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The ansatz �9 = (1+�89 + X with �9 the bare nuclear (or screened nuclear) 
wave function and X expanded in products of one-electron functions is 
explored for second-order perturbation theory and for variational calculations 
of the ground state of Helium-like ions. 

The energy inc rements  /~I 2) corresponding to the partial wave expansion of 
X go asymptotically as 1-8, while conventional partial wave increments go as 
I-4. X is coupled to �9 by a "residual" interaction U12 that has no singularity 
for r12 = 0. With the present ansatz it is sufficient to include/-values up to 5 
in order to get the second-order energy accurate to one microhartree. For the 
same accuracy l-< 4 is sufficient in a "CI  with correlated reference function" 
while in conventional CI one must go to / - 5 0 .  The surprisingly faster 
convergence of the variational approach as compared to second-order per- 
turbation theory is explained. The slow convergence of the traditional partial 
wave expansion is entirely due to the attempt to represent the quantity 
1 = (qblr12r12-11qb) by its partial wave expansion. The best reference function 
qb shows very little shielding and resembles closely the eigenstate of the bare 
nuclear Hamiltonian. The generalization to arbitrary systems is discussed and 
it is pointed out that the calculation of "difficult '~ integrals can be avoided 
without a significant loss in accuracy. 

Key words: r12-Dependent wave func t ions - -  Convergence of  the CI-expansion 
- -  (1/Z)-Expansion - -  Correlation cusp - -  He-isoelectronic series - -  
Hylleraas-CI 
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1. Introduction 

Configuration interaction (CI) is the most straightforward and most generally 
applicable method for an approximate solution of the n-electron Schr6dinger- 
equation [1]. It is, "in principle", exact, i.e. for a complete [2] basis there is 
convergence to the exact (nonrelativistic) wave function and energy. With a 
relatively small number  of  configurations one often recovers a large part  of  the 
correlation energy (say 80-90%). The convergence becomes rather slow if one 
strives at "chemical  accuracy" - errors smaller than about 1 millihartree (mh) - 
such that for systems of medium size a huge number  of  configurations has to be 
included. "Spectroscopic accuracy" (errors of  the order of  one /~h) is strictly 
inaccessible to CI  calculations, even for the He ground state the estimated number  
of  configurations to get this accuracy is roughly 10 000, while the best published 
CI  energy for He is in error by more than 20 g,h. (The difficulty to get accurate 
CI  results for He does not come from the large dimension of the secular equation 
- much higher dimensions can easily be handled - but from numerical problems, 
essentially near linear dependencies that are unavoidable for very large basis sets). 

One can reduce the length of  a CI expansion by using natural orbitals or pair 
natural orbitals [3] (pseudonatural orbitals [4]) and attempts on these lines have 
been rather successful [3-6], but they do not eliminate the eventually slow 
convergence of  all CI-expansions [7]. 

There are two sources of  the slow convergence of the CI  expansion. 
(a) The "combinatorial  problem".  For an n-electron system and a basis of  m 

spinfree one-electron functions the number  of  Slater determinants in a "full 
C I "  goes as (~"), which is a very large number  unless both n and m are quite 
small. 

(b) The slow convergence o f " t he  partial wave expansion" even for a two electron 
atom. I f  one truncates the one-electron basis at some angular quantum number  
l, then the error is of  the order 1-3 [7-9]. 

It is by now more or less understood how to get along with the combinatorial 
problem. One should not perform a "brute force" full CI, but rather start from 
an opt imum one-determinant (or few determinant) wave function and then apply 
CI limited to double (or possibly triple) substitutions, or preferentially use the 
coupled-cluster approach or one of its simplifications such as the coupled electron 
pair approximation (CEPA) [5]. 

We now propose a simple method to overcome the slow convergence of the 
partial wave expansion. The basic idea is that the partial wave expansion should 
have some regular pattern as function of l, at least asymptotically for large ! [8] 
and that a closed summation of this asymptotic series should be possible. One 
finds that the behavior for large I is closely related to that for small r12 and that 
the slow convergence of the /-expansion is due to the attempt to represent the 
correlation cusp [10] as the limit of the sequence of functions that only contain 
even powers of  r12. 

I f  one wants to improve the CI expansion in this sense one is inevitably led to 
the inclusion of linear q2-dependent  terms in the wave function. Having realized 
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this one may wonder whether one has gained anything, since r~2-dependent wave 
functions have been used for a long time. There seems to be general agreement 
that one can get very accurate wave functions and energies if one includes 
explicitly the interelectronic coordinates, but that one has then to deal with so 
complicated integrals, that applications are limited to systems with a very small 
number of  electrons. 

The main message of this p a p e r  is that one can avoid "difficult" integrals and 
get very good results nevertheless. 

r12-Dependent wave functions have so far been used mainly on three lines. (a) 
Very sophisticated r12-dependent variational expressions in the spirit of  HyUeraas 
[11], Kinoshita [12] and Pekeris [13] for systems with two or at most three 
electrons [14] which led to extremely accurate results, (b) the so-called Hylleraas- 
CI [15, 16] or superposition of correlated configuration (SCC) method [17], in 
which configuration state functions of  traditional CI are multiplied by factors 
(rq) ~. There is no a priori limitation to systems with two or three electrons, but 
the published (and quite accurate) results refer to systems with at most 4 electrons, 
(c) the use of so-called Gaussian geminals [18], in which the factors (r~j) ~ are 
replaced by exp [ - a ( Y i -  ~)2]. All the necessary integrals can then be evaluated 
in closed form, but it is at least not obvious that Gaussian geminals are particularly 
appropriate for the description of the correlation cusp. Recent numerical results 
with carefully optimized nonlinear parameters have been quite encouraging [ 19]. 

The ansatz proposed in this paper is related to the Hylleraas-CI method, but it 
is presented in a different philosophy. We want to keep the spirit and the logistic 
of standard CI as long as possible. We want to simplify CI (i.e. get better accuracy 
for smaller expansion lengths) and not to complicate it. This paper will be 
organized as follows. In Sect. 2 the general theoretical background is outlined, 
in Sect. 3 the special ansatz to be used in this paper is presented in more detail. 
The application to second-order perturbation theory of  the He isoelectronic series 
is described in Sect. 4, while Sect. 5 is devoted to the variational calculation of 
the He ground state and its isoelectronic ions. In Sect. 6 we discuss possible 
improvements and the generalization to larger systems. The numerical calculations 
of Sect. 4 and 5 have been performed on a basis of Slater type orbitals. We have 
also implemented our method on a Gaussian basis for molecular calculations. 
The results will be presented in a forthcoming paper. 

