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Explicitly correlated RMP2 for high-spin open-shell reference states
Gerald Knizia and Hans-Joachim Wernera�

Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany

�Received 11 January 2008; accepted 6 February 2008; published online 16 April 2008�

We present an explicitly correlated version of the high-spin open-shell RMP2 method. The theory
is derived in a unitarily invariant form, which is suitable for the insertion of local approximations.
It is demonstrated that the rapid basis set convergence of closed-shell MP2-F12 is also achieved in
RMP2-F12, and similar Ansätze and approximations can be employed. All integrals are computed
using efficient density fitting approximations, and many-electron integrals are avoided using
resolution of the identity approximations. The performance of the method is demonstrated by
benchmark calculations on a large set of ionization potentials, electron affinities and atomization
energies. Using triple-zeta basis sets RMP2-F12 yields results that are closer to the basis set limit
than standard RMP2 with augmented quintuple-zeta basis sets for all properties. Different variants
of perturbative corrections for the open-shell Hartree–Fock treatment are described and tested.
© 2008 American Institute of Physics. �DOI: 10.1063/1.2889388�

I. INTRODUCTION

Explicitly correlated methods1–7 greatly diminish the
problem of basis set convergence, one of the worst bottle-
necks encountered in traditional quantum chemical treat-
ments. Such methods have seen tremendous advancements in
theory and implementation recently: The introduction of aux-
iliary basis sets8 and complementary auxiliary basis sets9

�CABSs� for resolution of the identity �RI� approximations,
density fitting �DF� approximations for the integrals,10,11

nonlinear correlation factors,12–14 fixed amplitude Ansätze12

local treatments,15–17 systematic hierarchies of approxima-
tion for MP2-F12 �Ref. 17� as well as alternative Ansätze for
MP2-R12,18 and simplified CC2-R12 and CCSD�T�-F12
approximations19–22 have been described, and results that are
amazingly close to the basis set limits have been obtained
with moderate basis sets such as aug-cc-pVTZ. The relation
between MP2-F12 and Gaussian geminal theories has also
been discussed and clarified.23–25

Most of the previous work was focused on the treatment
of closed-shell molecules, and important recent advance-
ments have not yet been carried over into the open-shell
regime. In particular, the only practical demonstrations of
open-shell methods we are currently aware of are the MRCI-
R12 calculations by Gdanitz et al.,6,26–29 CASPT2-F12 cal-
culations by Ten-no30 and UMP2-R12 as well as UHF-
CCSD-R12 atomization energies and electron affinities by
Noga et al.,31,32 Klopper and Noga,33 and Tew et al.34 These
calculations were limited, however, to atoms and very small
molecules. Very recently, UMP2-F12 calculations for atoms
were also reported by Valeev24 and UMP2-R12 calculations
for the uracil anion by Bachorz et al.35

It is well known that UMP2 based on unrestricted
Hartree–Fock �UHF� reference functions may suffer severely
from spin-contamination, and the results of UMP2 treat-
ments often cannot be trusted �see, e.g., Refs. 36–40�. This

problem can be avoided using the RMP2 method of Knowles
et al.39 and Lauderdale et al.,41,42 which is based on spin-
restricted Hartree–Fock �RHF� reference functions. In the
current work we describe an explicitly correlated version of
this method in an orbital invariant form. This is an extension
of the DF-MP2-F12 methods developed earlier in our
group.17 The orbital invariant formulation is important for
generalizations to higher-order coupled-cluster methods. It
also allows for the use of localized orbitals and the later
introduction of local approximations.15,16

In Sec. II we will present the theory and discuss the
modifications that are necessary due to the fact that for open-
shell RHF reference functions the Brillouin conditions are
not fulfilled. Another goal of this study is to establish the
performance of F12 treatments which is to be expected for
different applications involving open-shell systems. In the
previous studies, both the molecular species and the proper-
ties investigated were quite limited. The basis sets and other
computational details of our calculations will be summarized
in Sec. III. Finally, in Sec. IV we will examine the basis set
convergence for ionization potentials �IPs�, electron affinities
�EAs�, and atomization energies �AEs� using a variety of
RMP2-F12 approximations.

The presented DF-RMP2-F12 method has been imple-
mented in the MOLPRO �Ref. 43� program package.

II. THEORY

In Sec. II A the conventional RMP2 method39,41,42,44 will
be recapitulated briefly. We feel the need to do this due to
some mathematical subtleties arising when F12 approxima-
tions are introduced.

The following notation will be used: the indices r,s de-
note spin-orbitals inside the molecular orbital �MO� basis,
i , j , . . . ,n denote occupied spin-orbitals, and the indices
� ,� ,� ,� a formally complete set of virtual spin-orbitals. The
latter orbital space can be divided into the set of virtual or-
bitals a ,b ,c ,d in the MO basis and the remaining comple-a�Electronic mail: werner@theochem.uni-stuttgart.de.
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mentary auxiliary �CA� space �indices x ,y�, so that ���
= �a�� �x�. In certain terms of the working equations the CA
orbitals occur explicitly, and then they are approximated by
the union of the atomic orbital basis and an auxiliary RI basis
set. All orbitals are assumed to be orthonormal. Summation
over repeated dummy indices will be implied in most expres-
sions. For any one-particle operator â, the notation ân means
that the operator is applied to particle n and acts as identity
operator on the other particles. â12 means â1+ â2.

A. Recapitulation of RMP2

In a complete orbital basis the Møller–Plesset zeroth-
order Hamiltonian for closed-shell or spin-unrestricted open-
shell Hartree–Fock reference wave functions can be written
in second quantization as

Ĥ�0� = �
ij

f j
iêi

†êj + �
��

f�
�ê�

† ê� + �
ix

fx
i�êx

†êi + êi
†êx� . �1�

fs
r= �r 	 f̂ 	s
 are the matrix elements of the Fock operator in

the spin-orbital basis. Due to Brillouin’s theorem the matrix
elements fa

i vanish for optimized orbitals. Unless the orbital
basis is complete, the Hartree–Fock wave function ��0�

�� is not an eigenfunction of Ĥ�0�, and therefore, strictly
speaking, Rayleigh–Schrödinger perturbation theory �RSPT�
cannot be applied. However, the contributions of the terms
involving the complementary auxiliary basis set are usually
small and their importance decreases with increasing orbital
basis. One can either assume that the matrix elements fx

i can
be neglected �generalized Brillouin condition �GBC�� or use
variational perturbation theory and minimize the Hylleraas
functional to obtain an approximate second-order energy.

