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A simple method is presented which ensures the electron-nucleus cusp condition is satisfied by the
Slater-Jastrow wavefunctions commonly employed in quantum Monte Carlo simulations. The
method is applied in variational energy calculations of the neon atom and a selection of molecules
using both Gaussian and Slater basis sets. In addition, we discuss the relationship between the
electron-nucleus cusps and the variance of forces, and investigate the sensitivity of forces to the
quality of the cusps for various diatomic molecules. © 2008 American Institute of Physics.
#DOI: 10.1063/1.2890722$

I. INTRODUCTION

Quantum Monte Carlo !QMC" methods are proving suc-
cessful for calculating accurate properties of atomic, molecu-
lar, and solid state systems. The primary methods, namely,
variational Monte Carlo !VMC" and diffusion Monte Carlo
!DMC",1 both require guiding trial wavefunctions. The accu-
racy of VMC results depend entirely on the quality of the
trial wavefunction, while DMC is less sensitive, with only
the nodal surface of the trial wavefunction affecting total
energies. However, the statistical properties of both ap-
proaches, and the stability of DMC, depend on the accuracy
of the trial wavefunction used.

When designing trial wavefunctions, it is sensible to in-
clude as many of the known properties of exact wavefunc-
tions as possible. An advantage of Monte Carlo methods is
that there are no restrictions on the form of the trial wave-
function, other than it must be computationally cheap to
evaluate. Little is known about exact wavefunctions, but
there are a number of general properties which can be made
use of. The first is the antisymmetry of fermionic wavefunc-
tions under particle exchange. This is efficiently incorporated
into a many-body wavefunction using a product of spin-up
and spin-down Slater determinants. The single-particle orbit-
als which make up the determinant are easily obtained from
Hartree-Fock !HF" or density-functional calculations. Dy-
namic electron correlation effects can be included using a
Jastrow factor, in which electron-electron distances appear
explicitly. The resulting Slater-Jastrow trial wavefunction is
a compact and efficient approximation to the true many-
electron wavefunction,

!T = D↑D↓ exp!J" . !1"

The behavior of the exact wavefunction when two
charged particles have a very small separation can be under-
stood by rearranging the time-independent Schrödinger
equation,

" =
H!

!
=

T̂!

!
+ V , !2"

where " is an eigenvalue of the Hamiltonian and ! is the
corresponding eigenstate. As the eigenvalue is a constant, the
divergence in the Coulomb potential which occurs as two
charged particles coalesce must be countered by a corre-
sponding divergence in the local kinetic energy !−1T̂!. The
conditions on the wavefunction which ensure these diver-
gences occur were derived by Kato in his formal study of the
properties of exact wavefunctions.2 Kato’s cusp conditions
are

% "!!"ave

"r
%

r=0
= #!!r = 0" , !3"

where !!"ave is the spherical average of the many-body
wavefunction ! about the coalesence point, and r is the
interparticle distance. For an electron-nucleus pair, #=−Z in
atomic units, where Z is the charge of the nucleus.

The central quantity in QMC simulations is the local
energy EL=!T

−1H!T, which diverges near the nuclei if the
cusp conditions are not met. This can increase the statistical
error of QMC energies and cause instabilities in wavefunc-
tion optimization and DMC simulations. Previous work in
this area has concentrated on the cusp correction of orbitals
built from Gaussian basis functions. The work of Manten and
Lüchow3 showed that the primary cause of large variances in
the local energy was the fluctuation of the second derivatives
of the orbitals, a consequence of using many Gaussian basis
functions. Their cusp correction method, while not imposing
the exact cusp condition, significantly improves the quality
of trial wavefunctions by removing these fluctuations. The
more recent work of Ma et al.4 goes further and shows how
the exact cusp conditions may be enforced.

In this work, we present an alternative and simpler
method for adding the exact electron-nucleus cusps to Slater-
Jastrow trial wavefunctions. The new method has some simi-
larities to that of Manten and Lüchow,3 but our method im-
poses the exact cusp conditions and is easy to implement and
automate. The cusp-correction method is tested on a set of
molecules with trial wavefunctions built from both Gaussiana"Electronic mail: manolo.per@rmit.edu.au.
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and Slater orbitals. In addition, we highlight the link between
the electron-nucleus cusp conditions and the calculation of
finite-variance forces in QMC. The cusp-correction method
is used to investigate the sensitivity of forces to the quality of
the cusp.