The main interest of this paper is not in the numerical results but in their analysis 
and in the conclusions drawn from this analysis. Some items of the analysis can 
be traced back to previous work [7-10, 15, 20-23] but no previous analysis led 
to so simple and clearcut conclusions. 

2. Theoretical background 

The key to our approaches is the correlation cusp relation [10] 

lira 
r 1 2 ~ 0  a/) 

(2.1) 
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Where "av" stands for the spherical averaging. In the region of small r12 the 
wave function is linear in r~> 

The correlation cusp is responsible for the slow convergence of  the partial wave 
expansion. However,  the relation (2.1) also tells us how to avoid this slow 
convergence. 

Let us divide the Hamil tonian of a n-electron system into three parts 

H = K + T12 + V12 (2.2) 

where 7"12 is the sum of the kinetic energy operator for the first and second 
particle, Vl2 the interaction between the two particles and K everything else. We 
write the n-electron wave function as 

q, = gqb (2.3) 

and choose dp such that 

Vi~b and Aiqb continuous at r12 = 0 for i = 1, 2. (2.4) 

The factor g should hence take care of  the correlation cusp. 

The Schr6dinger equation can be written as 

( n  - E)R* = ( K  + 7"12+ Va2- E)g~ 

= (K  - E ) g ~  + V12gqb + [T~2, g]qb + gT12~b = 0. (2.5) 

At r12 = 0 the term V12 = r~ -1 becomes singular. This singularity must be com- 
pensated by the only other term in (2.5) that may become singular, hence 

V12g~ + [ T~2, g]~b = regular for r12 = 0. (2.6) 

This is achieved if 

g = 1 + l r 1 2 + 0 ( r 2 2 )  (2.7) 

b e c a u s e  

[ T12, �89 -- 
r12 

�89 grad1 r12 �9 Vl- �89  grad2 r12 �9 V2 

g = [I (1 +�89 (2.9) 
i<j 

and that for the corresponding dp (2.4) holds for all r~ = 0. One can then expand 

_ 1 1 ( f , - r2 ) . {V_V2}=_V12+ (J,z. (2.8) 
r12 2 rl= 

In (2.8) we have defined the operator 012 which will play a central role in this 
paper. 

The simplest possible g is obtained if one truncates (2.7) after the linear term. 
One can repeat  the same argument for all electron pairs such that a possible 

choice for the overall g is 
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d) in a Hilbert space basis of Slater determinants 

qb =•  c.q~. (2.10) 
/x 

and hope that the expansion (2.10) is rapidly convergent since qb has no correlation 
cusp. 

The ansatz (2.3, 9, 10) is by no means new [11, 22], which is not astonishing, 
since one is led to it almost automatically if one wants to separate the correlation 
cusp from the rest of the problem. Some authors, e.g. Grein and Tseng [23] have 
replaced the factor �89 in (2.9) by some variational parameter, but if one wants an 
exact explicit summation of the partial wave amplitudes with large l, �89 is the 
best choice. 

One can insert (2.3) into the expectation value (H)  of the Hamiltonian H and 
make (H)  stationary with respect to variation of the e,. This leads to a matrix 
eigenvalue problem with the CI matrix H,~ and the overlap matrix S~,~ 

I7t,,~ = ( ~ , ,g lHlg~)  (2.11) 

S~,~ = (cp~glg[~o~). (2.12) 

The function g given by (2.9) is certainly unpleasant for a large number of 
electrons. An alternative choice is 

g = 1 +�89 Y~ r~ (2.13) 
i< j  

but it may lead to problems with size-consistency. 

These problems can be avoided by limiting the products r etc. in the expansion 
of (2.10) to those with all subscripts different, i.e. 

g = l +  1 ~  rij+~ ~ ~, r i j r k t+ ' ' ' .  (2.14) 
i < j  i < j  k < l  

i # k , l  
j ~ l~l 

One may also choose 

We shall briefly comment later on this possibility. 

Often a single term q% will dominate in the expansion (2.10). One can then write 

= g(~o+ to) = g ~ o + g  (2.16) 

and expand X in a Hilbert space basis 

X = Y.d.q~.. (2.17) 
/x 

Then X is no longer expected to be free from a correlation cusp, but if X is a 
small correction to (Po it may not matter too much that the expansion (2.17) is 
somewhat slower convergent than that of to. It should certainly be superior to 
an expansion of the full �9 in the {~o~}. 
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The numerical applications of this paper will be based on the ansatz (2.16) which 
we shall present in more detail in Sect. 3. 

There is an interesting alternative to the choice (2.9) for g, namely (2.15); with 
this choice (2.5) becomes 

{ " t 1 lr12 (V1 _ ~ 2  ) i~=0"  (2.18) g K + T 1 2 - E  4 2 " 
r12 

One can obviously multiply from the left by g-~, and using (2.8) one gets 

{K + T12- E -a+l  I)12}~ = 0 (2.19) 

Eq. (2.19) is reminiscent of Boys' method of transcorrelated wave functions [24]. 
Its only disadvantage is that the '"effective Hamiltonian" for �9 is non hermitean, 
since 

[ TIE, r12] + = --[ T12, r12]. (2.20) 

The factor (2.15) does not spoil the square integrability of �9 provided that 
decreases faster than 

exp { - - l ( r  I + r2)} (2.21) 

for rl, r2-+oo. 

3. CI with a correlated reference function 

In the numerical applications of this paper we start from the ansatz (2.16). We 
hence write the wave function as 

�9 =coNgd~+ E c ~  (3.1) 
/*>0 

where @ and the ~ ,  are configuration state n-electron functions built up from a 
basis of (generally non orthogonal) orbitals (qb may also be a multiconfiguration 
function), while g is a function that depends on the interelectronic coordinates 
rq. The normalization factor N is conveniently determined by the requirement 

II N g ~  II = 1 (3.2) 

and the ~ ,  are supposed to be normalized as well (which is not necessary). 

