selected determinants is considered as a model 
space on which a modified (dressed) Hamiltonian 
will be built. In that model space the ground state 
determinant &, plays a special role (it defines the 
main model space) since only one root is searched. 
As previously discussed, one exact eigenenergy and 
the projection onto the model space of the corre- 
sponding exact eigenvector may be obtained from a 
truncated Hamiltonian matrix, if one proceeds to an 
appropriate dressing of this matrix, and the simplest 
dressing consists in a change of the diagonal energies 
of the single determinants of the model space. It has 
been shown that the size extensively and, more pre- 
cisely, the cancelation of any unlinked contribution 
may be obtained if the dressing is given by the fol- 
lowing expression, for each determinant @i: 

{#ildlC4)= C cj(#OIHl@,,> 9 
j 

D,+ci#o 
and D,+@i+S 

(1) 

where Djt is a double excitation operator, S is the 
selected space, and Cj is the coefficient of the doubly 
excited determinant gj = Di+qbo in the eigenvector in 
the intermediate normalization, 

W=$O+ C cj@j. (2) 
j 

The dressing may be written differently by intro- 
ducing the searched correlation energy 

as 

(@ild14i>=E- 1 cj<dOIHl$jj). (4) 
D,Fi =O 

or D,+@A 

The dressing is a function of the eigenenergy and of 
the eigenvector of the dressed matrix, so that the 
problem 

[H+d(E, C)-E]C=O (5) 

is self-consistent and must be treated iteratively. In 
eq. (4), the summation is shorter than that of eq. 
( 1) since it only sums over 

(i) the double excitations which are impossible on 
&, D,? involving at least one hole or one particle oc- 
curring in the creation of $+ from #o. This part of the 
summation deals with the exclusion principle vio- 
lating (EPV) contribution. From a previous work 
[ 18 ] concerning the infinite summation of EPV dia- 
grams, we have introduced one-, two- and three-in- 
dex arrays making the calculation of the EPV part of 
the dressing absolutely straightforward, without any 
supplementary loop; 

(ii ) the double excitations which do not take out 
from the selected space, Di+@i belonging to S space. 
The implementation of that condition is a bit more 
difficult. One first performs a full dressing by 

(4ild’I@ti)=E- C cj~~OIHI@j) (6) 

L&o 

and later on one considers the de-excitations 
(Dj’)-‘. If $k=Di+@i then (D,‘)-‘@,=@i and one 
proceeds to an undressing of the element 
(& 1 d I & ) by the quantity -Cj ( &, 1 HI @j). This un- 
dressing step is done within the multiplication of H 
by C, and is not time-consuming. 

Two remarks must be formulated: 
(i) If go is not the Hartree-Fock solution, for in- 

stance, if one starts the CI from a preliminary mul- 
ticonfigurational (or CAS) SCF calculation, the 
Brillouin theorem does not hold and in eqs. ( 1) and 
(4) $i may be a singly excited state as well. This 
modification has been taken into account in the 

127 



Volume 209, number 1,2 CHEMICAL PHYSICS LETTERS 25June1993 

present work although it does not bring much change. 
This inclusion cancels all the unlinked effects of the 
types 

Of course the corresponding EPV diagrams are 
considered 

-F 

-F 

(ii) The dressing might be incorporated into the 
diagonalization process itself and work is in progress 
to do that. But the convergence of the self-consistent 
dressing is achieved in a few iterations (typically 
three to obtain five to six significant decimals in har- 
trees), and the Davidson’s diagonalization of the 
dressed matrix starting from the eigenvector of the 
undressed or previously dressed CI matrices are 
rapid, so that the inclusion of the size-consistent self- 
consistent correction only multiplies the cost of the 
CI by a factor of two. 