II. CUSP CORRECTION

For a Slater-Jastrow wavefunction, the electron-nucleus
cusps can be built using the Slater determinant, the Jastrow
factor, or both. Here we assume that the Jastrow factor con-
tributes nothing to the cusp !i.e., &"J /"r&r=0=0", in which
case the cusp condition becomes a set of conditions on the
single-particle orbitals which make up the Slater determi-
nant,

% "!$i"ave

"rA
%

rA=0
= − ZA$i!rA = 0" ∀ i,A . !4"

Here i labels the orbital, and A the nucleus. For orbitals
expanded in an atom-centered basis !such as Gaussian,
Slater, numerical bases", only the s-type components of the
basis functions centered on atom A will contribute to the
cusp. The electron-nucleus cusp condition then becomes

% "$i
A,s

"rA
%

rA=0
= − ZA#$i

A,s!rA = 0" + %iA$ ∀ i,A , !5"

where %iA is the contribution to the orbital $i at the position
of nucleus A from basis functions centered on other nuclei.
While the exact single-particle orbitals should obey the
electron-nucleus cusp condition, those obtained from practi-
cal calculations rarely do.

A. Method

Our cusp correction method centers around the use of
quintic splines5,6 to represent the s-type parts of each orbital
on each atom. A quintic spline is used rather than the more
usual cubic spline so that the second and third derivatives of
the orbital are smooth functions. The spline for a given or-
bital on a given atom is built using Nknot knots, with the ith
knot placed at a radial distance proportional to ri= ti / !1− ti"
where ti= !i−1" /Nknot. This placement ensures that the knot
density is higher closer to the nucleus, where the value of the
orbital varies most rapidly. Far from the nucleus these knots
sample the original s-type component of the orbital, but close
to the nucleus we require the knots to sample a function with
the correct cusp behavior. This is achieved by sampling a
function of the following form:

f!r" = a exp!− br" + cr + d . !6"

The values of the parameters a ,b ,c ,d are determined by
performing a least-squares fit to the s-type part of the origi-
nal orbital in the region close to the nucleus, under the con-
straint

d =
ab − c

Z
− a − % . !7"

This ensures the function f!r" obeys the cusp condition ex-
actly. We find that a fit range of #0,2 /Z$ works well, with the
exception of hydrogen nuclei, for which we use #0,1$. A knot
void is left between the two regions, so the join between the
original orbital and the function f!r" is spanned by a single
quintic polynomial. A poor choice of the position and length
of the knot void can cause large fluctuations in the deriva-
tives of this polynomial. This is undesirable as it is the fluc-
tuations in the second derivatives of the orbitals which lead
to large variances in the local energy. A good choice pro-
duces a smooth join in the second derivative of the modified
orbital, as shown in Fig. 1. The position and size of the knot
void are chosen by requiring the third derivative of the spline
at the left and right ends of the knot void to closely match the
third derivatives of f and $, respectively. This is achieved by
minimizing the following cost function:

& = ' "3S− − "3f−

&"2f−& + '
(2

+ ' "3S+ − "3$+

&"2$+& + '
(2

. !8"

Here we denote radial derivatives by "n="n /"rn, and S refers
to the spline. A subscript (/) indicates the value at the
left/right edge of the knot void. A small constant ' is used to
prevent the possibility of the cost function diverging. Simply
choosing to minimize the difference in third derivatives
would force the void region to values of large r, where the
magnitudes of these values are smaller. The function & takes
advantage of the roughly exponential behavior of the ideal
orbital to provide an r-independent cost function.

In order for the cusp condition to be satisfied exactly, it
is essential that the spline is constrained such that the first
derivatives at the knots are exactly the same as the function
being sampled. This leads to a loss of continuity in the fourth
derivative of the spline at the knots, but this is of no practical
consequence. The routine we use to construct the quintic
spline is QUINDF.6

While a large number of knots are initially used to con-
struct the spline, we can easily resample and use a small
number of knots for the final representation of the orbital. We

FIG. 1. The second derivative of the 1s orbital of Ne using a Gaussian
6-311G!d" basis. The knot void reaches from around 0.12 to 0.25 a.u.
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find that 60 knots are perfectly adequate for representing the
systems studied here. The use of a constant number of knots
at fixed radial positions for all orbitals can improve the
efficiency of the evaluation of the orbitals during a QMC
simulation.