The c~ (and the energy E)  are, as in the standard CI approach, obtained from 
a matrix eigenvalue equation 

H~c~ - E E S~c~ (3.3) 

with 

Hoo = S2(OIgHg[OP); Soo = 1 (3.4a) 

= & o  = fo r / ,  > 0 (3.4b) 

So~ = g~o = N<d0lgl~,,> for/z > 0 (3.5a) 
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The matrix H differs from that of conventional CI (to which it reduces for g-= 1) 
only in the elements of the first row and the first column (i.e. for /x  = 0 and/or  
v=0) .  

If  �9 satisfies 

(Ho - Eo)q b = 0; Ho = H - V (3.6) 

and if we introduce the operator (see Eq. 2.8) 

/~ = [Ho, g] + V (3.7) 

the matrix elements (3.4a) and (3.4b) can be rewritten as 

I7[oo = Eo + N2( ~ ig ( J  + g V ( g  - 1)t~ ) (3.8a) 

/4o, = EoSo, + N( r  U +  (g - 1) VI~). (3.88) 

Note that 

<ol Olo) = <ol vlo>. (3.9) 
In this section we have not specified how we choose the (uncorrelated) reference 
function qb, nor the correlation factor g. As to �9 it is convenient if it is an exact 
eigenfunction of some H o -  otherwise the simplifications (3.8) don't  hold. A 
possible choice of H0 is the bare nuclear Hamiltonian. 

We shall first study the two-electron case explicitly (Sect. 4 to 6) before we 
comment on the best choice of q~ and g, and on further improvements. 

4. Perturbation theory of He-like atoms 

The simplest problem to be treated by our method is that of the lowest orders 
of perturbation theory for the ground state of 2-electron atoms (1/Z-expansion).  
Instead of an eigenvalue problem we have to solve the inhomogeneous equation 
(q~ being the zeroth order ground state function, which satisfies (3.6)) 

- ( H o  - Eo)0 = ( V -  E1)qb (4.1) 

Z Z 1 
. . . .  ; V = - - .  (4.2) H o = T I + T 2  rl r2 r12 

From the partial wave expansion of the perturbation V 

oo I 

V = • VtPr(cos O12); Vj - r',~l> (4.3) 
/ = 0  

we automatically get an expansion of ~O 

oo 

0 = E 0tPt(cos 012) (4.4) 
/=0  

by solving 

- ( 1 4 o -  Eo) Oz = ( Vt - 6,oEi )~ .  (4.5) 
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It is known [8] that for large l the solution qJ, approaches asymptotically 

l 1 rt< +2 1 r< 
qh~�89 (rt2)~ 2 l+3 /+1 2 l - 1  r> - 1 - , -  ( 4 . 6 )  

We use this property to formulate the first-order perturbation function as 

0 =�89 (4.7) 

With this choice ~ automatically has the correct asymptotic behavior for large 1 
(and hence for small r12) and the function X serves mainly to correct  �89 f o r  

small 1 (i.e. for large r12 ). We expect that in the partial wave expansion of X 

X = ~ xtPt(cos 012) (4.8) 
1=0 

large/-values contribute very little, i.e. that the expansion (4.8) will (at variance 
with (4.4)) be rapidly convergent. 

Insertion of (4.7) into (4.1) leads to 

--1(/-/o --  Eo)  r12tY~ - ( Ho - Eo)X = -�89 7"1 + T2, rlz]~ - ( Ho - Eo)X 

= (r~-~ - E1)~ 

= {rT~ +�89 r,2)" Vl 

+ �89 r12)" V2}~ - (Ho - Eo)X. (4.9) 

One sees that the terms r~-21 cancel. With the definition (2.8) of U12 (4.9) becomes 

- (  H o -  Eo)X = ( U -  E , ) ~ .  (4.10) 

For the explicit choice 

= N '  �9 e -z(q+r~) (4.11) 

we get 

ffyc~= U ~ ;  u = z r l + r 2 ( l _ c o s  0 1 2 ) = Z r l + r 2 s i n  2 01~ (4.12) 
2ra2 r,2 2 ' 

i.e. the effect of the operator U on ~b is equal to that of the multiplicative operator 
U, although /) is generally non-local (it is not even hermitean). 

With ~r replaced by U as given by (4.12) and qb given by (4.11) inserted, (4.10) 
looks very much like (4.1) just with 0 replaced by X and V replaced by U. The 
essential difference between U and V is that V has a strong short-range contribu- 
tion - and a singularity for r12 = 0 - while U has no appreciable short-range-contri- 
bu t ion-  it even vanishes for r , 2 = 0 .  ( U  vanishes for 0 ,2=0  and becomes 
- Z  sin O12/2 for r l=  r2). This is probably the key to an understanding of the 
improvement with respect to the traditional partial wave expansion. 
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The "residual potential" U has the / -expansion 

oo 

U= ~ UtPI(COS 012) (4.13a) 
1=0 

~-1 l r1<+1 1+2} 1 r< 1 -1  r<q_ I+2  1+1 r< 
t-~ § - -  t rl>+l - -  Z 2Ut= 21-1  r> 21 -1  r> 21+3 21+3 rt> +2 (4.13b) 

and (at variance with V) no discontinuity for rl = rz. 

We obtain an upper bound to the second order energy E ~2) from the Hylleraas 
functional 

F( )=(4,1Ho- oI ,)+2Re(4,1V-EIlO)=A 2)+ (4.14) 
/=0 

a ~ 2 ) = � 8 9 1 8 9  = - ~ s h  = -0.1171875h (4.15) 

(h stands for "Hart ree"  = atomic energy unit) 

2 Re <x l t3-  EII '> + < Xll/-/o- EolXl>. (4.16) 
The (upper bound to the) second order energy consists of  an "overhead" A <2) 
and a sum over partial wave contributions/~2). In the conventional partial-wave 
expansion one gets instead of (4.14) a sum 

E~2)>-E ~2) (4.17) 
/=o 

without an "overhead".  The individual partial wave contributions can in either 
case be obtained independently. 

We have chosen two approaches to minimize the contributions (4.16): (a) a single 
term approximation 

XI = Nkrtlrl2 e-n'(q+r2)Pl(COS O12) (4 .18)  

with the non-linear parameter ~7~ optimized, (b) an expansion 

M 
Xl = ~, l+n-1 l+m-I  Cnmrl r2 e-n'(rl+rZ)Pl(COS 012) (4.19) 

n,m=l 

with ~7~ close to the optimum value for a single-term approximation and with M 
chosen such that increase of M does not change/~2) by more than 10 -7 Hartree. 
M =  10 turned out to be sufficient. (For the column /~12)(1+�89 8 in Table 1 we 
have evaluated the/~I 2) to 4 significant digits). The results are displayed in Table 
1. One sees: 

(1) Almost 75% of E ~2) comes from the overhead A ~2). Among the partial wave 
contributions/~2) the term with l = 1 dominates by far, the sum of the terms with 
I # 1 gives a contribution of  less than 1% of  E ~2). 

