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1 Introduction

LIBINT library contains functions to compute many-body integrals over Gaussian functions which appear in
electronic and molecular structure theories. LIBINT Version 2.0.3 (stable)1 can currently compute several
di↵erent types of integrals:

• Two-body Coulomb (electron repulsion) integrals (ERIs). This is by far the most common type of integrals
in molecular structure theory. Two-, three-, and four-center integrals, and their geometrical derivatives, are
supported.

• Two-body integrals which appear in explicitly correlated R12/F12 methods with Gaussian correlation fac-
tors.2–4 All R12 methods, such as MP2-R12, contain terms in the wave function that depend on the
interelectronic distances r

ij

(hence the name). Appearance of several types of two-body integrals is due to
the use of the approximate resolution of the identity to reduce three- and four-body integrals to products
of simpler integrals.

A somewhat unusual feature of LIBINT library is that its source code is generated by a computer program,
i.e., a compiler. The purpose of the LIBINT compiler is twofold:

• First, the compiler eliminates need for tedious writing, debugging, and optimizing the integrals code. Instead,
a programmer provides high-level specification of operators and recurrence relations, and heuristics of how
to apply the recurrence relations and the compiler takes care of the rest. This currently requires some
high-level programming, in a domain-specific mini-language taylored for expressing recurrence relations. For
example, the following Obara-Saika recurrence relation,5
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is specified in a high-level form in C++ as shown in Listing 1.

• Second, the goal of the compiler is to make possible optimizing the code for existing and future computer
hardware. For example, the ongoing trend in processors is to support single instruction multiple data (SIMD)
parallelism. To e↵ectively take advantage of the SIMD units The LIBINT compiler can generate vectorized
code at user’s request. As the hardware evolves, manual code reengineering can be avoided – only the
compiler needs to be modified.

Listing 1: Example specification of an Obara-Saika recurrence relation in LIBINT compiler (see
src/bin/libint2/vrr 11 twoprep 11.h). The corresponding mathematical expression is shown in Eq. (1)

auto ABCD_m = factory.make_child(a,b,c,d,m);
auto ABCD_mp1 = factory.make_child(a,b,c,d,m+1);
expr_ = Vector("PA")[dir] * ABCD_m + Vector("WP")[dir] * ABCD_mp1;

auto am1 = a - _1;
if (exists(am1)) {

auto Am1BCD_m = factory.make_child(am1,b,c,d,m);
auto Am1BCD_mp1 = factory.make_child(am1,b,c,d,m+1);
expr_ += Vector(a)[dir] * Scalar("oo2z") * (Am1BCD_m - Scalar("roz") * Am1BCD_mp1);

}

auto bm1 = b - _1;
if (exists(bm1)) {
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auto ABm1CD_m = factory.make_child(a,bm1,c,d,m);
auto ABm1CD_mp1 = factory.make_child(a,bm1,c,d,m+1);
expr_ += Vector(b)[dir] * Scalar("oo2z") * (ABm1CD_m - Scalar("roz") * ABm1CD_mp1);

}

auto cm1 = c - _1;
if (exists(cm1)) {

auto ABCm1D_mp1 = factory.make_child(a,b,cm1,d,m+1);
expr_ += Vector(c)[dir] * Scalar("oo2ze") * ABCm1D_mp1;

}

auto dm1 = d - _1;
if (exists(dm1)) {

auto ABCDm1_mp1 = factory.make_child(a,b,c,dm1,m+1);
expr_ += Vector(d)[dir] * Scalar("oo2ze") * ABCDm1_mp1;

}

There are also drawbacks to the compiler-based LIBINT approach. First, the generated code can be fairly
large and thus take a long time to compile. It is a relatively benign problem in practice. Also, the LIBINT
compiler is a fairly complicated program; this limits the extent to which an average programmer can modify it.

LIBINT currently implements recursive schemes based on the Obara-Saika method,5,6 and Head-Gordon-
Pople7 and Hamilton-Lindh variations thereof.8,9 Other recurrence relations can be easily implemented as needed.

Unlike version 1, which came as three separate interdependent libraries, version 2 of LIBINT comes as a
single library configured at code-generation time. The following features of the library can be configured:

• support for four-center ERI, including optional support for two- and three-center ERIs,

• derivative level for ERI,

• support for some special two-body integrals for explicitly-correlated integrals, e.g. of [T̂1, exp(�↵r2
12)],

• optimization features (whether shell-sets of integrals can be unrolled, whether to perform Common Subex-
pression Elimination, etc.),

• vectorization features,

• algorithmic features (evaluation strategy),

• API features (name prefix, FLOP counter, whether to accumulate target integrals, floating-point type, shell
ordering of Cartesian basis functions),

• shared library support.

Depending on its configuration, the library may not lack some capabilities.

2 Overview of LIBINT’s API

(Note: Depending on configuration, LIBINT may support computation of several types of integrals. This
section describes the parts of the interface that deal with theevaluatiin of four-center two-body Coulomb integrals.
Additional notes on computing other types of integrals are provided in later sections.)