III. ENERGIES

In this section we apply the cusp correction method to a
selection of molecules, with geometries taken from the G2
test set.7 This selection includes methyl chloride !CH3Cl"
and ethanol !CH3CH2OH" along with a number of diatomic
molecules.

For each molecule we compare the use of two different
basis sets which were used to build the single-particle orbit-
als for the determinantal part of the trial wavefunction. The
first basis set !labeled #G$" is the Gaussian 6-311G!d" basis,
as implemented in the GAMESS code.8 The second basis !la-
beled #S$" is the Slater TZP basis supplied with ADF.9 We
also consider the Ne atom using a very large optimized
Gaussian basis set !labeled #G-opt$", in addition to the two
basis sets already described. This even-tempered basis was
optimized using the simplex method,10 and consists of 20
s-type and 10 p-type functions. All the orbitals were gener-
ated using the HF method, and so are energy-optimal within
each basis.

A. Energy results

Our implementation of the cusp correction method is
automatic, and is well-behaved for all the systems we have
studied. The results of VMC calculations on the test set are
shown in Table I. The trial wavefunctions used for calculat-
ing VMC energies are single determinants built using the HF
orbitals, so the VMC energies should agree with the HF en-

ergies, which are included for comparison where possible.
For the Slater basis sets, there are no HF energies to compare
with as the ADF code does not report total energies.

Occasionally the s-type part of an orbital will behave
very differently to the ideal exponential-type form inside the
fitting region. This is particularly true of orbitals which have
a very small s-type component on a given nucleus, and oc-
curs on the hydrogen nuclei in the ethanol molecule. How-
ever, the small magnitude of these s-type component means
that even if the fit is relatively poor, there is no adverse effect
on the total energy of the system. In addition, the join be-
tween the fitting function and the original s-type part of the
orbital remains smooth.

All the cusp corrected energies agree well with the
Hartree-Fock values, so there is no energy penalty to per-
forming the cusp correction. The results show a very large
reduction in the variance of the energy when using the cusp-
corrected 6-311G!d" Gaussian basis sets. For the Ne atom,
the non-cusp-corrected very large #G-opt$ basis has a lower
variance of the energy than that of the smaller #G$ Gaussian
basis set, even though the fluctuations of the second deriva-
tives of the s-type orbitals are larger. This is because the
fluctuations are closer to the nucleus, where by volume they
contribute less. The effect of cusp correcting these orbitals is
a minimal reduction in the variance. When using the Slater
basis sets, there is practically no change in the variance or
the value of the energy for any of the systems considered.

Overall, our results agree with the observation of
Manten and Lüchow3 that the main contribution to the vari-
ance of the energy is from the large fluctuations of the sec-
ond derivatives of the orbitals, rather than the lack of the
exact electron-nucleus cusp. The Slater basis sets used here
are relatively small, but the use of larger Slater basis sets
could exhibit these fluctuations, and so would benefit from
cusp-correction.

TABLE I. VMC energy and variance !*2" results using single-determinant trial wavefunctions. All quantities are in atomic units.

System Hartree-Fock

VMC !no cusp correction" VMC !with cusp correction"