In the spin-restricted open-shell case, however, the Bril-
louin theorem does not hold and the matrix elements fa

i are
nonzero. The RHF reference function is then not even an

eigenfunction of Ĥ�0� if the GBC is assumed. In RMP2
theory one therefore uses a projected Fock operator ĝ instead

of f̂ ,

ĝ = ô f̂ ô + �1 − ô� f̂�1 − ô� , �2�

where ô=�i	i
�i	 projects onto the occupied spin-orbital
space. The zeroth-order Hamiltonian then takes the simpler
form

Ĥ�0� = �
ij

f j
iêi

†êj + �
��

f�
� ê�

† ê�, �3�

and it is easily seen that Ĥ�0�	�
� 	�
 if 	�
 is a single Slater
determinant. As a side effect of the projection the GBC is not

required anymore to make 	�
 an eigenfunction of Ĥ�0�. In-
stead, the coupling between the occupied and CA orbital
spaces is moved into the perturbation. As recently discussed

by Noga et al.,18 other projections for the Ĥ�0� operator are
also possible, but these will not be considered further in the
current work.

The original article of Knowles et al.39 formulated the
RMP2 method in terms of semicanonical orbitals block-
diagonalizing semi-Fock matrices corresponding to ĝ pro-
jected on alpha or beta spin, respectively. If this is done,

noniterative direct formulas for the energy corrections can be
obtained just like for MP2. However, since in explicitly cor-
related methods many more different integral classes are
needed than in standard RMP2, it is advantageous to use the
single set of RHF orbitals directly. Furthermore, since we
aim for a localized description for large molecules and ex-
tensions to higher-order coupled-cluster methods, we require
an orbital invariant formulation of the theory.

An orbital invariant formulation has already been given
previously by Lauderdale et al.41,42 �see also Gauss and
Bartlett44�, and has also been used by Crawford et al.45 While
Lauderdale et al. obtained their formulation by extraction of
the relevant terms from the coupled cluster with singles and
doubles �CCSD� equations, the invariant form can be derived
more directly by simply inserting the Ansatz for the first-
order wave function

	��1�
 = ��
k�

t�
kêk

� +
1

2 �
kl��

T��
kl êkl

��	�
 , �4�

where êkl
��= ê�

†ê�
†êlêk are pair excitation operators, and t�

k, T��
kl

the excitation amplitudes, into the general RSPT2 equation

��	Ĥ�0� − E�0�	��1�
 + ��	Ĥ	�
 = 0. �5�

Single excitations need to be included in the wave function
because the Brillouin condition f i

�=0 is not fulfilled. Insert-
ing Eq. �4� into �5� for �� ��i

� , 1
2�ij

��� and carrying out the
second quantization algebra we arrive at �summations over
repeated dummy indices implied�

r�
i = f�

i − fk
it�

k + t�
i f�

� = 0, �6�

R��
ij = 1

2 �K��
ij − K��

ji � + f�
�T��

ij + T��
ij f�

� − fk
iT��

kj − T��
ik fk

j

= 0, �7�

where K��
ij = �ij 	r12

−1 	��
. Note that here and in the following
	��
 and 	ij
 represent simple, nonantisymmetrized spin-
orbital products. All quantities vanish unless the spins of the
upper and lower labels correspond to each other. If the equa-
tions are transformed into a semicanonical basis, which
block diagonalizes the alpha- and beta-spin parts of the Fock
matrix in the occupied and virtual orbital subspaces, the
equations fully decouple and can be solved noniteratively as
described by Knowles et al.39 and Lauderdale et al.41,42

The second-order energy can be obtained by

E�2� = ���1�	Ĥ	�
 = t�
i f�

i + T��
ij K��

ij �8�

�direct RSPT2 expression� or by evaluating the Hylleraas
functional

E�2� = ���1�	Ĥ�0� − E�0�	��1�
 + 2���1�	Ĥ	�


= t�
i �f�

i + r�
i � + T��

ij �K��
ij + R��

ij � . �9�

The latter variational expression is more stable with respect
to inaccuracies in 	��1�
, but both expressions are obviously
identical if Eq. �5� is exactly fulfilled within the given model
space.

Since Ĥ�0� is not spin-free in the RMP2 case �it com-

mutes with Ŝz, but not with Ŝ2�, the first-order wave function
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can be spin-contaminated. However, since Ĥ is spin-free and
	�
 is spin-adapted, the spin-contaminations are projected
out when computing the RMP2 correlation energy.

We note that it is possible to modify the residual equa-
tions so that the spin-contamination is removed and the first-
order wave function becomes fully spin-adapted. This has
been discussed in detail in the context of partially spin-
restricted open-shell coupled-cluster theory.46 This fully
spin-adapted RMP2 �SRMP2� leads to slightly different en-
ergies than RMP2, but usually the effect is very minor and
negligible.

B. Introduction of explicit correlations

In the explicitly correlated method the �exact� full space
of doubly excited configurations in Eq. �4� is approximated
with two subsets

T��
ij êij

�� � Tab
ij êij

ab + T��
ij êij

��, �10�

where the first term contains conventional and the second the
explicitly correlated double excitations. The additional am-
plitudes T��

ij are implicitly given by

T��
ij = F��

mnTmn
ij , �11�

F��
mn = �mn	F12Q̂12	��
 , �12�

Q̂12 = �1 − ô1��1 − ô2��1 − v̂1v̂2� , �13�

where v̂= 	a
�a	 projects on virtual spin-orbitals representable

in the MO basis. Q̂12 is a projector �Ansatz 3� ensuring strong
orthogonality of the explicitly correlated configurations to
the occupied and conventional virtual space �Frs

ij =0�. As pair
correlation factor we use a Slater function, approximated by
a linear combination of Gaussians

F�r12� = −
1

�
exp�− �r12� � � ci exp�− �ir12

2 � , �14�

where � is a fixed length scale parameter. Note that for con-
venience in later expressions we include here the factor
−1 /� in the definition of F12.

The explicitly correlated configurations are short ranged
and well suited to describe the correlation cusp of the pair
distribution function of the wave function for r12→0 and
thus dynamical correlation. In the derivations they are con-
veniently treated as “externally contracted” configurations of
the complete basis set double excitation space, as indicated
above.

