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Towards the Hartree–Fock and coupled-cluster singles and doubles basis
set limit: A study of various models that employ single excitations
into a complementary auxiliary basis set
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In explicitly correlated coupled-cluster singles and doubles �CCSD�F12�� calculations, the basis set
incompleteness error in the double excitations is reduced to such an extent that the error in the
Hartree–Fock energy and the error in the single excitations become important. Using arguments
from perturbation theory to systematically truncate the coupled-cluster singles and CCSD�F12�
Lagrangians, a series of coupled-cluster models are proposed and studied that reduce these basis set
incompleteness errors through additional single excitations into a complementary auxiliary basis.
Convergence with model and size of complementary basis is rapid and there appears to be no need
to go beyond second-order models. Our iterative second-order approach is a slight improvement
over the existing noniterative approach, but its main advantage is that it is suitable for response
theory. © 2010 American Institute of Physics. �doi:10.1063/1.3291040�

I. INTRODUCTION

F12 explicitly correlated methods have emerged as a
practical solution to the basis set problem for correlated
wave function methods such as the second-order Møller–
Plesset perturbation theory �MP2�,1–8 second-order multiref-
erence perturbation theory,9 and coupled-cluster singles and
doubles with noniterative triples correction �CCSD�T��.10–17

In these methods, the slow X−3 basis set convergence of the
standard expansion of the wave function in excited state
Hartree–Fock determinants is eliminated by incorporating
geminal basis functions with explicit r12 dependence.18,19

The F12 geminals enter the parametrization of double exci-
tations and are chosen to resemble the spherically averaged
pair-correlation holes at short to medium r12 distances and, in
particular, to efficiently reproduce the correlation cusp. The
small set of geminals alone can recover as much as 70% of
the doubles’ contribution to the correlation energy20 and the
standard orbital expansion is well suited to the description of
the remaining 30%. For example, at least 98% of the MP2
correlation energy is obtained using the MP2-F12 method
with only a double-zeta orbital basis set �OBS� and, amaz-
ingly, the basis set error in a MP2-F12 calculation is often
dominated by that of the Hartree–Fock energy.14,21 In
CCSD�T�-F12 calculations, the total basis set error also con-
tains contributions from the parametrization of the singles
and triples excitations. One of us has recently extended F12
methods to incorporate geminal basis functions into the
triples excitation operator, which is necessary to accelerate
the basis set convergence of the �T� energy.17 This article is
concerned with reducing the basis set error in the Hartree–
Fock and singles correlation contributions to the CCSD-F12
energy.

Several approaches have been forwarded in the recent
literature. In the context of dual basis MP2,22 Wolinski and
Pulay treated the Fock matrix elements between the Hartree–
Fock basis and an orthogonal complementary orbital basis as
a perturbation, and derived a simple second-order correction
to reduce the basis set error in the Hartree–Fock energy.23 A
more elaborate analysis of such corrections was recently
given by Gill and co-workers.24

Noga et al.25 introduced an analogous approach into F12
theory, using the one-electron component of the F12 gemi-
nals for the auxiliary single excitations. They also investi-
gated several choices of zeroth-order Fock operator. Much
improved results were obtained by Adler et al.,13 who ex-
panded the auxiliary singles into the complementary auxil-
iary basis set �CABS� of the F12 theory, which is used pri-
marily for the evaluation of three- and four-electron integrals
using an approximate resolution of the identity.4 Regarding
the partitioning of the zeroth-order Fock operator and the
precise form of the perturbative correction, a consensus
seems to have been reached between the two research
groups.14,26

In this work we extend these approaches to coupled-
cluster theory, where the auxiliary singles act to reduce the
basis set error in the correlation energy as well as the
Hartree–Fock energy. We adopt the CABS singles approach:
Although the one-electron component of the F12 geminals is
suitable for improving the parametrization of singles excita-
tions in a correlation treatment, it is inappropriate for reduc-
ing the basis set error in a Hartree–Fock wave function,
which is the most important contribution �vide infra�. A fully
coupled CABS singles CCSD-F12 method would offer al-
most no computational saving over using the unified orbital
plus complementary auxiliary �CA� basis as the Hartree–
Fock basis in a CCSD-F12 calculation since N6 contractions
with three externals in the unified basis occur. Using pertur-a�Electronic mail: andreas.koehn@uni-mainz.de.

THE JOURNAL OF CHEMICAL PHYSICS 132, 024101 �2010�

0021-9606/2010/132�2�/024101/10/$30.00 © 2010 American Institute of Physics132, 024101-1

Downloaded 06 Apr 2013 to 130.56.65.35. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3291040
http://dx.doi.org/10.1063/1.3291040
http://dx.doi.org/10.1063/1.3291040
http://dx.doi.org/10.1063/1.3291040


bation arguments similar to those used to derive the
CCSD�F12� model,27 we define a series of approximations to
the full CABS singles CCS and CCSD�F12� methods, which
we dub Sn and CCSD�F12�-Sn. We perform a systematic
study of the effect of the model and the quality of the CA
basis and demonstrate that our second-order models essen-
tially eliminate the basis set error from the parametrization of
the single excitations, while only involving terms that scale
linearly with the size of CABS in the N6 contractions.