(2) The one-term approximation (4.18) is usually quite good, it yields (with A ~2)) 
99.8% of E ~2). (An analogous statement does not hold for the conventional El 2), 



T
ab

le
 1

. 
S

ec
o

n
d

 o
rd

er
 p

er
tu

rb
at

io
n

 t
h

eo
ry

 o
f 

H
e-

li
ke

 i
o

n
s a

 

-~
) 

,7o
~ 

-~
 

1 
o

n
et

er
m

 
Z

 
co

n
v

er
g

ed
 b 

_
/~

z)
 .

 (
1+

�8
9 

• 
6 

�8
9 c

 
A

~2
) 

-E
~ 

2)
-- 

--~
la

(2
)--

~l
~(

2)
d 

__
E

~2
) e

 
-E

~
 2

) e
xa

ct
 f

 

O
v

er
h

ea
d

 
11

7 
18

7.
50

 
11

7 
18

7.
50

 
0 

s 
64

9.
61

 
1.

0 
74

3.
73

 
56

2 
50

0.
0 

-1
2

4
 5

90
.0

7 
1 

p 
39

 0
22

.6
5 

1.
18

3 
39

 2
12

.1
1 

1.
00

50
 

-5
5

 2
66

.7
 

+
1

2
 7

17
.1

8 
2 

d 
46

4.
25

 
1.

62
 

48
2.

04
 

0.
73

55
 

-5
 0

84
.6

 
-3

 4
24

.0
3 

3 
f 

31
.6

1 
2.

08
 

34
.4

2 
0.

77
51

 
-1

 2
39

.9
 

-1
 0

43
.2

9 
4 

g 
4.

23
 

2.
55

 
4.

85
 

0.
81

62
 

-4
4

3
.1

 
-4

0
1

.2
4

 
5 

h 
0.

83
 

3.
05

 
1.

00
 

0.
84

49
 

-1
9

6
.3

 
-1

8
3

.9
8

 

6 
0.

23
 

3.
5 

0.
27

 
0.

86
54

 
-1

0
0

.0
 

-9
5

.5
2

 
7 

0.
07

 
4.

0 
0.

09
 

0.
87

94
 

-5
6

.2
 

-5
4

.3
1

 
8 

0.
02

 
4.

5 
0.

03
 

0.
88

37
 

-3
4

.0
 

-3
3

.0
9

 

~
6

 
0.

50
 

-2
6

8
.4

 
-2

6
2

.0
9

 
~ 

11
 

0.
00

 
-4

4
.0

 
-4

3
.5

9
 

15
7 

66
6.

14
 

50
0 

00
0.

0 
11

7 
18

7.
50

 

m
 

m
 

12
5 

33
3.

80
 

12
5 

33
4 

26
 4

94
.9

3 
26

 4
95

 
3 

90
6.

07
 

3 
90

6 
1 

07
7.

71
 

1 
07

7 
40

6.
09

 
40

5 
18

4.
99

 
18

3 

95
.7

9 
94

 
54

.4
0 

53
 

33
.1

2 
32

 

26
2.

6 
25

6 
43

.5
9 

42
 

15
76

66
.1

4 
15

7 
65

6 

12
5 

33
3.

83
 

26
 4

95
.1

3 
3 

90
6.

11
 

1 
07

7.
72

 
40

6.
09

 
18

5.
00

 

95
.7

9 
54

.4
0 

33
.1

2 

26
2.

7 
43

.8
 ~

 

15
7 

66
6.

43
 h

 

A
ll

 e
ne

rg
ie

s 
in

 ~
h

 (
m

ic
ro

h
ar

tr
ee

) 
b 

T
O

 0
.1

 I
xh

 
c 

P
ar

ti
al

 w
av

e 
ex

p
an

si
o

n
 (

4.
23

) 
o

f 
�8

9 H
ar

tr
ee

 
d 

T
hi

s 
p

ap
er

 
F

. 
W

. 
B

y
ro

n
 a

n
d

 C
. 

J,
 J

o
ac

h
ai

n
 P

hy
s.

 R
ev

. 
15

7,
 

1 
(1

96
7)

 
r H

. 
v.

 H
ir

sc
h

h
au

se
n

, 
u

n
p

u
b

li
sh

ed
, 

p
ri

v
at

e 
co

m
m

u
n

ic
at

io
n

 b
y

 H
. 

M
. 

S
ch

m
id

t,
 s

u
p

p
o

se
d

ly
 c

o
n

v
er

g
en

t 
to

 t
h

e 
ex

ac
t 

v
al

u
es

 
g 

H
. 

M
. 

S
ch

m
id

t 
an

d
 H

. 
v.

 H
ir

sc
h

h
au

se
n

, 
R

ef
. 

[2
1]

 
h 

S
u

p
p

o
se

d
ly

 e
xa

ct
 v

al
ue

 o
f 

R
ef

. 
[2

6]
 



r12-Dependent terms in the wave function 455 

there the one term approximation becomes increasingly poorer for increasing /. 
This is due to the singularity of Vt for rl = r2. Only wave functions depending 
on r< and r> exhibit satisfactory convergence [21]. 

(3) The /~I 2) depend on l as ( l+  1) 8 while the E~ 2) of the conventional partial 
wave expansion have the/-dependence (l +�89 [8]. This is, of course, a substantial 
increase of the speed of convergence. In order to get a result convergent at the 
microhartree level it is sufficient in our expansion to include/-values up to l = 5, 
while in the conventional approach one would need to go to about l = 50. (This 
is quite prohibitive and one is in the conventional approach obliged to use some 
extrapolation techniques if one wants to get an a c c u r a t e  E(2)). 