Equations for the explicitly correlated double excitations
are obtained from Eq. �7� by contracting R��

ij with F��
kl ,

Rkl
ij = 1

2 �Vkl
ij − Vlk

ij� + Bkl,mnTmn
ij + Cab

kl Tab
ij

− Xkl,mn�fo
iTmn

oj + Tmn
io fo

j � = 0, �15�

with the matrices

Vkl
ij = �ij	r12

−1Q̂12F12	kl
 , �16�

Bkl,mn = �kl	F12Q̂12� f̂1 + f̂2�Q̂12F12	mn
 , �17�

Xkl,mn = �kl	F12Q̂12F12	mn
 , �18�

Cab
kl = �kl	F12Q̂12� f̂1 + f̂2�	ab
 �19�

�all indices correspond to spin-orbitals�. The contraction with
F��

kl ensures that we acquire as many equations as we have
free parameters and that the externally contracted configura-
tions are weighted in a suitable manner to focus their agree-
ment with the perturbation equation to the cusp region.

In the Rab
ij residuals for the conventional part an addi-

tional coupling term +Cab
kl Tkl

ij arises. Apart from that, they are
given by Eq. �7� with �, �, and � replaced by a, b, and c.

The energy expression for the explicit part is

EF12�
�2� = Tkl

ij�Vkl
ij + Rkl

ij� . �20�

Additionally, we consider the change of the conventional
second-order energy Econv

�2� due to the effect of the F12 con-
figurations on the conventional amplitudes as part of the F12
energy correction.

The equations and definitions given above are entirely
similar to those for the closed-shell case, except that here we
use a spin-orbital basis and therefore the residuals Rkl

ij and
amplitudes Tkl

ij are antisymmetric with respect to exchange of
the indices i , j or k , l.

In order to arrive at Eqs. �15�–�20�, several exact com-
plete basis set RIs in the form of

	��
���	Q̂12 = Q̂12 �21�

are used, giving rise to new analytic integrals. No finite-basis
expansion in the pair function space is required for these.
This aspect distinguishes F12 methods from simply perform-
ing the correlation treatment in a larger basis.

Note that the explicitly correlated configurations are not
normalized. As pointed out in the Appendix, this may lead to
artificial singularities in the Bkl,mn tensor. Even though such
singularities can easily be projected out, this is undesirable,
since the projection—depending on the threshold—can lead
to small steps on potential energy surfaces. The problem can
be avoided by using the “diagonal Ansatz” as described in
Sec. II H.

C. Calculation of matrix elements in spin-orbitals

Various ways of evaluating the matrix elements in Eqs.
�16�–�19� �in the closed-shell theory� have been suggested
and used. For a systematic study of different approaches, and
the approximations employed or feasible in them, see Ref.
17. Here we use the approach considered most promising in
that study, namely, method 3C with CABS approximations
of the projectors. The derivations closely follow Ref. 17, but
for the sake of clarity and in order to point out subtle differ-
ences, they are repeated here.

The CABS is an extended basis set orthonormal in itself
and orthogonal to the MO space. Its use was first suggested
by Valeev.9 In the simplest case, the CABS orbitals �indices
x, y� are explicitly calculated by projecting the MO basis out
of given RI functions: 		*
= �1− 	r
�r	�		
 �where 		
 is a RI
basis function� and orthogonalizing the 		*
 to yield 	x
. Due
to the projection, 	x
 orbitals have components in both the
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AO and RI bases, and in practice they are represented in the
union of the orbital �AO� and the auxiliary �RI� bases sets.

In terms of CABS orbitals the projector Q̂12 used in Eqs.
�16�–�19� can be approximated as

Q̂12 = 1 − P̂12, �22�

P̂12 � 	ix
�ix	 + 	xi
�xi	 + 	rs
�rs	 . �23�

Alternatively, if also the unit operator is approximated by a
double RI,

Q̂12 � 	ax
�ax	 + 	xa
�xa	 + 	xy
�xy	 . �24�

Both formulas are exact for a complete basis. For a finite RI

basis the use of Q̂12=1− P̂12 is preferable, since the dominant
terms 1− 	rs
�rs	 can be computed exactly and no double-RI
is required. The alternative form in Eq. �24� is only used if
the integrals arising from the unit operator cannot be evalu-

ated analytically. Note that Q̂12 and P̂12, although being spin-

dependent, commute with Ŝz and thus matrix elements of Q̂12

or P̂12 vanish unless the bra and ket vectors have equal spin-
labels.

Using Eq. �23� for Xkl,mn and Vmn
kl and Eq. �24� for Cab

kl

�method 3C�, we obtain in terms of spin-orbitals:

Xkl,mn = �kl	F12F12	mn
 − Frs
klFrs

mn − Fxi
klFxi

mn − Fix
klFix

mn, �25�

Vmn
kl = �kl	r12

−1F12	mn
 − Krs
klFrs

mn − Kxi
klFxi

mn − Kix
klFix

mn, �26�

Cab
kl = faxFxb

kl + Fax
kl fxb, �27�

where Fpq
ij = �ij	F12	pq
 �p ,q: arbitrary orbitals�. In order to

calculate Bkl,mn, we notice that

Q̂12 f̂12Q̂12 = Ŝ�ĝ12Q̂12 − P̂12ĝ12Q̂12� , �28�

where the symmetrizing operator S is defined by ŜÔ= 1
2 �Ô

+ Ô†� in terms of operators, which in terms of indices leads

to ŜBkl,mn= 1
2 �Bkl,mn+Bmn,kl� for real matrices �bra and ket

indices are swapped by the transposition�. Note that

Q̂12 f̂12Q̂12= Q̂12ĝ12Q̂12, but f̂12Q̂12� ĝ12Q̂12. In this sense we
have

Bkl,mn = �kl	F12�Ŝ�ĝ12Q̂12 − P̂12ĝ12Q̂12��F12	mn


= Ŝ�Akl,mn − Zkl,mn − Fab
kl Cab

mn� , �29�

where

Akl,mn = �kl	F12ĝ12Q̂12F12	mn
 , �30�

Zkl,mn = �kl	F12�ô1ĝ1 + ô2ĝ2�Q̂12F12	mn
 . �31�

Due to the projected form of ĝ �cf. Eq. �2��, we have ôĝ

= ôĝô and thus Zkl,mn=0 since Q̂12 projects out orbital pairs
containing occupied orbitals.

For the A term we split ĝ into ĝ= ĥ− n̂ with

ĥ = t̂ + v̂nuc + ĵ , �32�

n̂ = ĥ − ĝ = k̂ − �2ô f̂ ô − ô f̂ − f̂ ô� . �33�

The Hartree operator ĥ contains the kinetic energy operator
and the parts of ĝ which commute with F12 �here Coulomb
field ĵ and nuclear potential v̂nuc�, while n̂ contains the entire

rest �here 
ĝ= f̂ − ĝ and exchange k̂�. The A terms are then
evaluated in the following way:

Akl,mn = �kl	F12�ĥ12 − n̂12�Q̂12F12	mn
 = �kl	F12ĥ12F12	kl


− �kl	F12ĥ12P̂12F12	kl
 − �kl	F12n̂12Q̂12F12	mn


= �kl	ĥ12F12F12	mn
 − �kl	F12ĥ12P̂12F12	mn


− �kl	�t̂12,F12�F12	mn
 − �kl	F12n̂12Q̂12F12	mn
 .