II. CORRECTION MODELS

We partition the normal-ordered electronic Hamiltonian
according to

H = E0 + F�0� + F�1� + G�1�, �1�

where E0= �0�H�0� is the energy of the reference determinant
�0�. Using the index conventions in Table I and the short
hands aq

p=apaq and aqs
pr=aparasaq, where ap and aq are cre-

ation and annihilation operators, respectively, we can express
the Fock operator F as

F�0� = fp
qaq

p + fa
��a��

a + f��
b ab

�� + f��
��a��

��, �2�

F�1� = f��
i ai

�� + f i
��a��

i , �3�

and the fluctuation potential G as

G�1� = 1
4g��

�� a��
��, �4�

where g��
�� = �������� are antisymmetrized two-electron re-

pulsion integrals. The superscripts denote the order in pertur-
bation assigned to the different constituents. The first-order
part of the Fock operator is just the off-diagonal block that
connects the occupied orbitals and the virtual orbitals in the
formally complete virtual space. The reference determinant
is thus an eigenfunction of F�0�. The off-diagonal block of F
that couples the virtual orbitals of the finite primary OBS and
the complementary set are retained in the zeroth-order part.
We note that this partitioning of the Hamiltonian is fully
compatible with the one used to derive the CCSD�F12�
model.27 In F12 theory, the formally complete set of orbitals
is either absorbed into analytical two-electron integrals or
approximated with the aid of an additional CABS. The latter
arises when an approximate resolution of the identity is in-
serted to avoid three-electron and higher-order integrals.19,28

These additional CA orbitals, as already outlined in Sec. I,
can also be used to improve the description of one-electron
contributions to the total energy. In the following, we will
drop the subtle distinction between the formally complete

complementary set ���	 and its auxiliary basis set represen-
tation �a�	, and just use the latter notation.

The first set of models that we want to consider employs
a cluster operator with only single excitation operators,
T=T1+T1�, where

T1 = ta
i ai

a �5�

denotes the usual excitations into OBS virtual orbitals and

T1� = ta�
i ai

a� �6�

are excitations into the CABS virtual orbitals. Introducing
the sets of de-excitation operators

�1 = �i
aaa

i , �1� = �i
a�aa�

i �7�

and the short hand H̃=e−T1�H−E0�eT1, we can write the CCS
Lagrange functional in the form

L = E0 + �0��1 + �1 + �1��e
−T1�H̃eT1��0� . �8�

Clearly, this energy functional is not fully equivalent to solv-
ing the Hartree–Fock equations in the larger basis, as the
expression is based on pure excitation operators and a pro-
jection approach rather than employing orbital rotations and
a variational procedure. The latter, however, is difficult to
combine with a coupled-cluster model which is the goal in
this work. The purpose of examining Eq. �8� is rather to
quantify the projection error in comparison to the improve-
ments in the one-electron energy obtained at various orders
in F�1�+G�1�.

Starting from Eq. �8�, we can define a set of approxima-
tions by truncating the expression to a given order in the
perturbation. T1� and �1� obviously appear in the first order
in the perturbation, whereas T1 and �1 are considered zeroth
order. We will denote the resulting models nth order singles
correction, abbreviated as Sn. The second-order model reads

ES2 = E0 + �0�H̃ + �H̃,T1���0� , �9�

0 = �0�aa
i �H̃ + �H̃,T1����0� , �10�

0 = �0�aa�
i �H̃ + �F�0�,T1 + T1����0� . �11�

Truncation at third, fourth, and fifth orders defines models
S3, S4, and S5, respectively, where S5 is in fact the untrun-
cated CCS model. The explicit expressions can be found in
Appendix A. An alternative definition of the series is also
possible, where T1 is considered as first order in the pertur-
bation, which in principle is the case for CCS. However, for
any higher-order CC model, all T1 terms will contribute in
the zeroth-order model �i.e., the model within the OBS
space�, which would necessitate to distinguish between two
sets of T1 excitations if we want to truncate these consis-
tently. In the present work, we will not make this distinction.

We notice that in order to solve for T1 and T1�, all these
models require an iterative procedure. As alternative, two
simplifications of the above defined S2 model exist in the
literature. Effectively, T1=0 at zeroth order if the reference
determinant is a Hartree–Fock solution. If we insist on T1

TABLE I. Index conventions used in this work.

p ,q ,r , . . . Orbitals in finite basis
i , j ,k , . . . Occupied orbitals
a ,b ,c , . . . Virtual orbitals in finite basis
� ,� ,� , . . . Orbitals in formally complete basis
�� ,�� ,�� , . . . Complementary virtual orbitals of formally

complete basis
a� ,b� ,c� , . . . CABS representation of complementary virtual orbitals
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=0 at any order �by omitting all terms containing them� and
truncate Eq. �8� to second order, we arrive at the following
energy expression and amplitude equation:

E�S2�� = E0 + �0��F�1�,T1���0� = E0 + f i
a�ta�

i , �12�

0 = �0�aa�
i �F�1� + �F�0�,T1����0� = fa�

i + fa�
b�tb�

i − f j
ita�

j . �13�

Assuming semicanonicalization of the CABS �fa�
b�=	a�
a�

b��
we obtain an expression �E�S2��=
a�i�f i

a��2 / �	i−	a��, equiva-
lent to the �nc� approximation discussed in Ref. 26. Here, we
used the acronym �S2��, where the parentheses indicate a
noniterative approach, and the star indicates the absence of
couplings to T1.

It is known,14,26 however, that coupling to T1 is rather
important �see also below� and the simplest model to allow
for that is to include a few terms linear in T1. We then arrive
at the model advocated by Werner and co-workers,13,14

which is equivalent to Noga and Šimunek’s �c�
approximation26 �note that there is no energy contribution
from T1 as long as the Brillouin theorem holds�,

