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Coupled cluster theory that takes care of the correlation cusp by inclusion 
of linear terms in the interelectronic coordinates 
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CC-R12-a combination of coupled cluster theory and the R12 method, is presented in which the 
correlation cusp is treated via inclusion of terms explicitly dependent on the interelectronic distance 
rij into the exponential expansion of the wave function. A diagrammatic derivation of the CC-R12 
equations within the so-called "standard approximation B" is given at the level of singles, doubles 
and triples (CCSDT-R12). MBPT(4)-R12 is derived as a byproduct of CCSDT-R12. Fifth order 
noniterative corrections are also discussed.-

I. INTRODUCTION 

Traditional quantum chemical methods, even those ac-
counting for a large part of electron correlation, suffer from a 
rather slow convergence to the exact solution of the Schro-
dinger equation on extension of the basis. Within a CI (con-
figuration interaction) or CC (coupled cluster) approach in a 
finite one-electron basis, one is unable to describe the corre-
lation cusp correctly,I-4 i.e., the cusp relation5 

(-iI'l'J 1 
lim ar =2 'l'(r12=0) 

12 av 
(1) 

is not satisfied. That the explicit inclusion of the interelec-
tronic coordinates r if into the wave function is a powerful 
means to speed up the convergence has been known since 
Hylleraas suggested such an approach in his study of the He 
atom. 6 and has been definitely confirmed in the calculation 
by Kolos and Wolniewicz of the potential curve of the 
hydrogen molecule.7 Explicit inclusion of terms linear in rij 
(and/or odd powers of rij) as it is done in "Hylleraas 
CI',g,9 leads to the appearance of "difficult" three- and four-
electron integrals, which makes the computation prohibitive 
except for very small molecules. An alternative approach 
with explicit r ij dependence as well, the so-called Gaussian 
geminal method,IO has theoadvantage that no difficult inte-
grals arise, but the correlation cusp is not strictly taken care 
of and a sophisticated optimization of nonlinear parameters 
is needed. Although random tempering of Gaussian geminals 
leads to significant savings in CPU timings,l1 the method 
still remains computationally very demanding. 

More recently, one of us together with Klopper has sug-
gested a theory in which explicit rirdependent terms in the 
wave function expansion are present, but where the evalua-
tion of difficult integrals is avoided.2,3,12 In this R12 method 
the linear r ij-dependent terms are considered in the final 
wave function via inclusion of pair functions like 

(2a) 

(2b) 

into its CI expansion. 

We use the labels i,j, ... for occupied, a,b, ... for virtual, 
and p,q, ... for arbitrary molecular orbitals expandable in the 
actual basis, while a,{3,... and K,A,... correspond to virtual 
and arbitrary orbitals, respectively, within the complete basis. 
Operators and matrix elements are written in a tensor 
notation,13,14 Le., = :a!aq :, af'j = :a!a:aras : where 
double dots (as well as the tilde on etc.) mark normal 
products in the particle hole sense; xZ=(pIXlq) and 

Y;f=(rsIYlpq)-(rsIYlqp)· The Einstein sum-
mation convention will be implied throughout this paper, i.e., 
all expressions are summed over all indices that do not 
match the target ones on the left-hand side of equations. 

The ansatz Eq. (2) has, among others, two very attractive 
features: 
(i) One clearly sees that the additional functions are or-

thogonal to the reference function 10). 
(ii) It transparently shows that the improvement with respect 

to the conventional approach consists in a partial 
plicit replacement of the given basis by a complete basis. 
It may hence be termed a correction for basis 
incompleteness.3 ,12 In fact Eq. (2) corresponds to a wave 
function in which the pair i(l)j(2) of occupied spin-
orbitals is replaced by r]2i(1)j(2), with the part orthis 
function describable in the given basis projected out. 
After the description of some pilot calculations,3 a gen-

eral theory has been published,12 within which all necessary 
matrix elements have been derived for CI-R12, CEPA-R12, 
MBPT(2)-R12, and MBPT(3)-R12, based on a single Slater 
determinant reference function, i.e., for CI, CEPA, etc., im-
proved by inclusion of linear rij terms. In order to avoid 
difficult integrals the "standard approximation" (as variants 
A and B, vide infra) have played an important role. The 
various R12 approaches have rather successfully been ap-
plied to many-electron systems, both atoms and molecules.15 

A minor drawback of the use of pair functions of the 
type (2) is that the results are not invariant with respect to a 
unitary transformation among the occupied MOs.12 One then 
takes the best advantage of the R12 method in using local-
ized MOs. Fortunately, Klopper has found a modification16 
which is invariant with respect to this kind of unitary trans-
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formation and has applied it in the context of MBPT(2). We 
follow the same procedure. 

The main virtue of the R 12 method is that one reaches 
the basis set limit within one kind of approach, say MBPT(2) 
rather easily. In order to approach the exact solution of the 
Schrodinger equation one must as well proceed in a hierar-
chy of approximations that converge sufficiently fast towards 
full CI in the given basis. The best such hierarchy available 
at present is that of coupled-cluster CCC) methods. A combi-
nation of the R12 method with the coupled-cluster approach 
should therefore be rather powerful. Quite recently we have 
proposed this combination, where the rwdependent terms 
have been included via the exponential cluster operator. Pilot 
calculations on Be2 at the CCSD[T]-RI2 level of theory 
clearly demonstrated the power of the suggested CC-R12 
method. 17 (In Ref. 17 we have suggested the shorthand no-
tation CCSD[T] instead of the original name 
CCSD+T(CCSD)18). In the present paper we give a detailed 
derivation of the CC-R12 equations up to CCSDT-RI2, 
while MBPT(4)-RI2 (a byproduct of CCSDT-RI2), as well 
as various so-called noniterative corrections are also dis-
cussed. A diagrammatic technique is used for the derivation 
of the explicit equations. Orthogonally spin adapted equa-
tions are presented in addition to the spin-free ones. 

II. THE CC-R12 ANSATZ 

A common feature of all coupled-cluster methods is the 
exponential ansatz for the wave function 

(3) 

where in conventional approaches S = T is usually· a global 
excitation operator consisting of single, double, triple, etc., 
excitation operators 

T=TI +T2+T3+··· =ti iia/ +!.. + _1_ ti)b'k ... a 4 a I) 36 a C I) 

(4) 

We here use the tensor notation introduced previously. 13,14 
(Note that in the literature one finds other definitions for the 
t amplitudes, e.g., ti-in the meaning of our would 
not be consistent with our tensor notation). 

Via Eq. (3), the final wave function is expanded in the 
basis of all possible configuration state functions generated 
by eT • We want to extend this basis by functions similar to 
those of Eq. (2); but at the same time preserve the cluster 
structure of the final wave function. In other words we search 
for an operator .5f& which takes care of the correlation cusp, 
and which can be plugged into S in addition to T, i.e., we 
choose S = T +.98. 

The operator .:i8 is essentially of the same form as T 2 

given by Eq. (4), but with the summation over the given 
basis a,b replaced by the orthogonal complement to the lat-
ter within the complete basis a,j3. This implies that .5f& com-
mutes with T. Let the operator .98 be defined as 

. _ 1 /}"' kl 
.JB- 4" ckl.9&ij , (5) 

(6a) 

(6b) 

Irrespectively of the associated amplitude d}, .9?J is just a 
generalization of the operator in Eq. (2). If in Eq. (6b) we 
restrict the operators .1&yt to diagonal ones, i.e., .1&%1. then 
also the coefficients would be diagonal d!=CkZ, the action 
of :J8 on 10) would mean that the spin-orbital pair (kl) is 
multiplied by cklrl2 and then orthogonalized to (kl), which 
leads formally to a sum of doubly excited determinants, in-
volving a complete set (hence the labels a,j3). This would 
correspond to the use of the rl2 functions taken in previous 

31215 c . papers.' , The Lorm actually chosen III Eg. (6) means that 
(kl) is replaced by (ij) multiplied by cYtr12 [and orthogo-
nalized to (kl)]. This is in the spirit of the orbital-invariant 
r 12 approach introduced in the context of second order per-
turbation theory. 16 Then the results do not depend on whether 
one uses canonical or localized orbitals. Otherwise it would 
be imperative to use localized ones. IS Unlike for the original 
ansatz Eq. (2), now also such configuration states will be 
created via the operator eS, which result from the action of 
.98 on excited determinants (in a conventional sense). 

Let us point out that we have changed one convention 
with respect to previous papers. 12- 17 While previously we 
have regarded Ckl=d! as the coefficient of the term 
trdk,lJ, we now regard it as the coefficient of rdk,l]. 
This means that in the limit of a complete basis, C kl now gets 
the value 112 for (natural parity) singlet pairs and 114 for 
triplet pairs, while formerly it got the respective values 1 or 
112. This transfer of the factor 112 from rl2 to ckl implies a 
redefinition of some intermediates. To avoid confusion, all 
new intermediates are symbolized by caligraphical letters, 
while the old ones were represented by ordinary latin letters. 
Only for the coefficients we have not introduced a new 
symbol. 

Usually the new intermediates (like etc.) dif-
fer from the old ones (like ,Xm by a factor 2"-1 if they 
contain k factors and l cd factors. The operator .98 de-
fined by Eq. (5) is the same in the old and the new conven-
tion, while .ff1ftJ is the counterpart of the former 

We have to solve the Schrodinger equation 

(7) 

with AE the correlation energy and H N the normal product 
form of the Hamiltonian in the particle-hole picture,with 
the reference Slater determinant 10) as the new "physical 
vacuum." 

(8a) 

(8b) 

(8c) 

The choice of .913 [Eq. (5)] guarantees the orthogonality 
of the resulting functions to 10) and consequently the inter-
mediate normalization «Ol'l') = 1) . 

The traditional way of deriving the CC equations, has 
beenl9 to project Eq. (7) from· the left successively by (OJ, 
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{ol -i (Ol-if b (01 -s (Ol-i -s Thi· . aa, aab, etc., or y e , aae , etc. s IS equIva-
lent t020,21 projecting Eq. (7) from the left by (01(1 +st) or 
(010 + St)e -s and subsequent differentiation with respect to 
the amplitudes of st. (The insertion of e -§ makes the linked 
structure of the expressions transparent, but does not affect 
the results). For our ansatz with S=T+.'J7J the projection 
with (01(1 +S)t and subsequent differentiation with respect to 
the parameters etc., and c¥Z is particularly straightforward. 
We get .. 

(OI(HNes)c/O) =I1E,. 

= 0, 

The subscript C in Eq. (9) means connected. 

(9a) 

,.,.(9b) 

(9c) 

In the following it will be convenient to treat the opera-
tor formally as a doubly contracted product of two opera-
tors, namely (we use parentheses for single contractions 'and 
double parentheses for double contractions, see Appepdix A) 

(lOa) 

(lOb) 

(lOc) 

One must keep in mind that is never present without a 
and that and .98 are always contracted over two hole 

lines (k,l). By this trick one is able to treat the coefficients 
and c¥Z on the same footing. In the diagrammatic formu-

lation both and, cW, are represented by a vertex, and so is 
-kl 
Rap· 

III. DIAGRAMMATIC REPRESENTATION OF THE 
CCSDT-R12 EQUATIONS AND THEIR SPIN-ORBITAL 
FORMULATION 

The elementary constituents of the diagrams are fermion 
lines (usually vertical, carrying arrows) and vertices. (hori-
zontaI). Fermion lines with downgoing arrows symbolize 
holes (labels i,j ,k, ... ), upgoing lines with a single arrow par-
ticles lines within the given basis (a,b,c, ... ), up-going lines 
with double arrows particle lines corresponding to a com-
plete basis (a,{3,y). Horizontal fermion lines mean either par-
ticles or holes,. With a single arrow corresponding to the 
given basis (Iabelsp,q,r, ... ), with a double arrow to the 
complete basis (labels K,'A,jL, •.. ). 