It is possible to get the El 2) of the conventional /-expansion indirectly in the 
following very economic way. We expand the r12-term in (4.7) formally in terms 
of Pl(cos 012) and use the expansion (4.3) for V. Then the overhead contribution 
A (2) given by (4.15) has the /-expansion: 

co 

A (2)= ~ A~ 2) (4.20a) 
/=o 

al 2) = �89 r12)l(r~1)l[dP) --�89 r12)lUIIdP) 

+ (4.20b) 

These AI 2) are also displayed in Table 1, together with 

E~ 2) =/~12) + AI 2). (4.21) 

One sees that not only for large I the bulk of E~ 2) is in the AI 2), but even so for 
I=  0. Only A~ 2) is a poor approximation to El 2), it has even the wrong sign. The 
asymptotic expression for A1 is [8] 

A~2) = _2~6( l 1 - - 4  5 1 - - 2  1 - - 8  +~) {1-z( l+2)  }+0{(l+~) }. (4.22) 

The At decrease rather slowly with increasing l, and this slow decrease determines 
that of E~ 2), while the/~2) decrease as (l+�89 -8. 

It has probably been known to Schwartz [8] and been elaborated in more detail 
by Schmidt and v. Hirschhausen [21] that the asymptotic contributions to E r 
that go as (l+�89 -4 and ( l + � 8 9  -6 c a n  be obtained in closed analytic form as given 
in (4.22) while the contributions (l+�89 -8 and of higher order (only even orders 
appear to contribute) can only be obtained numerically. 

It is noteworthy that the contribution 0{(l+�89 -4} to  A~ 2) comes entirely from the 
expansion of 

1 1 = 2 ~, (qbl(r12)t(rl-~)tlqb) = �89 • at (4.23a) 
l 1 

It = -- 1-~8 (I+�89 0{(l+�89 (4.23b) 

while the contribution of the 2 no term in (4.20b) is 0((l+�89 -6} and the 3 rd term 
vanishes for l # 0. 
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One understands why the partial wave expansion converges so poorly: it is 
because one replaces the number 1 by its partial wave expansion (4.23). 

In order to make this point very clear we have included in Table 1 the partial 
wave contributions (4.23) to the term 1/2. The square of the norm of the 
(conventional) first-order perturbation function ~ has the following partial wave 
expansion 

(~b[ ~b) = (1r12~ + x l�89 + X) = ~ (~b[~b)t (4.24a) 
I 

(@[tp), - 1575 
1024. Z 2(1 + 1)-6 + 0{(/+ �89 (4.24b) 

If  one expands ~ in terms of normalized partial waves ~l 

= X ~, = X c161 (4.25) 
I l 

the coefficients ct go as (i+�89 while one finds the following /-dependence of 
the off-diagonal matrix elements and energy denominators 

<~1 v -  E,I~,) = 0{(1+ 1)-1} 

(~, lHo- Eol~,) = 0{(1 + �89 

(~,l u -  E,]r = 0{(/+ �89 

= lr12O+X, X =Z dl)~t ; 
l 

a, = o{ (I + �89 

(4.26a) 

(4.26b) 

(4.26c) 

(4.27) 

The convergence of the expansion (4.26) is, on the whole, not very bad [7], it is 
only bad if one has to multiply ~ by a factor like r l ]  which has a singularity at 
the origin and where the behavior of ~ for small ra2 matters a lot. 

From our h one can also calculate the third order energy E (3) as well as two 
expectation values 

(~ + x~lnIo + x4,) (4.28) 
Eoxp= (a,+ X~I,I,+ xr 

namely for h = 1 and for the minimum as function of  h. We get for Z = 2 (i.e. 
for the He ground state). 

E (3) = 8702/~h (exact: 8699 wh [25]) 

Eexp(h = 1) = -2.894480 h 

E e x p ( A o p t )  = -2.895449 h 

The "overhead" contribution to E (3) is 10986 wh. 

The above results agree well with the best results from the literature [25, 26]. 
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5. Variational calculation of the He ground state (and the isoelectronic ions) 

The considerations of Sects. 1-3 as well as the numerical results of Sect. 4 suggest 
use of the following variational ansatz for the ground state of two-electron atoms 

xlr = (1 + 1r12)qb +X (5.1) 

with 

(Ho-Eo)Cb =0  (5.2) 

and with X expanded in a given basis of two-electron functions 

X = 2  d ~ .  (5.3) 

Ho may be the bare-nuclear Hamiltonian, but in order to be somewhat more 
general we chose 

O/ O/ 
Ho=T1+T2  . . . . . ,  ~ = N e  -"(rl+r:), (5.4) 

r l  r2 

where a need not be equal to Z. Then 

a - Z  a - Z  1 
H = Ho+ V; Eo = - a 2 ;  V= + + - -  (5.5) 

rl  r2 rl  2 

Uq~ = ~ a  r'  + r2(1 - cos ~'~12) -~- (r -- Z)(!J-!] I(~. ( 5 . 6 )  
[ 2r12 \ r l  r2/] 

The modified CI matrix i:i and the corresponding overlap matrix S are then 

l~oo=(~ll__+(a_Z)(l+rlj(l+l] 1 1 
rl2 \ r l  r2/+~+~rx2 

+ l a ( r l  a - - ~ ' r  2 2 \ 
+ r2)+ ~ - ~  (~12 +-~22)[qb)/D+ Eo 

= a + ( a - Z )  2 a +  + - +  + - + 9  
2 64a 4 

D = I +  35 + 3 . ~o0= 1 
16a 2a 2' 

/~o,. =/~,~o = (~P.] U+�89 (1 +�89 

~o,~ : ~,~o: (~,~11 +-~rl~l~)/,/~; /x>O 
/Q.~=(~o~,[Hlq~) for/x, v > 0  

s  for/x, ~>0. 

4a ] /  Eo (5.7) 

/ x>0  

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

This CI matrix differs from the traditional CI matrix only in the first row and 
the first column. 
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It  is not unexpected that the matrix element 400 is a better approximation to the 
eigenvalue E than the traditional Hoo; for ~ = Z = 2 we get in hartrees 

Hoo = Eo+ (~l VI~) = -2.75 

400 = -2.876582 (5.13) 

E -= -2.903724. 

By variation of a one can minimize both Hoo and 400 

Hoo(a = 1.6875) = -2.8475 
(5.14) 

/-Ioo(~ = 1.885) = -2.888718. 

Note that the opt imum a for/~oo is quite different from that for Hoo. 

We have used the STO expansion (4.19) for X~- The eigenvalue problems have 
been solved d!rectly in the non-orthogonal  basis by means of the "inverse- 
i teration" technique, that has turned out to be very stable and rather insensitive 
to near-linear dependencies. 