E�S2� = E0 + �0��F�0�,T1� + �F�1�,T1���0�

= E0 + f i
ata

i + f i
a�ta�

i , �14�

0 = �0�aa
i �F�0� + �F�0�,T1 + T1����0�

= fa
i + fa

b�tb�
i + fa

btb
i − f j

ita
j , �15�

0 = �0�aa�
i �F�1� + �F�0�,T1 + T1����0�

= fa�
i + fa�

b tb
i + fa�

b�tb�
i − f j

ita�
j . �16�

Model �S2� corresponds to the second-order energy obtained
from a Møller–Plesset perturbation treatment of the CCS
equations using the partitioning in Eq. �1�. �Note that �S2��
can be obtained from �S2� by neglecting the contributions
from Fock matrix elements fa�

b .�
The other series of models that we want to discuss in-

cludes T2 cluster operators

T2 = 1
4 tab

ij aij
ab �17�

and explicitly r12-dependent geminal functions, introduced
by a T2� operator,

T2� = 1
2R��b

ij aij
��b + 1

4R����
ij aij

����. �18�

The latter contains matrix elements over the correlation fac-
tor

Rpq
rs = Srs�pq�Q12f�r12��rs� , �19�

where f�r12�= �−1 /��e−�r12 and � is a length scale parameter,
as specified in the result section. The projector Q12 ensures
strong orthogonality of the geminal functions to all configu-
rations accessed by the operators T1 and T2, as well as T1�.
The operator S generates the proper prefactors for singlet
and triplet pairs in order to ensure the cusp conditions for
these two cases.29,30

For a more compact notation, we use the short hand

H̄=e−T1−T2�H−E0�eT1+T2. At second order we obtain
CCSD�F12�-S2, which is equivalent to the model discussed
in Refs. 30 and 31. The energy and residual expressions read

EF12-S2 = E0 + �0�H̄ + �H̄,T1� + T2���0�

+ �0�T2�
† �H̄ + �F�0�,T1� + T2����0� , �20�

0 = �0�aa
i �H̄ + �H̄,T1� + T2����0� , �21�

0 = �0�aab
ij �H̄ + �H̄,T1� + T2����0� , �22�

0 = �0�aa�
i �H̄ + �F�0�,T1� + T2����0� . �23�

The explicit expressions are given in Appendix B. Analyzing
these, one finds that all steps involving CABS indices scale
with N5 at most, in particular, these steps depend only lin-
early on the CABS size. The most expensive term arises

from g̃ab
ic�tc�

j , see Eq. �B7�, which includes terms such as

gab
dc�td

i tc�
j . This term involves an initial OV3X step, where O is

the number of occupied, V is the number of virtual, and X is
the number of CABS orbitals. In addition, two new N6 scal-
ing terms appear in doubles projection �the last two terms in
Eq. �B7�� which, however, may be evaluated with at most
O2V2X cost by adding the T1� contributions to the standard
intermediates of CCSD. The CCSD�F12� model contains
terms that scale as O3V2X in the iterations and the additional
cost of the CCSD�F12�-S2 model is therefore relatively
small.

In addition, we will consider a model, in which we trun-
cate the T1� terms at third order. The truncation scheme for
T2�, i.e., the �F12� approximation, is retained, however. De-
noting the above defined residuals for the F12-S2 model as
�x,F12-S2, we can write the F12-S3 model equations as

EF12-S3 = EF12-S2 + 1
2 �0���H,T1��,T1���0�

+ �0�T2�
† ��H̄ − F�0�,T1����0� , �24�

0 = �1,F12-S2 + �0�aa
i ���H̄,T1��,

1
2T1� + T2����0� , �25�

0 = �2,F12-S2 + �0�aab
ij ���H̄,T1��,

1
2T1� + T2����0� , �26�

0 = �1�,F12-S2 + �0�aa�
i ��H̄ − F�0�,T1����0� . �27�

The major difference in the S2 correction is that now a num-
ber of terms appear in which T1� and T2� couple directly.
From the explicit expressions in Appendix B, it becomes
evident that this leads to quite a number of additional terms,
of which a few also scale with the square power of the CABS
size. The overall scaling of these terms is OV2X2 i.e., N5.
Also, a few more N6 scaling terms appear which, similar to
the F12-S2 case, do not depend on X in the N6 step.
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III. TEST CALCULATIONS

The methods were implemented using automated deriva-
tion and string-based evaluation schemes, as implemented in
the GECCO program, for previous applications see Refs. 17,
30, and 31. Sn and CCSD�F12�-Sn calculations were per-
formed using the cc-pVXZ-F12 basis sets.32 In our calcula-
tions the CABS is used for the approximate resolution of the
identity �RI� and as the auxiliary basis for the single excita-
tions. For CABS, we test the cc-pVXZ-F12-RI �Ref. 33� and
the uncontracted cc-pVQZ-F12 basis sets against the uncon-
tracted aug-cc-pV6Z basis set. We assess the performance of

our various coupled-cluster models by comparison to basis
set limit HF and CCSD energies for a set of 30 small mol-
ecules, listed in Table II. These are a subset of the 106 mol-
ecules compiled by Bakowies34 and used by Klopper et
al.21,35 to develop and assess explicitly correlated methods
and basis sets. Optimized CCSD�T�/cc-pCVTZ structures
�all electrons correlated� were taken from Ref. 35. Basis set
limit energies were obtained from frozen core �fc�
CCSD�F12� calculations using a partially decontracted aug-
cc-pV6Z orbital basis and the TURBOMOLE program
package.36,37 The orbital, CABS, and density fitting basis sets
were chosen identical to those used in Ref. 21 to determine

TABLE II. Reference basis set limit CCSD energies from fc-CCSD�F12�/aug-cc-pV6Z�unc� calculations. Op-
timized ae-CCSD�T�/cc-pCVTZ structures were taken from Ref. 35.

