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Perturbative correction for the basis set incompleteness error
of complete-active-space self-consistent field

Liguo Kong and Edward F. Valeeva�
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�Received 2 August 2010; accepted 20 September 2010; published online 5 November 2010�

To reduce the basis set incompleteness of the complete-active-space self-consistent field �CASSCF�
wave function and energy we develop a second-order perturbation correction due to single
excitations to complete set of unoccupied states. Other than the one- and two-electron integrals, only
one- and two-particle reduced density matrices are required to compute the correction, denoted as
�2�S. Benchmark calculations on prototypical ground-state bond-breaking problems show that only
the aug-cc-pVXZ basis is needed with the �2�S correction to match the accuracy of CASSCF
energies of the aug-cc-pV�X+1�Z quality. © 2010 American Institute of Physics.
�doi:10.1063/1.3499600�

I. INTRODUCTION

Contemporary ab initio quantum chemistry methods rep-
resent the Hamiltonian operator and the wave function in a
n-electron basis set of an antisymmetrized tensor products of
one-electron basis functions. The tensor product form greatly
simplifies evaluation of the matrix elements and allows ap-
plication of advanced correlation methods, such as the
coupled-cluster method,1 to small and medium-sized mol-
ecules. One significant drawback of the tensor product basis
sets is the resulting slow convergence of the electron corre-
lation energy with respect to the one-particle basis.2 This
problem is due to the inefficient emulation of the Coulomb
hole by a linear combination of any finite number of tensor
products of one-electron functions; such linear combinations
lack the electron-electron cusp.3,4 The Coulomb hole can be
described efficiently, however, in terms of the interelectronic
distances, which are the natural coordinates for description
of this local feature of the wave function. Explicitly corre-
lated methods are characterized by the direct use of the in-
terelectronic distances in the wave function expansion.5

Among all explicitly correlated wave function methods the
R12 �or F12� methods pioneered by Kutzelnigg6 are cur-
rently the only general and systematically improvable meth-
ods.

The R12 methods have witnessed significant progress
over the past two decades.7 Early work focused on explora-
tion of the R12 idea at the second order perturbation level
�MP2-R12�,8,9 and the extension to coupled cluster methods
�CC-R12�10–12 is also undergoing active development. To ob-
tain high accuracy, it is important to significantly reduce both
the method error via incorporating high-level correlation ef-
fects and the basis set error via R12 methods.13 Application
of the R12 approach to the popular CCSD�T� method can
proceed directly, by incorporating the r12 terms into the clus-
ter operator14–18 or by an a posteriori perturbative
treatment.19–21 The R12 approach has also been used with the

multireference configuration-interaction method �MRCI�,22,23

and state-specific second-order multireference perturbation
theory �MR-MP2� methods,24 as well as a state-specific a
posteriori correction to a multireference wave function.25

The R12 method has also been applied in the framework of
equation of motion coupled cluster and linear response
theory to describe excited states26 and response
properties.27,28

One somewhat surprising feature of modern R12 meth-
ods is that they reduce the basis set error for the correlation
energy to such an extent that the basis set error of the refer-
ence �usually, Hartree–Fock� energy becomes a limiting fac-
tor. To reduce that error, an additional correction for the in-
completeness of the Hartree–Fock energy �known as “the
complementary auxiliary basis set �CABS� singles”
correction17,29–33� is often employed in applications of R12
methods. The CABS singles correction is a second-order en-
ergy correction due to the extension of the basis to include
the basis functions missing in the orbital basis set. Note that
the CABS singles correction has been employed in other
contexts under the name “dual basis” method.34–45