The converged ground state energies can be expressed as sums of the energy of  
the uncorrelated reference function ~ ,  the "overhead"  (difference between the 
expectation value of �9 and g~b) and increments for the various partial waves, 
where the s-increment is obtained from a calculation with s-AO's only, the 
p-increment from a calculation with s- and p-AO's  etc. Increments for the 
traditional CI  are constructed from Ref. [7] in the analogous way [27]. Both sets 
are displayed in Table 2, together with some other data to be explained below. 

I f  one compares the CI increments /~ with the partial wave contributions /~2) 
to /~2)  in Table 1 one sees that the convergence with our ansatz is faster for the 
CI  energy than for /~(2). In fact one has to include 1 = 5 for 1 Ixh accuracy of 
E (z~, but only 1 -- 4 for CI  - or l = 3 for 10 txh accuracy of E (2) but l = 2 for CI. 

The better convergence of the partial wave expansion for Ec~ than for /~(2) is 
really surprising, especially as it holds for the whole isoelectronic series (see 
Table 3), since the ansatz (5.1) has been rigorously justified for the wave functions 
to first-order of  perturbation theory and only made plausible for the full wave 
function as an approximate  treatment of  the ansatz (2.16). There can be no doubt, 
however, that the ansatz (1 +1r12)qb is a better approximation to the exact wave 
function 't~ than to the first order wave function (b+ 0 and that hence the 
"correct ion" X is smaller for �9 than for 0. 

This becomes obvious if one compares the ratios of  the "overheads"  to the exact 
energy improvements  E - Hoo with the corresponding ratios A(2)/E~2) in perturba- 
tion theory. In CI  these ratios vary (depending on Z, excluding Z = 1) between 
80% and 85% while the corresponding ratio in perturbation theory is 74%. 

In order to understand what happens we must compare the Eqs. (4.10) or (4.16) 
of  perturbation theory with the Schr6dinger equation for the exact 9. 
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The counterpart of  (4.10) for the exact X is 

( H  - E)X  = - (  U - AE  + 1 _  �89 (5.15) 

We can now treat this equation by perturbation theory (which will not lead to 
the 1 / Z  expansion, since already in the overhead various orders in 1 / Z  are 
scrambled). The lowest order approximation to (5.15) is 

( H o -  E' )X = , 1 1 , - (  U -  A E -[--ff - f fA E r12)O (5.16) 

and the corresponding Hylleraas functional 

(XlHo - E'Ix)+2(X[ U - a E '  + 1 -  �89 (5.17) 

In order to apply RS rather than B W  perturbation theory one should identify 
E' and AE' in (5.17) as 

E ' =  (q~l(1 +�89 +lrl/)[q5>; A E ' =  E ' -  Eo. (5.18) 

The main difference between (4.10) and (5.16) is that the "effective potential" is 
no longer simply U, but U - �89 �9 r,2. While U is repulsive, -AE'r12 is attractive 
(since E '  is positive) such that there is some cancellation of  the two contributions. 

An intermediate step between (5.15)- where the X~ for the different l couple 
through the V contained in H - and (5.16) - where the X~ decouple - consists in 
switching off the coupling in (5.15) artificially by limiting X in (5.15) to one Xt. 
We have calculated these independent/- increments  Et (which do not add up to 
the total energy improvement) for  various values of Z and included the results 
for Z = 2 in Table 2. As the Et in Table 1 the /~t show a perfect asymptotic 
(l+1)-8 dependence. The factors of the (l+~)-8 term depend sensitively on Z 
and can be roughly fitted to 

1.83 1.5\ 2 
7 ( z ) =  7(oo) 1 -  Z +Z--/) (5.19) 

where 7(oo) is the coefficient for the /~2) of  second-order perturbation theory. 
We conclude that the first term in the parenthesis in (5.19) comes from U, the 
second term ( - Z - ' )  from E'Ar,2 and that there is, in fact a strong cancellation, 
especially for Z = 1 and Z = 2. 

For all Z that we have studied tr(z)[ is appreciably smaller than Ir( ) I 
A further reduction of the absolute value of the increments to the actual/~, comes 
from the interaction of the different Xt. This effect is very small (and almost not 
observable) for Z = 2, and it changes its sign (i.e. raises the absolute values of 
the El) for Z = 1. 

It is obvious that as long as the X~ are determined by the direct interaction with 
dp the coupling (which arises formally to third-order in the perturbation treatment 
of (5.15)) must raise the energy (as a third-order energy is usually positive). 
However, if the matrix elements between �9 and X~ become very small (e.g. for 
Z near 1) the g~ are mainly determined through their interaction with Xo (this is 
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formally an effect of  fourth and higher order in perturbation theory of (5.15)) 
and this must lower the energy. These two effects do not depend on l as (l +1)-8 
(the first of  them probably as ( l+�89 -9, the second probably as ( l+�89 -4, but with 
a very small coefficient) and the total increments Et do not have a simple leading 
asymptotic term. 

It is noteworthy that the rate of  convergence of the / -expans ion  can be changed 
by varying a. In the case of  He the convergence for a = 1.885 (which minimizes 
Hoo) is significantly faster than for O/= 2, while for O/= 1.6875 (which minimizes 
Hoo) it is poorer,  as is seen by the number  of  configurations necessary to reach 
1 p~h accuracy. It is not too surprising that one can speed up the convergence if 
one minimizes the energy with respect to the correlated reference function. The 

which minimizes /-)o0 can be expressed as 

C~op t = Z - 0 .304/Z + 0 .14/Z 2. (5.20) 

Note that in (5.20) no constant term is present, while the O/that minimizes Hoo 
is simply O/opt = Z -0.3125. For all Z, but very much so for large Z, t3~.op t according 
to (5.20) shows much less shielding than O/opt. 

Since the correlation factor (1 +1r12) somehow takes care of  the mutual shielding 
of  the electrons there is obviously little need for additional shielding. 

As can be seen from Tables 3 and 4 the choice of  aopt rather than Z has an 
appreciable effect on the convergence of the /-expansion only for Z = 2 and - to 
a spectacular ex ten t -  for Z = 1. I f  one chooses O/opt, the convergence of the /~1 
of H -  is, by far, the fastest of  those for all Z. One could think of determining 

(not restricted to being a product  of  two simple Slater functions) by minimizing 
the expectation value with respect to (1+�89 This could be called the 
"Hylleraas-SCF" method. So far we have made no numerical attempt in this 
direction. 