A broken-line vertex symbolizes the electron interaction 
when it carries fermion lines on both sides, or the Fock 

operator if it has fermion lines only on one side. A 
double solid line represents matrix elements of the T opera-
tor etc.) or the Woperator (c¥Z), i.e., essentially the 
coefficients in terms of which the S operator is defined. A 
triple line represents matrix elements of the R operator 

Note that all vertices are antisymmetrized. 
Fermion lines may be external, i.e., be open ended and 

enter or leave the diagram, or internal (contracted) i.e.; start 
at one vertex and end on another one. Scalar quantities (ex-
pectation values) are described by diagrams without external 

Symbol Diagram 

FN :!::>--

WN :!::>--:'-c: 

Tl V 
T2 .. LJ 
Ta :1 Y 

.. 
c H 

no VJ, 
n.t 0 AA 

FIG. 1. The diagrammatic definition of operators. Horizontal lines can be 
either hole or particle ones. 

lines, one-particle operators contain one ingoing and one out-
going fermion line, two particle operators two ingoing, and 
two outgoing fermion lines, etc. 

Note that our use of double arrows (for the complete set) 
differs from that of, e.g., Lindgren22 where double arrows 
indicate active (partially occupied) orbitals. These are not 
present in the closed-shell states that we are interested in 
here. 

The basis operators are presented in Fig. 1. 
Since the number of hole labels is finite, no discrimina-

tion between single and double down-going arrows for hole 
lines is necessary. Only lines of the same type can contract. 
Contraction of a particle lirie with double arrow and one with 
single arrow leads to all ititernal line with a single arrow. 
From a wealth of .n-containing diagrams that can be' con-
structed in principle, we maya' priori exclude- those dia-
grams in which no lines with double arrows occur. Their 
contributions vanish due to the definition of SiS.' 

We restrict our consideration to T= TI + T2 + T3 , i.e., up 
to fuIICCSDT-R12. Then, in addition to the conventional 
CC scheme, the following terms survive in the expansion of 
Eqs. (9): 

o = + (0 I W N.98T,) c/ 0), 

WN.JBT1 + WN.JPT2 

+ tWN.98T\T, + &WN.98.JP)c/O), 

(11 a) 

(Ub) 

(Hc) 
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FIG. 2. CC-R12 energy diagrams. 

0 - CC(3) + (0 I- ijk "( W ,-2>+ W '-il1T + W rJil>T + lW ... :JZ> ,-2) .- cony aabc NJI7, NJO 1 NJI7 2 2 NJOJ(; 

+ tw 1 T 1 + W + W N.9llT 2T 1 + iw 
+ tWNJ8.9&T1)clo, C11d) 

o = (01.9156a¥Z(F N.:n)ciO) + (01.9156a¥ZeW N+ W NTz + W NYb 

+ WNT1 + WN.98T2+ tWN.9152 + 
+ tw N.3BTi) cI 0). (l1e) 

Here stands for the conventional contributions, that 
can be found in the literature,17,19,23-25 and that we do not 
want to give in detail here-except diagrammatically for 
Eqs. (l1a) and Cl1b). A compact formulation of the CC-R12 
equations to be given later (on Fig. 9 in terms of some inter-
mediates as defined in Fig. 8) will also include the conven-
tional part. 

We can now start to represent Eq. (11) by diagrams. The 
diagrammatic representation of Eq. (l1a) is seen on Fig. 2. 
The first three diagrams (a:) to (c) represent the conventional 
result and the fourth one Cd) the rl2 correction. The analytic 
expression corresponding to the first line of Fig. 2 is 

(12) 

while the second line on Fig. 2 illustrates that the diagram 
(d) is a contracted product of the "amplitudeless". dia-
gram (e) 

d3.1 d3.2 d3.3 d3.4 

(13) 

and the diagram (f) representing the $if' operator defined by 
Eq. (lOb). 

The conventional way to solve the CC equations (11) is 
by iteration. One rewrites, e.g., Eq. (9b) for TI and T2 , that 
they become 

(14a) 

(14b) 

One sets all variables ri, etq., on the right-hand side (r.h.s.) 
of Eq. (14) equal to 0 -and solves for etc. Then one 
inserts the variables from the previous iteration on the r.h.s. 
of Eq. (14) to get new etc., and one proceeds until self-
consistency. 

It is, of course, not compulsory to choose this' iterative 
procedure. However, if one does so, as is usually the case, 
one will have to evaluate 6.E in every iteration. It is there-
fore recommended to evaluate the ij/"fj, as given by Eq. (13), 
and to store them before entering the iterations. We shall 
encounter more such expressions that are calculated prior to 
the iteration procedure. 

The equations for T 1 are represented diagrammatically 
on Fig. 3. In addition to the part known from conventional 
CC theory there are r12-containing diagrams. The parts of the 
diagrams d3.2 and d3.3 on Fig. 3, with identical lines enter-
ing and leaving the f vertex, just represent the l.h.s. of Eq. 
04a). If the Brillouin theorem holds, the diagrams d3.1 and 
d3.5 vaoish and for canonic Hartree-Fock orbitals also the 
off-diagonal parts of d3.2 and d3.3 (with different lines at the 
f vertex) vanish. 

One recognizes on Fig. 3, like on Fig. 2, that the r12 
terms (involving triple vertices) contain a part that is inde-
pendent of the coefficients etc., and cg, and that can be 
evaluated and stored before the iteration start. 

The full graphical representations of Eq. (lIc) and (Ud) 
become very lengthy. We shall later give them in a compact 
form. 

d3.5 d3.6 d3.7 d3.8 

+ + tN-l + + U'N + UU . .Y + we v 
d3.9 d3.10 d3.11 d3.12 d3.13 d3.14 

+ + + [:y + tiJ + Q'y.+. 'i::fJU 
d3.15 d3.16 d3.17 d3.18 d3.19 d3.20 

FIG. 3. The diagrammatic form of Tl equation. 
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d4.1 d4.2 d4.3 

d4.4 d4.5 
(a) 

d4.6 d4,7 

d4.B d4.9 d4.l0 . d4.1l 

d4.12 d4.13 d4.14 

d4.15 d4.16 d4.17 

(b) 

FIG. 4 . .JB containing T2 diagrams within the CC-RI2 method. (a) Diagrams 
that remain in the standard approximation. (b) Diagrams that vanish due to 
the standard approximation. 

The R12 diagrams that complement the equations for the 
T2 and T3 amplitudes are collected in Figs. 4 and 5, while the 
diagrams arising in Eq. (lIe) are in Fig. 6. Before coming to 
the more compact form of Eq. (lIb) to (lle) (which will be 
found on Fig. 9 in terms of some intermediates defined on 
Fig. 8) some general considerations are necessary. 

All the diagrams in Figs. 4 and 5 contain summations 
over complete sets of virtual orbitals. Closed expressions for 
these sums are possible, but they involve matrix elements of 
2-particle, 3-particle or even 4-particle operators, as dis-
cussed elsewhere. 12 Such an access is prohibitive. Fortu-
nately, what we have termed the standard approximation ap-
pears to work nicely. (At this point we need not yet 
discriminate between the standard approximations A and 
B I2). 

The standard approximation is based on the assumption 
that the one-particle basis is large enough such that 
(a) the Hartree-Fock equations can be assumed to be satis-

fied exactly; 
(b) sums over a complete one-particle basis in expressions 

like are well approximated by a sum in the 
given basis, i.e., (for A and B spherically symmetric 
two-particle operators like r 121) 
A kJLB nm -Akp B nm 

ij IJL - ij Ip· (15) 

For i,j,k,l,m,n referring to occupied MOs, the sum over f..L 
corresponding to a complete basis can be replaced by the 
sum over p corresponding to the given basis. For details see 
Appendix C. 

The justification of the standard approximation lies in 
the fact that it becomes exact for atoms provided the basis is 
saturated up to some finite I value depending on the case 
(e.g., l=1 for He, Be or 1=3 for Ne, ArI2). There is further 
evidence26 that for molecules the truncation error at this level 
decreases exponentially with t. The unsaturation error within 
a given 1 goes as exp( -a.Jn) with the basis dimension n,27 at 
least for an even-tempered basis. 

Equation (IS) is valid also for a more general case (see 
Appendix C). This implies that all diagrams with only one 
double-arrowed line between two vertices will vanish (i.e., 
the diagrams d3.17 to d3.20, those from Figs. 4(b) and 5(b) 
as well as diagrams d6.22-d6.34). 

The standard approximation allows us further to write12 
(see also the Appendix A) 

(16) 

for A either r 12 or g 12 = r i-i , respectively. with the result 

s.a. 
9'/" Ij = 19-a{:Jj?iJ = Sf _lg-pqrlj 

rs 2 rs a{:J rs 2 rs pq' 

(17a) 

(17b) 

(17c) 

Hence, any partial diagrams consisting of two vertices con-
nected by a pair of lines with double arrows are easily evalu-
ated. While the remaining containing T diagrams [d3.15-
d3.16 on Figs. 4(a) and 5(a)] are of the latter type, the 2? 
diagrams that remain from Fig. 6 can be divided to three 
categories. 
(i) Diagrams that contain exclusively pairs of equivalent 

double arrowed lines as mentioned above [all from Fig. 
6(a), except those under (ii)]. 

(in Diagrams coming from connected :J8 clusters with in-
equivalent double arrowed lines (d6.2, d6.6, d6.ll, 
d6.12). Their evaluation needs some nontrivial tricks12 
as outlined in the Appendices E and F. 

(iii) Diagrams originating from disconnected i.982 clusters 
which do not contain equivalent double arrowed lines 
residing on a single vertex (d6.20, d6.21). These cannot 
be factorized within the actual basis and. would lead to 
four-particle integrals. As it is shown in the Appendix G, 
these contributions can be neglected within the standard 
approximation A as well as B, they decrease with 1 as 
(l+i)-12. 
Let us turn our attention to "critical" terms belonging to 

category (ii). The diagram d6.2 means explicitly 

d6 2 - 1 ,JZJ mn ij • 
• - IJ.J kl C mn ' (18) 

i.e., there is an f insertion between two .'J& factors. The 
evaluation of products like is discussed in Appen-
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dS.l dS.2 dS.4 
(a) 

t=J-_V 
dS.S dS.6 dS.7 dS.8 

eAd eAd cfrb cfrb t=fb 
dS.9 d5.10 dS.ll d5.12 d5.13 

dS.14 dS.lS 

d5.20 

d5.16 

d5.21 d5.22 

(b) 

dS.17 d5.18 d5.19 

d5.23 dS.24 

FIG. 5 . .:J8 containing T3 diagrams within the CC-R12 method. (a) Diagrams that remain in the standard approximation. (b) Diagrams that vanish due to the 
standard approximation. 

dix E where a slightly improved approach to that of Ref. 12 
is presented. If the extended Brillouin theorem is assumed to 
hold one can arrive af3 

8.n . 
.;jJ _q/"_ q/"t +'U+ 'Ut ¥ <7+ <7 t +y I • l 2\ 

+ Iud 
..T IJ' 

() rlgmk+..% = (47 t)i} - 'J I} rm 'J rm \«' kl , 

=(yt )Ii 
Ij 'J J m i} m kl ' 

1 

(19a) 

(19b) 

(19c) 

(19d) 

(1ge) 

The explicit expressions of the diagrams d6.6, d6.11, and 
d6.12 listed under (ii) contain products of the type 

(20a) 

where we have used a semicolon in the sub- and superscripts 
to distinguish s,l as indices which are not equivalent with i,j 
or m,n. There is a one-sided g insertion between two :JB 
factors. 