The objective of this work is to extend the idea of the
CABS singles correction to the case of a multiconfiguration
reference ��specifically complete-active-space self-consistent
field �CASSCF��. We have explored second-order perturba-
tive correction to reduce the basis set error of the CASSCF
wave function and energy. The primary motivation of this
work is the �2�R12 method, which was recently developed by
Torhyden and Valeev25 in our group. �2�R12 is an explicitly
correlated perturbative approach generally applicable to any
electronic state. In Ref. 25, the authors have shown that with
the addition of the two-particle geminal functions, only an
aug-cc-pVDZ basis is enough to compute correlation ener-
gies of an aug-cc-pVQZ quality. For their calculations, the
wave function is generated from MRCI, which is preceded
by a CASSCF calculation to optimize the orbitals. The accu-
racy of the correlation energy is so high that the error in the
reference CASSCF wave function energy due to the incom-
plete basis �aug-cc-pVDZ� becomes the dominant source ofa�Electronic mail: efv@vt.edu.
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error. Therefore, it is desirable to improve the accuracy of the
reference energy so that it matches that of the correlation
energy.

A straightforward solution to reducing the CASSCF ba-
sis set error is to perform calculations in larger bases. The
use of large basis sets, however, can become impossible for
sufficiently large systems due to the uncontrollable effects of
basis set linear dependencies and loss of precision due to
large condition numbers of operator matrices in large basis
sets. Our hope is to avoid these difficulties by replacing it-
erative CASSCF in a large basis with a one-step noniterative
perturbative correction. In addition, in the context of �2�R12,
even if such calculations in large bases are affordable in
certain cases, separate calculations of CASSCF and MRCI in
different bases are not desirable when energy derivatives are
needed for structure optimization or the computation of re-
sponse properties.

II. THEORY

The orbitals in the CASSCF wave function ��� are opti-
mized in such a way that the following conditions are met:

���am
i�Ĥ��� = 0, ∀ i�,m , �1�

���aa
i Ĥ��� = 0, ∀ i,a , �2�

where we adopt the standard tensor notation used in elec-
tronic structure literature �refer to Appendix A for a brief
summary�. Note that i stands for an occupied orbital, which
can be either core or active, hence Eq. �2� represents the
residual equations corresponding to both core to virtual and
active to virtual excitations. If the orbitals were expanded in
complete basis set �CBS�, not in orbital basis set �OBS�, the
following additional residual equations would be satisfied
�see Fig. 1�:

���a��
i Ĥ��� = 0, ∀ i,��. �3�

The basis set incompleteness error �BSIE� is defined as the
difference between the CASSCF energies calculated in the
given OBS and in the CBS �“the CBS limit”�.

To reduce BSIE via a perturbative approach it is natural
to choose as zeroth-order the CASSCF wave function repre-

sented in OBS, ���0��. Although this wave function does not
satisfy Eq. �3�, the Hamiltonian can be partitioned so that it
is satisfied to zeroth-order

���0��a��
i Ĥ�0����0�� = 0, ∀ i,��, �4�

���0��a��
i Ĥ�1����0�� � 0, ∀ i,��. �5�

This is possible by, for example, selecting as the first-order

all parts of Ĥ that, when applied to ��0�, promote one elec-
tron from an occupied to a CABS orbital

Ĥ�1� = h��
i ai

�� + 1
2v��k

ij aij
��k, �6�

where h and v are the usual one- and two-electron integrals.
However, to compute a second-order energy based on this
partitioning would require high-rank reduced density matri-
ces �RDMs� and would be relatively expensive. Here we

define Ĥ�1� as

Ĥ�1� = f��
i ai

��, �7�

where f�
�=h�

�+v�j
�i�i

j; parts of Eq. �6� that are not present in
Eq. �7� are classified as second-order in perturbation and will
not affect the second-order energy.