LIBINT library is a low-level C++ code. C linking convention is adopted to enable interoperability with
other languages, such as C and FORTRAN. For notes on how to use LIBINT library from FORTRAN code, see
subsection 7.

LIBINT API consists of 3 major components: type definitions, function and variable prototypes, and C
preprocessor macros. The API is described in the following header files:

• libint2.h – main header file, it includes most other headers (not generated).

• libint2 intrinsic types.h – architecture-specific definitions for long integer types (not generated).

• libint2 types.h – definitions for the integral evaluator types (generated).
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• libint2 params.h – C preprocessor macros for library features (generated).

• libint2 iface.h – prototypes for functions and data as well as some misc macros (generated).

• boys.h – engines for computation of the Boys function and related quantities (not generated).

libint2.h (and, optionally, boys.h) is the only header that must be included explicitly in the user code.
The preprocessor macros provided by libint2.h are necessary so that the user code can access the library

configuration parameters. For example, the library can be configured at the code generation time to support any
finite angular momentum (quantum numbers) of the basis functions. The user code must still test whether the
maximum angular momentum present in the basis set exceeds the library limit.

The preprocessor value macros provided by libint2.h are listed in Listing 2 The most important macro,
LIBINT2 REALTYPE, specifies the floating-point type used by the library for all computations (usually, double).
The next macro, LIBINT2 MAX VECLEN specifies the maximum vector length supported by the library. For the
scalar code this macro will be set to 1, whereas for the vectorized library this will have a value greater than
1. The next macro, LIBINT2 API PREFIX, is used by the LIBINT2 PREFIXED NAME function macro and
should not be used explicitly (I list it here for completeness). The last three macros describe whether the library
supports computation of the electron repulsion integrals, the maximum angular momentum of the basis functions
supported for the ERI code (value of 3 corresponds to support of up to f functions, etc.), and the maximum order
of the ERI derivatives which can be computed.

Listing 2: C preprocessor value macros provided by libint2.h. The angled brakets describe valid macro values.

#define LIBINT2_REALTYPE <C++ floating-point type>
#define LIBINT2_MAX_VECLEN <positive integer>
#define LIBINT2_API_PREFIX <string>

/* ERI-specific macros */
#define LIBINT2_SUPPORT_ERI <0 or 1>
#define LIBINT2_MAX_AM_ERI <nonnegative integer>
#define LIBINT2_DERIV_ERI_ORDER <nonnegative integer>

LIBINT API also specifies several functions and variables whose decralations are listed in Listing 3.
The first two functions perform static initialization and cleanup of the library. Thus libint2 static init

must be called before LIBINT is used and libint2 static cleanup must be called after LIBINT is no
longer needed (only one thread needs to call these functions).

The next two functions are used to initialize and cleanup the key data structure (integral evaluator) involved
in the computation of the electron repulsion integrals. To initialize the integral evaluator, libint2 init eri
should be called with three arguments: 1) the pointer to the evaluator to be initialized (or to the first eval-
uator of an array of evaluators – see the notes on handling contracted Gaussians below); 2) the maximum
angular momentum of basis functions this object will support (max am will a↵ect the memory requirements for
the computation and therefore should be always set to the actual maximum value needed, not the maximum
value supported by the library); 3) optional pointer to the scratch bu↵er which will be used to hold interme-
diate results. If the third argument is 0, then the call will dynamically allocate the needed space. If the user
code needs to control memory allocation/deallocation, the scratch bu↵er needs to be allocated prior to the
call. libint2 need memory eri can be used to compute the required size of the scratch bu↵er in units
of LIBINT2 REALTYPE. Lastly, libint2 build eri is a 4-dimensional array of pointers to functions that
evaluate ERIs, e.g., libint2 build eri[1][0][2][0](&erieval) will compute the (ps|ds) set using
evaluator erieval (erieval must have been initialized with libint2 init eri).

Listing 3: LIBINT API functions and data. N = LIBINT2 MAX AM ERI + 1.

void libint2_static_init();
void libint2_static_cleanup();

/* ERI-specific API */
void libint2_init_eri(Libint_eri_t* libint, int max_am, LIBINT2_REALTYPE* buf);
void libint2_cleanup_eri(Libint_eri_t* libint);
size_t libint2_need_memory_eri(int max_am);
void (*libint2_build_eri[N][N][N][N])(Libint_eri_t *);
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LIBINT API described so far is very simple. However, as you may have noticed, there has been no mention of
where the basis set data is stored. This is because LIBINT does not maintain the basis set information. As part
of LIBINT’s philosophy to provide the leanest possible code, the user code is in charge of precomputing basis set
data and Boys function values and then feeding it to the evaluator object of type Libint eri t. (Note that
since currently all integral evaluations in LIBINT use the same evaluator object type, they are all just typedefs
to the common type Libint t, henceforth we will use both interchangeably).