We have seen that in perturbation theory the El  2) of  the conventional partial 
wave expansion for large I are dominated by the contribution AI 2) of the overhead. 
In order to show that the same holds for the El of  CI, we have also evaluated 
the analogous partial wave contributions of  the overhead Boo-Hoo in CI. We 
did so in the same way as one would do in a CI  calculation, i.e. limiting the 
basis first to s-AO's,  then to s and p (in Ref. [27] our quantities would have the 
subscript "ev"  rather than "in") .  

These Al are also included in Table 2. They go asymptotically (for Z -- a = 2) as 

The leading term in ( l + l )  -4 comes again from the partial wave expansion (4.23) 
of  the term �89 in (5.7), but it is now divided by an energy denominator  D -- 2.469 
which accounts for the reduction of the factor 2~6 = 0.176 to 0.071. Carrol et al. 
[7] find from a numerical fit to their / - increments  of  conventional CI 

A~ = -0.071 ( 1 + ~ - 4 -  0.029 ( l+ �89  

+0.016 ( l+ �89  -7} (5.21) 

E, = -0.074 (l + ~)-4-  0.031 (l + �89 (5.22) 
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Table 5. Exponents of the STO's a 

Z• 0 1 2 3 4 5 6 

1 0.7 (0.6) 1.0 (0.8) 1.8 2.1 2.5 3.0 3.5 
2 2.5 (2.3) 3.2 4 5 6 7 8 
3 4.25 4.8 6 7.5 9 10.5 12 
4 5.3 6.5 8 10 12 14 16 
6 8 10 12 15 18 21 24 

10 15 15 20 25 30 35 40 

W. Kutzelnigg 

a Values in parentheses refer to calculations with Z = Otop t 

The closeness of  the increments (5.21) and (5.22) shows again that the bulk of  
the conventional increments of  the energy for large l is taken care of  in our 
approach through the overhead. 

One cannot expect, unlike in second-order perturbation theory, that the / - incre-  
ments of  the overhead add up with the/~t to the Et of  conventional CI. 

The ( /+1)-5 term in (5.21) - which is absent in the AI 2) or the E~ 2), comes from 
the expansion of  

(dPl(r12)kl(rt2),l~) = ~ (qblrl2l~)/ (5.23) 
k = 0  l=0  /12 I=0 

= (~l(r12),&(r,2),[~)+2 'E 1 <~'l(r,=)~---1 (r,=),l~'> (5.24) 
r12 k = o  r12 

The dependence of  the denominator  D (5.8) on a - - Z  explains easily the 
variations with Z of  the energy increments E 1 of  conventional CI  observed 
previously [3]. 

I f  one is able to calculate energies to 1 p.h accuracy, one realizes that certain 
effects are no longer negligible that one ignores in traditional quantum chemical 
calculations, such as mass polarization and relativistic corrections. We must hence 
state explicitly that in this paper  we study the eigenvalues of  the nonrelativistic 
Hamiltonian with clamped nuclei. (For He the mass polarization amounts to 
22 ~h and the relativistic correction to 39 p.h [13]). 

6. Possible improvements and generalization to larger systems 

The ansatz that we have used in this paper  is a special case of  Hylleraas-CI. I f  
one takes advantage of the greater flexibility of  Hylleraas-CI,  one gains about 
one more significant figure in the final result, but much of the simplicity of  the 
present approach and of its analysis is lost, which we want to keep in view of a 
generalization to larger systems. A possible improvement  that remains in the 
framework of  our ansatz might be optimization of  the reference function qb. The 
possibility to minimize the expectation value of  gqb that has been referred to as 
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Hylleraas-Hartree-Fock in Sect. 5, probably leads to very complicated equations 
in the many electron case, especially if one uses the correlation factor (2.9). 

Our ansatz (5.1) with qb a single Slater determinant is certainly only good if one 
configuration qb. dominates in the CI expansion of ~ .  In cases of near-degeneracy, 
e.g. of the configurations 162~ and 182 of/-/2 for large R one should either choose 
a multiconfiguration reference function ~ ,  or as seems better, write 

~I ~ = g{Cl{~) 1 + C2(I)2} -~- X (6.1) 

and determine c~ and c2 together with the linear parameters in X through the CI. 
The optimization of qbl and ~2 is certainly different but probably less problematic 
than in conventional MS-SCF theory. Eigenfunctions of the bare nuclear 
Hamiltonian will probably do. 

We believe that if one wants to take advantage of the results of this paper for 
arbitrary atoms or molecules one must cut a Gordian knot, this means that one 
must avoid the evaluation of many-electron integrals such as 

I pl(1)p2(2)p3(3)r12r21 dr1 d'r2 d'r3. (6.2) 

How can this be done? 

The key idea is that traditional CI is not really bad, it only has difficulties to 
represent the wave function at those regions of configuration space where one 
interelectronic distance rij approaches zero. We must remedy this by performing 
a closed summation of partial waves for large /. 

However, for many properties or intermediate expressions the traditional 
expansion is sufficiently well convergent and the r12-dependent term is not 
needed-  or rather it can simply be expanded (the norm of this expansion 
converges as 1-6, which is probably acceptable). 

Let us regard CI as an approximation to our method in which the term r12qb is 
expanded in a basis ~ of Slater determinants in which the spin-orbitals ~x and 
~2 are replaced by spin orbitals ~ and ~ 

r12~i~ = ~. ,.12 tt~p~u ~ ' ~ 1 2  (6.3) 

The slow convergence of the CI comes mainly from the expansion of 

(dPl~12r12]qb)= 1 = Y. c~2(qbllldp~2 ~) (6.4) 
Ix, 

The /-increments of (6.4) go as (/q-l) -4, but a closed summation is, of course, 
trivial. Slowly convergent is also 
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- it goes as (l+�89 -5 - but again a closed summation is trivial. What about terms 
with different r 0 factors? One sees easily that - at least in the atomic case - integrals 
such as 

<~lr,=rl~ll~'>, (~[r12r;~r341'}) (6.6) 

have a finite /-expansion. Hence we expect that the expansions analogous to 
(6.5) converge rapidly. Integrals like 

(qb[ rx2r21 r31 [(I)) (6.7) 

have an infini te/-expansion but the/ - increments  go as (l + �89 which we regard 
as an acceptable rate of  convergence. So the only expressions for which an 
expansion as (6.3) or (6.4) is slowly convergent are those which can be trivially 
evaluated in closed form. The conclusion is obvious, we can keep almost every- 
thing of traditional CI, but we must perform the summations (6.3) and (6.4) in 
closed form. 