With Ĥ�1� defined in Eq. �7�, the first order interaction

space contains the configurations 	ai
�����0��= � i

��� , ∀ i ,��
. In
addition, as will be discussed in the next section, we would

specify Ĥ�0� so that it couples OBS virtual orbitals with
CABS orbitals; due to the coupling, the configurations in-
duced by single excitations from an occupied to an OBS
virtual orbital, 	ai

a���0��= � i
a�∀ i ,a
, will also emerge in the

first order wave function ���1��. Therefore, the first order in-
teraction space is defined as 	ai

����0��= � i
�� , ∀ i ,�
 �� stands

for any virtual orbital in CBS. See Appendix A for details�.
The set of configurations 	� i

�� , ∀ i ,�
 is neither orthogo-
nal nor normalized, since � i

� � j
��=��

��i
j. We can introduce a

set of orthonormal configurations 	� i
�̄�
 via the matrix �−1/2

in the following way:

� i
�̄� = ��−1/2�i

k� k
�� , �8�

therefore

� i
�� = ��1/2�i

k�� k
�̄�� . �9�

The projector on the first-order interaction space is defined as

P̂ = � i
�̄�� i

�̄� = ��−1�l
k� k

��� l
�� . �10�

A. The zeroth-order Hamiltonian

The choice of Ĥ�0� is crucial, and it is guided by both
formal and computational cost considerations. One option is

to define Ĥ�0� as the one-body Fock operator

ĤF
�0� = E�0� + fp

qãq
p + f��

��ã��
�� + �f��

a ãa
�� + fa

��ã��
a � , �11�

where f�
�=h�

�+v�j
�i�i

j, and ã denotes the multireference normal
ordering developed by Mukherjee and Kutzelnigg46–48 �in
MK order, ã�

�=a�
�−��

��. In the CABS singles approach cor-

virtual (a, b, c, d, ...)

CABS orbitals (α’,β’, ...)

core (i’, j’ ...)

active (m, n, ...)

orthogonal
complement{

{OBS

FIG. 1. Illustration of the orbital spaces defined in Sec. II and orbital rota-
tions for CASSCF orbital optimization.
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recting the basis set incompleteness of the Hartree–Fock

wave function, it is preferable to include in Ĥ�0� the coupling
between OBS virtual orbitals and CABS orbitals. To repro-
duce this single reference limit, the terms in parentheses in
Eq. �11� are included to take care of the coupling effect.

We also attempted a more complete Ĥ�0�

ĤD
�0� = ĤOBS + f��

��a��
�� + �f��

a aa
�� + fa

��a��
a � , �12�

where ĤOBS stands for the full Hamiltonian in OBS: hp
qaq

p

+ 1
4vpr

qsaqs
pr. D refers to the connection with the Dyall

Hamiltonian,49 since the terms making nonzero contributions
to the correction are similar to those in the Dyall Hamil-

tonian. Clearly, Eqs. �1�–�3� are valid with ĤD
�0�. In addition

���0��aq
pĤD

�0����0�� = E�0��q
p, �13�

where �q
p= ���0��aq

p���0�� �refer to Appendix B for a proof�.
The indices p and q can be any index in OBS. This property

will play an important role later. For both ĤF
�0� and ĤD

�0�,

E�0�= ���0��Ĥ�0����0��= ���0��ĤOBS���0��, i.e., the CASSCF en-
ergy in OBS.

B. Perturbation corrections

According to the Rayleigh–Schrödinger perturbation
theory, the first order wave function, ���1��=C�

y ay
����0��

=C�
y � y

��, is obtained by solving the following equation:

P̂�Ĥ�0� − E�0��P̂���1�� = − Ĥ�1����0�� . �14�

After projecting over the first order interaction space, the
above equation can be written in a matrix form

B�y
x�C�

y = − � j
xf��

j ��
��, �15�

where B�y
x� �� �

x ��Ĥ�0�−E�0��� y
��= ���0��a�

x �Ĥ�0�−E�0��ay
����0��.

The second-order energy correction is then calculated as

E�2� = ���0��Ĥ�1����1�� = C��
j f i

��� j
i . �16�

Now let us look at the computation of the B matrix. If we use

ĤF
�0�

B�y
x� = � x

���ĤF
�0� − E�0��� y

�� �17�

=��
�f j

i�	yi
xj − �i

x�y
j � + f�

��y
x . �18�

	 here stands for the 2-RDM cumulant �	rs
pq=�rs

pq−�r
p�s

q

+�s
p�r

q�;50 it is nonzero only when the four indices are all
active orbital indices.