Listing 4: Definition of the LIBINT integral evaluator type.

typedef struct {
_aB_s__0__s__1___TwoERep_s__0__s__1___Ab__up_0[VECLEN];
_aB_s__0__s__1___TwoERep_s__0__s__1___Ab__up_1[VECLEN];
_aB_s__0__s__1___TwoERep_s__0__s__1___Ab__up_2[VECLEN];
_aB_s__0__s__1___TwoERep_s__0__s__1___Ab__up_3[VECLEN];
_aB_s__0__s__1___TwoERep_s__0__s__1___Ab__up_4[VECLEN];
/* and so on until 4 * LIBINT2_MAX_AM_ERI */

LIBINT2_REALTYPE WP_x[VECLEN], WP_y[VECLEN], WP_z[VECLEN];
LIBINT2_REALTYPE WQ_x[VECLEN], WQ_y[VECLEN], WQ_z[VECLEN];
LIBINT2_REALTYPE PA_x[VECLEN], PA_y[VECLEN], PA_z[VECLEN];
LIBINT2_REALTYPE QC_x[VECLEN], QC_y[VECLEN], QC_z[VECLEN];
LIBINT2_REALTYPE AB_x[VECLEN], AB_y[VECLEN], AB_z[VECLEN];
LIBINT2_REALTYPE CD_x[VECLEN], CD_y[VECLEN], CD_z[VECLEN];

LIBINT2_REALTYPE oo2z[VECLEN];
LIBINT2_REALTYPE oo2e[VECLEN];
LIBINT2_REALTYPE oo2ze[VECLEN];
LIBINT2_REALTYPE roz[VECLEN];
LIBINT2_REALTYPE roe[VECLEN];

LIBINT2_REALTYPE* stack; /* used internally */
LIBINT2_REALTYPE* vstack; /* used internally */
LIBINT2_REALTYPE* targets[LIBINT2_MAX_NTARGETS_eri];
int veclen;

LIBINT2_UINT_LEAST64* nflops;
int zero_out_targets;

} Libint_eri_t;

The definition of Libint eri t is shown in Listing 4. Libint eri t is a C structure, i.e., its members
can be manipulated directly. This is done to allow direct manipulation of Libint eri t from Fortran and other
languages. Note that only ERI-specific parts of the actual definition Libint eri t are shown in Listing 4.
Currently, the same data structure is used for all types of evaluators (i.e. for ERI evaluators and Gaussian geminal
type evaluators), i.e. Libint eri t contains also members which are only used for evaluation of Gaussian
geminal integrals also. In the future the evaluator types will be generated automatically and will be specific to
each type of computation.

Let’s look in detail at the members of Libint eri t which must be precomputed before calling the relevant
libint2 build eri function:

• aB s 0 s 1 TwoERep s 0 s 1 Ab up m – values of auxiliary primitive integrals (00|00)(m) (Eq.
(25)) for 0  m  �(a) + �(b) + �(c) + �(d) + C , where C = 0 when computing ERIs, C = 1 when
computing first derivative ERIs, etc.

• AB i, CD i – cartesian components of vectors AB ⌘ A� B and CD ⌘ C�D.

• PA i, QC i – cartesian components of vectors PA ⌘ P� A and QC ⌘ Q� C.

• WP i, WQ i – cartesian components of vectors WP ⌘W � P and WQ ⌘W �Q.

• oo2z – 1
2⇣

• oo2n – 1
2⌘
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• oo2zn – 1
2(⇣+⌘)

• roz – ⇢
⇣

• ron – ⇢
⌘

Most of these quantities are simple to evaluate. Evaluation of the Boys function needed to compute the auxiliary
integrals (00|00)(m) can be fairly complicated.10 LIBINT includes C++ classes that can evaluate Boys and
related functions relatively e�ciently (see boys.h header). An example of how to use LIBINT to compute Boys
function is shown in Listing 5.

Listing 5: Computation of Boys function using LIBINT.

#include <boys.h>

// initialize Boys function engine to support m values up to mmax
// not thread-safe, should be constructed by main thread
libint2::FmEval_Chebyshev3 fmeval(mmax);

// double* Fm initialized somewhere else
// on return Fm[m], m=0..M, contains Fm(T)
// thread-safe provided each thread uses its own Fm
fmeval.eval(Fm, T, M);

Note that the evaluator object contains data that is depends on the Gaussian exponents. Hence for a shell
set over contracted Gaussian functions data for each combination of primitive Gaussians will be kept in its own
evaluator object, resulting in an array of evaluator objects necessary to evaluate contracted integrals. This is best
illustrated by an example shown in Listing 6. This is perhaps the most significant change relative to the version
1 of the library, where the single evaluator object kept the data for all primitive combinations contributing to the
given shell set.

Listing 6: Initialization and use of LIBINT with contracted basis functions.

libint2_static_init(); // static initialization (once per program)
std::vector<Libint_t> inteval(contrdepth4); // array of contrdepth4 evaluators

// contrdepth4 = contrdepthˆ4, where contrdepth is
the max contraction

// depth of Gaussians in the basis set

// initialize the array of evaluators .. this allocates the scratch array
// use libint2_need_memory_eri() to figure out how much memory is needed
libint2_init_eri(&inteval[0], // ptr to the first evaluator in the array

lmax, // maximum angular momentum
0);

// loop over (contracted) Gaussian shells
for(int s0=0; s0<nshell; ++s0) {

for(int s1=0; s1<nshell; ++s1) {
for(int s2=0; s2<nshell; ++s2) {
for(int s3=0; s3<nshell; ++s3) {

// decide whether to evaluate the integral (uniqueness, magnitude, etc.)
// ..