We must now specify the variants A and B of the stan-
dard approximation. While so far we have only neglected 
terms that vanish exactly in the atomic case provided that the 
basis is saturated up to a certain I value (and which probably 
decay exponentially with 1 in molecules), we are now 

obliged-as discussed previouslyl2-to neglect terms that 
decay like l-m with m sufficiently large. To be better than in 
conventional CC without rtl terms, where the energy incre-
ments go as Z-4, m must be larger than 4. The standard 
approximation A is characterized by m=6, and the standard 
approximation B by m =8. We have so far used the standard 
approximation A only in the context of second order pertur-
bation theory, where it makes sense, since the computational 
effort for approximation B is comparable to that of third 
order perturbation theory. It is hence more economic to use a 
larger basis to reach the basis set limit than to apply approxi-
mation B. In all approaches going beyond MP2 we have 
always used approximation B. 

It has been shownl2,28 that the terms involving exchange 
integrals in Eq. (20a) go as (L -8 and can be ne-
glected within the standard approximation both in variants A 
and B. The remaining terms go as (L + -6. Neglecting them 
implies an error O(L -5). The "recommended" approximate 
expression for Eq. (20a) in the standard approximation B is 
as follows (see Appendix F) 

(p;lj;s = '1Y lig rs + 41£ I} grs + '1/ rig in + irgin """"kl;n /F rl kn ,fjP kr In ,Y- kl rs ,y' kl rs 

+ rq ps-ii 
rklgrnrpq' 

(jl//j = 41£ = uY'ij _ 1(r-2)/J rs !J?' lJ rs 2 rs . 

(20b) 

(20c) 

Irrespectively of which approximation for .sfJ and £; is cho-
sen, it is important that· all .9Z!-containingdiagrams that sur-
vive within the standard approximation are finally factoriz-
able in terms of the given basis and the evaluation of no 
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d6.! d6.2 

d6.9 d6.10 

d6.IIi 

d6.20 

d6.26 

d6.31 

d6.3 d6.4 d6.1i 

d6.11 

d6.16 

d6.21 

d6.27 

d6.32 

d6.17 

(a) 

d6.12 

d6.22 

d6.2S 

(b) 

d6.6 d6.?' d6.S 

d6.13 d6.14 

d6.IS d6.19 

d6.23 d6.24 d6.21i 

d6.29 d6.30 

d6.33 d6.34 

FIG. 6. go amplitude diagrams. (a) Diagrams that remain in the standard approximation. (b) Diagrams that vanish due to the standard approximation. 

difficult three- or four-body integral is Noting this, 
we can follow the established procedure of using intermedi-
ate effective interactions. 18,23,24,25,29 Unlike in the conven-
tional CC, one can now also define amplitude less, intermedi-
ate interactions which need not be recalculated in each 
iteration. These result from the contraction of .980 with F N or 
W N as shown in Fig. 7. Their evaluation has been already 
mentioned above, except for 

g> ij f?a{3g-y8 f?ij 
mn 4 mn a{3 y8 (21) 

which can be easily expressed using again just Eq. (16). For 
convenience, we have collected algebraic equivalents all of 
these amplitudeless intermediates in Table I, together with 
their spinfree counterparts as we will use them in Sec. VII. In 
Fig. 8 we complete the list of intermediate effective interac-
tions as we have defined them for the use in the final CC-

R12 equations (Fig. 9). Some of these intermediates are of 
course the same within the conventional approach. We 
present them just for completeness. 

Explicit formulas in terms of a spinorbital basis are in 
Tables II and III. According to our previous classification of 
the CC variants,18,30 these equations correspond to the full 
CCSDT-RI2 method, CCSDT(4)-RI2 is defined as a method 
in which nonlinear terms (via intermediates) with T3 are ne-
glected from Eq. (III.3), in CCSDT(3)-R12 all terms with T3 
contracted with W N are neglected from Eq. (III.3) and from 
pertinent intermediates. CCSDT(2)-R12 corresponds to the 
further neglect of T 1 contailling terms in the latter equation 
and, finally, in CCSDT(1)-RI2 only linear T2 contributions 
are preserved, since there is no valid non-zero contribution 
from the linear .98 contracted with W N •. Thus for CCSDT(1)-
R12 the T3 amplitude equations do not differ from the con-
ventional ones. 
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Symbol. Diagram Definition Symbol Diagram Definition 

Vii ro lrL TWT (vt)IJ W JC!L 
Xii 

kl Fi 0 'Pi; 
lei H 8 

zii;r 
kl;o W EB Bii 

"I F9 0 
FIG. 7. The diagrammatic definition of S -amplitude independent effective intermediate interactions. Horizontal lines can be either particle or hole ones. 

As it is seen from Eq. (IlIA), the amplitudes of Win 
each iteration can not be expressed in such a simple way as 
the T amplitudes. Unlike for the T amplitudes it has turned 
out to be efficient to solve the set of Eqs. (IlIA) in each 
iteration separately until convergency (Le., with fixed inter-
mediates). A convenient way appears to be a (sub)iterative 
solution in which the amplitudes in the (k + I )st subiteration 
are given as l6 

ck+1 = _..;&-lck (22) . 

c includes all terms from the r.h.s. of Eq. (IlIA). 
From a formal point of view (see Appendix E) a part of 

the r.h.s. of Eq. (IlIA) should be the shifted to the lett side, 
namely, that which comes from the contraction of .98 with 
.:TN' TIns means we have to replace .:J9 by 

,ji, kl (. ') _ ,0 kl _ UY' kl (f i +j1) 
";J /lin XJ -.;;u /lin .;;c> /lin i j' (23) 

The amplitudes of Ware now calculated in each iteration as 
(k+l) __ /io-I(,,)-(k) (1.4) clj -.fi:J IJ elj , _ 

where c differs from c just by the last term in Eq. (23). The 
cij(cl}) are columns of the matrix c(c) for the pair ij. In the 
starting macroiteration we set c=O, and the initial c is just 
represented by . 

Although Eq. (24) leads in most cases to faster conver-
gence than Eq. (22) it is not yet sure whether Eq. (24) is 
always recommended. While in the limit of a complete basis 
BUj) is a positive definite matrix, this is not necessarily so 
for a rather small basis especially if large orbital energy dif-
ferences f;;: - are present. Further studies are necessary ... 

IV. COMPUTATIONAL ASPECTS 

Let us first examine the intermediate effective interac-
tions which must be recalculated in every iteration. In Table 
n one can find three contributions thecompu-
tation of which go roughly as -ng (n.l), as -nriCno + nv)2 
(11.2 second term) and as -n6 (II.3 third term) where no and 
lZv are the number of occupied (no) and virtual (nv) spinor-
bitals, respe.ctively. The T-amplitude Eqs. (III.1 to IIIJ) con-

tain only one term (Le., the last one in Eq. (II.l) which scales 
as n6nu . If one realizes that the most time-consumming steps 
in the conventional CCSD equations go as - and 
- there is indeed just a tiny change in the computa-
tional demands for the T amplitudes as compared to conven-
tional calculations at the CCSD level. 

Consider now the W-amplitude equation (llI.4) in which 
the most time consumming steps involve a seven-index pro-
cedure (first two terms with £).In the worst case this means 
-ngnu (note that further factorization in the £ and Tl con-
taining terms is assumed), For the R12 calculations nearly 
saturated basis sets for the low I values have to be used. 
Hence, typically or nu>n5. This means that despite 
the seven-index procedure, the calculation of the W' ampli-
tudes requires a very minor part of a single CCSD iteration. 
At the CCSDT(n) levels the differences in computational 
demands for R12 and conventional approach practically dis-
appear, since the calculation of T3 amplitudes highly domi-
nates in demands. 

Let us briefly return to the intermediate effective inter-
actions that do not depend on the amplitudes.· As soon as 
appropriate r12' r2, and u integrals are available, thecalcu-
lation of cpo and .5J,' is rather trivial. The calculation of £, 
needs a n7 procedure, more precisely which 
is comparable with the calculation of triples in one iteration 
of CCSDT(1)-R12. The calculation of all needed integrals is 
nowadays not a real problem, since very effective algorithms 
have been implemented by Klopper and Rohse.31 Since the 
computation of the AO integrals ma!<es only a small fraction 
of the total computer time spent in general for correlation 
calculations (like. CC or CI), the additional requirement to 
calculate rl2 (or ud does practically not count. 

If one would apply approximation A in CCSD-R12, the 
£-containing terms in Eq. (lIlA) could be neglected. The 
last two terms in Eq. (IlIA) have a dependence; but 
at the same time they contribute first at fifth order in the 
energy (in the sense of MBPT). Hence, they could be most 
probably. neglected safely also in approximation B. This 
would save the procedure needed to calculate the per-
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TABLE 1. Explicit form of intermediate effective interactions from Fig. 7 in 
spinorbital basis Ca) and within the orthogonally spin adapted theory (b)! 

(. f:>'/"t)RS( oRS( ) 1 PQ( ) RS t ) 
f lJ 1£ - 0lj 1£ - 2 rlJ 1£ gpQ\1£ 

;g'/j = 1 k"s i?IJ .:.. 1 i-pqp} 
,-- kI 2 kl ap kl 2 kl pq 

'f l-p ._ ..•. a. j .,' I} iJ 9' = - R a g-Yo R'j = - - reqw' ="" reqg-rs i- - i-kl 4 kl aJ3 "16 2 kl pq 4 kl pq rs kl 

S.R. 

.Z'b:{CI£) = 

+ 1/ + 
pfJ(I£)=.'J?Ifs(I£)=.%Ifs(I£)- t (r2 )Ifs(l£) 

/I/i =RaPni5 l j ':,'-97,/j -(9'Tt)l} +t6 ij +(t6 t)iJ . mn mnJcr''YP_ mn rnn mn mn 

+ t 
w ij _;l. oif _ ! -ii . 
.. mn - 2 2 r mnUpq, 

JJ - + U 

+ + 

(Lla) 

1£=0,1 (Ub) 

(1.2a) 

1£=0,1 (1.2b) 

(1.3a) 

1£=0,1 (I.3b) 

C1.4a) 

1£=0,1 (l.4b) 

JL=O, 1 (1.5b) 

(1.6a) 

(t) rfB,cI£)uVQ(I£); 

+ 
. JL=O,1 (I.6b) 

aEinstein summation convention is assumed, i.e., the expression is summed 
through all indices that do not match the target on the left-hand side. 

1 
ii=--2 rdVj-Vz); r12 

tinent £; intermediates at the beginning, as well as the ngnu 
step in every R12 subiteration. This approach has been used 
in our pilot calculations. 17 To use it routinely, still more nu-
merical evidence is needed. 