If we use ĤD
�0�

B�y
x� = ���0��a�

x �ĤD
�0� − E�0��ay

����0�� , �19�

=− E�0���
��y

x + ���0��a�
x ĤD

�0�ay
����0�� . �20�

A direct evaluation of the second term would require
3-RDM, but that can be avoided by extracting a commutator
as follows

B�y
x� = − E�0���

��y
x + ���0��a�

x ĤD
�0�ay

����0�� , �21�

=− E�0���
��y

x + ���0��a�
x ay

�ĤD
�0����0�� + ���0��a�

x �ĤD
�0�,ay

��


���0�� , �22�

=− E�0���
��y

x + ��
����0��ay

xĤD
�0����0�� + ���0��a�

x �ĤD
�0�,ay

��


���0�� , �23�

=− E�0���
��y

x + ��
��y

xE�0� + ���0��a�
x �ĤD

�0�,ay
��


���0�� �using Eq. 13� , �24�

=���0��a�
x �ĤD

�0�,ay
�����0�� . �25�

With this expression, we do not need 3-RDM to calculate B,
since the commutator is at most a two-body operator, and
then one index from the commutator needs to be contracted
with the external index �. More explicitly

B�y
x� = − ��

�� fy
i �i

x + 1
2vyk

ij 	ij
xk� + f�

��y
x . �26�

Let us now compare the two versions of perturbation theory.

• To compare the cost, let us use o, v, and A to denote the
number of occupied orbitals, OBS virtual orbitals, and
virtual orbitals from both OBS and CABS, respectively.
For both variants, B assumes a factorized form. With

ĤF
�0�, B contains an intermediate f j

i�	yi
xj −�i

x�y
j �; With

ĤD
�0�, B contains �fy

i �i
x+ 1

2vyk
ij 	ij

xk�. The cost of calculating
both intermediates is negligible in the context of a
CASSCF calculation. The second term of B, f�

��y
x,

scales as o2A2, roughly the fourth power of the system.
In comparison, solving the CASSCF residual equations
scales at least as vo4, roughly the fifth power of the size
of the system. Therefore, the cost of the perturbative
correction is small compared to the CASSCF procedure.

• In the single reference limit, for both variants B reduces
to the form −��

�fy
i �i

x+ f�
��y

x = f�
��y

x −��
�fy

x; Eq. �15� reduces

to �f�
��y

x −��
�fy

x�C�
y =−f��

x ��
��. Therefore, both variants re-

duce to the CABS singles approach.

• In typical single reference situations, where �y
x is close

to �y
x and the cumulant is small, the two versions shall

behave similarly; as the bond is stretched, the orbital
occupation pattern complicates, and a more complete
zeroth-order Hamiltonian beyond the one-particle Fock
operator would be advantageous. Overall, we expect a

somewhat superior behavior of ĤD
�0� over ĤF

�0�.

• For both variants, the index pairs �x ,�� and �y ,�� must
have the same spin �otherwise B vanishes�, as is clear
from Eqs. �18� and �26�. Therefore, the equations for
the alpha and beta spin components of the C vector are
decoupled.

The described second-order correction to the energy will
be denoted as �2�S. The �2�S method with the two choices of
zeroth-order Hamiltonian has been implemented in the de-
velopmental version of the MPQC quantum chemistry
package.51
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III. RESULTS AND DISCUSSION

To test the efficacy of the perturbative correction, we
have computed the CASSCF energies and �2�S corrections
for H2, HF, H2O, and N2 molecules using Dunning’s aug-cc-
pVXZ basis sets �X=2, 3, 4, and 5�.52,53 The basis set limit is
obtained from the three-point extrapolation A+Be−XC with
X=3, 4, and 5. Since the �2�R12 in the aug-cc-pVDZ basis is
already very efficient in accounting for the basis set incom-
pleteness of the dynamical correlation energy, in the current
work we mainly focus on the CASSCF perturbative correc-
tion also in the same basis. Valence active spaces are used in
all computations: �2e, 2o�, �8e, 5o�, �8e, 6o� and �10e, 8o� for
H2, HF, H2O and N2, respectively. For all the calculations,
the core orbitals are fixed by the restricted Hartree–Fock cal-
culation and kept unchanged in CASSCF. We use a union of
the uncontracted cc-pV6Z basis set and the corresponding
OBS as the basis set from which the CABS orbitals are com-
puted. The CASSCF calculations are carried out with the PSI3