�34�

We employ approximation 3C in which only unit operator

parts of Q̂12=1− P̂12 in the matrix Akl,mn are approximated
with the commutator approach and the remaining terms are
approximated with straight RIs. The commutator trick avoids
the use of double RIs for the term involving the kinetic en-
ergy operator, which is very slowly convergent.3,4 The ex-
pression for A then becomes

Akl,mn = F
k̄l,mn

2
+ F

kl̄,mn

2
− F̄ix

klFix
mn − F̄xi

klFxi
mn − F̄rs

klFrs
mn

+ Ukl,mn
F − Ỹkl,mn, �35�

where Eq. �23� has been inserted and

F̄pq
kl = Fp̄q

kl + Fpq̄
kl , �36�

Ukl,mn
F = �kl	�F12, t̂12�F12	mn
 , �37�

Fkl,mn
2 = �kl	F12F12	mn
 , �38�

Ỹkl,mn = �kl	F12n̂12Q̂12F12	mn
 , �39�

in which p, q denote any orbital and and overlined indices

refer to orbitals transformed by ĥ,

	p̄
 = ĥ	p
 . �40�

The term Ỹkl,mn, which contains the exchange contribution

and 
ĝ, i.e., n̂= k̂−
ĝ, can be approximated by a double RI
using Eq. �24� for the projector,

Ỹkl,mn = F̃ax
kl Fax

mn + F̃xa
kl Fxa

mn + F̃xy
kl Fxy

mn, �41�

where

	p̃
 = n̂	p
 , �42�

F̃pq
kl = Fp̃q

kl + Fpq̃
kl . �43�

In the atomic case this double RI is known to converge very
fast for the exchange term. The 
ĝ term also does not pose a
problem due to its specific form �33�: All contributions ex-

cept ô f̂ are projected out by Q̂12 and for the remaining ex-
pression the formal double RI is in fact only a single RI.
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We note that due to the Fock-operator projection em-

ployed here, the Ỹkl,mn term defined in this work slightly

differs from the Ỹkl,mn term of Ref. 17. If used in the closed-
shell case, the projected 3C method suggested here closely
reproduces the results of the unprojected 3C�+Z� method re-
ported in Ref. 17. This happens since the �extremely small�
effect of the Zkl,mn term �which is not exactly zero without
the projection �2�� is handled implicitly as part of the pertur-
bation. All other matrices with equal names have equal
meaning in the closed-shell case, since the minimally pro-
jected form �2� of ĝ then only affects GBC terms.

D. Hybrid approximations

As in the closed-shell theory,17 it is possible to drop the
last term of Eq. �41� without significant losses in accuracy
�approximation 3C�HY2��. As 
gxy =0 this affects only the
approximation of the exchange contributions. A more severe

approximation is to neglect the matrix Ỹkl,mn entirely �ap-
proximation 3C�HY1��. This approximation is similar �but
not identical� to Klopper’s hybrid approximation.47 In the
latter work Ansatz 2 was used, which differs from Ansatz 3
as used here by omission of the factor 1− v̂1v̂2 in the projec-

tor Q̂12 �cf. Eq. �13��. As discussed previously17 the two An-
sätze lead to different results if hybrid approximations are
introduced.

For the hybrid approximations the storage for the trans-
formed integrals scales only linearly with the size of the RI
basis. The computational effort for some transformation
steps still scales quadratically, but significant savings are
possible, in particular for approximation 3C�HY1�.

E. The extended Brillouin condition approximation

Another approximation that leads to some simplifica-
tions is to assume that the extended Brillouin condition
�EBC� is fulfilled, i.e., fxa=0. This leads to Cab

kl =0, and
therefore the conventional and explicit amplitude equations
decouple. The contributions of the C matrices to the B tensor
are also neglected, cf. Eq. �29�. As in previous work a star in
the method designation �e.g., 3*C�, indicates that the EBC
approximation is applied.

F. Adaption to restricted spatial orbitals

The previous equations were written in terms of spin-
orbitals. Since we use a RHF reference wave function, they
can easily be adapted to restricted spatial orbitals. The most
favorable way to do this in our current situation is keeping
the single orbital set of the reference function �i.e., not fol-
lowing the way of the original RMP2 paper of obtaining
separate alpha- and beta-spin-orbitals� and obtaining the
spin-orbitals as spatial RHF orbitals multiplied by either al-
pha �A� or beta �B� spin-functions. That means that closed-
shell orbitals occur with identical spatial part as occupied A
and B orbitals, active orbitals occur as occupied A and virtual
B orbitals, and external orbitals occur as virtual A and B
orbitals.

The residual equations �7� are fulfilled for vanishing am-
plitudes if the sets of spin-labels for ij and �� are different,

since then both K��
ij and K��

ji vanish. That means we need to
calculate only the residuals of R��

ij with the spin-labels of ij
being AA, BB, or AB �the BA equations are equal to the AB
ones�. Similarly, all matrix elements in Eqs. �25�–�27� vanish
unless the spin-labels on the bras and kets are equal, since

Q̂12, although spin-dependent, does not alter the spin-labels
of particles 1 and 2. Therefore a set of AA, BB, and AB
matrices of these quantities also determines the complete
spin-orbital set. It is straightforward to transfer the remaining
quantities into spatial expressions as well.

Although most F12 matrices and some integral matrices
have to be calculated in three to four different versions, due
to the use of the same spatial orbitals for the internal labels,
the same half-transformed integrals can be used for all of
them. This leads to DF-RMP2-F12 being only moderately
more expensive than closed-shell DF-MP2-F12 in the inte-
gral evaluation step.

Furthermore, in RMP2 �but not in higher-order theories�,
the residual equations of AA, BB, and AB become indepen-
dent. It is advisable to solve them independently because the
AA and BB equations converge faster than the AB ones.

G. Integral evaluation and transformation

In our implementation all basic integrals are calculated
using robust density fitting.10,11 As described in Ref. 17, ef-
ficient pathways for the transformation of integrals are deter-
mined recursively and reuse previously calculated intermedi-
ates.