V. MBPT(2)-R12 AND MBPT(4)-R12: (MP2-R12 AND 
MP4-R12) 

In the standard nondegenerate Rayleigh-Schrodinger PT 
with the M6ller-Plesset partition of the Hamiltonian, i.e., 

with HF reference, W N is formally the perturbation. Then for 
the first- and second-order corrections to the wave function 
one obtains (note that E I =0 in this case) 

- F NI1Jr(1»=QwNIO), (25 a) 

- F NI'I'(2»= QW NI'I'(1», (25b) 

where Q is the projector into the complementary subspace 
orthogonal to the reference. Within the conventional ap-
proach 1'1'(1» and 1'1'(2» are expanded in a basis of Slater 
determinants. In the spirit of our R12 ansatz\fJ'(n) is ex-
panded in the basis of all possible functions generated byes. 
The pertinent nth order expansion coefficients t(n) and c(n) 

can be obtained from respective projections of Eqs. (25) onto 
the latter subspace. It follows then, that t(l) is not affected by 
..9B and the first order c(l) are determined by the diagrams 
d6.1-d6.3. For the canonical HF reference we get 

(26a) 

_1 &, mn( .. ) ijO) = (fo/"t)ij = (0/" kl 1J cmn 7V kl T ij' (26b) 

At this point, i.e., limiting oneself to first order in 
S=T+:J75 and second order in E, we may alternatively con-
sider approximation A, in which.;iJ given fully by Eq. (E.20) 
is reduced to 

It might be more consistent to include as well the terms in 
!Sf, but this has so far not be done as the default option 
within the standard approximation A. Noting that in the limit 
of a complete basis 

1 
.';/j- 1'7/---+ 2' for natural singlet states. 

(26d) 
1 

.Sir 1 r -+ 4" for triplet states . 

a good diagnostic of near completeness of the basis is the 
ratio 

Tr( '7") ITr( JB) (26e) 

taken separately for singlet and triplet pairs. 
R12 corrections to the second order T amplitudes origi-

nate in the diagrams d4.2 and d4.4 at the levels of singles 
and doubles, respectively. There is no R12 second order 
wave function contribution at the level of triples within the 
standard approximation. The projection of the l.h.s. of Eq. 
(26b) onto the subspace of the R12 functions is given by the 
diagrams d6.4-d6.7 (provided that amplitudes in these dia-
grams are of first order) while the r.h.s. of the pertinent equa-
tion is again given by d6.1 and d6.2 (with second order am-
plitudes). Hence, 

(27a) 
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Symbol Diagram Definition 

xt{ F! 
ali r. J--L + hl + u + -<rr+ --y-l.-
:Ff. F l r P=1J. OJ CO }--O - + + v- + + + 

gcd 
ab 1=9 }--{ + 0 + + r-1 

:FC 

" F }- + + (D + 4--0 + U-1 
.1", A- + A--O 

g!Hw} 9 "---A + + + A-A 

:r!{ + J+ y 

I!1 'trt + fi + '1 

pi A--{ + 

.ccd ka Fl A--{ + A--J 

.cic 
"k 

'f._-A + 

FIG. 8. The diagrammatic definition of S-amplitude dependent effective intermediate interactions. Horizontal lines mean that modifications with either hole 
or particle lines are possible. Superscripts (subscripts) denote incoming (outgoing) open lines from the left to the right. 

(27b) 

(27i;;) 

(27d) 

whereas second order coefficients formally due to quadruples 
are given as products of first order ones. Starting the coupled 
cluster calculation with zero amplitudes in the first iteration, 
the 11 in Eq. (14a) vanishes, while Eq. (14b) provides 
and Eq. (I1I.4) reduces to Eq. (26b). Similarly, the CC equa-
tions can be easily modified to obtain the amplitudes of Eq. 
(27) in the second iteration. Then, using Wigner's 2n + 1 rule 
and the linked diagram-theorem we get the energetic contri-
butions 
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+ "--O+{n+fi..y- A+wn = 0 
(9.1) 

= 0 
(9.2) 

= 0 
(9.3) 

0 
(9.4) 

FIG. 9. The diagrammatic form of CCSDT-RI2 equations using the intermediates from Fig. 8. For the arrowless open lines both possible modifications must 
be accounted for. 

AE(2) - (AE(2» 
L..\. D - l..l. D cony' 

AE(2) = l(;)'/" klCijlll 
u . .n 47'" ij kl ' 

A (3) I -abc i/2» uED ="4gij tab R12, 

AE(3) _ 1(;)'/ klc ij(2)' 
u .98 - 4;;1" ij kl ' 

(28a) 

(28b) 

(28c) 

(28d) 

(28e) 

(28£) 

(28g) 

TABLE II. Explicit forms of the intermediate effective interactions from 
Fig. 8 in spinorbital basis.' 

(II. I) 

.T % = + ! 9'/' + ! (II.2) 
yi =f i + ""t i + 1 '7/'m.nc1j + 1 ij +g-ic.ti. (II.3) k k J k c 2 kJ mn 2 k; cd kJ C 

t (II.4) 

(II.5) 

.9k= fl + (II.6) 

(II.7) 

+$ - + t (II.8) 

t 
- ($ -:?J t (II.9) 

(n.lO) 

(II.ll) 

(II. 12) 

·See Table I. r = t:Jb + - In (II.7) w may have the values t or 1. 

AE(4)- (AE(4» u T - u T cony , (28h) 

(28i) 

(28j) 

(28k) 

where .%" (1) means that it is calculated in terms of c(1). We 
have further used 

(29a) 

(29b) 

(29c) 

The subscripts on IlE distinguish contributions due to 
the pertinent excitations or the R12 correction (for ..92?). 
just stresses that E<J) originates from the product of doubles . 
The last two contributions come also formally from qua-
druple excitations but originate from the product of ..92? with 
T2 (or .9B). Closing the diagrams d4.6 and d4.8 with T2 and 
d6.14, d6.16 with W (assuming the appropriate first order 
amplitudes) one obtains Eb'1, while can be obtained 
by closing diagrams d6.18 and d6.19 with W. We note that in 
Eqs. (27) we have not considered contributions that vanish 
within the standard approximation. 

The only level at which the conventional energy com-
pletely decouples from the cusp correction is the MBPT(2)-
R12, i.e., in the initial cycle of the CC iteration procedure. 
Then both the conventional correlation energy and the cusp 
correction can be independently calculated. 
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TABLE m. Spinorbital form of the CCSDT-R12 equations." 

+ j7 + + t + t :If" 
= (.Y + Y - (Y it!i + Y +:9' 

+ 2: 
PijPab 

+ $ + t ($ +:g 

DiikabctlJk = "V Jrdlik "V Jr1t1jk 
ljkabt: abc,L:..J a dbc 1 abc 

P:bc P7jk 

+ 2: 2: 

(m.!) 

(m.2) 

P;bC (m.3) 

t.;.i)' - (097 + ('l/t)ifz+ t ;y 
+ 

t 
+ t (rnA) 

·See Table 1. P R •• means permutations of pertinent indices, while p (in m.2) 
denotes the total parity of the permutation. means permutations with 
positive parity. See Table II for defirution of intermediates. §r -n+ .. - r.-!z-··· 

VI. NON ITERATIVE CORRECTIONS TO THE CC-R12 
ENERGY 

After the CC calculation at a specific level of theory it 
has turned out to be efficient to approximate the energetic 
contributions due to certain types of missing higher excita-
tions by their MBPT-like counterparts, using the available 
CC amplitudes instead of those resulting from perturbation 
theory itself. These contributions either complete the energy 
to be correct to the certain order of MBPT or approximate 
the higher version of CC by adding the most important miss-
ing terms. To the former type belong, e.g., T(CCSD) [i.e., the 
difference between CCSD[T] and CCSD]18 and fifth order 
corrections32,33) to the latter one the frequently used 
CCSD(T).34 As it is well known, 

(30) 

completes the energy to be correct to fourth order (in terms 
ofMBPT). 

N7)2] 1 0) (31) 

Nothing is changed within the R12 approach since the linear 
(W N.fi3) contribution to T3 vanishes due to the standard ap-
proximation. It means that T(CCSD) is only indirectly af-
fected by .98 via T2 at the fifth-order level. In addition to 
T(CCSD), CCSD(T) includes a fifth-order term 

(32) 

While in CCSDT-l (exactly only at the fifth-order level) this 
term as well as its hermitian conjugate appears, CCSD cov-
ers only one of those terms?3;34 Hence, CCSD(T) represents 
an approximation to CCSDT-l. Since the lowest (i.e., second 
order) order contributions to T I originate from the contrac-
tion or W N with T 2 as well as with (see Table III) the 
change in on going from conventional to Rl2 may be 
expected to be relatively larger. However, compared to the 
conventional CC method, there is still no formal change as to 
the calculation of CCSD(T) as soon as the amplitudes are 
available. 

Because of its computational complexity, it is less com-
mon to correct for the rest of the fifth-order terms which 
have their origin in connected triple and quadruple 
excitations.32,33 Let us very briefly mention how these cor-
rections would be affected within the R12 theory. 

Starting from converged CCSD, the final energy is given 
as32 

A _ AE AE[5] A [5] AE[5] AE[5] I-lEconv-1-l CCSD(T) + I-l TT + I-lETD + I-l QQ + I-l QT' 

The R12 approach will include additional terms 

='LlEconv+ «01..98 tT1w N7)2] 1 0) + h.c.) 

+ (01.9ll tT1(W NT 2..98)c\O) 

t..98 t(WN..98.9ll)c1o), 

(33a) 

(33b) 

while other possible terms vanish within the standard ap-
proximation. Of course, in Eq. (33b) "conv" means formally 
the expression (33a) with the amplitudes from CCSD-R12. It 
is not the purpose of this paper to derive a more explicit form 
of Eq. (33b): Lenis remember that for the calculation of the 
noniterative corrections the amplitudes of Tt are assumed to 
have the same values as the amplitudes of T. 

VII. ORTHOGONALLY SPIN ADAPTED FORMULATION 
OF CCSDT-R12 

The spin adaptation within the coupled cluster theory has 
been a topic of several recent and older papers.35- 39 We es-
sentially followed the orthogonally spin adapted theory as it 
was presented by Paldus et al. 36 and by Kutzelnigg.37 The 
theory is based on the projection of Eg. (7) onto an orthogo-
nal set of spin-adapted excited configurations which, for the 
closed shell case (singlet states), result from 10) through an 
action of the following excitation operators (capital letters 
will label the spinfree orbitals): 

EABCO) -l(E-AB + E-BA) IJ -2 IJ IJ, 

EAB( 1 ) = 1(E-AB - EBA) 
IJ ·21J IJ' 

(34a) 

(34b) 

(34c) 
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EABC(l)-li') EABC+2EBAC_ EBCA_ jJ;CAB_ EACB 
UK - UK UK UK UK UK 

- jJ;fllh .?"E{O,O, H, . (34d) 

E ABCC 2) - vj (- E BCA + jJ;CAB _ EA CB + jJ;CBA) 
UK - 6 UK: UK UK UK 

7=={1 0 i} ... "2 , (34e) 

EABC(3) _\11 (+ E BCA _ E CAB _ E ACB + E CBA ) UK - 6 UK lJK UK' UK 

(340 

EABC(4) - Ll2EABC _ 2EBAC _ jJ;BCA _ ECAB + EACB 
UK - 6\ UK UK UK lJK UK 

(34g) 

E ABC(5) -li E ABC _ E-BAC + E BCA + E-CAB _ E-ACB 
UK - 6\ UK UK UK UK UK 

(34h) 

where the spin-free counterparts of the excitation operators 
are [in Eq. (35) a,f3 are exceptionally related to spin]37 

(35) 

The parameters in parentheses are connected with intermedi-
ate internal spin quantum numbers. 0 and 1 for biexcitations 
correspond to intermediate singlet and intermediate triplet 
coupling, respectively. .9""=={ S 12, S 12'S i} distinguishes the 
five linearly independent triple excitations with SI2(SI2) be-
ing the intermediate spin quantum number for the first two 
holes (particles) while Si denotes the total intermediate spin 
quantum numbers. All configuration states defined by the 
operators (34) are essentially the same as those from Ref. 36, 
except for the normalization. Since the final equations are 
simpler, we have omitted both the normalization due to the 
multiplicity and due to the repeated indices. 

Operators like those defined by Eqs. (34b) and (34c), but 
normalized differently have also been symbolized as 111B and 
if/, respectively.37 An analogous notation has been used for 
the integrals of type (36). 