3. Results 

3. I. Singles and doubles on a CAS 

Two calculations have been performed on the water 
molecule in a DZP basis set, for which FCI is avail- 
able [ 141, one starting from a four electrons in four 
molecular orbitals CAS (i.e. OH bonding and anti- 
bonding MOs) which only counts 20 determinants 
(“small CA!?‘), the other also adding the two elec- 
trons of the x lone pair and a virtual MO of the same 
symmetry, the number of determinants for this six 
electrons in six MOs CAS being 112 (“big CA!?). 
The single and double substitutions lead to CIs of 
20004 and 95666 determinants, respectively. The re- 
sults of the corresponding undressed and dressed CIs 

appear on table 1, together with the result of SDCI 
and of the dressed (SC)2SDCI. The dressing of the 
SDCI only reduced the error by about 40%, and the 
error increases when the bonds are lengthened; for 
r= r,, the error is only reduced from 2.1 to 1.1 eV by 
the dressing. 

As soon as the (o-c?)’ valence double excita- 
tions are incorporated to the CAS, the CAS (S t D ) CI 
results become rather accurate, the error being 
smaller and less distance dependent (from 0.005 1 to 
0.0039 hartree for the small CAS, and from 0.0026 
to O.OO,l9 hartree for the big CAS). The dressing re- 
duces the errors by a factor two to three; 0.002 1 har- 
tree for the small CAS, 0.0009 hartree fro the big one, 
and this error becomes distance-independent (within 
low4 hartree, i.e. 0.06 kcal mol- ’ ), so that the same 
accuracy is preserved along the curve. This behav- 
iour compares advantageously with the errors of 
CCSD (0.00179, 0.00559 and 0.00933 hartree at r,, 
1.5r, and 2r,) [ 191. 

When comparing with results obtained by using 
the generalized Davidson’s correction, one finds er- 
rors of the same order of magnitude, but of opposite 
signs (the Davidson’s corrections going below the 
exact energy). It should be noted that our dressing 
simply consists in the exact cancellation of unlinked 
contribution, which the Davidson’s correction tries 
to achieve in an approximate manner. In this eight- 
electron problem, this approximation overestimates 
this effect, while it underestimates it when the num- 
ber of electrons is large [ 7,8]. This is due to the ne- 
glect of the EPV contributions, which are of opposite 
sign and play an important role when the number of 
particles is small. 

3.2. Multireference singles and doubles CI 

Instead of starting from a CAS as reference space, 
one may start from a selected reference space, i.e. 
from a set of determinants which have been selected 
from their contribution to the energy or to the ei- 
genvector of the considered state. The popular 
MRDCI [ 20,2 1 ] or CIPSI [22,23] schemes belong 
to that strategy, the selection being based on the en- 
ergy in the first scheme, in the coefficient in the sec- 
ond one. Both try to approach the exact MRSDCI 
energy, which is not size consistent. The implemen- 
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Table 1 
Correlation energy of the Ha0 molecule in a DZP basis set, calculated from CASSDCI (in hartrce) and errors to FCI [ 141 in parentheses, 
for three interatomic distances 

SDCI (2349 dets) CAS,SDCI ‘) (24004 dets) CASaSDCI b, (95666 dets) 

before after before after before after 
dressing dressing dressing dressing dressing dressing 

re -0.2033 -0.2089 -0.2110 -0.2139 -0.2135 -0.2152 
(0.0128) (0.0072) (0.005l) (0.0022) (0.0026) (0.0009) 

1.5r, - 0.2405 -0.2532 -0.2663 -0.2688 -0.2688 -0.2701 
(0.0304) (0.0177) (0.0046) (0.0021) (0.0023) (0.0010) 

2.01, - 0.2943 -0.3283 -0.3661 -0.3679 -0.3681 -0.3691 
(0.0757) (0.0417) (0.0039) (0.0021) (0.0019) (0.0009) 

I) Valence CAS with four electrons in four molecular orbitals. 
b, Full valence CAS with six electrons in six molecular orbitals. 

tation of the size extensive correction seems to be an much larger than the dressing due to the neglect of 
interesting goal. the EPV terms (which play an important role in such 