package54 and the �2�S calculations are done with the MPQC

package.51 The results are plotted in Figs. 2–5. The mean
absolute errors �MAE� and the nonparallelity errors ��NPE�,
defined as the absolute value of the difference between the
maximum error and the minimum error�� are tabulated in
Table I, based on the data from the equilibrium geometry to
the most stretched geometry.

The most conspicuous observation from Fig. 2 is the
large variation of BSIE in the aug-cc-pVDZ basis for H2.

This is clearly reflected in the large NPE of 2.42 kcal/mol. In
aug-cc-pVTZ, both the absolute and the relative errors are
significantly reduced: the MAE decreases from 1.50 to 0.32
kcal/mol, and the NPE decreases by an order of magnitude,
from 2.42 to 0.22 kcal/mol. In aug-cc-pVQZ, both MAE and
NPE are below 0.1 kcal/mol, and the BSIE curve is almost
flat. The �2�S correction greatly reduces the large basis set
error of aug-cc-pVDZ, as apparent from the figure. With the

use of ĤF
�0� the NPE is reduced to 0.50 kcal/mol, five times

smaller than the uncorrected value. For ĤD
�0� the NPE is fur-

ther reduced to 0.28 kcal/mol, an order of magnitude im-
provement with respect to the uncontracted value. From Fig.
1, when the bond is stretched beyond 1.5 Å, the curve for

ĤD
�0� deviates from the ĤF

�0� curve and varies more slowly.

This suggests that ĤD
�0� may be a better choice of a zeroth-

order Hamiltonian when the multireference character of the
system becomes pronounced.

Similar conclusions are drawn for HF �Fig. 3�. The error
curve for aug-cc-pVDZ lies high above all the other ones,
indicating the large absolute error �the MAE is 22.85 kcal/
mol�. For the relative error, its NPE is 2.11 kcal/mol, com-
parable to that for H2. In aug-cc-pVTZ, it is greatly reduced
to 0.4 kcal/mol. The curve for aug-cc-pVQZ is already very
flat. The error for aug-cc-pVDZ decreases substantially via

the introduction of the �2�S correction. With ĤF
�0�, the NPE is

0.58 kcal/mol, close to the aug-cc-pVTZ result. The use of

�

�
�

�

�

�

�

�

�
�

� � � � �
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�
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�
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�
E
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l �

m
o
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� DZ �D�
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� QZ
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� DZ

FIG. 2. The basis set incompleteness of valence CASSCF energy for H2 molecule. XZ stands for the aug-cc-pVXZ basis. �F� and �D� refer to the �2�S results
with the zeroth-order Hamiltonian of Eqs. �11� and �12�, respectively. The dashed line marks the equilibrium geometry �Re=0.741 44 Å�.
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ĤD
�0� further reduces the NPE to 0.42 kcal/mol, roughly the

same as the aug-cc-pVTZ result. As for H2, we observe in

Fig. 3 a more mild fluctuation of the error in the ĤD
�0� curve

than that for ĤF
�0�, at greatly stretched geometries.

Again, similar trends are observed for H2O and N2. For
H2O, the large NPE in aug-cc-pVDZ of 3.10 kcal/mol is

brought down to 0.85 and 0.72 kcal/mol, for ĤF
�0� and ĤD

�0�,
respectively. N2 has a much larger NPE of 6.85 kcal/mol in

� ������
�

� � � � � �

� ������ � � � � � � �

� ������ � � � � � � �
� ������ � � � � � � �
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R ���

�
E
�k

ca
l�

m
o

l� � DZ �D�

� DZ �F�

� QZ

� TZ

� DZ

FIG. 3. The basis set incompleteness of valence CASSCF energy for HF molecule. XZ stands for the aug-cc-pVXZ basis. �F� and �D� refer to the �2�S results
with the zeroth-order Hamiltonian of Eqs. �11� and �12�, respectively. The dashed line marks the equilibrium geometry �Re=0.9168 Å�.