// loop over each primitive combination for this shell set
int p0123 = 0;
for(int p0=0; p0<nprim[s0]; ++p0) {

for(int p1=0; p1<nprim[s0]; ++p1) {
for(int p2=0; p2<nprim[s0]; ++p2) {
for(int p3=0; p3<nprim[s0]; ++p3) {

// optionally screen out primitive combinations

// compute primitive data and put into inteval[p0123]
// ...
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++p0123;
}

}
}

}
// report the number of primitive combinations to libint
inteval[0].contrdepth = p0123;

// evaluate the contracted integral shell set
libint2_build_eri[am[s0]][am[s1]][am[s2]][am[s3]](&inteval[0]);

// grab the resulting shell set in inteval[0].targets[0][ ]
}

}
}

}

libint2_cleanup_eri(&inteval[0]);
libint2_static_cleanup();

After the integrals have been built, they are placed somewhere in the scratch bu↵er. To recover their location,
the array of pointers targets is provided, e.g., the computed ERI shell-set is located at target[0]. ERI
evaluation produces only one shell-set of integrals, but other types of computations may produce several shell-sets
of integrals at a time, e.g., usually all 12 derivative ERI integrals are computed at the same time. That’s why
target is an array of pointers, not a pointer.

Shell-sets of integrals contain integrals in “row major” order.11 For example, if the number of functions in each
shell is n

a

, n
b

, n
c

, and n
d

, respectively, then the integral (ab|cd) is found at position abcd = ((an
b

+b)n
c

+c)n
d

+d .
The rest of Libint eri t is used to control various aspects of its behavior:

• veclength is used in vectorized computation of integrals.

• nflops is used to count the total number of FLOPs (the library must have been configured with
--enable-flop-counter).

• zero out targets is used to zero out the target integral bu↵ers. This is only useful if LIBINT was
configured with --enable-accum-ints.

Note that currently the LIBINT compiler minimizes the amount of code it generates by taking advantage
of the permutational symmetry of the integrals. This means that only certain combinations of the angular
momenta can be handled. In standard configuration LIBINT can evaluate a shell quartet (ab|cd) if �(a) � �(b),
�(c) � �(d), and �(c) + �(d) � �(a) + �(b). (There is also the ordering used by ORCA program for which
LIBINT can be configured — it will not be discussed here). If one needs to compute a quartet that doesn’t
conform the rule, e.g. of type (pf |sd), permutational symmetry of integrals can be utilized to compute such
quartet:

(pq|rs) = (pq|sr) = (qp|rs) = (qp|sr) = (rs|pq) = (rs|qp) = (sr |pq) = (sr |qp) (2)

In the case of (pf |sd) shell quartet, one computes quartet (ds|fp) instead, and then permutes function indices
back to obtain the desired (pf |sd).

The final integrals that LIBINT computes are not normalized. The best way to include the normalization is
to scale the auxiliary integrals (00|00)(m) by the normalization factors. However, Gaussians in a shell of angular
momentum > 1 have di↵erent normalization factors. Usually the convention is to unit-normalize only the functions
which have all quanta along one Cartesian direction, e.g., d

xx

, f
xxx

, etc. Some programs (e.g., GAMESS) require
all functions to be unit-normalized; this can be achieved by scaling the final integrals.

3 Using LIBINT to compute non-Coulomb integrals

As elegantly shown by Ahlrichs,12 Obara-Saika and related schemes can also be used to compute many two-body
integrals with spherically-symmetric kernels f (r12). Such integrals appear in, for example, explicitly correlated
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R12/F12 methods or in range-separated form of Kohn-Sham density functional theory. To compute such integrals,
instead of the Coulomb-kernel (00|00)(m) integrals related to the Boys function by Eq. 28 LIBINT needs to be
fed the corresponding kernel-specific (00|00)(m) integrals related to the the kernel-specific G

m

(⇢,T ) function of
Ahlrichs. Explicit expressions for G

m

for several important kernels are given in Section 5 of Ref.12. For example,
for the Coulomb kernel G

m

(⇢,T ) are related to the Boys function as (Eq. (39) of Ahrlichs paper):

G0(⇢,T ) =
2⇡

⇢
F

m

(T ). (3)

Hence Eq. (28) changes to

(00|00)(m) = G
m

(⇢, ⇢|PQ|2)
r

⇢3

⇡3
S12S34C1C2C3C4. (4)

where the overlaps S12 and S34 are defined in Eqs. (26) and (27), not the overlaps from Ahlrichs’ paper.
LIBINT supports computation of the G

m

function for the important case of a contracted Gaussian kernel
that appears in explicitly correlated methods:

f
k

(r12) =rk

12

nX

i=1

c
i

exp(�↵
i

r2
12), k = �1, 0, 2. (5)

Example code is shown in Listing 7.