Transformed integrals containing CABS orbital labels
can be obtained by splitting the CABS transformation into its
AO and RI parts �as already noted, CABS orbitals have com-
ponents in both the AO and RI bases�, evaluating the trans-
formed integrals for both basis sets independently, and add-
ing them afterwards.

H. Ansatz restrictions for Tkl
ij

The Ansatz for explicitly correlated configurations is not
always used in the general form as given in Eq. �11�. One
may assume that the amplitudes Tkl

ij are only nonzero if kl
= ij or kl= ji �diagonal Ansatz�. And in the latter case, one
can furthermore determine the amplitudes from the condition
that the cusp conditions are fulfilled �fixed amplitude An-
satz�. The advantages and disadvantages of these different
Ansätze will be briefly discussed in the following subsec-
tions.

1. The diagonal Ansatz „3C„D……

In the diagonal Ansatz the Tkl
ij are only allowed to be

nonzero if either 	kl
= 	ij
 or 	kl
= 	ji
, where i , j ,k , l are
spin-orbitals. This is the original Ansatz of Kutzelnigg and
Klopper.3,4 This Ansatz can be interpreted in terms of exci-
tations from occupied orbital pairs 	ij
 into short-range func-
tions F12	ij
, thus cutting short-ranged holes into 	ij
 if the
corresponding amplitudes are positive �as they usually are;
note that F12�r��0, cf. Eq. �14��.

A formal disadvantage of this Ansatz is that it is not
unitarily invariant. It should be applied with localized orbit-
als in order to obtain size consistency. However, with local-
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ized orbitals the diagonal Ansatz has been found17 to yield
more accurate results than the other variants discussed be-
low. This is due to the avoidance of geminal basis set super-
position error �BSSE� effects and of singularities in the B
matrix.

2. The general orbital invariant Ansatz „3C…

In this case all Tkl
ij are allowed. The Ansatz was intro-

duced by Klopper48 to remove the lack of unitary invariance
of the diagonal Ansatz. It is not easily interpreted. Despite
giving the wave function more freedom, it was found to ac-
tually worsen the F12 treatment in certain cases �some more
will be shown in Sec. IV�. This can happen due to a geminal
BSSE effect,17,49 which cannot easily be corrected for, or due
to linear dependency problems as discussed in the Appendix.

More extended variants of the general Ansatz �e.g., also
allowing k and/or l of Tkl

ij to run over virtual orbitals� may
become necessary in methods dealing with excited states.50

This is because otherwise the explicit correlations stabilize
the reference state much stronger than the excited states.

3. The fixed amplitude Ansatz „3C„FIX……

This Ansatz was introduced by Ten-no.12 It is based on
the diagonal Ansatz, but the amplitudes Tij

ij and Tji
ij are not

determined from the perturbation equation, but rather fixed
to

Tii
ii = ts, �44�

Tij
ij = 1

2 �ts + tp� �i � j� , �45�

Tji
ij = 1

2 �ts − tp� �i � j� �46�

�all other Tkl
ij are set to zero�. In the closed-shell case and for

spatial orbitals, the values ts=1 /2 and tp=1 /4 are obtained
from the s- and p-wave cusp conditions, respectively.51,52 For
spin-orbitals and non spin-adapted wave functions, we for-
mally do not have clean singlet and triplet pairs. But it can be
argued that taking the same formulas as above is the most
natural extension to this case �for spin AA and BB pairs ts

=0�.
This Ansatz is unitarily invariant, size consistent, and

free of geminal BSSE, but extensive tests have shown the
results are not quite as good as with the diagonal Ansatz. In
particular, the results are more sensitive to the choice of �.
Note that, despite the fact that the amplitudes are fixed, the
residual and thus all matrices it involves are still required for
computing the Hylleraas functional.

In principle, one could think of employing Eq. �8� to
compute the energy without using the Hylleraas functional.
If the fixed amplitudes are used this would only require the
integrals Vkl

ij, thus cutting most of the integral evaluations.
However, the F12 treatment then is independent of the cor-
relation method used and becomes very sensitive to the form
of F12 �e.g., the choice of ��. The error is linear in errors of
the amplitudes and may become quite large. Therefore, this
very cheap approximation should be considered with great

care, even though tests have shown that in most cases a
significant improvement of the basis set convergence is still
observed.

Despite the apparently reduced complexity of the diago-
nal and fixed Ansätze compared with the general one, the
actual numerical work required to evaluate any of them does
not differ much. The reason for this is that all of them require
the same atomic integrals to be evaluated, which is the most
time consuming step in an MP2-F12 calculation.

I. Single excitations

In RMP2, energy contributions from single excitations
occur. These depend only on the A- and B-Fock matrices and
do not couple to the doubles equations. In RMP2-F12 we
need Fock matrices for the whole MO/MO, MO/CABS, and
CABS/CABS basis sets anyway in order to calculate the
transformed integrals entering in the Amn

kl term in Eq. �35�.
Therefore it is cheap to calculate these single excitations not
only within the normal MO basis, but within the combined
MO and CABS basis �where the CABS orbitals are treated
like normal virtual orbitals�. Concretely, the solution of the
RMP2 singles equation in Eq. �6� can be written down in
closed form if it is transformed into a basis in which ĝ is
diagonal �that means diagonalizing �f ij� and �f��� indepen-
dently�,

t�
i =

f�
i

gii − g��

, �47�

Esingles
�2� = �

i�

�f�
i �2

gii − g��

, �48�

where � runs over all virtual orbitals �the unoccupied MOs
and the CABS�.

This basis extension has two consequences: �i� The basis
set convergence of the singles correlation contributions is
accelerated, and �ii� the Hartree–Fock orbitals are perturba-
tively relaxed by the CABS. The second effect is by far
dominant in magnitude, and it is very helpful in practical
calculations, since it greatly diminishes the deviation of the
Hartree–Fock energy from the basis set limit. This is signifi-
cant because, while with conventional electron correlation
calculations the accuracy of the Hartree–Fock treatment is
usually not a serious issue, this changes when using explic-
itly correlated methods. If not corrected for, the basis limit
deviation due to Hartree–Fock is often larger than the re-
maining MP2-F12 correlation error.