Two problems have been studied with selected ref- a small eight-electron problem). The generalized 
erence spaces, namely the Hz0 molecule again and Davidson’s correction sometimes overshoots and 
the HF molecule for which FCI is also available [ 13 1, sometimes underestimates the correlation energy, 
both at three interatomic distances. depending on the characteristics of the CI, as ex- 

For the HF molecule (cf. table 2) the results are plained in section 4. 
-not spectacular, the dressing does not reduce the er- Nevertheless it is worth comparing our results with 
ror by a factor of two, specially for large CIs. This the most refined coupled cluster results [ 191. At 
means that the error of MRSDCI is not essentially equilibrium bond length, our results are one order of 
due to its unlinked contributions. It is interesting to magnitude better than CCSD, and comparable to 
see that the generalized Davidson’s corrections are CCSDT. When the bond is lengthened to 2r,, due to 

Table 2 
Correlation energy of the HF molecule in a DZP basis set, from MRSDCI calculations (in hartree) and errors to FCI f 131, for three 
interatomic distances 

Ref CI 

No. ref AE, 

MRSDCI Errors to FCI (lo-‘hattree) 

No. det undressed dressed dressing Davidson this CCSD CCSDT 
(103) effect correction work 

r. 164 -0.146895 82 -0.203450 - 0.203636 -0.000 I86 -0.000593 0.246 3.01 0.266 
234 -0.162498 102 -0.203544 - 0.203648 -0.000104 -0.0003 17 0.234 
308 -0.172812 119 -0.203625 - 0.203689 - 0.000064 -0.000169 0.193 
376 -0.179614 130 -0.203636 - 0.203689 -0.000053 -0.000099 0.193 

1.5r, 212 -0.185648 97 -0.226832 -0.226951 -0.000119 -0.000355 0.213 5.10 0.646 
244 -0.191255 105 -0.226854 - 0.226953 - 0.000099 -0.000263 0.211 
294 -0.197058 116 -0.226879 - 0.226960 - 0.00008 1 -0.000171 0.204 
353 -0.202014 126 -0.226927 -0.226998 - 0.00007 1 -0.000114 0.166 

2.or. 209 -0.219708 96 -0.263134 -0.263295 -0.000161 -0.000393 0.241 10.18 1.125 
245 -0.226753 108 -0.263178 -0.263309 -0.000131 -0.000274 0.227 
295 -0.252581 125 -0.263294 -0.263381 - 0.000087 -0.000188 0.155 
363 -0.237240 139 -0.263352 -0.263422 - 0.000070 -0.000129 0.114 
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the multiconfigurational character of the reference, 
the present results are much better by two orders of 
magnitude than CCSD and one order of magnitude 
than CCSDT, the error being only two times larger 
than CCSDTQ (0.062 x 10m3 hartree) [ 241 which 
is much more expensive, 

For the water molecule, the results are reported in 
table 3, at the lines ~0. The interest of using a se- 
lected reference set of determinants appears by com- 
paring, for r=re, the CASSDCI ( 112 reference de- 
terminants) with the MRSDCI ( 121 reference 
determinants), the variational errors being 2.6~ lO-3 
and 1.6~ 10s3 hartree, respectively. On the other 
hand, when comparing the different selected spaces, 
the dressing is efficient, always reducing the error by 
a factor of three to two. One sees that a dressed cal- 
culation with 13 I x 10m3 determinants (from 121 
reference determinants) gives a lower energy than 
an undressed calculation involving 275 x IO3 deter- 
minants (from 323 references}, which costs between 
five to eight times more. 

One may compare the results obtained for the three 
distances (r,, 1.57, and 2r,) using similar selections 
with about 300 references. The errors are almost the 

Table 3 

same ( (0.35f0.05)~10-3 hartree) for the three 
distances and three times smaller than from the 
dressed CASSDCI. It is worth to compare with the 
errors of CCSD ( 1.79, 5.59 and 9.33 x lop3 hartree 
at r,, 1.5r, and 2r,) and of CCSDT (0.434, 1.473 and 
-2.211 x 1O-3 hartree) [ 191. Our errors are about 
three times larger than those of CCSDTQ at 2r, 
(0.108~ 10B3 hartree) [24]. 