Energy *2 Energy *2

Ne #G$ −128.523 −128.62!13" 3875!3670" −128.5291!47" 33.13!54"
Ne #G-opt$ −128.547 −128.5524!81" 36!3" −128.5493!41" 29.2!5"
LiH #G$ −7.9855 −7.9845!15" 8!2" −7.98536!49" 1.607!16"
FH #G$ −100.033 −100.038!43" 677!367" −100.0389!39" 26!2"
CH3Cl #G$ −499.130 −499.18!10" 888!151" −499.141!13" 136!1"
CH3CH2OH #G$ −154.110 −154.056!24" 269!53" −154.1167!42" 36!1"
Li2 #G$ −14.871 −14.8707!24" 13!1" −14.87107!66" 3.127!69"
N2 #G$ −108.961 −108.912!30" 276!76" −108.9677!33" 24.76!46"
O2 #G$ −149.647 −149.622!51" 533!185" −149.6606!42" 33.9!5"
Si2 #G$ −577.736 −577.673!90" 1426!464" −577.7322!93" 155!2"
Ne #S$ ¯ −128.5268!51" 30.56!91" −128.5298!48" 29.40!41"
LiH #S$ ¯ −7.98265!50" 1.589!26" −7.98168!50" 1.533!15"
FH #S$ ¯ −100.0648!37" 22.34!28" −100.0615!38" 22.22!38"
CH3Cl #S$ ¯ −497.243!13" 156!2" −497.238!14" 157!4"
CH3CH2OH #S$ ¯ −154.1393!40" 34.19!55" −154.1314!39" 34.32!59"
Li2 #S$ ¯ −14.871 59!67" 3.060!91" −14.871 78!66" 3.034!51"
N2 #S$ ¯ −108.9636!33" 23.55!25" −108.9649!34" 23.58!42"
O2 #S$ ¯ −149.6668!46" 34!2" −149.6572!44" 32.6!4"
Si2 #S$ ¯ −577.0883!89" 149!1" −577.0901!92" 150!3"
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IV. FORCES

The calculation of the forces on nuclei using QMC
methods contains some well-known difficulties. In this sec-
tion we review these difficulties and explain the role of the
electron-nucleus cusp condition in obtaining forces with fi-
nite variance.

Force expressions in QMC can be obtained by directly
differentiating the expectation value of the local energy. The
z-component of the force on an atom labeled A is minus the
derivative of the total energy with respect to the z-component
of the position of that atom. In VMC we obtain

FAz
VMC = −

"EVMC

"RAz
= − ) "EL

"RAz
* − 2 Cov'EL,

1
!T

"!T

"RAz
( .

!9"

In DMC expectation values are taken over the distribution
!0!T, where !0 is the exact ground-state wavefunction, and
the force is

FAz
DMC = −

"EDMC

"RAz
= − ) "EL

"RAz
* − Cov'EL,

1
!T

"!T

"RAz
(

− Cov'EL,
1

!0

"!0

"RAz
( . !10"

The expectation value of the derivative of the local energy is
usually simplified, so that the force can be written in terms of
the Hellmann-Feynman11 expression and Pulay corrections.12

In VMC, the expectation value of the derivative of the local
kinetic energy vanishes, so the expectation value of the de-
rivative of the local energy has the same value as the
Hellmann-Feynman expression, and the force becomes

FAz
VMC = − ) "V

"RAz
* − 2 Cov'EL,

1
!T

"!T

"RAz
( . !11"

In DMC, the expectation value of the derivative of the local
kinetic energy does not vanish, but instead cancels one of the
covariance terms, and we are left with

FAz
DMC = − ) "V

"RAz
* − Cov'EL,

1
!0

"!0

"RAz
( + N+ "!T

"RAz
, .

!12"

The final term is a nodal term which accounts for the change
in the approximate nodal surface with RAz.

13

The evaluation of the Hellmann-Feynman term is what
causes problems in QMC. The derivative of the electron-
nucleus interaction potential is

"Ven

"RAz
= − ZA-

i

!zi − RAz"
riA

3 , !13"

which diverges as 1 /riA
2 as an electron approaches the

nucleus, leading to an infinite variance.
One way to obtain forces with finite variance is to go

back to Eqs. !9" and !10" and evaluate them directly. The
presence of the derivative of the local energy in these expres-
sions allows for the possibility of canceling the divergent
derivative of the electron-nucleus potential using the deriva-

tive of the local kinetic energy. The origin of this cancella-
tion can be seen by differentiating the local kinetic energy,

"

"RAz

T̂!T

!T
=

1
!T

"

"RAz
!T̂!T" −

T̂!T

!T

1
!T

"!T

"RAz
. !14"

The kinetic energy operator can be expanded in spherical
coordinates about the atom A,