Listing 7: Computation of the G

m

function for the contracted Gaussian kernel using LIBINT.

#include <boys.h>

// initialize Gaussian Gm function engine to support m values up to mmax
// k specifies the exponent of r_{12} in the kernel (0, -1, and 2 supported)
libint2::GaussianGmEval<double, k> gmeval(mmax, 1e-15); // 1e-15 is the desired precision

// vector of {exponent,coefficient} pairs = contracted Gaussian kernel
std::vector<std::pair<double,double> > gauss;

// double* Gm initialized somewhere else
// on return Gm[m], m=0..M, contains Gm(rho,T)
gmeval.eval(Gm, rho, T, M, gauss);

4 Using LIBINT to compute geometrical derivatives of integrals.

LIBINT can also evaluate geometrical derivatives of two-body integrals with respect to basis function positions.
One shell set of four-center two-body integrals (ab|cd) has total of 12 first-order geometrical derivatives:
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and 12⇥ 12 = 144 second-order derivatives, although only 12(12+1)
2 = 78 of those are unique because of permu-

tation symmetry with respect to the order of taking the derivative:
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The translational invariance of the integral can be used to eliminate derivatives involving one of the centers
(as a matter of convention, LIBINT skips the third center, C). This allows to eliminate 3 of the 12 first-order
derivatives.
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and 33 of the 78 second-order derivatives
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(11)

Here’s an easy way to understand how many derivatives are permutationally and translationally invariant: transla-
tional invariance allows to omit one center from consideration, hence we are left with 4-1=3 centers and 3⇥3 = 9
first-order geometrical derivatives; for the kth-order derivatives the order of di↵erentiation does not matter, hence
we are left with (9 + k)!/9!k! unique derivatives, i.e. 9⇥ 10/2 = 45 second-order derivatives.

To minimize the operation count, LIBINT evaluates a complete set of unique shell-set derivatives at once. On
return, Libint t::target[i] will contain the i-th set of derivative integrals. For the first-order derivatives
sets i = 0..2 corresponds to the derivative with respect to A

x

..A
z

, respectively, i = 3..5 — B
x

..B
z

, and i =
6..8 — D

x

..D
z

; derivatives with respect to coordinates C
x

..C
z

can be recovered using Eq. (6). Similarly, for
the second-order derivatives Libint t::target[ij] will contain ij-th set of derivative integrals, where
ij is the composite “upper-triangle” index: ij = i ⇥ (19 � i)/2 + (j � i), 0  i  j < 9. For example,
Libint t::target[29] thus contains the @2/@B

x

@D
z

derivative set (ij = 29! i = 3, j = 8).
The additional types of “compute” functions specific to the geometric derivatives are:

extern void (*libint2_build_eri1[5][5][5][5])(Libint_t *);
extern void (*libint2_build_eri2[4][4][4][4])(Libint_t *);

The former refers to functions which compute first derivative ERIs, and the second refers to functions which
compute second derivative ERIs. The dimensions of each array are determined by the following 2 configure-time
macros defined in libint2 params.h:

#define LIBINT2_MAX_AM_ERI1 5
#define LIBINT2_MAX_AM_ERI2 4

(the actual values ail depend on how the library was configured).
Each derivative shell set is identical in structure to a nondi↵erentiated shell set, i.e. individual integrals are

arranged in a row major order. Normalization convention for the derivative integrals is the same as for the regular
ERIs.

5 Using LIBINT to compute three- and two-center integrals

No notes yet — see tests/eri/test eri.cc for a working example of how to compute 2- and 3-center
integrals and their geometrical derivatives.
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6 Example: using libint to compute four-center two-body Coulomb
integrals

A C++ function that uses LIBINT to evaluate four-center two-body Coulomb integrals over primitive (non-
contracted) Gaussians is shown in Listing 8. A standalone example of how to use LIBINT to compute the
integrals over contracted Gaussians can be found in doc/sample/test.cc .

Listing 8: Using LIBINT from C++.

#include <iostream>
#include <algorithm>
#include <libint2.h>
#include <boys.h>

using namespace std;
using namespace libint2;

/** This function evaluates ERI over 4 primitive Gaussian shells.
See doc/sample/test_eri.cc for an example of how to deal with
contracted Gaussians.

For simplicity, many details are omitted here, e.g. normalization.

*/
void
compute_eri(unsigned int am1, double alpha1, double A[3],

unsigned int am2, double alpha2, double B[3],
unsigned int am3, double alpha3, double C[3],
unsigned int am4, double alpha4, double D[3]
)

{
// I will assume that libint2_static_init() has been called elsewhere!