No. Molecule EHF �ECCSD

1 CFN Cyanogen fluoride 
191.786 911 5 
0.653 518 7
2 CFN Isocyanogen fluoride 
191.670 179 9 
0.655 422 8
3 CF2 Singlet difluoromethylene 
236.779 760 3 
0.728 870 4
6 CHF Singlet fluoromethylene 
137.825 445 1 
0.453 129 7
9 CHN Hydrogen cyanide 
92.915 237 7 
0.379 582 7
10 CHN Hydrogen isocyanide 
92.899 960 3 
0.371 785 7
15 CH2 Singlet methylene 
38.895 936 1 
0.175 522 6
20 CH2O Formaldehyde 
113.923 038 6 
0.445 932 5
21 CH2O Hydroxymethylene 
113.846 819 5 
0.440 517 0
30 CH4 Methane 
40.217 045 8 
0.232 771 4
34 CO Carbon monoxide 
112.790 251 8 
0.395 934 2
35 CO2 Carbon dioxide 
187.724 439 5 
0.659 208 7
40 C2H2 Acetylene 
76.855 221 5 
0.346 637 0
73 FH Hydrogen fluoride 
100.070 786 3 
0.313 886 3
74 FHO Hypofluorous acid 
174.822 708 1 
0.579 010 8
76 FH2N Monofluoroamine 
155.040 971 9 
0.544 346 4
78 FNO Nitrosyl fluoride 
228.730 468 6 
0.773 852 7
79 F2 Difluorine 
198.773 196 3 
0.601 118 5
82 F2O Difluorine monoxide 
273.586 578 0 
0.865 134 5
85 HNO Nitrosylhydride 
129.849 256 7 
0.488 156 6
91 H2N2 Diazene �cis� 
110.039 620 2 
0.459 575 9
92 H2N2 Diazene �trans� 
110.049 182 2 
0.458 847 8
93 H2N2 Diazene �iso� 
110.020 629 0 
0.448 996 8
95 H2O Water 
76.067 305 9 
0.297 967 1
96 H2O2 Hydrogen peroxide 
150.851 770 4 
0.562 166 7
97 NH3 Ammonia 
56.224 790 4 
0.269 348 8
101 N2 Dinitrogen 
108.992 513 4 
0.407 702 6
102 N2O Nitrous oxide 
183.765 661 0 
0.686 243 0
105 O3 Ozone 
224.363 728 1 
0.825 830 5
106 H2 Dihydrogen 
1.133 606 6 
0.040 834 6

TABLE III. The FH molecule: deviation of Sn energies from the basis limit Hartree–Fock values for various
choices of orbital and CABS, in kJ/mol pve.

Basis CABS SCF �S2�� �S2� S2 S3 S4 S5

cc-pVDZ-F12 cc-pVDZ-F12-RI 3.730 2.621 2.582 2.584 2.493 2.493 2.493
cc-pVQZ-F12�unc� 3.730 0.232 0.185 0.187 0.072 0.073 0.073
aug-cc-pV6Z�unc� 3.730 0.156 0.109 0.110 
0.006 
0.005 
0.005

cc-pVTZ-F12 cc-pVTZ-F12-RI 0.910 0.586 0.562 0.562 0.539 0.539 0.539
cc-pVQZ-F12�unc� 0.910 0.112 0.095 0.095 0.070 0.070 0.070
aug-cc-pV6Z�unc� 0.910 0.044 0.027 0.027 0.001 0.001 0.001
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the basis set limit fc-MP2 correlation energies. The remain-
ing basis set error in total energies is thus expected to be
below 0.05 kJ/mol per valence electron �pve� and almost
entirely from the correlation contribution.

A. The Sn series

To within a projection error, the Sn energies converge
with increasing CABS and order n to the basis set limit HF
energy. The relative importance of the model and the CABS
basis is illustrated in Tables III and IV, where the deviations
from the Hartree–Fock limit of Sn calculations with various
OBS and CABS are reported for the FH molecule and its
reaction to H2 and F2, respectively. We use this representa-
tive example for a detailed analysis preceding a subsequent
discussion of performance over the test set. For the reaction
�Table IV�, we have used the fc approximation in the Sn
calculations. To converge total energies to the HF limit, it is
obviously necessary to perform all-electron calculations. For
reaction energies, improvement of the core orbitals has very
little effect, not more than 0.002 kJ/mol pve in our calcula-
tions.

The Sn energies converge very rapidly with the model n.
For the FH molecule, Table III, the intrinsic error for the S2
model is 34 times smaller than that of uncorrected SCF, and
progressing to S3 the error further reduces by a factor of 18.

At S3 the energy is essentially converged, leaving only the
tiny projection error. The convergence with CABS is also
rapid, provided that the correct functions are included in the
CA basis. The cc-pVXZ-F12-RI basis sets do not appear to
be well suited to the description of the HF state and the basis
set error of a S5/cc-pVXZ-F12 calculation with cc-pVXZ-
F12-RI as CABS is only two-thirds of that of a SCF/cc-
pVXZ-F12 calculation, that is, the HF/cc-pVXZ-F12 energy.
Using the uncontracted cc-pVQZ-F12 orbital basis as CABS
reduces the HF/cc-pVDZ-F12 basis set error from 3.73 to
0.07 kJ/mol pve. The primary reason for the improvement of
cc-pVQZ-F12�unc� over the cc-pVXZ-F12-RI CABS is that
the number of s and p functions is substantially larger. The
main difference between the cc-pVQZ-F12�unc� and aug-cc-
pV6Z�unc� basis sets is the additional functions with high
angular momentum quantum number. The effect of these
functions is relatively small.

Comparing the �S2��, �S2�, and S2 models, we see that
the �S2� and S2 energies are almost identical. Obviously,
�S2� includes all important second-order terms. The �S2��
energies are somewhat inferior, which indicates that the Fock

matrix elements fa
p� should not be neglected.

The rapid convergence with the model and the size of
CABS is also evident for the reaction energy, Table IV. We
notice, however, that the cc-pVXZ-F12-RI CA basis per-

TABLE IV. The reaction 2FH→H2+F2: deviation of fc Sn energies from the basis limit Hartree–Fock value
�+38.5 kJ /mol pve� for various choices of orbital and CABS, in kJ/mol pve.