T̂!T = −
1
2-

i
$i

2!T

= −
1
2-

i
+ "2!T

"riA
2 +

2
riA

"!T

"riA
+ L̂iA!T, , !15"

where we group the terms involving angular derivatives into
L̂, as only the spherical terms are relevant here. Now, the
derivative of this expression is

"

"RAz
!T̂!T" = −

1
2-

i
+ "

"RAz
' "2!T

"riA
2 + L̂iA!T(

+
2

riA

"

"RAz

"!T

"riA
+

2!zi − RAz"
riA

3

"!T

"riA
, . !16"

From the final term, we can see that the first term in the
derivative of the local kinetic energy #Eq. !14"$ will contain
the term

− -
i

!zi − RAz"
riA

3

1
!T

"!T

"riA
. !17"

If the trial wavefunction obeys the electron-nucleus cusp
condition in Eq. !3", then close to the nucleus this term will
exactly cancel the divergent derivative of the electron-
nucleus potential, so a finite variance can be obtained.

There are three methods in the literature which have
been proposed to enable the calculation of forces with finite
variance. These are the s-wave filtering method of Chiesa et
al.,14 the correlated sampling method of Filippi and
Umrigar,15 and the renormalization method of Assaraf and
Caffarel.16

The use of Eqs. !9" and !10" to calculate forces is
equivalent to a special case of the zero-variance zero-bias
extension17 to Assaraf and Caffarel’s original method, in
which their auxillary function +̃ is chosen to be the deriva-
tive of the trial wavefunction. Although this approach should
result in lower variance of the force than the original renor-
malization method, those authors found that this was not the
case for the VMC force of the Li2 molecule.17 We attribute
this to the lack of the exact electron-nucleus cusp in their
trial wavefunction.

The correlated-sampling method can be used to obtain
forces by calculating the energy difference between two
closely related geometries. In this finite-difference correlated
sampling !FDCS" approach, the VMC energy gradient is cal-
culated as
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"E

"RAz
=

1
'
+ .wEL!RAz + '"/

.w/
− .EL!RAz"/, , !18"

where the weights are w=!T
2!RAz+'" /!T

2!RAz" and ' is the
displacement of the nucleus. The Monte Carlo samples are
taken from the distribution !T

2!RAz", with the same samples
being used to calculate each expectation value. This method
is also equivalent to using Eq. !9", with the fluctuations of
the weights about unity performing the same role as the Pu-
lay correction !the covariance term". Setting the weights to
unity recovers the Hellmann-Feynman force.

A. Sensitivity of forces to cusp quality

It is reasonable to expect forces to be more sensitive to
the quality of the electron-nucleus cusps than the energy, as
the role of the cusp is to reduce the variance from a formally
infinite value to a finite one. To test this sensitivity, we have
compared the effect of using non-cusp-corrected wavefunc-
tions and their cusp-corrected counterparts to evaluate the
VMC force using the FDCS approach #Eq. !18"$.

We also consider the effect of the space-warp transfor-
mation described by Filippi and Umrigar.15 While the impo-
sition of the electron-nucleus cusp condition results in forces
with finite variance, this variance can still be rather large.
The use of the space-warp transformation further reduces the
variance. It works by moving the electrons close to a nucleus
almost rigidly with that nucleus, so the electron distribution
peaks at the position of the displaced nucleus.

B. Forces results

Forces for a selection of diatomic molecules are pre-
sented in Table II. For each molecule we use both Gaussian
and Slater basis set HF determinants as the trial wavefunc-
tions !labeled #G$ and #S$, respectively", so the VMC forces
should agree with those obtained from HF calculations. The
geometries are those given in the G2 test set7 which were
optimized at the MP2/6-3lG!d" level, so the forces differ
slightly from zero. We include the Hartree-Fock results only
for the Gaussian based wavefunctions; as with the total en-
ergies, Hartree-Fock forces are not available in ADF.

The calculation of decorrelated statistics requires special
care when calculating a ratio of two expectation values, as in

Eq. !18". The use of a finite number of Monte Carlo samples
to evaluate the ratio introduces a small systematic bias.
When using the reblocking method,18 the blocks must be
large enough to obtain both decorrelated samples and reduce
the bias in the ratio of expectation values to below statistical
accuracy.