//-------------------------------------------------------------------------------------
// ------ the code in this section would usually be placed outside this function ------
// to occur once per calculation, not every time this function is called
// - allocate ERI evaluator object
Libint_eri_t erieval;
const unsigned int max_am = max(max(am1,am2),max(am3,am4));
libint2_init_eri(&erieval,max_am,0);

#if LIBINT_CONTRACTED_INTS
// if have support for contracted integrals, set the contraction length to 1
erieval.contrdepth = 1;

#endif
// - initialize Boys function evaluator
FmEval_Chebyshev3 fmeval(max_am);
//-------------------------------------------------------------------------------------

//
// Compute requisite data -- many of these quantities would be precomputed
// for all nonnegligible shell pairs somewhere else
//
const double gammap = alpha1 + alpha2;
const double Px = (alpha1*A[0] + alpha2*B[0])/gammap;
const double Py = (alpha1*A[1] + alpha2*B[1])/gammap;
const double Pz = (alpha1*A[2] + alpha2*B[2])/gammap;
const double PAx = Px - A[0];
const double PAy = Py - A[1];
const double PAz = Pz - A[2];
const double PBx = Px - B[0];
const double PBy = Py - B[1];
const double PBz = Pz - B[2];
const double AB2 = (A[0]-B[0])*(A[0]-B[0])

+ (A[1]-B[1])*(A[1]-B[1])
+ (A[2]-B[2])*(A[2]-B[2]);

erieval.PA_x[0] = PAx;
erieval.PA_y[0] = PAy;
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erieval.PA_z[0] = PAz;
erieval.AB_x[0] = A[0] - B[0];
erieval.AB_y[0] = A[1] - B[1];
erieval.AB_z[0] = A[2] - B[2];
erieval.oo2z[0] = 0.5/gammap;

const double gammaq = alpha3 + alpha4;
const double gammapq = gammap*gammaq/(gammap+gammaq);
const double Qx = (alpha3*C[0] + alpha4*D[0])/gammaq;
const double Qy = (alpha3*C[1] + alpha4*D[1])/gammaq;
const double Qz = (alpha3*C[2] + alpha4*D[2])/gammaq;
const double QCx = Qx - C[0];
const double QCy = Qy - C[1];
const double QCz = Qz - C[2];
const double QDx = Qx - D[0];
const double QDy = Qy - D[1];
const double QDz = Qz - D[2];
const double CD2 = (C[0]-D[0])*(C[0]-D[0])

+ (C[1]-D[1])*(C[1]-D[1])
+ (C[2]-D[2])*(C[2]-D[2]);

erieval.QC_x[0] = QCx;
erieval.QC_y[0] = QCy;
erieval.QC_z[0] = QCz;
erieval.CD_x[0] = C[0] - D[0];
erieval.CD_y[0] = C[1] - D[1];
erieval.CD_z[0] = C[2] - D[2];
erieval.oo2e[0] = 0.5/gammaq;

const double PQx = Px - Qx;
const double PQy = Py - Qy;
const double PQz = Pz - Qz;
const double PQ2 = PQx*PQx + PQy*PQy + PQz*PQz;
const double Wx = (gammap*Px + gammaq*Qx)/(gammap+gammaq);
const double Wy = (gammap*Py + gammaq*Qy)/(gammap+gammaq);
const double Wz = (gammap*Pz + gammaq*Qz)/(gammap+gammaq);

erieval.WP_x[0] = Wx - Px;
erieval.WP_y[0] = Wy - Py;
erieval.WP_z[0] = Wz - Pz;
erieval.WQ_x[0] = Wx - Qx;
erieval.WQ_y[0] = Wy - Qy;
erieval.WQ_z[0] = Wz - Qz;
erieval.oo2ze[0] = 0.5/(gammap+gammaq);
erieval.roz[0] = gammapq/gammap;
erieval.roe[0] = gammapq/gammaq;

double K1 = exp(-alpha1*alpha2*AB2/gammap);
double K2 = exp(-alpha3*alpha4*CD2/gammaq);
double pfac = 2*pow(M_PI,2.5)*K1*K2/(gammap*gammaq*sqrt(gammap+gammaq));

//
// evaluate Boys function F_m for all m in [0,am]
//
unsigned int am = am1 + am2 + am3 + am4;
double* F = new double[am+1];
fmeval.eval(F, PQ2*gammapq, am);

// (00|00)ˆm = pfac * F_m
erieval.LIBINT_T_SS_EREP_SS(0)[0] = pfac*F[0];
erieval.LIBINT_T_SS_EREP_SS(1)[0] = pfac*F[1];
erieval.LIBINT_T_SS_EREP_SS(2)[0] = pfac*F[2];
erieval.LIBINT_T_SS_EREP_SS(3)[0] = pfac*F[3];
erieval.LIBINT_T_SS_EREP_SS(4)[0] = pfac*F[4];
// etc.