Amplitudes corresponding to spinfree configurations 
will be denoted similarly as operators in Eq. (34) [i.e., with 
suffix "(i)"]. It is useful to define symmetrized (antisymme-
trized) integrals of two electron operators, corresponding to 
intermediate (unnormalized) singlet (triplet) states 

I,RS (0) - yRS + ySR 
PQ - PQ PQ' 

YRS(l)_yRS _ ySR 
PQ - PQ PQ' 

(36a) 

(36b) 

Then the HN can be redefined37 (Greek letters in the follow-
ing two equations refer to spin-free orbitals within the com-
plete basis): 

FN= w N= + 1 
(37) 

Similarly the spinfree operator .'JB is given as a sum 

Although the so-called nonorthogonally spin adapted 
theory35 seems to be more transparent, the orthogonally spin-
adapted theory leads directly to an efficient algorithm. The 
reason is that amplitudes and intermediates possess the same 
symmetry properties as the orthogonally spin adapted states 
do. Actually, to achieve the optimal algorithm within the 
nonorthogonal spin-adapted theory such (anti)symmetriza-
tions are used.4o Orthogonally spin-adapted theory works 
with a minimal number of amplitudes which in the case of 
triples means reduction from six amplitudes handled in the 
nonorthogonal theory to five linearly independent amplitudes 
belonging to a given set of indices (IJK,ABC).36 

. Concerning the theory outside the R12 context, the 
reader is referred to the above mentioned original papers. 
However, before giving explicit equations it is useful to re-
mind the symmetry properties of the amplitudes. For the T '}. 
and 'l? amplitudes we have 

tU (0) _ll (0) - tIl (0) - tIl (0) AB - BA - AB - BA ' 

tU (1) - -tlJ (1) - _. tll (1) -ll (1) AB -. BA - AB - BA ' 

ef/(O) =eff(O) = e'j/(O) = e7f(0), 
cf/( 1) = I) = -c'jp( 1) =e;f( 1). 

(39a) 

(39b) 

(39c) 

(39d) 

The symmetry properties of the intermediate doublet type T3 
amplitudes (i = 1-4) are not that straightforward, except for 
permutations of the first two hole (pru:j:icle) indices 

{tUK (i» =(-1)PABS 12( _1)p[JS12t lJK (i). (40a) \ ABC PABP[J . ABC 

For other permutations the result is given by linear combina-
tion of doublet states (cf. Ref. 36) 

1 ' \11 
tUK (i) = - - t lJK (i) - (-1 )S{2 - t lJK (j) (40b) BCA 2 ABC 2 ABC ' 

1 . V3 
tUK (i)=- - t lJK (i)+(-1)S{2 - tABC(J') CAB 2 ABC 2 UK ' 

j=i+2( (40c) 

(40e) 

s f2esiz) denote S 12(S d corresponding to the ith configu-
ration. Combining Eqs. (41a)-(41e) the result for any per-
mutation of indices can be easily obtained. The quadruplet 
configuration fulfills the trivial permutation symmetry rela-
tion 

(400 
where the subscript "P" means any permutation of the indi-
ces UK; ABC and p is the parity of the permutation. Be-
cause of the symmetry properties, only the T3 amplitudes 
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TABLE IV. Spin adapted intermediate effective interactions." 

.:l'¥[.(i)= 

! t 
+ + 

f k+ ! 

"3' fff(i) = gfff(i) + t gkfU) r - + 
:Tf=f f-f t (gkfCO)r ftco)+ 3gkf(1)rftCl) 

+ t (gff(0)+3gif(l»tt 

k+ t (gkfCO)+3gkfCl»tt 
w "2 

- gkfU)(wtfD+ 

gfKCi)= ;y;fIli) + (-I ) iP/Jd.2' 
Pu 

'") 

+ r7ClJ C')+ - CVc lJ[. (3'+1) .:r KtAC l 37 gK[. t ACD l 

+2itfEv(3i+2» 

(IV.l) 

(1V.2) 

(IV.3) 

(IV.4) 

(IV.5) 

CIY.6) 

(IV.7) 

(IV.8) 

t (-I )iPABd 
PAB 

+ -$ 

2 
+ gfiCi)tb- J1 

.:Z"iW) = + 
:L = 

::n1:C i) = + gff (i) th 

(IY.9) 
(IV. 10) 

(IV.ll) 

(IV. 12) 

"i=O, 1 for intermediate singlet and triplet, respectively. 
r fB(i)=tfB(i) + See also Tables I and III. In (IY.7) w 
may have the values 4 or 1. 

with or need to be calcu-
lated. As mentioned, for convenience we work with unnor-
malized amplitudes. Further, in Tables IV - V we also use 

t + 1 ), (41a) 

(41b) 

both for intermediates and amplitudes. 
The spin "preadaptation" of the intermediate effective 

interactions yields what is given in Table IV and the final 
orthogonally spin adapted CCSDT-R12 equations are dis-
played in Table V, while the energy contribution (12) be-
comes 

I 

+ L (2S+ 1) 
I,A s=o 

+ ( I)'" wff(s)ci',(S) } , (42) 

where T is defined in Table IV. With the use of analogy from 
Thbles IV and V and Eq. (41) it is rather straightforward to 
express the fourth-order energy contributions from Eqs. (28) 
which we leave to the reader. Perhaps, it will be appropriate 
to give the energy contribution due to triples 

LlEt4) = + ± (2S i +l) L (!.)OJJ(!.)O'4Bt1ft2) 
i=[ 2 2 

( .) UKABC ABC2)(.) X l DUKABCtlJK .l. (43) 

We are not going to analyse the equations for the T 1 and 
T" amplitudes as to the computational performance. Essen-
tially, the same efficiency can be achieved as described in 
Ref, 40. However, due to the permutation symmetry proper-
ties of the amplitudes inherent to the theory no additional 
symmetrization is necessary to obtain the theoretical peak 
performance algorithm. The same is valid for triples. It is not 
only the fact that one needs to calculate just five linearly 
independent amplitudes, but the inherent symmetry makes it 
possible to improve our previous algorithm28 quite signifi-
cantly. Although this has been stressed already before,36 a 
real comparison has not been made, It concerns mainly the 
most time consuming step, the contraction of T3 amplitudes 
with pp-pp type intermediates. The number of floating point 
operations (FPO) in this case is reduced from in Ref. 
28 to i.e., by more than 25%. Similarly, the theo-
retical number of FPOs, for the contraction of hh-hh type 
intermediates with T3 amplitudes is reduced from to 

Less theoretical efficiency improvement is 
achieved for the contraction of ph-ph intermediates with T 3 , 

namely, vs (i.e" 12.5%). 

VIII. CONCLUSIONS 

In this paper we have presented the UHF and orthogo-
nally spin adapted coupled cluster theory in which the inter-
electronic correlation cusp is treated via the inclusion of the 
interelectronic distance into the exponential ansatz. This is 
an extension of the use of the so-called R12 approach pro-
posed in recent years by one of us together with Klopper and 
others?,3,12,13-17 A diagrammatic technique has been used to 
derive the CC-R12 equations with inclusion of single, 
double, triple, and the .9B excitation operators within the so-
called standard approximation B. It has been shown that a 
great portion of the ..98-containing diagrams vanish within the 
latter approximation and that the rest can be easily factor-
ized. The method is fully connected, i.e., size extensive. Un-
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TABLE V. Orthogonally spin adapted form of the CCSDT-RI2 equations." 

+ t + t + + 

L :9'fBU) + + L (_l)iP{ t}(O) 

(V. I) 

P 

'Rer l} KJ =CJ{ l} KI} (wlJ [.) K ""JT (.) K) 2 =c( UK (4i) 2' UK(5» 2 {<pCT( LJK(4i) -VAKl2 tBC-'Y AK 2 tBC - .y Ax\! t B+·>, BK! tA +yJ"k tABC + ltABC -y,::"..b KL tABC 
PAl,SJ 

i=O,l (V.2) 
=j1:" +.VgtffD(i) - j1:" ftfIc(i) + MfiCi) + + 

- - :7fS{l}tffD(i) - :rfff{l}tf!;c(i) 
i=1-5 (Y.3) 

+ 1 (';),""t)AB(.) AB(.) I (GrMN·J(.) fa (.) + tIZ"MN·f(.) OJ (.» 2";p Kl- I 'TTl ! -"2 ""'Kl-;O I CMN! 00KL;O I CMN I 

- 1 (£MN;A(i)clO (i)tJ + arMN;A(z')cOJ (i)tJ ) + 1 m-MN;A(i)clJ Ci)tO 2 KL;O. MN\ A <i0KL;O MN A 2 =KL;O MN A 
i=O,l (V.4) 

"See Tables ill and IV. A(i) is defined in Table VI. P AI.BJ means that AI is replaced by Bf. 

like the originally suggested approach within perturbation 
theory but remedied later,16 the present theory is invariant 
with respect to rotations of occupied orbitals. As a byproduct 
of CCSDT-R12 the MBPT(4)-R12 method is derived. The 
method presented here should improve the convergency of 
the total energy with respect to the saturation of the basis set 
from an error -L -3 (conventional approach) to one -L-7 

where L is the maximum angular momentum included in the 
AO basis. It must be noted, however, that reliable calcula-
tions require relatively large basis sets for the low angular 
momenta I, since the standard approximation is based on the 
assumption that the basis is nearly saturated up to some 

TABLE VI. Definition of A(i) f;om Table V." 

+.'TIf;c 

t.rV&- t.rffB+ 

t.rV&- t:rffB-

Af;c(4)= tYVfA+ tYffB-

(VUa) 

(VUb) 

(VI.lc) 

(VLld) 
Af;c(5) = -:rIfffA +.r-lffA -yljfB+yf:fB-.rlffc+yIf;c (VUe) 

.Tlj;c= 2: L t 
PlA,lB,KC 

x (tt'fc(5) + 4) + (VI.2) 

'See Thble IV and V. P TAJB,KC means that the pair IA should be changed by 
fB and KC. 

mir1imum L value. As it has been shown previously, the 
minimum required L is related to the maximum I of the 
occupied AOs as L = 31 

The inclusion of R12 terms into the CC equations re-
quires only a minor increase of computational demands. 
Since the calculation of three types of two electron integrals 
needed for the R12 approaches is still just a minor part of the 
whole CC calculation, the total expected timings for conven-
tional and R12 runs should be very similar. In particular, in 
the R12 approach the direct calculation of (at least) some 
contributions can be recommended, because typically 
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APPENDIX A: ONE- AND TWO-ELECTRON 
OPERATORS AND THEIR CONTRACTED PRODUCTS 

Let j be a one-electron operator and A a two-electron 
operator. They can be either represented in configuration 
space or in Fock space (n"electron operators should be in-
variant with respect to permutation of the particles) 
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/I 

/I 
A A 1_ A= A(kl)=-APO'nIL'" , 2 ILV-pO" 

< 'P IL( 1) 'P,,(2)IA( 1 ,2) I 'Pp( I) 'PO'(2», 

A(k,l)=A(l,k); 

(Ala) 

(Alb) 

(Alc) 

A Fock space operator is regarded as equal to an operator in 
n-particle Hilbert space if they have the same matrix ele-
ments between arbitrary n-electron functions. 

A product of two one-electron operators j and § is a sum 
of the normal product :j§:, which is a two-electron operator, 
and a contraction (j§) which is a one-electron operator 

j§=:j§:+(j§), (A2a) 

:j§:= j(k)§(l) = (A2b) 
. k<l -

cj§)= j(k)§(k) = (A2c) 
k 

The generalization to products of more than two factors is 
evident. 