Basis CABS SCF �S2�� �S2� S2 S3 S4 S5

cc-pVDZ-F12 cc-pVDZ-F12-RI 0.125 0.024 
0.037 
0.036 
0.055 
0.055 
0.055
cc-pVQZ-F12�unc� 0.125 0.063 0.000 0.001 
0.016 
0.016 
0.016
aug-cc-pV6Z�unc� 0.125 0.076 0.013 0.014 
0.003 
0.003 
0.003

cc-pVTZ-F12 cc-pVTZ-F12-RI 
0.088 
0.015 
0.017 
0.017 
0.015 
0.015 
0.015
cc-pVQZ-F12�unc� 
0.088 
0.011 
0.014 
0.014 
0.012 
0.012 
0.012
aug-cc-pV6Z�unc� 
0.088 0.002 
0.002 
0.002 0.001 0.001 0.001

TABLE V. Statistical measures for the basis set error pve for 25 reaction energies computed using various
fc-CCSn models �kJ/mol�.

Basis/auxbasis Model MAD rms Maximum

cc-pVDZ-F12/— HF 0.164 0.183 0.292 96. H2O2

cc-pVTZ-F12/— HF 0.035 0.035 0.115 97. NH3

cc-pVQZ-F12/— HF 0.004 0.005 0.015 97. NH3

cc-pVDZ-F12/cc-pVDZ-F12-RI �S2�� 0.019 0.022 0.043 73. FH
�S2� 0.018 0.017 0.045 102. N2O
S2 0.016 0.016 0.042 102. N2O
S3 0.017 0.018 0.055 73. FH

cc-pVDZ-F12/cc-pVQZ-F12�unc� �S2�� 0.015 0.020 0.063 3. CF2

�S2� 0.006 0.007 0.019 93. H2N2

S2 0.007 0.007 0.019 93. H2N2

S3 0.006 0.007 0.016 73. FH

cc-pVTZ-F12/cc-pVTZ-F12-RI �S2�� 0.009 0.008 0.029 97. NH3

�S2� 0.007 0.006 0.021 97. NH3

S2 0.006 0.006 0.021 97. NH3
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forms much better for relative energies than for total ener-
gies. The dominant source of error for total energies is the
description of the core orbitals, which is unimportant for
reaction energies. We note that a recent study of Werner and
co-workers38 resulted in similar findings. Nevertheless, the
cc-pVXZ-F12-RI CABS would probably benefit from addi-
tional s and p functions in the valence region for use in
CABS singles methods, which would also improve the RI in
F12 methods. We also notice that the inferior performance of
the �S2�� method as compared to the �S2� and S2 methods is
far more significant for relative energies than for total ener-
gies.

In Table V we present statistics for the basis set error
from fc-Sn calculations for 25 reaction energies �see Table
VI�, compared to the HF basis set limit. The mean absolute
deviation �MAD� of 0.164 kJ/mol pve for the HF/cc-pVDZ-
F12 basis set error is reduced by a factor of approximately 10
by the fc-�S2�� method for both the cc-pVDZ-F12-RI and

cc-pVQZ-F12�unc� CABS. For the cc-pVDZ-F12-RI CABS,
the basis set error is not reduced further when progressing to
the S2 and S3 models, suggesting that the error is limited by
the quality of the CABS. For the cc-pVQZ-F12�unc� CABS,
the error reduces by a factor of 2 by moving to the �S2� or S2
models. The remaining error is essentially that of the cc-
pVQZ-F12 basis and progressing to S3 does not improve
matters.

To summarize, the Sn models converge rapidly and sys-
tematically to the HF energy of the combined orbital and CA
basis, to within a tiny projection error. The dominant contri-
butions are already contained in �S2� and contributions be-
yond S3 can safely be neglected for total energies. For rela-
tive energies, contributions beyond �S2� are inconsequential.
The quality of the CABS must be sufficiently high for the
implicit accuracy of the �S2�, S2, and S3 models to be real-
ized. To this end, we suggest that the cc-pVXZ-F12-RI basis
sets should be reoptimized for use with CABS singles ap-
proaches.

B. The CCSD„F12…-Sn models

The T1� amplitudes entering the CCSD-Sn models affect
the description of both the HF state and electron correlation.
The difference between Sn and HF is clearly a pure one-
electron effect. The correlation energy may be defined as the
difference between CCSD-Sn and Sn �note that this reduces
to the usual definition of correlation energy for zeroth order
in T1��. In Table VII we present the deviation of
fc-CCSD�F12�-Sn energies from the basis set limit for FH,
listing total and correlation contributions. The SP ansatz26 is
used with the recommended STG exponents for the cc-
pVXZ-F12 basis sets. The corresponding values for the re-
action 2FH→H2+F2 are given in Table VIII.

For the FH molecule, the fc-CCSD�F12�/cc-pVDZ-F12
energy deviates by 7.18 kJ/mol pve from the basis set limit
CCSD energy, 3.45 kJ/mol of this is from the correlation
energy and 3.73 kJ/mol due to the HF energy. The total basis
set error is reduced to 4.03 kJ/mol pve when including single
excitations into the aug-cc-pV6Z�unc� CABS to third order
and this residual error can be decomposed into 3.47 kJ/mol
pve correlation contribution and 0.56 kJ/mol pve HF error
due almost entirely to the core orbitals. In contrast to the
smooth convergence of the HF contribution, the error in the
CCSD�F12�-Sn energies fluctuates with n due to the cou-
pling, or lack thereof, of the CABS singles with the CCSD

TABLE VI. Set of 25 reactions �heats of formation with respect to H2, CO,
CO2, N2, and F2� considered in this work.