The part of the singles energy correction that corre-
sponds purely to a spin-free relaxation of the RHF function
can be isolated by solving

0 = ��̄�
i 	Ĥ	�
 + �

k�

t�
k��̄�

i 	ĝ	�̄�
k
 �49�

as perturbation equation, where 	�̄�
i 
= Êi

�	�
 and Êi
�= êiA

�A

+ êiB
�B are the spin-free excitation operators. The correspond-

ing numerical equations can be obtained from the spin-
orbital equation �6� by using the spin-orbital amplitudes

t�A
iA = t�B

iB = t�
i , �50�
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t�A
uA = t�

u and t�B
uB = 0, �51�

tuB
iB = tu

i and tuA
iA = 0, �52�

and demanding

r�A
iA + r�B

iB = r�A
uA = ruB

iB = 0, �53�

where i denotes closed, u active, and � external spatial or-
bitals. The values of t�A

uA and t�B
uB only appear to be different,

because êuB
�B	�
=0 and thus the B configuration and corre-

sponding residual intrinsically vanish. Due to the RHF Bril-
louin conditions,

faA
iA + faB

iB = faA
uA = fuB

iB = 0, �54�

for optimized RHF functions no closed-to-active relaxation
occurs and furthermore, the total energy correction vanishes
if � and � are constrained to the MO basis.

III. COMPUTATIONAL DETAILS

A. Basis sets

As orbital basis sets we used the aug-cc-pVnZ basis
sets53 for first-row elements and the aug-cc-pV�n+d�Z basis
sets54 for second-row elements. The “+d” indicates that an
additional tight d shell is included. For the sake of brevity,
these basis sets will be denoted “AVnZ” in the remainder of
this article.

In the case of EAs we found it necessary to make the
AVTZ basis sets a bit more diffuse in order to consistently
reach a very high accuracy for all systems in the benchmark
set. This was done by augmenting the AVTZ basis sets by
one additional diffuse s and p shell each, except for the hy-
drogen atom, for which only one s function was added. The
exponents of these additional s and p shells were obtained by
dividing the most diffuse exponent already present by 1.8.
The resulting �nonoptimized� basis set is called “A2VTZ” in
this work. Due to these additional functions the root mean
square �rms� error of the DF-RMP2-F12 EA treatments
dropped by more than one-half at very moderate cost.

As auxiliary basis sets for applications in the RI and
Fock-matrix DF �JK-fit�, the cc-pVTZ/JKFIT basis sets of
Weigend55 were found to work well previously.16 They are
used in this work for both RI and JK fitting. However, in the
case of the EAs we found it necessary to augment them with
one additional diffuse shell per angular momentum in order
to obtain accurate Fock matrices. The exponents of these
additional shells were obtained as �1

2 /�2, where �1 denotes
the smallest and �2 the next larger exponent already present
for the corresponding angular momentum. If only one expo-
nent was in the shell beforehand, the new shell’s exponent
was obtained by dividing the present exponent by 2.5. This
auxiliary basis set is called AVTZ-JK in this article.

All other integral quantities apart from the Fock matrices
were obtained using robust DF with the AVTZ/MP2FIT basis
sets of Weigend et al.56

In the case of IPs and AEs, augmenting the orbital or
fitting bases, like we did for the EAs, had noticeable but
much smaller effects. Therefore the corresponding calcula-
tions are not reported here.

B. Other calculation parameters

Diagonal methods are always applied with Pipek–Mezey
localized orbitals.57 All values in tables and figures refer to
total energies, including RMP2 singles and DF-RHF. For
DF-RMP2-F12, the RMP2 single excitations are evaluated in
the combined MO and CA basis, as described in the first part
of Sec. III.

The frozen core approximation is used throughout, ex-
cept for DF-RMP2-F12 single excitations which are always
calculated including excitations from core electrons. This is
done since their defining feature is a relaxation of the RHF
orbitals �see also Sec. IV E�.

IV. RESULTS

A. Benchmark systems

In order to assess the basis set convergence of the
RMP2-F12 method for a wide variety of systems, we used a
subset of the quantities tested in the original G2 benchmark
set.58 Namely, all EAs, IPs, and AEs from the set have been
chosen, except for compounds containing alkali or alkali
earth elements. The groups 1 and 2 elements had to be ex-
cluded because we do not have suitable augmented orbital
and JK-fitting basis sets for them at the moment. The IPs and
AEs are adiabatic; i.e., the geometry of the ions is relaxed.

This set of atoms and very small molecules has been
chosen in order to admit accurate reference calculations
which allow for a systematic study of different possible error
sources �e.g., from DF or RI approximations�. All reference
values used for G2-set molecules are obtained at the full
RMP2/CBS�56� level without any DF approximations. The

TABLE I. Systems in the benchmark set. EAs and IPs are adiabatic; RMP2/
AVTZ geometries were used.

Electron Affinities: NO, CH3, NH, O2, CH2, P, NH2, PH,
SiH2, PO, CH, PH2, SiH, C, SiH3, Si, O, S2, OH, S, SH,
Cl2, F, Cl, CN.

Ionization Potentials: Al, Si, B, S2, PH3,
PH2→PH2

+�1A1�, PH, S, NH3, SH, SH2→SH2
+�2B1�,

P, C2H4, P2, SiH4, C, CS, Cl2, C2H2, O2, ClF,
SH2→SH2

+�2A1�, HCl, H2O, CH4, Cl, OH,
O, CO, N, N2→N2

+�2g�, HF, N2→N2
+�2�u�, F.

Atomization Energies: F2, Cl2, ClO, ClF, Si2, NH, CH,
HCl, OH, S2, P2, SiH2 �3B1�, SO, O2, HF, SiH2 �1A1�,
PH2, NO, HOCl, CH2 �1A1�, CS, SH2, NH2, CN,
CH2 �3B1�, SiO, SiH3, PH3, H2O, N2, CO, H2O2, SO2,
HCO, NH3, CH3, SiH4, HCN, H2CO, CH3Cl, C2H2,
CO2, CH4, N2H4, CH3SH, CH3OH, Si2H6, C2H4, C2H6.

TABLE II. Basis set rms deviations of conventional RMP2 methods relative
to the RMP2/CBS�56� reference values.

Method 
EA �meV� 
IP �meV� 
AE �kJ/mol�

RMP2/AVTZ 104.60 122.62 29.58
RMP2/AVQZ 52.46 61.18 12.11
RMP2/AV5Z 29.24 33.24 6.10
RMP2/AV6Z 16.99 19.40 3.43
RMP2/CBS�45� 4.41 3.27 0.51
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CBS�56� values were obtained by two-point fits of the AV5Z
and AV6Z correlation energies for the corresponding species
to the extrapolation formula59 En=ECBS+An−3. Hartree–Fock
energy contributions were not extrapolated but taken directly
from AV6Z calculations.

All molecular geometries were fully optimized at the
RMP2/AVTZ level. The full list of benchmark systems is
displayed in Table I.