One can do this much in the spirit of  the preceeding sections of  this paper  in a 
way that can be implemented into direct CI;  CEPA, coupled cluster and other 
methods, but it is best illustrated in the f ramework of M~ller-Plesset perturbation 
theory (MB-PT). We limit ourselves to a closed-shell state. As usual we start with 
an SCF-calculation that leads to a reference Slater determinant �9 with the spin 
orbitals r occupied. The first-order energy vanishes in view of the Brillouin 
theorem and one gets the second-order energy E (2) as the sum of pair energies 
e 0 which are obtained by minimizing the Hylleraas functionals 

(to0[F(1) + F(2)  - e , -  ejlto0)+ 2(to0[ r~72' I ] q~i(1)~j(2)]) -> e,j (6.8) 

restricting the to w to being strongly orthogonal to 1~,(1)%(2)]. Alternatively, one 
can minimize a modified functional [19] without the strong-orthogonality con- 
straint and remove the non-strongly-orthogonal contributions afterwards. 

We now proceed on two parallel rails. We first construct to w as traditionally in 
a basis expansion 

(.Oij = ~ ( 6 . 9 )  

then we use the alternative ansatz (now writing z 0 for tow) 

z0 = �89 + Xg (6.10a) 

Xo = E [q~r(1)~(2)[ d.~ (6.10b) 
/ / . ,  1) 

(using the same basis in (6.9) and (6.10)) which leads to a Hylleraas functional 
for X0 much like in Sect. 4 from which one gets a good approximation for the 
pair energy e 0. To second-order in the energy the pairs decouple and we can take 
full advantage of our ansatz (6.10) because no integrals involving products such 
as r12r23 etc. arise. The only difficulty is that integrals over products like J(1)r12 
or commutators like [ K ( 1 ) +  K(2) ,  r12] appear,  where J is a Coulomb operator 
and K is an exchange operator. These must be evaluated via matrix products 



r~2-Dependent terms in the wave function 467 

(i.e. by insertion of a completeness relation), somewhat like we have done 
successfully in some other contexts [28, 29]. 

If  one wanted to compute the third-order-energy in terms of the % integrals like 
(6.6) appear. However there is no objection against evaluating these contributions 
in terms of to w since the basis set expansions are sufficiently well convergent. 

Details will be given in a forthcoming paper. 

There is an alternative to the insertion of completeness relations in two-electron 
space and this is suggested by the way that integrals over products of r~ factors 
are usually calculated. One namely expresses 

ro 1_ = ~ 1  o exp [ - a r~ ]~  -1/2 da (6.11) 

so one can replace the factor r~ 1 by exp [ - a r~ ]  and ro by (ro) 2 exp [-o~r~] such 
that the integrals over the particle coordinates can be done in closed form provided 
that the basis functions are Gaussians as well. Finally one performs the integration 
over ~ by a Gaussian quadrature. This amounts to replacing integrals over ro by 
sums of integrals over (ru) 2 exp [-akr~] via the replacement 

r o ~- Y, Ck e-'~k%~2(rij)2. (6.12) 
k 

In itself (6.12) is a very poor approximation, but we need this approximation 
only under integral signs. This explains somehow why "Gaussian geminals" 
[18, 19] work much better than one would have anticipated. 

The best energy of the He ground state obtained with Gaussian geminals is, by 
the way, in error by -45  txh [ 19]. This relatively high accuracy (which is somewhat 
intermediate between those achievable by standard CI and by wave functions 
with linear r~2 terms) has only been possible by very careful optimization of the 
non-linear parameters ctk. 

7. Conclusions 

The slow convergence of the partial wave expansion (and hence the CI expansion) 
is a direct consequence of the Coulomb-singularity of the electron interaction. 
The convergence is, on the whole, not so bad (the norm as well as the expectation 
values of most interesting operators converge as /-6), but it is very poor in the 
neighborhood of the coalescence of the coordinates of two electrons, and this 
region is very critical if the wave functions has to be multiplied by r~ 1, such that 
the energy increments Et only converge as l -a. 

The /-expansion has an asymptotic expansion in powers of (/+1)-1, of which 
the leading terms can be summed in closed form yielding a contribution �89 
to the wave function. If  one formulates the wave function as 

~ = (1 +�89 (7.1) 
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then the correction X has a very rapidly converging/-expansion,  since the effective 
interaction U12 by which X is coupled to qb (in perturbation theory) has no 
singularity at r12 = 0 (it even vanishes for r~2 = 0). The residual energy increments 
El go asymptotically essentially as 1-8, such that X serves mainly to correct for 
the partial waves with low I. 

The leading term (0(l+l)  -4) of the conventional /-expansion is entirely due to 
the attempt to express the number  �89 by its partial wave expansion 

1_1 ~. ((r,2)t(r~-2~),). (7.2) 
~=o 

The smaller coefficient of  this term in CI  than in E ~2) results from an energy 
denominator  in the definition of the overhead contribution to the energy. 

The energy increments /~t of  a variational CI-like calculation with the ansatz 
(7.1) converge significantly faster than the corresponding increments /~I 2) of  
second-order perturbation theory. The main reason for this is that in CI the Xt 
are coupled to qb via the effective interaction U12-�89 in which two 
contributions cancel each other to a large extent. 

The "best"  uncorrelated reference function qb is rather close to the eigenfunction 
of  the bare nuclear Hamiltonian,  with a little shielding, much less than in a 
Har t ree-Fock  like wave function. The factor (1 +1r12 ) automatically takes care 
of  most of  the necessary shielding. 

The slow convergence of the CI  expansion is not only due to the (l+�89 -4 
dependence of  the /-expansion, but for each individual l the convergence in 
terms of configuration states is very slow, due to a discontinuity of  V~ given by 
(4.3) for ri =r2 (which does not exist in the full V and is an artifact of  the 
/-expansion). It  appears  that in our approach we have also avoided this second 
source of the slow convergence of CI, and that we do need to use functions of  
r< and r> [21] in order to get well converged partial wave increments. 

In order to generalize the results of  the present analysis to larger systems one 
must keep in mind that the introduction of  the term �89 serves to allow a closed 
summation of  the slowly converging contributions to the partial wave expansion. 
For those contributions which have a rapidly converging/-expansion there is no 
objection against expanding �89 in a traditional Hilbert space basis. 
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