One is also interested in commutators 

[J,§] = {f(k)§(k)- -
k 

(A2d) 

Note the absence of a normal product term. 
For a product or a commutator of a one-electron and a 

two-electron operator we get 

jA=:jA: + (jA) (A3a) 

AA I IA AI' 
:JA:=;; £.i - (A3b) 

- k,l,tn 

A prime indicates that all labels are different 

AA A A 
(fA) = 2" £.i J(k)A(k,l) + 2" £.i J(l)A(k,l) 

k,l k,l 

= j(k)A(k,l) 
k,l 

(A3c) 

[J,A] = 2: I {f(k)A(k,l) - A(k,l)j(k)} 
k,l 

= (fA A pO' - A AO'jP)a "K (A3d) 
K"'A" "K A pu' 

The product of two two-electron operators A and B involves 
both a single contraction (Ail) and a double contraction 
«AB». We skip the normal product 

(;1B) = I {A(k,l)B(k,m)+A(k,l)B(l,m) 
k,l,tn 

+ A(k,I)B(m,k) + A(k,l)B(m,l)} 

= I A(k,I)B(k,m) 
k,l,m 

(A4a) 

«AB»= I {ACk,l)BCk,I) +A(k,l)B(l,k)}, 
k,l 

1 I A A 

=2" £.i A(k,l)B(k,l), 
k,l 

(A4b) 

In Fock space an alternative formulation of two-particle op-
erators in terms of antisymmetrized matrix elements is pos-
sible, i.e., alternatively to Eq. (A.lb) we can write 

(AS) 

As alternatives to Eqs. (A3c), (A3d) and (A4) we then get 

(j A) = 
[fA A]=lfJAiPO'-fiAO'jP)a"K , "K A PO" 

(A6a) 

(A6b) 

(A7a) 

(A7b) 

Contractions involve-in the Fock space formulation-
summations over infinite basis sets, which one wants to 
avoid. In configuration space contracted products are evalu-
ated rather easily. If we write Eq. (A2c) as 

(j§) = h(k) (A8a) 
k -

we have simpl)'. . 

h(k) = jek)§(k). (A8b) 

Siinilarly we get from Eq. (A4b) 

AA A 2: All -
« AB»=C= C(k l)=- CPO'nIL"=- CPO'aIL". . _ .. , 2 I'-V-pO' 4 1'-" pO" 

k<l 
(A9a) 

C(k,l) =A.(k,l)B(k,l); 
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(A9b) 

Consider the example that A(k,l)=rk[' B(k,l)=gk[=r;;/, 
then in Hilbert space 

«A.8»= L 1 
k<l 

and in Fock space 

= !\JLvl rglpa)a:: 

= LoP 8':.a !L V 
2 f.L v pcr 

=1 af.LV 
2 JLV 

(A lOa) 

(A lOb) 

The results are identical insofar as = n(n - 1) <P for 
any n-electron functions <P. Alternatively one gets from Eq. 
(A7b) 

The singly contracted product of two two-electron operators 
(A4a) is a three-electron operator 

CAlla) 

D(k,l,m) = HA(k,l).8(k,m) +A(k,I).8(l,-m) 

+ A(k,l)B(m,k) + A(k,I)B(m,l)} (A lIb) 

We also want to avoid operators of higher particle rank than 
two in configuration space and rather work in Fock space 
and try to simplify the summations over complete basis sets 
as needed in the last expression of Eg. (A4a). 

We now assume that all operators that we consider are 
totally symmetric under the symmetry grouJ2 of the respec-
tive Hamiltonian. This is the case for A(l ,2) = r12 or 
.8 (1,2) = r 121, further for j the Fock operator. We finally re-
strict our consideration to atoms, then the AO basis {{f'} con-
sists of subsets {{f'z} characterized by some angular momen-
tum quantum number I. Then 

J;=O unless l(JL)=l(v) 

consider the matrix element appearing in Eq. (A2c) 

= {f'f.LI(jg)1 {f'cr)' 

(AI2) 

(A13) 

In view of Eq. (AI2) and the same relation for g we see that 
only those term contribute to the sum over v in Eq. (Al3) for 
which 

I(JL)=l(v)=I(a), (A 14) 

i.e., only those matrix are nonzero for which l(a)=I(JL), 
and in order to evaluate them in terms of a complete basis, 
the basis need only be saturated for this particular I value. 

To satisfy this requirement to a good degree of approxi-
mation is much easier than to require that the basis is near 
complete, i.e., near saturated for all l. For this example the 
direct use of Eq. (A8) will usually be easier, nevertheless. 
This is not longer so, e.g., for Eg. (A4a). 

APPENDIX B: PARTIAL WAVE EXPANSION OF 
OPERATORS AND THEIR CONTRACTED PRODUCTS 

Totally symmetric local (multiplicative) two-electron op-
erators can always be expanded as 

A(i,j) = a(r;.r)P1(cos Uij) 
z 

=41T (2l+ 1) -laCri ,rj) 
1 

x 2: Y,!,(iJ-i ,'Pi)Y,!,*(-6-j ,{f'j)' (Bl) 
m=-I 

For their matrix elements we therefore get 

'" 41T L (JLvlalpa)rad 2l+ 1 (JLIY'!'lp)(vIY'!'*la), 
1=0 

(B2) 
where rad indicates radial integration, while the other two 
brackets mean angular integration. The angular integration 
factorizes for each term. The triangular inequality implies 
that 

Il(JL) -l(p) 1 + l(p), (B3a) 

11( v) -1(a)1 v) + lea). (B3b) 

Let 

I max. = max{ l(JL) ,1(p),I( v ),l( a)}. (B4a) 

Then 

(B4b) 

i.e., the sum over I in Eq. (B2) is finite, provided that the 
basis functions 'Pf.L' etc., are angular-momentum eigenfunc-
tions (what we have assumed). Moreover allowed values of 
I (JL), etc., are not arbitrary, but, e.g., 

(BS) 
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i.e., one of the four values of l(fL),l(p),l(v),l(cr) is always 
smaller than or equal to the sum of the other three. 

We now use this result to discuss contracted products of 
the type (A4a). Let 

L= min{I(A) + l(fL) + l( v),/(p) + l( cr) + l( Tn, (B6a) 

(B6b) 

i.e., the summation over K for a specific term in Eq. (A4a) 
terminates at a finite I value. Hence the basis need be com-
plete only up to this L value if one wants to evaluate this 
term by means of summation over the complete basis. 

Let A, J.L, v, (2, cr and T all be occupied spin orbitals, 
usually labeled as i,j,k, ... then 

L=3 max{l(i)} (B7) 

i.e., the basis {cpl<} need only be saturated up to this L to be 
regarded as complete. If l(i) =0 for all i, then only K=O will 
contribute in the sum (A4a). 

This makes single contractions rather easy. 
The single contraction (A4a) is a special case of a chain 

contraction. Consider, e.g., the chain of two single contrac-
tions 

APII-BSVCUV qrtw 
qr til- wvapvsu· (B8) 

Here A is contracted with B by fL and B with C by v. The 
generalization to longer chains is obvious. For fixed values 
of p,q,r,s,t,u,v,w the sums over v and fL terminate at a 
finite I value both for fL and v, due to the triangular inequal-
ity at each vertex. 

If p,q,r,s,t,u,v, w all refer to occupied orbitals, we find 

(B9) 

with L given by Eq. (B7). This holds essentially for all open-
ended contractions. Nevertheless a slight change arises for a 
product of four factors 

A ·II-B·Vc·Pn·· .. . 
'.. .11- ... . 

In analogy to Eq. (B9) we find 

For lev) we only get 

L'=5 max{l(i)}. 

(BiO) 

(B11) 

(BI2a) 

(B12b) 

Fortunately in the CCSDT-R12 no chains of more than three 
factors arise. 

Let us now look at a cyclic contraction like 

A II-VBrpCUv pqt 
pq II-t vpa ruv • (B13a) 

Here A is contracted with B and C, B with A and C, C with 
A and B. The l values of fL, v,p are not restricted by any 
triangular inequalities and the summation limits for 
l(p,),l(v),l(p) become infinite. 

In configuration space (B13a) means (except for a nor-
malization factor) 

A(i,j)B(i,k)C(j,k). (B13b) 
i<j<k 

We have a look at a matrix element of a term in Eq. (B 13b) 
for the special case 

A(i,j) = B(i,j) = C(i,j) = gij= rij', 
K= (cp( 1 ,2,3) Ig '2g'3g231 cP' (1,2,3». 

(BI4) 

(B15) 
For the sake of simplicity we assume that cP and cp' don't 
depend on the angular variables. 

If we insert 
00 

g12= gk(r, ,r2)Pk(cOs t)-d, 
k=O 

(B16a) 

.4'77" k 
Pk(cos t)-)= 2k+ 1 

m=-k 

(B16b) 
then K becomes a sixfold sum (over three k values and three 
m values). The angular integrations are performed easily and 
in view of the orthogonality of the spherical harmonics we 
get 

(4'77")3 J 
K= (2k+ 1)2 cp*(1,2,3)cp'(1,2,3) 

(B17) 

The domain for the radial integration consists of six parts 
depending on whether r,;;"r2;;"r3 or r,;;"r3;;"r2, etc. It suf-
fices to take one of these domains (e.g., the first) and multi-
ply the result by 6 

6 *, 2 3 3 (4'77")3 f rk rk rk 
K k = 'J ) 2 cp cp ""7CTI""7CTI--:rrT 1 rt""r2""r3 r, r, r2 

X dr, dr2 dr3' 

(B18) 
For large k the integrand strongly peaks at r, = r2 = r3. 

While the factor involving r, ,r2,r3 varies strongly in 
the neighbourhood of rl = r2 = r3' the factor cpcp' varies 
weakly. One can expand cpq/ in a Taylor series 

ac· * ') *, *( ) , ) ) cp cp cp cp =cp rj,r"rj cp (rj,r1,r1 +(r2- r 1 ar2 

(BI9) 

If we take only the first term in Eq. (B 19), we can easily 
integrate first r3 from 0 to r2, afterwards r2 from 0 to r1 and 
finally r1 from 0 to 00, such that 
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(B20) 

The angular integration has introduced a factor (k + 4) -2, the radial integration another factor (k + 4) -2 such that an overall (k + 
k)-4 dependence of th_e partial wave contribution Kk to the integral K results. 

Let us now look at the contributions of the second and third as well as the higher order terms in Eq. (B19). In the integrand 
q;*q/ is replaced by some derivative of q;*q;' and there is an extra factor such as (r2-rl)' For the particular factor (r2c-rl) 
we get as counterpart of Eq. (B20) 

(4 )3 f "( * ') [ -2k -2k+l] . 'Tr a q; 'q; r 1 2k+5 r 1 2k+4 
=6 (2k+ 1)2 ar 2k+3 r2 - 2k+3 r2 dr1 dr2 

. rl;;'r2 2 

_ (4'Tr)3 f a(q;*q;') 6( 1 1] 
-6 (2k+1)2 ar2 rl (2k+3)(2k+6) (2k+3)(2k+5) drl 

(4'Tr)3 f a(q;*q;') 6 

= - 6 (2k+ 1 )2(2k+ 3 )(2k+ 5)(2k+ 6) ar2 r 1 drl 

=O[(k+ t)-5]. 

This means that the second and higher terms of the Taylor 
expansion (BI9) contribute to higher order in (k+!)-I than 
(k+t)-4. To get the leading term in the (k+4)-! expansion it 
is sufficient to take the leading term in Eq. (B 19). 