Table II shows the rms deviations of the conventional
RMP2 /AVnZ results relative to the extrapolated RMP2/

FIG. 1. Total deviation of DF-RMP2/A�2�VTZ, RMP2/AV5Z and DF-RMP2-F12/A�2�VTZ electron affinities, ionization potentials, and atomization energies
from RMP2/CBS�56�. VTZ/JKFIT �AE,IP� or AVTZ-JK �EA� and AVTZ/MP2FIT �all� auxiliary basis sets are used as described in Sec. III A. The entries are
ordered by increasing RMP2/CBS�56� values.
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CBS�56� results �including the RHF contribution�. The errors
are still very large for the AVTZ basis set and decrease only
rather slowly with increasing cardinal number of the basis
set. As will be shown in the subsequent sections, the basis set
convergence is dramatically improved by the explicitly cor-
related RMP2-F12 methods.

B. Impact of Ansatz restrictions

The first aspect we want to note is that the RMP2-F12
method works for all systems and dramatically improves the
basis set convergence. There are no obvious outliers and the
performance is similar for all individual tested species �see
Fig. 1�.

Table III lists the rms deviations of the individual bench-
mark components for the full Tkl

ij �FULL�, diagonal �D�, and
fixed �FIX� Ansätze, as described in Sec. II H. For each case,
the coupled and uncoupled �EBC, “ *”� results are given.

For the atomization energies, the full Ansatz leads to
worse results than the diagonal and fixed Ansätze. This effect
can be attributed to the geminal BSSE,17,49 as already men-
tioned. However, in the cases of EAs and IPs, the accuracy
of the results increases with increased wave function flexibil-
ity. In contrast to atomization or reaction energies the gemi-
nal BSSE does not play a significant role for EAs and IPs,
because the occupied orbitals of the neutral and ionized spe-
cies are very similar, and therefore the BSSE effect cancels
out.

For the calculations summarized in Table III, the effect
of the EBC approximation is significant but rather small for
diagonal and fixed methods. For AEs, the results of the
coupled methods are slightly better on the average, but for
IPs and EAs they are slightly worse �see also Fig. 2�. When
using inadequate orbital or auxiliary basis sets or geminal
exponents, we often found the uncoupled methods to have
less basis set limit deviation than the coupled ones.

The reason for this is not really clear, but likely to be
related to the externally contracted nature of the F12 con-
figurations. The fixed form of the short-range hole admitted
by the F12 configurations is not equally suited for all regions
of the molecule. The mean fields generated due to some of

these less-suited regions may provoke a nonoptimal reaction
of the conventional amplitudes which try to adjust to their
presence.

C. Impact of hybrid approximations

Table IV demonstrates the impact of the hybrid approxi-

mations HY1 and HY2 to the Ỹkl,mn term, which can lead to

TABLE III. Dependence of the RMP2-F12 basis set errors on the wave
function Ansatz and the EBC approximation. The values are rms errors of
the total values relative to the RMP2/CBS�56� reference values, including
the RHF and singles contributions. In all cases �=0.9a0

−1 and the AVTZ/
A�2�VTZ basis sets as described in Sec. III A were used.

Method Full Diagonal Fixed

EAs �meV�
3C 4.653 6.328 5.645

3*C 3.376 4.778 4.816

IPs �meV�
3C 6.030 7.228 7.757

3*C 3.788 4.756 5.809

AEs �kJ/mol�
3C 1.885 1.068 0.670

3*C 1.687 1.122 0.779

FIG. 2. Dependence of F12 basis set errors on � with AVTZ/A2VTZ orbital
basis sets with respect to CBS�56� �see text�. Shown is the total rms basis set
error of the DF-RMP2-F12 methods. Upper panel: 3C�D� �full lines� and
3*C�D� �dotted lines�. Lower panel: 3C�FIX� �full lines� and 3*C�FIX�
�dotted lines�. All 25 EAs, 39 IPs, and 49 AEs are included in the statistics.
The scales in the subplots are equal �1 kJ /mol�10.36 meV�.
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significant time and disk space savings. Obviously both ap-
proximations produce accurate results. The impact of the
HY2 approximation is negligible. The HY1 approximation
worsens the basis set convergence noticeably, but not much.
This finding is consistent with results for closed-shell
molecules.17

D. Dependence on the geminal exponent

The upper panel of Fig. 2 shows the dependence of the
rms deviations of the 3C�D� and 3*C�D� methods on the
geminal exponent �. The main finding here is that the depen-
dence is different for different properties. Apparently the
parts of the valence region which need to be described accu-
rately are different depending on what is being calculated.
For example, in the case of EAs it is very important that the
interactions of the highly diffuse outer electrons in the anion
are described precisely �which are modeled better by wider
correlation holes and thus smaller exponents�. The energetics
of the other electrons are less important because they are
similar for the anion and the neutral species, and thus defi-
ciencies in their description cancel out in the difference.

Unexpectedly, for the 3C�D� method a similar exponent
behavior as for the EAs is also found for atomization ener-
gies. Although for the AVTZ orbital basis sets the basis error
of the actual compounds �i.e., molecules and atoms� typically
has a minimum around a geminal exponent of 0.9–1.5 �de-
pending on the involved atoms�, the basis set convergence of
the AE can be accelerated by using smaller exponents.

Similar calculations for the 3C�FIX� and 3*C�FIX�
methods are summarized in the lower panel of Fig. 2. For
EAs and IPs a similar but more pronounced behavior as for
the 3C�D� method is found. The dependence of the average
basis set error on the choice of � is much larger than for the
more flexible diagonal method. Unlike for the 3C�D�
method, very low � values deteriorate atomization energies
instead of improving them.

E. Perturbative Hartree–Fock corrections

We explicitly tested the improvement of the Hartree–
Fock treatment achieved by the methods described in Sec.
III. In detail, we tested the following perturbative RHF cor-
rections to the DF-RHF/A�2�VTZ energies:

• CABS-singles: The energy difference of “RMP2-singles
into the combined MO and CABS basis” minus the
“RMP2-singles into the MO basis alone” is added to the
DF-RHF energy.

• CABS-RHF-relax: The energy correction from the spin-
adapted singles perturbation theory is added to the DF-
RHF energy.

As described in Sec. III, the first correction contains a part of
the RMP2 singles correlation energy, while the second does
not. Both approaches are equivalent in the closed-shell case.
The cost of calculating these corrections on their own is
similar to that of a single RHF iteration in the complete
MO+CA basis set. However, since the occurring Fock ma-
trices are required for the RMP2-F12 anyway, only the addi-
tional cost for block diagonalizing the Fock matrix and/or
performing a cheap iterative solution remains.

