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Moller-Plesset calculations to second order have been carried out on the ten-electron systems Ne, HF and HZ0 with a new 
functional, including r,*-dependent pair correlation functions, which takes care of the correlation cusp. The calculated second- 
order pair energies are accurate to within a few millihartree in comparison with the estimated exact values. In particular, second- 
order energies of 384.2,380.1 and 362.9 mE,, have been obtained for Ne, HF and Hz0 respectively. 

1. Introduction 

It has been known for a long time that accurate electronic structure calculations of atoms or molecules are 
only possible if the correlation cusp is correctly accounted for. There is a vast literature on variational calcula- 
tions with wavefunctions that contain r,,-dependent terms of various complexity, with linear (e.g. ref. [ 11) or 
non-linear (e.g. ref. [ 21) variational parameters (the most important references are quoted in ref. [ 31). We 
have shown [ 31 that for the simplest two-electron system, the He atom, the non-relativistic (clamped nucleus) 
ground-state energy can be obtained very accurately with the ansatz 

y/(1,2) =tr,*til,2) +X(1,2) , (1) 

where $ is the eigenfunction of the He atom without electron interaction, and x is expanded in products of one- 
electron functions q,( 1) q,,( 2) ( in conventional CI the entire v is expanded in such products). Limiting the 
angular quantum number I of the basis functions to I= 0 and l= 1 we get E,,( He) accurate to = 0.1 mE,; with 1 
up to 5 accurate to 1 pE,,. To achieve the same accuracy in conventional CI 1 up to 6 or up to 50, respectively, 
is required [ 41. 

A similarly rapid convergence is obtained with the ansatz (1) for the energy in second-order perturbation 
theory (in the l/Z expansion). In this case we could show [ 31 that the partial wave contributions E1 due to xI 
go as (I+ l/2)-* as contrasted with conventional partial wave contributions EI that go as (1+ 1/2)-4. 

It is straightforward to take advantage of these results for larger electronic systems. For systems with more 
than two electrons two independent convergence problems arise: (a) the convergence with the size of the one- 
electron basis; (b) the convergence with the “excitation” rank (single, double, triple, etc., “excitations”) in a 
CI or a coupled-cluster (CC) calculation or the convergence with the order in perturbation theory. 

Since we are concerned in this work with convergence problem (a) we have considered only a single level of 
problem (b). The simplest non-trivial level in this sense is Msller-Plesset perturbation theory to second order 
[ 51. On this level many reference calculations with conventional expansions and also some extrapolations to 
complete basis sets are available for comparison. 

2. Method 

We start from the Hylleraas functional for the second-order energy (with @ the zeroth- and y the first-order 
wavefunction) 
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F(W)=2Re(WIY-E,I~)+(~lIH,-E,IW)~E’2’. 

If @ is the (restricted) Hartree-Fock function, F(w) decouples into a sum of pair contributions 

F(+;,f(%) 3 

(2) 

(3) 

flu,,)=2Re([ijlIr,‘Iu,(1,2))+(u,(1,2)IF(1)+F(2)-t,-~,lu,(1,2)) , (4) 

k41 =2-“2k4m v,(2) -v,(l) P,,(2)1 . 

The u,( 1,2) are, by virtue of the Brillouin theorem, strongly orthogonal to all the occupied Q~. 
We make the ansatz 

(5) 

%#,2)=lc,,{l -P(l)}{1 -P(2))r,,[ijl +w,w) 3 (6) 

(7) 

where labels i,j,k,... always refer to spin orbitals occupied in +, a,b,c,..., to unoccupied and p,q,r,... to arbitrary 
spin orbitals. The clj and d$’ are linear variational parameters. 

In order to evaluate (4) with the ansatz (6) , we make a few assumptions and approximations: 
(a) We assume that the pI are eigenfunctions of the exact Fock operator rather than of its approximation in 

the finite basis {v}. This allows the reformulation 

P(l) +F(2)-t,-~,}lr,,[ijl=1[F(1)+F(2),r,,l[ijl 

=f[~(1)+~(2),~,2l[ijl-I[~(1)+~(2),~,*l[ijl 

=(~*2/~12c7, -v2)[ijl-~lz’[ijl-f[~(1)+~(2),~,2l[ijl 3 (9) 

where T is the kinetic energy operator and K the exchange operator. The Coulomb operator is local and com- 
mutes with r12. 

(b) We approximate the commutator of K and r,2 by means of a completeness insertion, i.e. via matrix 
products. We do the same with the double commutator [ [ K,r,2],r,2]. 