3.3. Flexibly selected CIs 

Instead of performing MRSDCI where one con- 
siders all the double substitutions on a selected set 
of reference determinants, a two-threshold selection 
may be used. The reference determinants q$ may be 
selected as those having a coefficient larger than a 
first threshold q, 

1 Ci I> t/*$i belongs to the reference space (7) 

and then one may restrict the CI to the determinants 
obtained from the multireference wavefunction 

VI= J., WPi (8) 

Correlation energy of the Hz0 molecule in a DZP basis set, from MRSDCI calculations (t=O) and two-threshold selected CIs (in 
hartree), and errors to FCI [ 141, for three interatomic distances 

Ref Cl Selected Cl 

1 No. ref AEo rx105 No. det without dressing (error) after dressing (error) Davidson 
correction 

r, 0.010 121 -0.106170 5 31746 -0.212945 (0.003113) -0.215028 (0.001054) (+0.00058) 
2 63671 -0.213975 (0.002107) -0.215339 (0.000743) (-0.00052) 
0 131681 -0.214461 (0.001621) -0.215483 (0.000599) (-0.00105) 

0.008 169 -0.120483 5 34166 -0.213160 (0.002922) -0.215166 (0.000916) (+0.00070) 
2 73422 -0.214299 (0.001783) -0.215479 (0.000603) (-0.00052) 
0 177321 -0.214948 (0.001134) -0.215660 (0.000422) (-0.00122) 

0.007 224 -0.131954 5 37417 -0.213407 (0.002675) -0.215305 (0.000777) (+0.00077) 
2 81134 -0.214548 (0.001534) -0.215610 (0.000472) (-0.00044) 
0 217733 -0.215288 (0.000794) -0.215723 (0.000359) (-0.00118) 

0.006 323 -0.149234 5 43884 -0.213740 (0.002342) -0.215475 (0.000607) 
2 90683 -0.214795 (0.001287) -0.215758 (0.000324) 
0 215426 -0.215474 (0.000608) -0.215770 (0.000312) 

1.5r, 298 -0.211659 5 38731 -0.268809 (0.002102) -0.270250 (0.000661) 
2 7429 I -0.269602 (0.001309) -0.270436 (0.000475) 
0 260884 -0.270219 (0.000692) -0.270513 (0.000398) 

2.Or, 313 -0.30855 1 5 32175 -0.368359 (0.001624) -0.369440 (0.000543) 
2 57965 -0.368939 (0.001044) -0.369580 (0.000403) 
0 281587 -0.369386 (0.000597) -0.369672 (0.000311) 

130 



Volume 209, number I,2 CHEMICAL PHYSICS LETTERS 25 June 1993 

by a single or double substitution and such that the 
perturbative estimate of its coefftcient 

(9) 

is larger than a second threshold r. Of course r<q. 
This is the procedure used in the three-class CIPSI 
algorithm [ 231. For r=O the results are those of 
MRSDCI. The intrinsic efficiency of the double se- 
lection appears from tables 3 and 4. Even before 
dressing, it is better to work with 9 I x lo3 determi- 
nants selected from 323 references than to consider 
the 132 x lo3 determinants representing all single and 
double substitutions from 12 1 determinants, the er- 
ror being lower for a twice lower cost. After dressing, 
the advantage is even more marked since the error 
is 3 x 1 0e4 hartree in the small calculation instead of 
6 x 10m4 hat-tree in the big one. After dressing, a 
computation with 44 x lo3 determinants (7~ 

5 x 10e4) from 323 references is as efficient as the 
dressed MRSDCI (r=O) from 12 1 references, which 
involves 132x IO3 determinants, i.e. a three times 
larger dimension of the Cl The combined use of 
double selection and dressing saves more than one 
order of magnitude in the computational cost. 