// compute ERIs
libint2_build_eri[am1][am2][am3][am4](&erieval);
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// Print out the integrals
const double* eri_shell_set = erieval.targets[0];
const unsigned int n1 = (am1 + 1) * (am1 + 2)/2;
const unsigned int n2 = (am2 + 1) * (am2 + 2)/2;
const unsigned int n3 = (am3 + 1) * (am3 + 2)/2;
const unsigned int n4 = (am4 + 1) * (am4 + 2)/2;
for(int a=0; a<n1; a++) {
for(int b=0; b<n2; b++) {

for(int c=0; c<n3; c++) {
for(int d=0; d<n4; d++) {

cout << "a = " << a
<< "b = " << b
<< "c = " << c
<< "d = " << d
<< "(ab|cd) = " << *eri_shell_set;

++eri_shell_set;
}

}
}

}

// ------ like the code at the beginning, this usually goes outside this function ------
libint2_cleanup_eri(&erieval);

}

To see how to use LIBINT for e�cient computation of integrals over contracted basis function refer to the
sample code found in tests/eri directory.

7 Notes on using LIBINT from Fortran

Although LIBINT source is written in C++, it should be possible to use the library from Fortran programs.
(Un)fortunately, I am not a Fortran programmer. Thus I can only provide general guidelines here.

One of the main issues is the number of Fortran standards available. The most recent standard, Fortran
2003, seems to have the best support for interoperability with C programs, but its compiler support is stil lacking.
Unfortunately, the most popular standard, Fortran 77, is also the most restrictive.

In general, C functions can be easily called from Fortran programs, but sharing data structures is not straight-
forward. Thus the main culprit is how to modify Libint eri t objects from Fortran. Fortran 2003 provides
direct support for binding C data structures to Fortran types. Older Fortran standards can access C data struc-
tures indirectly, via common blocks. An (non-working) example of how a Fortran subroutine can manipulate
Libint eri t is shown in Listing 9. The common block erieval referened in that Listing is created by
declaring in C++ a global variable as follows:

extern Libint_eri_t erieval;

Listing 9: Accesing Libint eri t structure from a Fortran code.

c assuming that LIBINT2_REALTYPE is 8-bytes long
real(8) F0(1)
real(8) F1(1)
real(8) F2(1)
real(8) F3(1)
real(8) F4(1)
etc.
real(8) WP_x(1), WP_y(1), WP_z(1)
real(8) WQ_x(1), WQ_y(1), WQ_z(1)
real(8) PA_x(1), PA_y(1), PA_z(1)
real(8) QC_x(1), QC_y(1), QC_z(1)
real(8) AB_x(1), AB_y(1), AB_z(1)
real(8) CD_x(1), CD_y(1), CD_z(1)
real(8) oo2z(1), oo2e(1), oo2ze(1), roz(1), roe(1)
c in 64-bit environment pointers are 8-bytes long
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c assuming LIBINT2_MAX_NTARGETS is 10
integer(8) targets(10)
integer(4) veclength
integer(8) nflops
integer(4) zero_out_targets
c common erieval represents the C object erieval
common/erieval/ F0, F1, ... , WP_x, WP_y, etc.

c now can access elements of erieval
AB_x[0] = Ax[0] - Bx[0]
etc.

The caveat of accessing C data structures from Fortran programs is that the members of the data structure
must be declared in the common block in the exact order in which they appear in the definition of Libint eri t.
The actual definition of Libint eri t in libint2 types.h must always be consulted.

Calling LIBINT functions from Fortran should be straightforward. Using the function pointer array libint2 build eri
is probably not feasible in older Fortran standards, but perhaps can be accomplished in Fortran 2003. Actual
function names must be used instead, i.e., a C++ expression

libint2_build_eri[1][0][2][0](&erival);

will be replaced with a Fortran expression (I’m not sure how to pass pointer to erieval to the function from
Fortran!)

_aB_p__0__d__1___TwoERep_s__0__s__1___Ab__up_0()

where aB p 0 d 1 TwoERep s 0 s 1 Ab up 0 is the name of the function to which libint2 build eri[1][0][2][0]
points.

Please send in your comments on how to actually make LIBINT work from Fortran.

Appendices

A Notation

Following Obara and Saika,5 we write an unnormalized primitive Cartesian Gaussian function centered at A as

�(r; ⇣,n,A) = (x � A
x

)nx (y � A
y

)ny (z � A
z

)nz

⇥ exp[�⇣(r � A)2] , (12)

where r is the coordinate vector of the electron, ⇣ is the orbital exponent, and n is a set of non-negative integers.
The sum of n

x

, n
y

, and n
z

will be denoted �(n) and be referred to as the angular momentum or orbital quantum
number of the Gaussian function. Hereafter n will be termed the angular momentum index. Henceforth, n

i

will
refer to the i-th component of n, where i 2 {x , y , z}. Basic vector addition rules will apply to these vector-like
triads of numbers, e.g. n + 1

x

⌘ {n
x

+ 1, n
y

, n
z

}.
A set of (�(n) + 1)(�(n) + 2)/2 functions with the same �(n), ⇣, and centered at the common center but

with di↵erent n form a Cartesian shell, or just a shell. For example, an s shell (� = 0) has one function, a p shell
(� = 1) – 3 functions, etc. There is no unique choice for the order of functions in shells. The standard LIBINT
ordering is:

p : p
x

, p
y

, p
z

d : d
xx

, d
xy

, d
xz

, d
yy

, d
yz

, d
zz

f : f
xxx

, f
xxy

, f
xxz

, f
xyy

, f
xyz

, f
xzz

, f
yyy

, f
yyz

, f
yzz

, f
zzz

etc.