�
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�
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� � �
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FIG. 4. The basis set incompleteness of valence CASSCF energy for H2O molecule. XZ stands for the aug-cc-pVXZ basis. �F� and �D� refer to the �2�S results
with the zeroth-order Hamiltonian of Eqs. �11� and �12�, respectively. �HOH=109.57° and O–H bonds are stretched symmetrically. The dashed line denotes
the equilibrium geometry �Re=0.958 Å�.

174126-5 Basis set correction to CASSCF J. Chem. Phys. 133, 174126 �2010�



aug-cc-pVDZ, but the �2�S correction reduces it to 0.66 and

0.37 kcal/mol, for ĤF
�0� and ĤD

�0�, respectively. They are even
smaller than the aug-cc-pVTZ result.

Overall, the �2�S correction yields substantial improve-
ment in both the absolute and the relative basis set errors.
For the corrected results based on CASSCF calculations in
aug-cc-pVDZ, both variants of the correction reduce the

NPE to below 1 kcal/mol. The ĤF
�0�-based �2�S correction

reduces the NPE by about roughly four times for H2, HF, and

H2O and by an order for N2. Use of ĤD
�0� further improves

upon ĤF
�0�. In terms of NPE, the ĤD

�0�-based �2�S correction in
aug-cc-pVDZ yields results of quality the same as or better
than that for aug-cc-pVTZ without the correction.

Since results in aug-cc-pVTZ are already fairly accurate,
we expect very small BSIE for perturbation corrected com-
putations in aug-cc-pVTZ �see Table I�. The aug-cc-pVTZ
�2�S result is of similar quality to the standard aug-cc-pVQZ
results.

For all the calculations, we employed a large uncon-
tracted cc-pV6Z basis to construct CABS. To investigate
whether the computational cost of the perturbation calcula-
tion can be reduced, we carried out a series of calculations
with CABS of reduced dimensions. The result is plotted in
Fig. 6. We reduce CABS by gradually truncating the high
angular momentum basis functions in the cc-pV6Z basis. For
example, in Fig. 6, the x-coordinate p means that only s and
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FIG. 5. The basis set incompleteness of valence CASSCF energy for N2 molecule. XZ stands for the aug-cc-pVXZ basis. �F� and �D� refer to the �2�S results
with the zeroth-order Hamiltonian of Eqs. �11� and �12�, respectively. The dashed line marks the equilibrium geometry �Re=1.097 68 Å�.

TABLE I. MAE and NPE of valence CASSCF energies with respect to their complete basis set limits, based on
the data from the equilibrium geometry to the most stretched geometry �a bond distance of 10 Å for H2, HF, and
N2, and 3 Å for the O–H bonds in H2O�. For H2, the active space is �2e, 2o�; for HF, it is �8e, 5o�; for H2O, it
is �8e, 6o�, �HOH=109.57°, and O–H bonds are stretched symmetrically; for N2, it is �10e, 8o�. XZ in the first
column refers to the aug-cc-pVXZ basis set �“�F�” and “�D�” refer to the �2�S results with the zeroth-order
Hamiltonian of Eqs. �11� and �12�, respectively�.