The same considerations may be formulated when 
comparing differently selected CIs, since the same 
energy is obtained from 37 x lo3 determinants se- 
lected from a subspace of 224 reference determi- 
nants as from 63 x IO’ determinants selected from 
121 references. Anyway, as is apparent from fig. 1, 
the efficiency of the dressing to approach the exact 
energy is dramatic; the dressed energies are much 
more stable than the undressed ones, the slope of the 
energy curves E=f( T) being reduced by a factor of 
10 by the dressing. 

As a final case, the NH3 molecule has been studied 
and the results are reported in table 4 and fig. 2. In 
that problem we have not performed full MRSDCIs 

Table 4 
Correlation energy of the NH3 molecule in a DZP basis set for various selected CIs (see the text). The estimate of the full CI energy is 
- 0.2099 hartree [ 41 

Ref. spare 

qx 10’ No. ref 

Selected CI space 

TXIO’ No. detx 10-j before after 
dressing dressing 

7 

8 141 5 35 -0.205340 -0.208470 
4 47 -0.205861 -0.208697 
3 66 -0.206477 - 0.208946 
5 105 -0.207185 -0.209203 
1 189 -0.207936 -0.209487 

163 5 38 -0.205470 -0.208547 
4 49 -0.205976 -0.208769 
3 70 -0.206597 - 0.209026 
2 110 -0.207333 -0.209296 
I 203 -0.208103 -0.209560 

232 5 43 -0.205774 -0.208753 
4 55 -0.20627 1 -0.208976 
3 77 -0.206870 -0.209227 
2 121 -0.207602 -0.209484 
1 232 -0.208425 -0.209709 

355 5 51 -0.206179 -0.208978 
4 66 -0.206665 -0.209183 
3 90 -0.207225 -0.209414 
2 136 -0.207899 -0.20966 I 
1 266 -0.208733 -0.209864 

4 504 1 293 -0.208937 -0.209976 
2 1412 0.2 934 -0.209812 -0.210126 
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-0,216 ! I I I 1 1 -I 

0 1 2 3 4 5 b 

7Xld 

Fig. 1. Correlation energy for the Hz0 molecule in a DZP basis 
set at r,; convergence of two-threshold selected CIs. Dimension 
ofthe multireferencespaces: (0) t]=O.OlO (121 determinants); 
(+) q=O.OOS (169 determinants); (I) q=O.O07 (224 deter- 
minants); (A ) ~=0.006 (323 determinants). 7 is the second 
threshold (see the text), the open signs concern the results of the 
same CIs after self-consistent dressing. 

(7=0), but doubly selected CIs. The conclusions are 
almost the same as for HzO. A dressed calculation 
from 43 x 10) determinants (from 232 selected ref- 
erence determinants) gives the same energy as our 
largest undressed calculation, involving 266 x 1 O3 
determinants; the dressing saves a factor six in the 
size of the CI matrix, i.e. between one and two or- 
ders of magnitude in the computational cost. Again, 
it is better to proceed to the second selection from 
a larger number of references even if, as shown in fig. 
2, this effect is considerably reduced by the dressing. 

One may notice that we obtained the same energy 
( -0.20986 hartree) from 266 x lo3 determinants 
after dressing as Handy and Knowles from their sc- 
lected-truncated vector of 665 X lo3 determinants 
[ 41. Larger CIs (until 935 x lo3 determinants, see 
table 4) have been performed. The largest one gives 
a variational energy of -0.2098 13 hartree, i.e. iden- 
tical to the lowest value obtained by Handy and 
Knowles with a vector truncated to 665 x lo3 most 
contributing determinants. The dressing is not yet 
negligible -0.2 10126. Since our dressing has never 
overshot below the exact energy, we believe that the 
exact correlation energy of NH3 should be somewhat 

132 

-0.205 

-0.209 

-0.t10 I I I I I 

0 I 2 3 4 5 6 

KXl 0s 

Fig. 2. Correlation energy for the NH3 molecule in a DZP basis 
set; convergence of two-threshold selected CIs. Dimension of the 
multireference spaces: (0) q=O.O08 (141 determinants); (+) 
t7=0.007 (163 determinants); (w) n=O.O06 (232 determi- 
nants): (A) q=O.OOS (355 determinants). t is the second 
threshold (see the text), the open signs concern the results of the 
same CIs after self-consistent dressing. 

below -0.2100 au. In view of that uncertainty, we 
have not reported errors in table 4. 