(c) Terms with one projector are evaluated by means of the completeness insertion 

Common to all three assumptions or approximations is the fact that they become exact in the limit of a 
complete basis, i.e. the corresponding errors vanish with increasing basis size. It is important that these errors 
vanish much faster with the angular quantum number I, than do the basis unsaturation errors in a conventional 
calculation without the r12 term. The latter definitely go as (I+ l/2) -4, while the errors due to our three assump- 
tions appear to decrease faster than (1+ l/2) -‘j. For atoms, completeness of the basis for a finite number of 1 
values is sufficient to make the errors due to assumptions (a) and (c) vanish. 

As is the case for the He ground state the (I+ l/2) -’ dependence of conventional partial wave contributions 
to any of the second-order pair energies is due to the attempt to evaluate the expressions 

([iill~12c211[ijl)=l, (11) 

([ijl l~12(~l2~~l2w71--V2) I [ijl> =t (12) 
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(that we evaluate exactly) by means of the expansions 

,& < [ijl If.12 I [P41> ([P41 Ir,’ I [ijl> 9 (13) 

$, ([ii1 Ir12 I [p41) ( [ml I (r12h2WL-V2) I [id> , (14) 

or rather through their counterparts for singlet and triplet pairs. For singlet pairs the error in (13) vanishes as 
(1+ 1/2)-4, that of (14) as (1+ 1Dp6, for triplet pairs both go as ((I+ 1/2)-6 and approach the ratio - 1 for 
I+co. 

It should be noted that approximation (10) is not necessary. The corresponding integral could be evaluated 
exactly as 

([iillc-21~(1) ~121~ijl~=~~~~(l,2)l~~~~*(1) V),+(3) r32[zj(3,2)] dzl dr2 dT3 . (15) 

This requires a onedimensional numerical integration. All other integrals needed in our calculations are eval- 
uated in closed form. The formulae are relatively simple if one uses Gaussian lobes rather than Cartesian Gauss- 
ians [ 61. We have taken advantage of this. 

The final expressions for the second-order pair energies are 

(16) 

where e, is the conventional second-order pair energy in the same basis and 

vu = 4 - fpE*( 1 ijl I 112 I &I > ( b41 I c2’ I [ ijl > 9 (17) 

&=4-l 1 < [ii1 lc21 [ml >( hl(r12h2)(VL -V2) I IN> . (18) 

The V, and U, vanish in the limit of a complete basis, they represent a “cusp correction” or “basis unsaturation 
correction”. TheA, are stationary with respect to variations of the c, if 

c, = vl,l( V, - U,,) (19) 

then 

.ii,;,=e~j+C,V,. (20) 

For practical calculations we use a formalism in terms of singlet and triplet pairs rather than of pairs of spin 
orbitals. 

3. Results 

In table 1 the results of our calculations on the Ne atom are displayed. With a 12s8p4dlf basis a conventional 
MP2 calculation yields 87Oh of the estimated exact MP2 energy, with our ansatz and the same basis we recover 
99% of the supposedly exact value [ 71; the best calculated value of Jankowski et al. [ 71 with I up to 10 is 99.5% 
of the estimated exact value, while Lindgren and Salomonson [ lo] with I up to 6 obtain some 88.5% of the 
result extrapolated for I-+ cc. 

For Et2) for the Ne ground state two extrapolations to the exact values have been published [ 7, lo]. We have 
used for comparison those of Jankowski et al. [ 71 because they are given separately for singlet and triplet pairs, 
and also because we regard their extrapolation as somewhat more reliable. The total extrapolated E (2) values 
of the two references differ by x 1 m&,. Our computed values could also be compared with those of Wenzel et 
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Table 1 
Second-order pair correlation energies for Ne ‘) in m& 

Pair ij 

19 

1 s2s 

2sz 
ls2p 

2s2p 

2PZ 

total 

- e,, -f;, -e,,(JM) CV b) 

(‘V 36.05 40.02 40.22 0.87 
(‘S) 3.52 3.88 3.97 0.69 
(‘S) 1.47 1.56 1.59 0.29 
(‘S) 10.29 11.90 12.02 0.92 
(‘P) 6.24 7.56 8.13 0.52 
(‘P) 13.15 13.53 14.04 0.21 
(‘P) 46.64 59.65 60.33 0.83 
(‘P) 24.88 26.31 26.82 0.33 
(‘S+‘D) 112.63 133.97 133.41 0.7510.83 
(‘P) 83.66 85.85 87.39 0.28 

338.52 384.24 387.92 

p) Conventional pair energies e,, and pair energiesi, (calculated by the new method in the same basis) are compared with the extrapolated 
results e,,(JM) of Jankowski and Malinowski, ref. [ 71. Details of basis set: 1 ls[ 5 1 1 1 1 1 1 ] 7p Huzinaga basis set [ 8]+ 1s 
(0.12)+lp(0.86)+4d (0.575x4”-‘; a= 1,...,4)+ lf(3.2). SCFenergy:-128.544551 E,,, best referencevalue -128.5471 Es [9]. 

bWariational parameter (see text). 