In general, the following loop structure can be used to generate angular momentum indices in the canonical
LIBINT order for all members of a shell of angular momentum am:
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for(int i=0; i<=am; i++) {
int nx = am - i; /* exponent of x */
for(int j=0; j<=i; j++) {

int ny = i-j; /* exponent of y */
int nz = j; /* exponent of z */

}
}

Other shell orderings are supported as well, e.g., those employed by the intv3 engine in the MPQC program, the
ordering used in the GAMESS program, or that in the ORCA program. These can be specified when the library
is generated (see the --with-cartgauss-ordering configure flag). Support of a new ordering is trivial to
implement. If your program relies on an ordering di↵erent from the above, please contact the author of LIBINT.

The normalization constant for a primitive Gaussian �(r; ⇣,n,A)

N(⇣,n) =

"✓
2

⇡

◆3/4 2(�(n))⇣(2�(n)+3)/4

[(2n
x

� 1)!!(2n
y

� 1)!!(2n
z

� 1)!!]1/2

#
(13)

A contracted Gaussian function is just a linear combination of primitive Gaussians (also termed primitives)
centered at the same center A and with the same momentum indices n but with di↵erent exponents ⇣

i

:

�(r; ⇣,C,n,A) = (x � A
x

)nx (y � A
y

)ny (z � A
z

)nz

⇥
MX

i=1

C
i

exp[�⇣
i

(r � A)2] , (14)

Contracted Gaussians form shells the same way as primitives. The contraction coe�cients C already include nor-
malization constants so that the resulting combination is properly normalized. Published contraction coe�cients
c are linear coe�cients for normalized primitives, hence the normalization-including contraction coe�cients C
have to be computed from them as

C
i

= c
i

N(⇣
i

,n) (15)

and scaled further so that the self-overlap of the contracted function is 1:

⇡3/2(2n
x

� 1)!!(2n
y

� 1)!!(2n
z

� 1)!!

2�(n)

MX

i=1

MX

j=1

C
i

C
j

(⇣
i

+ ⇣
j

)�(n)+3/2
= 1 (16)

If sets of orbital exponents are used to form contracted Gaussians of one angular momentum only then this
is called a segmented contraction scheme. If there is a set of exponents that forms contracted Gaussians of
several angular momenta then such scheme is called general contraction. Examples of basis sets that include
general contractions include Atomic Natural Orbitals (ANO) sets. LIBINT was not designed to handle general
contractions very well. You should use either split general contractions into segments for each angular momentum
(it’s done for correlation consistent basis sets) or use basis sets with segmented contractions only.

An integral of a two-body operator Ô(r1, r2) over unnormalized primitive Cartesian Gaussians is written as

Z
�(r1; ⇣a

, a,A)�(r2; ⇣c

, c,C)Ô(r1, r2)�(r1; ⇣b

,b,B)�(r2; ⇣d

,d,D)dr1dr2 ⌘ (ab|Ô|cd) (17)

A set of integrals {(ab|Ô(r1, r2)|cd)} over all possible combinations of functions a 2 ShellA, b 2 ShellB, etc. will
be termed a shell-set, or simply a set, of integrals. For example, a (ps|sd) set consists of 3 ⇥ 1 ⇥ 1 ⇥ 6 = 18
integrals.
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The following definitions have been used throughout this work:

⇣ = ⇣
a

+ ⇣
b

(18)

⌘ = ⇣
c

+ ⇣
d

(19)

⇢ =
⇣⌘

⇣ + ⌘
(20)

P =
⇣
a

A + ⇣
b

B

⇣
(21)

Q =
⇣
c

C + ⇣
d

D

⌘
(22)

W =
⇣P + ⌘Q

⇣ + ⌘
(23)

The Boys function is defined as

F
m

(T ) =

Z 1

0

dt t2m exp(�Tt2) (24)

Evaluation of integrals over functions of non-zero angular momentum starts with the auxiliary integrals over
primitive s-functions defined as

(00|00)(m) = 2F
m

(⇢|PQ|2)
r

⇢

⇡
S12S34 (25)

where PQ = P�Q and primitive overlaps S12 and S34 are computed as

S12 =
⇣⇡

⇣

⌘3/2

exp
⇣
�⇣

a

⇣
b

⇣
|AB|2

⌘
(26)

S34 =
⇣⇡

⌘

⌘3/2

exp
⇣
�⇣

c

⇣
d

⌘
|CD|2

⌘
(27)

In the evaluation of integrals over contracted functions it is convenient to use auxiliary integrals over primitives
which include contraction and normalization factors of the target quartet (ab|cd):

(00|00)(m) = 2F
m

(⇢|PQ|2)
r

⇢

⇡
S12S34C1C2C3C4 (28)

where the coe�cients C
a

, C
b

, C
c

, and C
d

are normalization-including contraction coe�cients (Eqs. (15) and
(16)) for the first basis function out of each respective shell in the target shell of integrals.
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