4. Discussion 

The self-consistent size-consistent single and dou- 
ble CI may be considered as the most elaborate (and 
exact) CEPA (coupled electron pair approxima- 
tion) algorithm. It cannot compete with coupled 
cluster on singles and doubles, CCSD, since it only 
includes the unlinked corrections of triples and 
quadrupoles (and higher degrees of excitation) to 
cancel them strictly. It does not incorporate the linked 
corrections going through triples and quadrupoles. A 
recent work [ 25 ] has added these corrections to the 
( SC)2SDCI energies, giving accurate results, but the 
complete incorporation of this effects is rather costly. 
The present work, taking benefit of the full gener- 
ality of our self-consistent size-consistent dressing, 
essentially incorporates the leading linked correc- 
tions going through quadruple and more highly ex- 
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cited determinants by treating them variationally in 
the dressed CI matrix. 

The CAS (S + D)CI had only been studied on a two 
configuration CAS problem [ 121, the F2 molecule. 
Its application to a multiple bond breaking on Hz0 
is efficient since the error ranges between 1 and 2 
mhartree, and is distance independent; its applica- 
tion to bonds of higher multiplicity should not pres- 
ent any problem and is under work. 

However, it is clear that for the same price it is 
better to perform selected MRSDCI; in other words, 
it is more important to incorporate some non-va- 
lence doubly or quadruply excited determinants in 
the reference space rather than to include all valence 
exotic determinants. Since the dressing procedure 
ensures the size consistency, the size consistency of 
the reference space is not crucial, as clearly dem- 
onstrated on the dissociation of the water molecule 
from selected MRSDCI. 

In MRSDCI where all double excitations have been 
performed on a limited set of reference determi- 
nants, essentially doubly excited ones, all doubly ex- 
cited configurations belong to the MRSDCI space, 
but not all the quadruples, since one only generates 
determinants of the form $(y$?), where $(?Fi”, is a 
reference determinant. This means that one only 
treats part of the linked 4th order corrections going 
through the quadruples. Two consequences arise: 

- One is the fortuitous character of the small er- 
rors that are sometimes obtained by applying the 
generalized Davidson correction to the MRSDCI re- 
sults. This is due to a cancellation of errors between 
the neglect of EPV terms which are positive correc- 
tions, and the neglect of the linked corrections going 
through the quadruples not incorporated in the Cl. 

- The other concerns the interest of considering a 
sufficiently large number of doubly excited refer- 
ences before selecting the quadruples. It is much more 
interesting to have quadruples which are products of 
doubles of mean amplitudes than to include a/f the 
quadruples obtained from a limited number of large 
doubles. 

This suggestion is confirmed by the high accuracy 
of our self-consistently dressed selected CIs when the 
selection was performed with two thresholds, one for 
the selection of the reference determinants, another 
one for the selection of the most important double 
substitutions on these references. The deviation to 

FCI values of these dressed CIs of moderate size 
(8 x lo4 determinants for HF and H,O) is similar to 
the error of CCSDT at equilibrium geometries, and 
(in contrast to CCSDT) does not increase when 
bonds are broken, since the rational selection insures 
the same quality to the wavefunction. The dressing 
greatly improves the stability of the evaluations of 
the correlation energy as a function of the selection 
criteria. After dressing, the error decreases to that of 
an undressed CI of three to six times larger size, so 
that the dressing saves more than one order of mag- 
nitude in the computational effort. Finally with a 
number of rationally selected determinants close to 
2x 105, the error to the FCI energies is below 0.4 
mhartree in these eight valence electron problems, 
whatever the interatomic distances are. We think that 
the recently proposed self-consistent dressing of CI 
matrices, ensuring their size consistency, opens a wide 
domain of applications to the selected CI algorithms. 
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