1 NCF+CO2→2CO+ 1
2N2+ 1

2F2

2 CNF+CO2→2CO+ 1
2N2+ 1

2F2

3 CF2+CO2→2CO+F2

6 CHF+CO2→2CO+ 1
2H2+ 1

2F2

9 NCH+CO2→2CO+ 1
2N2+ 1

2H2

10 CNH+CO2→2CO+ 1
2N2+ 1

2H2

15 CH2+CO2→2CO+H2

20 CH2O→CO+H2

21 HCOH→CO+H2

30 CH4+CO2→2CO+2H2

40 C2H2+2CO2→4CO+H2

73 FH→ 1
2F2+ 1

2H2

74 FHO+CO→CO2+ 1
2F2+ 1

2H2

76 FH2N→ 1
2F2+ 1

2N2+H2

78 FNO+CO→CO2+ 1
2F2+ 1

2N2

82 F2O+CO→CO2+F2

91 H2N2�cis�→H2+N2

92 H2N2�trans�→H2+N2

93 H2N2�iso�→H2+N2

95 H2O+CO→CO2+H2

96 H2O2+2CO→H2+2CO2

85 HNO+CO→CO2+ 1
2H2+ 1

2N2

97 NH3→ 1
2N2+ 3

2H2

102 N2O+CO→CO2+N2

105 O3+3CO→3CO2

TABLE VII. The FH molecule: deviation of fc CCSD�F12�-Sn energies from the basis set limit CCSD values for various choices of orbital and CABS, in
kJ/mol pve.

Basis CABS

Total energy Correlation contribution

CCSD�F12� �S2�� �S2� S2 S3 CCSD�F12� S2 S3

cc-pVDZ-F12 cc-pVDZ-F12-RI 7.23 6.13 6.09 6.15 6.01 3.50 3.56 3.50
cc-pVQZ-F12�unc� 7.23 4.28 4.23 4.28 4.13 3.50 3.55 3.51
aug-cc-pV6Z�unc� 7.18 4.17 4.13 4.18 4.03 3.45 3.50 3.47

cc-pVTZ-F12 cc-pVTZ-F12-RI 1.81 1.49 1.47 1.49 1.48 0.90 0.93 0.94
cc-pVQZ-F12�unc� 1.84 1.11 1.09 1.11 1.10 0.93 0.96 0.97
aug-cc-pV6Z�unc� 1.78 0.98 0.96 0.99 0.98 0.87 0.89 0.91
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singles. In fact, the coupling present in the S2 and S3 models
increases the error in correlation energy. Although the effect
of CABS singles on the correlation energy is two orders of
magnitude smaller than the overall reduction in the HF basis
set error, it is on the same order as the difference between the
Sn models and thus has a non-negligible effect on relative
energies. This is evident from Table VIII, where, for this
example, the coupling increases the basis set error.

In Table IX we present statistics for the basis set error
for our set of 25 reaction energies using the CCSD�F12�-Sn
models and various orbital and CA basis sets. The errors are
an order of magnitude larger than those associated with the
HF contribution �cf. Table V�. All CABS singles models
studied practically eliminate the HF basis set error, provided
that the CABS basis is properly chosen. The difference be-
tween the performance of the CCSD�F12�-Sn models results
from the differing correlation contributions. The correspond-
ing basis set errors for the correlation contribution to the
reaction energies are listed in Table X.

For the cc-pVDZ-F12 basis and both considered auxil-
iary basis sets, we indeed find—for the present set of
examples—a slight improvement in the correlation energy
due to the S2 model. For the cc-pVTZ-F12 basis, the S2
model does not improve the correlation energy, but with a
MAD of less than 0.003 kJ/mol pve from the CCSD�F12�

correlation energy, one cannot reasonably claim that it wors-
ens the correlation energy either, which means that S2 is an
equivalent replacement for �S2� whenever the focus is on
response properties. Inspecting Table VIII one finds that the
deviations due to less complete CA basis sets are larger by
nearly an order of magnitude. The MADs in the correlation
energy errors for the S3 model, however, are inferior to those
of S2, although the maximum error �which occurs for FH� is
reduced. In order to investigate whether the poorer perfor-
mance of the S3 correlation energies is due to an uncon-
verged CABS, we calculated the MAD between reaction en-
ergies with either cc-pVDZ-F12-RI or the uncontracted cc-
pVQZ-F12 basis as CABS and cc-pVDZ-F12 as OBS. While
we see a slight increase going from CCSD�F12� �MAD
=0.01 kJ /mol pve� to CCSD�F12�-S2 �MAD=0.03 kJ /mol
pve�, the result for CCSD�F12�-S3 is exactly the same as for
CCSD�F12�-S2. In other words, there is a slightly increased
sensitivity toward CABS for the Sn corrected models, but
both S2 and S3 seem equally sensitive. Thus, the slightly
worse results of S3 for the correlation contribution must have
a different origin, most likely due to an imbalance between
T1� �up to third order� and T2� �up to second order�.

IV. CONCLUSIONS

We investigated a series of coupled-cluster theory based
models that make use of single excitations into an auxiliary

TABLE VIII. The reaction 2FH→H2+F2: deviation of fc CCSD�F12�-Sn energies from the basis set limit CCSD values for various choices of orbital and
CABS, in kJ/mol pve.

Basis CABS

Total energy Correlation contribution

CCSD�F12� �S2�� �S2� S2 S3 CCSD�F12� S2 S3

cc-pVDZ-F12 cc-pVDZ-F12-RI 0.219 0.118 0.057 0.096 0.086 0.094 0.132 0.141
cc-pVQZ-F12�unc� 0.287 0.225 0.162 0.214 0.213 0.162 0.213 0.229
aug-cc-pV6Z�unc� 0.303 0.254 0.191 0.243 0.243 0.178 0.229 0.245

cc-pVTZ-F12 cc-pVTZ-F12-RI 
0.059 0.013 0.011 0.021 0.013 0.029 0.038 0.028
cc-pVQZ-F12�unc� 
0.060 0.017 0.013 0.024 0.017 0.027 0.039 0.028
aug-cc-pV6Z�unc� 
0.046 0.043 0.040 0.051 0.044 0.042 0.053 0.042

TABLE IX. Statistical measures for the fc-CCSD basis set error of 25 re-
action energies in J/mol pve. �=0.9 for DZ and �=1.0 for TZ.