Table 2 
Second-order pair correlation energies for HF ‘)(Rnr= 1.7328 au) in mE,, 

Pair aj - e,, -1;1 c, 

lo2 
lo2a 

2a* 
lo3u 

2o3a 

302 
IalIt 

2alr 

3ulr 

1x2 

total 

31.29 40.56 0.70 
2.69 3.28 0.39 
1.30 1.46 0.14 

10.79 12.94 0.87 
0.46 1.90 0.34 
2.02 3.19 0.20 

15.41 19.95 0.61 
8.06 9.08 0.21 

25.21 28.49 0.44 
0.73 4.65 0.35 
5.11 8.40 0.20 

29.03 39.85 0.59 
16.69 19.64 0.22 
25.53 33.08 0.47 
51.01 55.24 0.21 
55.90 70.37 0.4610.48 
25.34 28.06 0.22 

306.59 380.13 

‘) See table 1. Details ofbasis set: lls[5111111]7p[211111] Huzinaga basis set + 3d (0.0875,0.35,1.4)+ If (2.1) for fluorine and 
lOs[ 51111 I] Huzinaga basis set [ 121 +3p (0.1625,0.65,2.6) for hydrogen. SCF energy: - 100.067840 E,,, best reference value 
-100.07046& 191. 

al. [ 111 using a basis of Gaussian geminals. The individual pair energies differ by some tenths of a millihartree 
and the total E(*) by about 1 m&. 

For HF (table 2) no extrapolated reference values are available. However, for Hz0 (as well as for Ne) Petersson 
and Braunstein [ 13 ] have published results from a rather tricky extrapolation procedure based on a analysis of 
the natural orbital expansion of the pair functions. These values (included in table 3) are astonishingly close to 
our computed ones. 
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Table 3 
Second-order pair correlation energies for Hz0 a) (Rot,= 1.8 1035 au, (YHOH = 104.4” 1 in I$, 

Pair ij - e,, -r;l -e,,(PB) c, 
s/t 

singlet triplet sum singlet triplet sum 

la: 31.51 31.51 40.87 - 40.87 40.95 0.70 

la,2a, 2.45 1.28 3.73 2.92 1.42 4.34 5.03 0.3610.14 
la, lbz 0.47 1.99 2.46 1.32 2.52 3.84 3.91 0.3710.20 
la13al 0.82 2.44 3.26 1.90 3.11 5.01 5.26 0.3910.20 
la, lb, 0.65 2.88 3.53 1.94 3.69 5.64 6.00 0.37iO.20 

2a: 11.50 - 11.50 13.26 - 13.26 12.70 0.84 
lb: 23.13 - 23.13 25.07 - 25.07 25.25 0.56 
3a: 22.55 - 22.55 24.97 - 24.97 25.27 0.53 
lb: 22.57 - 22.57 25.30 - 25.30 25.61 0.48 

2arlbs 17.57 7.70 25.27 21.10 8.07 29.17 29.44 0.7610.22 
2a,3a, 14.36 7.95 22.31 17.15 8.41 25.56 27.43 0.6710.21 
2arlbr 14.98 8.66 23.64 18.14 9.31 27.45 28.63 0.63/0.21 
lbz3a, 15.71 22.85 38.57 17.24 23.46 40.71 42.72 0.5UO.21 
lbrlb, 12.18 24.46 36.64 14.03 25.21 39.24 39.86 0.4910.20 
3ar lb, 13.95 25.26 39.21 16.48 26.12 42.60 43.05 0.5410.19 

total 309.89 353.03 361.11 

a) See table 1. Calculated pair energies are compared with extrapolated results e,,( PB) of Petersson and Braunstein [ 131. Details of used 
basisset: 11s[5111111]7p[211111] Huzinagabasisset+2d+lfforoxygenand6~[3111] Huzinagabasisset+3p[21]+2d[2] for 
hydrogen (polarization functions as in ref. [ 141). SCF energy: - 76.065 122 E,,, best reference value - 76.06674 EI, [ 141. 

The error in the second-order correlation energy from our calculations is obviously of the order of a few 
( z 2-3) millihartree. However, the errors in our SCF energies are of the same order of magnitude. This indi- 
cates, that in order to reduce the overall error by a factor of 10 or more, the convergence of the expansion in a 
Gaussian basis is too slow and one should use an ansatz that takes care of the nuclear cusp as well as the 
correlation cusp. 

The best available Hartree-Fock energies to date for Ne and HF were obtained nearly 20 years ago by McLean 
and Yoshimine [ 91 using ST0 basis sets. 

The calculations were performed on the CYBER 205 of the Ruhr-UniversitIt Bochum. 
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