H2 HF H2O N2 H2 HF H2O N2

MAE
�kcal/mol�

NPE
�kcal/mol�

DZ 1.50 22.84 15.62 16.46 2.42 2.10 3.10 6.85
TZ 0.32 6.32 4.29 4.79 0.22 0.40 0.73 1.38
QZ 0.10 1.72 1.06 1.05 0.05 0.10 0.10 0.15
5Z 0.03 0.47 0.26 0.23 0.01 0.04 0.03 0.04
DZ�F� 0.24 0.70 0.43 0.38 0.50 0.58 0.85 0.66
TZ�F� 0.03 0.50 0.29 0.16 0.04 0.05 0.14 0.23
DZ�D� 0.21 0.83 0.52 0.19 0.28 0.42 0.72 0.37
TZ�D� 0.04 0.51 0.31 0.19 0.03 0.04 0.10 0.19
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p functions are included in CABS. The geometries adopted
for this test are R=1.00 Å for H2, R=1.20 Å for HF,
R�OH�=1.20 Å for H2O ��HOH=109.57°� and
R=1.40 Å for N2. For easy comparison, we take the BSIE of
the perturbation corrected results �in aug-cc-pVDZ� with the
untruncated CABS as the reference point. Quick conver-
gence with respect to CABS is observed for all the tests.
Once f functions are included in CABS, the difference from
the complete CABS is smaller than 0.1 kcal/mol. If even
higher angular momentum functions are included, the result
is essentially indistinguishable from the complete CABS.
Therefore, it seems to suffice to include up to f function in
CABS for practical purposes, provided that only up to 2p
functions are strongly occupied.

IV. SUMMARY AND CONCLUSIONS

In this work we have presented a second-order perturba-
tive correction for the basis set incompleteness of CASSCF.
The need for such a correction naturally arises in the context
of the explicitly correlated �2�R12 method. The basis set error
of correlation energy is reduced in the �2�R12 method via the
introduction of the two-particle geminal functions to such an
extent that the basis set error in the CASSCF reference en-
ergy becomes a major source of the residual error when
small double-zeta basis set is used.

In the current approach the CASSCF wave function ob-
tained in a small orbital basis �e.g., aug-cc-pVDZ� is taken as
the zeroth order wave function ���0��. A large auxiliary basis
set is introduced, in combination with OBS, to approximate
the complete basis set. The one-particle excitation operator
from an occupied �core or active� to a CABS orbital, f�

i ai
�, is

taken as the first order Hamiltonian Ĥ�1�, which captures the
missing orbital rotation effect due to the incomplete basis.
Two variants of the zeroth order Hamiltonian are attempted;

one is the one-particle Fock operator ĤF
�0�, and the other, ĤD

�0�,
is a two-particle operator, which includes the full Hamil-
tonian in OBS. �Note that the former is identical to the
zeroth-order operator used in our �2�R12 method�. The com-

putational cost for both variants scales as o2A2. This correc-
tion, denoted as �2�S reduces to the CABS singles approach17

in the single reference limit.
Benchmark calculations are carried out on the systems

H2, HF, H2O, and N2 to test the approach. We found that the
�2�S correction greatly reduces the basis set error of
CASSCF. The error in the absolute energy in aug-cc-pVDZ,
measured in terms of MAE, has been reduced to below that
of standard aug-cc-pVQZ CASSCF. More importantly, sig-
nificant improvement for relative energies is observed. Mea-
sured in terms of NPE, the error of aug-cc-pVDZ CASSCF

+ �2�S in relative energies is below 1 kcal/mol. ĤD
�0� performs

better than ĤF
�0�; with the use of ĤD

�0�, the accuracy in aug-cc-
pVDZ exceeds aug-cc-pVTZ. If we employ aug-cc-pVTZ as
OBS, the accuracy upon the perturbative correction exceeds
aug-cc-pVQZ. The dependence on CABS is also tested, and
quick convergence is observed. It seems reasonable to expect
that including up to f functions in CABS suffice for the level
of accuracy achievable in aug-cc-pVDZ, provided that only
up to 2p functions are strongly occupied.

The proposed perturbation theory is rather simple and of
general applicability, not confined to the context of explicitly
correlated computations. Other than one- and two-electron
integrals, only up to two-particle RDMs are needed to com-
pute the correction. Encouraged by the reasonable perfor-
mance of the perturbation theory, we might explore the pos-
sibility of treating the diffuse functions perturbatively in
CASSCF, since those functions may lead to linear depen-
dency and convergence issues in the iterative procedure of
CASSCF, while those difficulties may be suppressed in the
one-step noniterative perturbation procedure.