Without the space-warp, the results for the Gaussian
based wavefunctions are meaningless without cusp correc-
tion, and the error bars can only be considered approximate.
The corresponding results for the Slater based wavefunctions
without cusp correction have much smaller errors than the
Gaussians. Their variance is still technically infinite, but with
a finite number of Monte Carlo samples the electrons rarely
enter the divergent region. To illustrate this point, the indi-
vidual samples of the Hellmann-Feynman component of the
force for Li2 are shown in Fig. 2. Without the cusp correction
the samples show infrequent but very large spikes, but after
cusp correction, the samples are much more uniform.

When the space-warp transformation is used, even the
non-cusp-corrected Gaussian based wavefunctions produce
good results, with errors smaller than the cusp-corrected
forces without the space-warp. The reason for this is that

TABLE II. Comparison of VMC forces calculated using the finite-difference correlated sampling approach. The same number of Monte Carlo samples are
used for each result. All forces are in atomic units.

System Hartree-Fock

No warp With warp

No cusp correction With cusp correction No cusp correction With cusp correction

LiH #G$ −0.00382 −0.25!38" 0.0010!65" −0.003 22!69" −0.00439!35"
Li2 #G$ −0.00031 −0.38!39" −0.0021!79" 0.000 87!51" 0.000 18!30"
N2 #G$ 0.18350 4!6" 0.179!61" 0.1825!83" 0.1815!32"
O2 #G$ 0.14993 −12!13" 0.228!92" 0.1429!90" 0.1475!38"
FH #G$ −0.04320 −44!42" −0.23!10" −0.000!28" −0.0441!56"
LiH #S$ ¯ 0.042!33" −0.0096!63" −0.002 78!31" −0.002 62!32"
Li2 #S$ ¯ −0.0116!82" −0.0094!76" −0.000 61!30" −0.000 19!29"
N2 #S$ ¯ 0.21!14" 0.211!58" 0.1650!31" 0.1611!33"
O2 #S$ ¯ 0.09!13" 0.156!83" 0.1044!35" 0.1150!39"
FH #S$ ¯ −0.04!11" −0.107!96" −0.0327!51" −0.0341!53"

FIG. 2. Hellmann-Feynman component of the VMC force for the Li2 mol-
ecule using cusp-corrected and non-cusp-corrected Slater basis functions.
The trial wavefunction is a single Slater determinant.
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when the nucleus is displaced, the space-warp causes those
electrons closest to the nucleus !which are the ones respon-
sible for the infinite variance" to move with it. The local
energies sampled by these electrons are therefore very simi-
lar in the original and displaced geometries, and so their
contribution to the force vanishes almost exactly. Using both
the space-warp and the cusp-correction produces the most
accurate results for the Gaussian based wavefunctions, with
the benefit of cusp correction increasing with atomic number.
For the Slater based wavefunctions, the quality of the results
using the space-warp is unaffected by the cusp correction.

To summarize, the calculation of forces without the
space-warp transformation is sensitive to the quality of the
electron-nucleus cusp, with both Gaussian and Slater based
trial wavefunctions showing smaller errors in the force after
cusp correction. When the space-warp is used, only the
Gaussian based wavefunctions benefit from the cusp correc-
tion. This implies the reason for the improvement is the re-
duction in the fluctuations of the second derivatives of the
orbitals. We expect the same pattern of results to apply for
forces calculated within DMC.

V. CONCLUSION

We have presented a simple and easily implementable
method for ensuring the single-particle orbitals used in quan-
tum Monte Carlo trial wavefunctions exactly obey Kato’s
electron-nucleus cusp conditions. The method has been ap-
plied to a number of molecules using both Gaussian and
Slater basis sets where it proves robust and effective.

We have also discussed the calculation of forces with
finite variance, and have used the cusp correction method to
investigate the sensitivity of forces calculated using the
finite-difference correlated sampling approach to the quality
of the electron-nucleus cusp. The results of this investigation
show that the space-warp electronic coordinate transforma-
tion is important in reducing the sensitivity of forces to the

quality of the cusp. Forces calculated with the space-warp
technique using Gaussian based wavefunctions show consid-
erably reduced errors after cusp correction.
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