Method MAD rms Maximum

cc-pVDZ-F12/cc-pVQZ-F12�unc�
CCSD�F12� 0.182 0.208 0.399 93. H2N2

CCSD�F12�-�S2� 0.104 0.094 0.308 93. H2N2

CCSD�F12�-S2 0.085 0.080 0.243 93. H2N2

CCSD�F12�-S3 0.101 0.116 0.213 73. FH

cc-pVDZ-F12/cc-pVDZ-F12-RI
CCSD�F12� 0.186 0.213 0.406 2. CFN
CCSD�F12�-�S2� 0.116 0.101 0.336 93. H2N2

CCSD�F12�-S2 0.095 0.082 0.262 93. H2N2

CCSD�F12�-S3 0.118 0.131 0.235 2. CFN

cc-pVTZ-F12/cc-pVTZ-F12-RI
CCSD�F12� 0.039 0.035 0.116 97. NH3

CCSD�F12�-�S2� 0.014 0.012 0.060 93. H2N2

CCSD�F12�-S2 0.017 0.014 0.063 93. H2N2

TABLE X. Statistical measures for the basis set error in the correlation
contribution to 25 fc-CCSD reaction energies in kJ/mol pve. �=0.9 for DZ
and �=1.0 for TZ.

Method MAD rms Maximum

cc-pVDZ-F12/cc-pVQZ-F12�unc�
CCSD�F12� 0.102 0.094 0.290 93. H2N2

CCSD�F12�-S2 0.084 0.081 0.229 93. H2N2

CCSD�F12�-S3 0.105 0.122 0.229 73. FH

cc-pVDZ-F12/cc-pVDZ-F12-RI
CCSD�F12� 0.104 0.092 0.291 93. H2N2

CCSD�F12�-S2 0.084 0.074 0.220 93. H2N2

CCSD�F12�-S3 0.111 0.126 0.223 2. CFN

cc-pVTZ-F12/cc-pVTZ-F12-RI
CCSD�F12� 0.010 0.012 0.045 93. H2N2

CCSD�F12�-S2 0.013 0.014 0.048 93. H2N2
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basis, which is chosen complementary to the underlying
smaller basis set for which the Hartree–Fock equations have
been solved. Based on a partitioning of the Hamiltonian that
is equivalent to that used in the definition of the approximate
explicitly correlated coupled-cluster model CCSD�F12�,27

we defined a series of iterative models termed Sn �n
=2,3 ,4 ,5�. The approach extends recent work by Werner
and co-workers13,14 and Noga and Šimunek,26 who investi-
gated two related noniterative models, here referred to as
�S2� and �S2��. In the latter model the coupling between
virtual orbitals and the CA basis is omitted. If solved simul-
taneously with the CCSD�F12� equations, the proposed ex-
tensions are termed CCSD�F12�-Sn.

We also present a set of benchmark results for the HF
and CCSD basis set limit, which were used to evaluate the
above models. Due to the projective nature of the coupled-
cluster type equations, the Sn models feature a tiny projec-
tion error which amounts to less than 0.01 kJ/mol pve. To
within this projection error, we find a nice convergence of
the error in the total one-electron energy. For relative ener-
gies, the convergence is less pronounced, rather we observe
that the improvement is mainly determined by the complete-
ness of the CA basis. In this respect, the newly developed
Petersen CA basis sets33 seem not optimal for the Sn correc-
tions. Although they perform reasonably for relative ener-
gies, they are not suited for obtaining corrections for total
energies. Our results suggest that a few additional functions
in the s and p set of these CA basis sets would improve
performance for both total and relative energies.

The noniterative HF correction of Adler et al.,13 here
denoted �S2�, performs basically as well as our second-order
model S2. Also, we agree with Noga and Šimunek26 that the
�S2�� model is inferior to �S2�. Compared to the remaining
correlation error, both S2 and �S2� are sufficiently accurate.

While the CABS singles in the �S2� correction do not
couple to the CCSD�F12� equations, this is the case in the
CCSD�F12�-S2 model. Our benchmark results indicate that
this coupling slightly improves the one-electron contribu-
tions to the correlation energy, when smaller basis sets are
used. Moving to the CCSD�F12�-S3 model seems not to pay,
according to our test set. Despite the significant increase in
computational cost, the results are inferior to the S2 models.

For most cases the performance of CCSD�F12�-S2 is
comparable to its noniterative variant, i.e., the �S2� energy
correction added to the CCSD�F12� energy. In terms of com-
putation time, CCSD�F12�-S2 is not competitive. Its main
advantage, however, is that a well defined energy Lagrangian
exists and that it thus lends itself easily to the formulation of
response theory, as demonstrated previously.30,31
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APPENDIX A: EXPLICIT EXPRESSIONS
FOR THE Sn MODELS