ACKNOWLEDGMENTS

E.F.V. is grateful to the Donors of the American Chemi-
cal Society Petroleum Research Fund �Grant No. 46811-G6�
and the U.S. National Science Foundation �CAREER Award
No. CHE-0847295 and CRIF:MU Award No. CHE-
0741927�. E.F.V. is an Alfred P. Sloan Research Fellow and a
Camille Dreyfus Teacher-Scholar.

APPENDIX A: NOTATION

The OBS is defined as the computational basis in which
the CASSCF calculation is carried out. Conventionally, this
basis is divided into three sets: core orbitals �denoted by
i� , j��, �partially occupied� active orbitals �denoted by m ,n�,
and virtual orbitals �denoted by a, b, c, and d�. The occupied
orbitals, which are either core or active orbitals, are denoted
by i , j ,k , l. Orbitals in OBS are collectively denoted by p, q,
r, and s. To compose a CBS, OBS needs to be supplemented
by its orthogonal complement, which is clearly a space of
infinite dimension. In this work the orthogonal complement
is approximated by the CABS approach;55 i.e., CBS
�OBS�CABS. CABS is constructed using the CABS
+approach: a sufficiently large auxiliary basis set is chosen,
OBS is added to it, and the part that overlaps with OBS is
projected out. We will use �� and �� to denote CABS orbit-
als. They are the additional virtual orbitals with respect to the
occupied orbitals in OBS, and together with the virtual orbit-
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FIG. 6. Convergence of the �2�S correction with respect to the maximum
angular momentum of the basis functions kept in CABS. Zero is defined as
the �2�S correction obtained with the full uncontracted cc-pV6Z basis set
containing up to h functions for H and i functions for N, O, and F.
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als in OBS, they form the complete virtual orbital space.
Orbitals in this space are denoted by � and �. The orbitals in
CBS are denoted by � and �. The relationships between or-
bital spaces are illustrated in Fig. 1.

Standard tensor notation is used throughout

the work, i.e., Hp
q ���p�1��Ĥ�1���q�1�� and Gpq

rs

���p�1��q�2��Ĝ�1,2���r�1��s�2��. Labels h, f , v, and � de-
note the matrix elements of the one-electron �core� Hamil-
tonian, Fock operator, Coulomb operator, and reduced den-
sity operators, respectively. The Einstein summation
convention is adopted, i.e., summation is implied over every
index that appears in subscript and superscript of a given
term. The particle-number-conserving operators are defined
as: aq

p=ap
†aq, aqs

pr=ap
†ar

†asaq.

APPENDIX B: PROOF

Here we verify that ���0��aq
pĤD

�0����0��=E�0��q
p. According

to the definition of ĤD
�0�

���0��aq
pĤD

�0����0�� = ���0��aq
p�ĤOBS + f��

��a��
�� + �f��

a aa
��

+ fa
��a��

a �����0�� , �B1�

=���0��aq
pĤOBS���0�� , �B2�

where in last step we used the fact that only core and active
orbitals are occupied in ���0��. As long as either p or q is a
nonactive index, it is straightforward to show that the equal-
ity to be verified holds. The only nontrivial part is when p
and q are both active. In this case, let us first define a CAS
Hamiltonian as follows

ĤCAS = hi�
i�ai�

i� + 1
2vi�j�

i�j�ai�j�
i�j� + hm

n an
m + 1

4vmm1

nn1 ann1

mm1 + vmi�
ni� ani�

mi�.

�B3�

This Hamiltonian is essentially the Dyall Hamiltonian. It has

���0�� as its eigenfunction; i.e., ĤCAS���0��=E�0����0��. There-

fore ���0��aq
pĤCAS���0��=E�0��q

p. It is not hard to show that

���0��aq
pĤOBS���0�� = ���0��aq

pĤCAS���0�� = E�0��q
p. �B4�

This completes the proof.
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