Before we discuss the generalization of this result to the 
case that q; and q;' depend on the angular variables, we must 
make two remarks. 
(a) It may happen that q;(1,1,1) vanishes. In this case the 

term O([k+ tr4) in the (k+4)-l expansion vanishes. 
Then higher terms in expansion (B19) have to be consid-
ered and K k starts with a term of higher order in (k +!)-I 
than (k+!)-4. 

(b) Usually we will not be interested in a product with three 
g ij factors, rather with two r ij and one g ij factors. It is 
relatively easy to see that replacement of gl2 by r12, i.e., 
of r"<./'-;+ 1 by 

(B22) 

introduces two more (k + 4) -I factors in the final result. One 
of these is explicitly present in Eq. (B22). The other arises 
because due to the difference in sign of the two terms in Eq. 
(B22) the leading terms in the integral cancel. So for the 
integral 

(B23) 

(B2l) 

the leading term in the partial wave expansion goes at least 
as (k+4)-8 arid can be neglected in the standard approxima-
tion. 

Let us now allow that q; and q;' depend on the angular 
variables, as 

One expands 

such that 

q;*q;= - 2: F L(r! ,r2,r3) 1'71 q;1) 
L\.L2,L3 

(B24a) 

(B25a) 

(B25b) 

where F 2 depends on L[ ,L2 ,L3 and where the summation 
limits over L1 ,L2 ,L3 are determined by the triangular in-
equality in Eq. (B25a). 
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We can insert Eq. (B25b) into Eq. (B15), but we con-
sider only a single term in the sum (B25b). The angular 
integration is now not trivial as in Eq. (B 17), but we rather 
get a sixfold sum over k,k' ,k",m,m' ,m". One term in this 
sum is 

x f Y;':'*(3) Yk'(3 )dW3" (B26) 

The radial integration in Eq. (B26) leads to 

(k' +k"+3r:- 1(k+k' +5)-1 f riFL(rl ,rl ,rl)drl 

(B27) 

while the angular integrals can be expressed in terms of 3 j 
symbols. It is recommended to define 

p=k' q=k"-k (B28) 

where p and q have finite limits due to triangular inequali-
ties, while k is unbounded. One can then use asymptotic 
expansions of 3j symbols for large k. A closed summation 
over the leading term is then possible and the final result is 
that Kk goes as (k+f)-4 as,in Eq.(B20). 

The generalization to a cyclic product of four operators 
is straightforward. Instead of Eq. (BI5) we now have 

K= (cp( 1,2,3,4 )lg12g23g34g411 cp'( 1 ,2,3,4 ». (B29) 

We assume again that cp and cp' do not depend on the angular 
variables. 

We insert Eq. (B 16) and K becomes an eightfold sum 
(over four k values and four m values). We can then perform 
the angular integration and get in view of the orthogonality 
of the spherical harmonics 

(41T)4 f 
K= 2: (2k+ 1)3 cp*cp' gk(rl ,r2)gk(r2,r3)gir3 ,r4) 

k ' 

(B30) 

'4 )4 k k k k 
Kk=24 (;k:1)3 f cp*cp' r;!l-

• J 2 3 1 

X drl dr2 dr3 dr 4, 

(4)4 -
24 1T J *, -')k 2k+2 d d d d = (2k+ 1)3 cp cp rl -: r2r3r4 rl r2 r3 r4' 

(B31) 

(The factor 24 comes from the 24 possible permutations of 
r 1 ,r 2. , r 3 ,r 4)' For large k this strongly peaks at 

lObC 800 
diD. I dlO.2 d1D.9 dlD.lO 

(a) (d) 
", 

DULiJ-evd 
d1D.3 d1D.4 dID.S d1D.6 .. '-(b) 

O@ W 
dlD.7 dID.8a dlO.8b 

(c) 

FIG. 10. Basic diagrammatic fragments that include one (a), two (b), three 
(c), and fourfold (d) summations_over complete basis. For dlO.8 we distin-
guish between two Goldstone type diagrams, as it is essential for the stan-
dard approximation. 

rl =r2=r3=r4 and we can replace cp(1,2,3,4) by cpCI,l,I,I). 
We can then integrate over r4. from 0 to r3, subsequently 
over r3 from 0 to r2, over r2 from 0 to rl and finally over rl 
from 0 to 00, such that 

(41T)4 f 
Kk=24 (2k+1)3 cp*(l,l,l,l)cp'(l,l,l,l) 

X (2k+ 3)(2k+5)(2k+7)' 

=6(21T)4(k+!)-6 f cp*(l,l,l,l)cp'(l,l,I,I)rI drl 

+O(k+t)-7. (B32) 

The essential result, namely the (k+!j-6 dependence re-
mains valid, if cp* and cp' depend on the angular variables. 
Replacement of a factor gl2 by rl2 introduces an additional 
factor (k+!j-2, such that for the expression, in which we are 
actually interested, namely, 

('Pirr2g23 r34r 4d cp) 

the leading term goes as (k+!)-12. If cp(rl,r2,r3)=O the 
leading term has at least another additional factor (k + t) -I . 

APPENDIX C: DIAGRAMS WITH A SINGLE 
CONTRACTION OVER A COMPLETE BASIS 

On Fig. 10 the diagram fragments involving single 
double and higher contractions are collected. With single 
contraction they are of the following types: 

dID I 'JaR-ij dID 2'g-aPR-ij •• p ab .• qr ab' (Cl) 
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The matrix elementsf; vanish unless l(a)=l(p). Since the 
basis-to which p belongs-is chosen so that it is saturated 
up to some l value L, also hence the sum over the 
complete basis can be replaced by one over the given basis, 
i.e., 

f aRij =fa;=i} - .pa;=ij =0 (e2) 
o p ab p ab J p ab 

and diagram fragments of type (dlO.l) can be neglected in 
the standard approximation (A or B). 

We come now to the fragment dlO.2 
-aPRij _ -ap-ij _ -ap-ij 
gqr ab-gqrrab gqrrab' (C3) 

The simplest case is realized if the orbital 'Pb has an angular 
momentum l(b) that agrees with an I of the occupied Mas. 
Then l(a)$:L. In order to satisfy the conditions for the stan-
dard approximation we choose the basis {a} such that it is 
near saturated up to I (a) = L. Then the two sums on the r.h.s. 
of Eq. (C3) terminate at the same I and the result is zero 
within the standard approximation. The same argument holds 
if the three labels p,q,r, on g correspond to occupied Mas 
or Mas with the same I as occupied Mas. 

Another simple case is realized if l(i)=I(j)=O and all 
other I arbitrary. In this case I (a) = l (b) and if the basis {a} 
is chosen such that is saturated up to l(a)=L, the two terms 
in Eq. (e3) cancel. 

For l (i) =/; I (j) and I (b) < L sufficiently large, expression 
(C3) does no longer vanish under the condition of the stan-
dard approximation, but its partial-wave contributions vanish 
with sufficiently high power of such that Eq. 
(C3) can be neglected even then. 

APPENDIX D: DIAGRAMS WITH DOUBLE 
CONTRACTIONS OVER A COMPLETE BASIS 

Let us first look at double contractions between a pair of 
vertices, i.e. (see Fig. 10) 

. kl_l-aj3-kl. dl0 4· cy/,ij -l-aj3R- ij dl 0.3 . .% ij - 'iRij R af3 , • . 7" pq - 2g pq af3' 
(Dl) 

We first show that in both cases the summation over (a,f3) 
can be replaced by a sum over the complete set (fL,V) 

-af3R- ij _ -aj3 -if _ -ab -if 
gpq aj3-gpq r aj3 gpqrab' 

-af3-if _ -ILI>-ij _ -kv-i} _ -p.l-i} + -kl -if 
g pq r aj3- g pq r p." g pqrkv g pqr p.l g pqrkl' 

-ab -ij _ -rs -if _ -ks -ij _ -rl -if + -kl -if 
g pqr ab - g pqr r$ g pqrks g pqr rl g pqrkl' 

Since in view of Appendix e 
-kv-ij _ -ks -ij 
gpqrkv- gpqrks' 

It follows that 

8.8. 
-a/3R- ij - -P."Rii·· 
gpq aj3-gpq 1.1." 

and analogously 

s.n. 
- aj3 - kl _ R- I.I."Rkl 
Rij R af3 - i} 1.1.'" 

We can use results of Appendix A and get 

(D2) 

(D3a) 

(D3b) 

(D4) 

(D5a) 

(D5b) 

q:/' if = 19-P."Rij = l(g-P.,,;=ij _ g-rs ;=ij) = (gr)ij _lg-rs ;=ij 
pq 2 pq /Lv 2 pq I.I.v pq rs ' pq 2 pq rs 

_ 'i} _l-rs -ij 
- (j pq 2g pqr rs ' 

(D6a) 
,,,,,,kl=lR-p.vR-k1 8 ij -8 i 8}-8 i 8} 

.;v i} 2 i} p.v IJ 2 IJ rs' pq - p q q p' 

(D6b) 
The adjoint of dlOA yields 

S,8, 

( '7/t)pq= = 8ffl_l;='::g-pq (D6c) 
i} 2 Ij aj3 IJ 2 IJ rs' 

We must next consider double contractions involving three 
vertices (see Fig. 10) 

-a/3-ij -kl dl06.Rab-cj3i?mn dl0.5:gpq R aj3R",c' .• ij gkl ",j3' 

Let us consider the special case 

lei) = IU) = l(k) = l(l) = 0 

then 

1(f3)=I(a); l(a)=l(c) for dlO.5, 

1({3)=I(c); l(a)=l(b) for dlO.6, 

(D?) 

(D8) 

(D9a) 

(D9b) 

saturating the basis lea) up to L causes the contracted prod-
ucts CD?) to vanish. If condition (D8) is not satisfied, these 
contributions decay at least fast enough with and 
(Z ({3) + - I, expression (D?) will hence be neglected in the 
standard approximation (A and B). 

APPENDIX E: WITH TRIPLE 
CONTRACTIONS OVER A COMPLETE BASIS 
INVOLVING THE FOCK OPERATOR 

(El) 

For their evaluation we first make a few statements. Let 

f" fK;" A - 1 /L" pu = ;,.a K ; r12- zrpuap'v 

then (see Appendix A) 

[fA A ]_ lr '" ]/LV pu ,r12 - zU ,r12 PUa/LV 

[f ] /LV_fT P.V+fT /L"_ TVfl.l.- J1.TfV ,r 12 pu - 0 pr TU (Tr pT r po: T r po: T' 

On the other hand,12 

[Jh2] = -2g12+2u12-[K,r12], 

iT p.v 
-gpir TU' 

We further note that 

Af:vfKjjkl = leAf )f:Kjjkl = LAf:V(fB)kl 
IJ v I.I.K 2 IJ /LK 2 lJ p.'" 