We use the following intermediates for brevity: The
T1-transformed Hamiltonian e−T1HeT1 can be partitioned into
two types of effective one-electron operators with matrix el-
ements

f̃ q�
p = �e−T1FeT1�q

p �A1�

and

f̃ q�
p = �e−T1GeT1�q

p, �A2�

and a two-electron operator with matrix elements

g̃qs
pr = �e−T1GeT1�qs

pr. �A3�

The distinction between F̃� and F̃� is necessary, as the sec-
ond one is already first order according to our partitioning
scheme, Eq. �1�. Whenever this distinction is not necessary,

we will use F̃= F̃�+ F̃�. More explicitly, the matrix elements
of the Fock-type operators read

f̃ j�
i = f j

i + f j
ctc

i , �A4�

f̃ i�
a = f i

a, �A5�

f̃ a�
i = fa

i + fa
ctc

i − fk
i ta

k − fk
cta

ktc
i , �A6�

f̃ b�
a = fb

a − fk
atb

k , �A7�

and

f̃ j�
i = gjk

ictc
k + gjk

dctc
ktd

i , �A8�

f̃ i�
a = gik

actc
k, �A9�

f̃ a�
i = gak

ic tc
k + gak

dctc
ktd

i − glk
ictc

kta
l − gkl

cdtc
kta

l td
i , �A10�

f̃ b�
a = gbk

actc
k − glk

actc
ktb

l . �A11�

As a generalization of the above definition, the virtual indi-
ces of the matrix elements may also refer to CABS orbitals.
However, only the similarity transformation with T1 �not T1��
is considered, thus, e.g., the third and fourth terms in Eq.

�A6� will not be present in the definition of f̃ a�
�i .

The energy expressions for S2 and S3 are

ES2 = E0 + f i
ata

i + f i
a�ta�

i + 1
2gij

abta
i tb

j + gij
ab�ta

i tb�
j , �A12�

ES3 = ES2 + 1
2gij

a�b�ta�
i tb�

j . �A13�

For S4 and S5 the energy expression is the same as for S3.
Likewise, the OBS singles residual only differs for S2 and
S3,

��S2�a
i = f̃ a

i + f̃ a
c�tc�

i + g̃ka
c�itc�

k , �A14�
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��S3�a
i = ��S2�a

i + g̃ka
c�d�tc�

k td�
i , �A15�

while again for S4 and S5 the same expression is obtained as
for S3. All models differ, however, for the CABS singles
residual,

��S2�a�
i = f̃ a�

i − f̃ a�
�i + f̃ c�

�a�tc�
i , �A16�

��S3�a�
i = ��S2�a�

i − f̃ k�
ita�

k + + f̃ c�
�a�tc�

i + g̃ak
ic�tc�

k , �A17�

��S4�a�
i = ��S3�a�

i − �f l
c�tc

i + g̃kl
c�itc�

j �ta�
l + gka�

c�d�tc�
k td�

i

− f̃ k�
c�ta�

k tc�
i , �A18�

��S5�a�
i = ��S4�a�

i − gkl
c�d�ta�

k tc�
i td�

l . �A19�

APPENDIX B: DEFINITION OF THE CCSD„F12…-S2
AND CCSD„F12…-S3 MODELS

We will only discuss the additional terms due to the S2
and S3 corrections; the explicit expressions for CCSD�F12�
can be found in literature, e.g., Refs. 10 and 12. In addition
to the above defined intermediates, the following definitions
are necessary:

Vpq
rs = Srs�pq�r12

−1Q12f�r12��rs� , �B1�

Vq
p = 


j

Vqj
pj, �V†�q

p = 

j

Vpj
qj . �B2�

The V intermediate is one of several special intermediates
that appear in the F12 theory.28 For a more compact notation,
we will use the following T1-transformed matrix elements of
the transposed V operator

�V†�˜

i
a� = �V†�i

a� + �V†�ik
a�ctc

k + �R†�ik
d�bgd�l

a�ktb
l

− �R†�ik
d�cgd�l

a�ete
ktc

l . �B3�

We recall that both T1� and T2� are considered first order.
With that, the CCSD�F12�-S2 energy becomes

EF12-S2 = EF12 + f i
a�ta�

i + gij
ab�ta

i tb�
j + 1

2Rij
ab�fk

ctb�
k tac

ij . �B4�

Due to the Brillouin condition, the last term will usually not
contribute. The equations read

��F12-S2�a
i = ��F12�a

i + f̃ a
c�tc�

i + g̃ak
ic�tc�

k + gkl
c�dtc�

k tad
il

− 1
2gkl

c�dtc�
i tad

kl , �B5�

��F12-S2�a�
i = f̃ a�

i − f̃ k�
ita�

k + fa�
c�tc�

i + 1
2gka�

cd tcd
ki + fk

cRca�
ki

+ fk
c�Rc�a�

ki , �B6�

��F12-S2�ab
ij = ��F12�ab

ij + P�i�j�

��g̃ab
ic�tc�

j − f̃ k
c�tc�

j tab
ik − g̃kl

c�jtc�
k tab

il + 1
2 g̃kl

c�jtc�
i tab

kl �
+ P�a�b�g̃kb

c�dtc�
k tad

ij + P�i�j�P�a�b�g̃bl
c�dtc�

i tad
il .

�B7�

Here, we used the permutation operators P�p �q� which gen-
erate all possible permutations of indices left and right of the
bar, accompanied with the proper sign change for parity, e.g.,

P�i � j�g̃ab
ic�tc�

j = g̃ab
ic�tc�

j − g̃ab
jc�tc�

i .
Finally, the equation for the CCSD�F12�-S3 energy is

EF12-S3 = EF12-S2 + 1
2gij

a�b�ta�
i tb�

j

− � 1
2 �R†�ij

a�bgkb
ij + 1

2 �R†�ij
a�b�gkb�

ij + �V†�˜

k
a��ta�

k

− �R†�ij
ab��gkl

cjtb�
l + gkb�

cd�td�
j �tac

ik + 1
2 �R†�ij

ab�� f̃ k�
ctb�

k

+ gb�k
cd�td�

k �tac
ij + 1

4 ��R†�ij
ab�gka

cdtb�
k

− �R†�ij
a�b�gka�

cd tb�
k �tcd

ij . �B8�

For the amplitude equations, we obtain
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