The performance of the different treatments compared
with conventional RHF/AV6Z is summarized in Table V.
Obviously both approaches greatly improve the DF-RHF en-
ergies obtained at the AVTZ or A2VTZ �for EAs� level. Al-
though conventional RHF/AV5Z accuracy is not obtained re-
liably, in any case the basis set error of the DF-RHF
treatment becomes smaller again than that of the F12 corre-
lation treatment �see Table III�, which is the main goal.

Both RHF correction treatments have been tested with
and without allowing excitations from core electrons. The
rationale for allowing these excitations is that the core elec-
trons would also relax if an actual RHF treatment in a larger
basis would be performed. They lead to total energies which
are much closer to the reference values than when not allow-
ing them, but the effect on energy differences is almost neg-
ligible. As they can be calculated for free anyway, we chose
to include them by default.

Also, the potential for correcting RHF energies of the
CABS-singles and CABS-relax Ansätze is very similar. The
results of the CABS-RHF-relax approach look slightly better
on average. Therefore, and since these results do not include
the spurious RMP2 singles correlation contributions, this ap-
proach should be used for RHF corrections except if RMP2-
F12 on itself is actually used as correlation method �i.e., not
as some augmentation to, say, RHF-UCCSD�T��.

TABLE IV. Impact of hybrid approximations on the F12 basis set error.
Total rms basis set errors for RMP2-F12/3C�D� are shown. In all cases �
=0.9a0

−1 and the AVTZ/A�2�VTZ basis sets as described in Sec. III A were
used.

Method Full HY2 HY1

EAs �meV�
3C�D� 6.328 6.516 6.884

3*C�D� 4.778 4.868 5.050

IPs �meV�
3C�D� 7.228 7.457 8.378

3*C�D� 4.756 4.795 5.207

AEs �kJ/mol�
3C�D� 1.068 1.076 1.011

3*C�D� 1.122 1.128 1.159

TABLE V. rms error of DF-RHF+ �perturbative singles correction� at the
A�2�VTZ level relative to RHF/AV6Z. See text for details.

RI and JKFIT: VTZ/JKFIT AVTZ-JK

Core-Singles: Yes No Yes No


EA �meV�, �none� 12.593

EA �meV�, Singl. 1.652 2.175

EA �meV�, Relax. 1.584 2.189


IP �meV�, �none� 11.444 11.440

IP �meV�, Singl. 3.356 3.126 1.936 1.896

IP �meV�, Relax. 2.814 2.860 1.576 1.792


AE �kJ/mol�, �none� 3.736 3.706

AE �kJ/mol�, Singl. 0.551 0.460 0.659 0.610

AE �kJ/mol�, Relax. 0.430 0.402 0.467 0.497
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As the right columns of Table V show, the error can be
further decreased by using the augmented JK-fitting basis set
described in Sec. III A also for DF of the Fock matrices and
for the RI in the IP case. It is not obvious why this basis
enhancement does not also improve the results for atomiza-
tion energies.

V. CONCLUSIONS AND OUTLOOK

The presented DF-RMP2-F12 method shows a basis set
convergence of correlation energies which is just as fast as
that of its closed-shell counterpart.17 Furthermore, using al-
ready available Fock matrices, the basis set error of the
Hartree–Fock treatment could be reduced significantly, and
thus rapid convergence of total energies was obtained. Al-
ready with the medium sized AVTZ basis set, total rms basis
set deviations of less than 2 kJ /mol�20 meV were obtained
consistently for atomization energies, electron affinities and
ionization potentials. Especially AEs and EA pose difficult
problems to conventional basis set expansions, which require
very large basis sets in order to obtain accurate results for
these properties. For the F12 method this is not the case. At
AVTZ level, all computed values were closer to the basis set
limit than for conventional AV5Z calculations, usually much
closer.

While the RMP2-F12 methods allows us to calculate
RMP2 complete basis set �CBS� limit energies very effi-
ciently, these energies are of course still MP2 energies, and
as such of limited accuracy when compared to experimental
values. The next important step is therefore to develop an
open-shell explicitly correlated coupled-cluster method. We
already implemented similar RHF-UCCSD�T�-F12 approxi-
mations as recently proposed for closed-shell cases.22 The
RMP2-F12 method presented here is the first step in this
method. Our preliminary RHF-UCCSD�T�-F12 results are
very promising, and will be published elsewhere.
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APPENDIX: SINGULARITIES OF THE B MATRIX

Singularities and negative eigenvalues in the B matrix in
Eq. �17� have been reported by several groups. They start to
appear when larger systems are being investigated.

The main reason for these singularities is that for ex-
tended systems the explicitly correlated configurations �10�
become linearly dependent. This is easily seen when consid-
ering the configurations in a localized orbital basis. Assume
that in

F��
mn = ���	Q̂12F12	mn
 ,

Q̂12 = �1 − ô1��1 − ô2��1 − v̂1v̂2� ,

the orbitals m and n are well localized and far apart. Then
inevitably in F��

mn only such F12 can have nonvanishing im-
pact, for which r12 is large, since in

���	F12	mn
 =� � �
�
*�r1��

�
*�r2�F12��r1 − r2��

� �m�r1��n�r2�d3r1d3r2.

r1 is essentially restricted to the domain of the orbital m and
r2 to that of n. Since F12 falls off sharply with r12 �for real
Slater functions with exp�−�r12� and for linear combinations
of Gaussians as exp�−�ir12

2 ��, the resulting explicitly corre-
lated configurations become almost zero in norm.

This problem could be approached by orthonormaliza-
tion of the explicitly correlated configurations with respect to
�kl	F12F12	mn
 �note that X is their overlap matrix�. But ulti-
mately, this would have limited value since the configura-
tions with large r12 �i� do not help in the treatment of the
correlation problem anyway, �ii� numerical problems are still
to be expected in cases with near linear dependencies, and
�iii� the explicitly correlated configurations are legitimately

diminished by Q̂12, since their effect can be achieved with
the conventional wave function.

Our current opinion is that they should simply be pro-
jected out by projecting Rkl

ij and Tkl
ij onto the eigenspace be-

longing to the non-negative eigenvalues of B or X, which is
already the common practice.

Although this discussion was based on the premise of
localized occupied orbitals, the same conclusions hold, of
course, for canonical orbitals. After all, these can be obtained
from the localized orbitals by a unitary rotation which cannot
make the explicit configurations less linearly dependent.
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