(E2) 

(E3a) 

(E3b) 

(E4a) 

(E4b) 

(E4c) 

(E5a) 
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where (Af) and UB) mean the contracted part of the anti-
symmetrized product of A and f or f and B, respectively, 

(E5b) 

(ESc) 

For the evaluation of Eq. (El) we proceed first as in Ref. 12, 
Le., we assume the extended Brillouin theorem according to 
which ff vanishes if b corresponds to the given basis and a 
to an element of the complete basis not. contained in the 
given basis. This means we can replace ff by .ft or vice 
versa. This allows us to rewrite Eq. (EI) in two alternative 
ways 

+rklglnk_glnKrkl_glnKrkl +;:lnlfk + -klnfl} pq Km pm Kq . qm pK pqJ m r pq In 

For the definition of W·'d)fj see Eq. (D6c). We further need 

/fj kl = $' +.%' ':!glnk 
I.e /} I} Kin IJ Kin ' 

iJkl= 1 (-Ff'''g1llK Fkl _FI!:"glnKFkl +Fl!qgmKFk1 - I.f 2", Ii p.m K" lJ "m P.K I) pm Kp 

+ -pq 1IIK-kl) 
Tij gqlnTpK , 

,-;;rkl_ ,-;;nlnlfk + ,-;y>kln.JJ. 
.7 i} -.A:> Ij 111 ..h Ij J 111' 

(E9) 

(ElO) 

(Ell) 

(EI2) 

All five expressions on the last r.h.s. of Eq. (E8) are differ-
ences between exact quantities and their approximation in 
the given basis. Equations (D6c), (E9), (ElO), and (EI2) are 
evaluated easily. Equations (ElO) and (Ell) result from the 
commutator of K with ;12' The standard approximation A 
consists in neglecting Eqs. (EIO), (Ell), and (EI2). It has 
been shown in the Appendix of Ref. 12 that the error due to 
neglect of Eq. (ElO) goes as L -5, that due to neglect of Eq. 
(Ell) as L -7. It is hence justified-in the standard approxi-
mation B-to neglect Eq. (Ell) but to take care of Eq. (ElO). 
Equation (EI2) ought to be kept even in the standard ap-
proximation A. We shall comment on this at the end of this 
Appendix. It is perfectly in the spirit of the standard approxi-
mation (A or B) to replace the sum over Kin Eq. (ElO) by a 
sum over T, Le., to take 

S.a. 
(/ =.$ +.%' :Igmk' 
'-C I] i} rm I] rln (El3) 

Of course, instead of from Eq. (E6a) one could as well have 
started from Eq. (E6b) with the result 

.:JJ kl=!J - [f I} 2\. 'IJ i V) J I V /-LK 

8.a. __ 
,AI _ - P. "fK -kl _ -p "fr -kl - 1( f ) P.K -kl _ lr f )P" -kl 

·%Tij-Tij "rP.K rij "Tpr - 2 r ijrP.K 2\r ijrp ,,' 

(E6b) 
In Eq. (E6a) we have assumed that the third and fourth terms 
of Eq. (El) cancel, in Eq. (E6b) that the second and fourth 
terms cancel. We shall see later that one can also evaluate 
Eq. (E6) without assuming the extended Brillouin condition. 

For the further evaluation of Eq. (E6a) we use 

s.a. _ _ 
c·AI_ 1 -P."{[J ]kl + -Kl,jk + -kK FI } _ 1. -pq{[J . ]kl ..7Jij- 2 rij ,r p." r p. K r p.w K 2 rij ,T pq 

+ + F;;rK} (E7) 

and note vanishes unless K is an occupied MO (ordi-
nary Brillouin theorem) Le., unless We insert Eq. 
(E4) and get . 

(E8) 

(E14) 

U = - 1iil!9-Fkl = 1tf! - 1iil!9- -kl ij lJ 2 lJ pq 2 Ii 2 lJ T pq • (EIS) 

It is recommended to define [starting from Eq. (E9)] 

( ,J}! ( - t l(u- t)l!9-r-kl = _1( - t)I!9-Fkl = IJ U T IJ 2 IJ pq 2°1] 2 U IJ pq: 
(EI6) 

Noting that u is neither Hermitean nor anti-Herrnitean but 
that 

(EI7) 

we can reformulate Eq. (EI6) to 

or Eq. (EIS) to 

((;-1<1 _ _ C6J/t)kl+ 
I:/;I} - -= Ij 7' i} • (EI9) 

This allows the reformulation of Eq. (EI4) to 

%' 2(U (yt)kl 'lJ IJ IJ . k' IJ I.e IJ I} . 

(E20) 

Neglecting i2 and taking the average of Eqs. (E8) and (E20) 
we get 
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(E2l) 

We can now renounce on the use of the extended Brillouin 
theorem, i.e., we go back to the original expansion (El). 
What we have done in Eq. (E20) is to take the first term on 
the last r.h.s. of Eq. (El) minus 112 of the second and third 
terms. What we still miss are the other halfs of the second 
and third terms as well as the entire last term, i.e., 

(E22) 

The first two terms in Eq. (E22) have already been taken care 
of, they must just be multiplied by a factor 2. Hence all 
expressions where we sum over p, q must be taken twice and 
the last term in Eq. (E22) must finally be added. 

Numerical tests have indicated that one does not gain 
much in adding the correction term (E22) , which confirms 
(fortunately) that the extended Brillouin theorem is a justi-
fied assumption. 

Let us mention that even the ordinary Brillouin theorem 
need not be assumed to hold. This alternative has no advan-
tage in the present case, but is useful in a multiconfigura-
tional approach. The terms etc., in Eq. (E6) can then 
be written as 

mk mk J K- K gmK-gKm' (E23) 

One sees that this leads to a cancellation of terms like 
i;lpg':.! in Eq. (E8) with the appearance of terms such 
qas instead. The final expressions are hardly more 
complicated. 

The full expression involving .9&0' F N , and SIB in Eq. 
(1le) is 

(OI.98baYtCF N.98)clo> = 
= 1,;jJ mn c lj _1..%' mn(coj .p + Cio /,j) 

2 kl mn 2 kl mnJ ° mnJ ° . (E24) 

Let us assume that the Fock operator is diagonalized, i.e" 
Iv = dol;, Then the r.h.s. of Eq. (E24) can be rewritten as 

,7.) mn( . . ) Ij 
.;u kl Z ,j C mn ' 

(JZ) mn(. .) _ 00 mn ,;yo mn(.p +fl) 
.oN kl Z,j -.;u kl -.;0 kl V I j 

(E2S) 

= -'fbt -Pb)'!:t- t(&+&t)':t 
+.%'kt(f:;:+ f f ). (E26) 

In the case that one limits oneself to coefficients d} the con-
tributions involving the f :;:, etc., cancel completely. 

If one takes the meaning of the approximation A liter-
ally, one should only neglect the terms with C! in Eq. (E26) 
within this approximation, but keep those with f. In our pre-
vious calculations with approximation A (which means es-
sentially in MP2-RI2) we have also neglected the last ex-
pression on the last r.h.s. of Eq. (E26). The historical reason 
for this is that originally we only considered that 
cYt=d}=cij in Eq. (E25) is diagonal. In this case the last 
term in Eq. (E26) vanishes automatically. In the orbital in-
variant approach introduced later16 allowing for 
(ij)*(m,n), the f:;:, etc., no longer cancel. Nevertheless 

inclusion of the last term in Eq. (E26) does not change very 
much, such that it remains justified to neglect them on MP2-
Rl2 level. 

APPENDIX F: TRIPLE CONTRACTIONS INVOLVING 
THE TWO ELECiRON INTERACTION 

We need to evaluate the following contraction in the 
standard approximation (diagrammatic fragments dlO.8 on 
Fig. 10) 

tr7kl,q - R-- afJ -q'YR-kl 
.50lj,p - Ij gpfJ a'Y' (Fl) 

We decompose the anti symmetrized vertex g into its primi-
tive components 

diO 8a' 
•• IJ,P IJ pfJ a'Y' 

dl0 8b' =R- kl 
•• IJ,P IJ fJp a'Y 

(F2a) 

(F2b) 

because their I expansion is different. Although these con-
tractions have, in principle, been treated in Ref. 12, we now 
present an improved strategy, due to Wim Klopper.41 First we 
see that Eq. (F2a) means explicitly 

It was argued in Ref. 12 that 

for ,.ds (F4) 

which is somewhat analogous to the extended Brillouin 
condition 12 for f.L=s.In assuming that Eqs. (F4) holds, 
(F2a) reduces to 

(FS) 

It is, however, not necessary to make assumption (F4). We 
rather use the fact that the one-electron operator 

(F6) 

is of Coulomb type---:and hence 10ca1:-and commutes with 
r 12' This allows us to rewrite 

( rJ)J1:A,q=r,:.Ag qfL+ rl!-KgqA [J,P IJ pK I} pK 

pI KJ PJ KI 

='(Jr)I!-A,q ... I},p , 

( Jr)kl,q +gqfLr kl 
KA,p pK fLA . pA. KfL 

= rfLl gqk + rkfLgql 
KA PfL KA PfL 

(F7a) 

eF7b) 

We insert Eq. (F7a) into one half of Eqs. (F2a) and (F7b) into 
the other half. We define 

!'P/ ii = %' /j _ lr i 2) IJ = lr i 2) Ij - 1 i pq iij CF8) ,Y-' rs • rs 2\ rs 2\ rs 2 rs pq' 

The result is then 
+ + W':!gqk IJ,P pI JI" kJ PJ JI" IK ,r;p IJ pK ,II" IJ pK 

+ -rs qt -kl 
rijgprrts ' (F9) 
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The summation over K in Eq. (F9) can be replaced by a 
summation over t. 

A trick like Eq. eF7) does not apply to Eq. (F2b) since 
is an exchange-type operator which does not commute 

with r12' We get explicitly 

S.ft. 

Ykl,q_ KA q/L kl _rrs qA kl_rKtgqr kl+rrsgqtrkl ll,p - r ij g Kp rA/L I} g sp rAr Ij Kqr tr I} sp rt· 
(FlO) 

The first term in Eq. (FlO) is expressible as a three-electron 
integral 

(i( l)j(2)p(3) Irl2g13rz3Iq( I )k(2 )l(3». (Fl1a) 

The next two terms involve 

(s( 1 )p(2)r(3) Ig13r231 q( I )k(2 )l(3», 

(i( 1 )j(2)p(3) I r12g 13lq( I )t(2 )r(3». 

(Fl1b) 

(FIlc) 

A partial wave expansion of Eqs. (Fllb) and (Fllc) breaks 
off after a finite number of terms, that of Eq. (Flla) has 
partial wave increments that go as (l +!)-8. This means if the 
basis is saturated up to the critical L, any of the first three 
terms in Eq. (FlO) are (except for spin) well presented by the 
last term. The error in neglecting Eq. (FlO) altogether goes 
then with (L+1)-7. 

APPENDIX G: QUADRUPLE CONTRACTIONS 

We have to consider the expressions corresponding to 
diagrams on Fig. lO(d) 

dlO.9: 

dlO.lO: 

(Gla) 

(Glb) 

(here 0 and p count occupied spin-orbitals). In the standard 
approximation (Gla) becomes 

= 1 ;:,:sg-pq;:rs _ ;:k! 
4 Ii rs pq IJ • 

From Eq. (Glb) we finally get terms like 

R KA /LvRkl ROP _ KA /LV kl op _ pq /LV kl op 
I} g1l1n K/L Av-rij gnmr K/Lr AV r/j gnmrp/Lrqv 

___ 011. rv kl op _ Kq /LS kl op 
r/j gnmrprrll.v rij gnmr K/LrqS 

+ pq rv kl op+ pq /LS kl op rlf gnmrprrqv rij gnmrp/Lrqs ' 

(G2) 

(03) 

The first term in the r.h.s. of Eq. (03) is a four electron 
integral 

(i(1 )j(2)n(3 )m( 4) Irl2g34r13rZ4Ik( 1 )0(2)l(3 )p( 4». 
(04a) 

The second term involves 

(n( 1 )m(2 )p(3 )q( 4) Ig12r13r24Il( 1 )p(2 )k(3 )o( 4». 
(04b) 

Similar expressions arise for the third and fourth terms, 
while the fifth term involves 

(n( 1 )m(2)q(3) IglzrZ3lr( 1 )p(2 )0(3». (04c) 

Again the sixth term is similar. 
As shown in Appendix B. the partial wave increments of 

Eq. (04a) decrease at least as those to Eqs. (04a) 
and (G4b) break off after a finite number of terms. 
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