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On the origin of size inconsistency of the second-order state-specific
effective Hamiltonian method

J. L. Heully, J. P. Malrieu, and A. Zaitsevskii
IRSAMC, Laboratoire de Physique Quantique, UnivérBitail Sabatier, 118 route de Narbonne,
31062 Toulouse cedex, France
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The deviations of the second-order state-specific effective Hamiltonian method from the strict size
consistency are analyzed. Provided that complete or separable model spaces are used, these
deviations can be suppressed by a proper choice of nonuniform shifts of energy denominators.
© 1996 American Institute of Physids$0021-960806)01539-3

I. INTRODUCTION

P=$ )]l Q=§ la)(al. @)

The second-order state-specific effective Hamiltonian
methods such as the “shifteB,” scheme! intermediate-

Hamiltonian generalized degenerate perturbation th&dry, v defined by th o fth inorbital .
state-selective QDPTquasidegenerate perturbation theory uniquely aefine y the partitioning of the spinor Ital setinto
core, active and secondary subsets. Let us introduce a zero-

of Hoffmann? MROPT-n techniques;’ etc., have become 4 H which is d Lin the basis of the d
an extremely popular tool for intermediate accuracy calcula®rder operatoH, which is diagonal in the basis of the de-

tions on ground and excited electronic states of moleculederminants

These methods combine several attractive features such as

low computational cost, numerical stability and proper ac-  Ho=2. li)ej(j|+ > |a)e«l 3)
count for the outer-space correlation effects on the reference ! “

space part of the wave functions. Unfortunately, all the apand a perturbationV=H—H,. The second-order state-
proaches of this group suffer from the lack of size consisgpeific effective Hamiltoniaf corresponding to the target

tency of resulting energy estimates even when Completgigenstatéz// ) is usually definett” as
model spaces are used. This problem does not bear such a .
Q

catastrophic character as for the predecessor second-order ~ =)
Brillouin—Wigner—type B,) method®1° Nevertheless, it is H=PHP+H"=PHP+PV EO—H, VP. )
in no way of purely theoretical interest; for instance, the g
deviations from size consistency can be one of the main The choice of the paramet&, is rather arbitrary and
sources of errors in the calculations on excitation energiegsually related to the model space eigensolution which is
even for medium-size moleculés. believed to correlate Withﬂ’u). Let us separate a closed non-
While the size inconsistency of approximate state-diagonal part of the total Hamiltonian written in the normal
specific effective Hamiltonians has been a subject of severdprm with respect to the core vacuum
numerical studie*~*3up until now only a special aspect of
this problem concerning the sepgration of aclosed-shellfrag- w=> > f,alay+ > > (ablcdalalaza., (5)
ment has been analyzed theoreticafly. a b ab “cd
In the present article we propose a simple interpretation
of the origin of size inconsistency of second-order statewhere the indices, b, c, d correspond to active spinorbitals
specific effective Hamiltonians in complete model spacesandf,,, (ablcd) are the one- and two-particle amplitudes of
The understanding of this origin enables to force the exacthe normal-orderedd, and specify the parametEr?L as an
separability (and therefore size consistencpy a proper appropriate eigenvalue of the operafH,+ W)P:
modification of energy denominators.

We shall restrict our attention to complete model spaces

a#b ab#cd

P(Ho+W)P|x,)=E%|x.), (6)
II. THEORY

Assume that we are searching for a single eigen§ige Xu)= ; Cipli)- @)
of a many-electron system with its Hamiltoni&h
Note that for an Epstein—Nesbet—type zero-order

HIvw) =Eulv). @ operatot>*®P(H,+W)P=PHP andE, is an eigenvalue of

We start with splitting the total space WNfelectron wave the model-space problem as it is usually assumed in the
functions into the model spade, and the outer spack,  shifted B, scheme. It should also be noticed that with any
projected by the operatorB and Q=1—P respectively. reasonable choice dfi; and Ly our definition should not
Both L andLq are supposed to be spanned by appropriateause the appearance of ill-defined denominators in(&q.
sets of Slater determinant§j)} and{|«)}): provided thafy,) is a low-lying state.
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The expansion coefficients ¢f,) in the basis of deter- |ka),... and|jg), |Kg),... . All the possible antisymmetrized
minants should satisfy the matrix eigenvalue equation whictproducts|jajg)=.7|ja)|js) Span a subspadeh® LB of the
may be written as complete model space of the whole system which does not

interact with othercharge-transfermodel states and there-

Z (j|W| k>CkM+(ej — Eg)cm:o Vi: |j)e Lp. (8 fore can be considered separately. Suppose that we are inter-

k. ested in a statebwm of the supersystem arising from the
statesu and v of the fragments.

Any matrix element of the state-specific effective inter-
Mhction as given by Eqg4) and(9) is a sum of contributions
from individual outer-space states. Without loss of general-
(k|H|a){a|H|j) ity, we can restrict our attention to outer space states arising
(9 from localized substitutions

k#j

Provided that all the coefficients;,,#0, we can represent
any matrix element of the second-order effective interactio
H®@ [Eq. (3)] in the form

(KH) =2

ej—ea+cj‘l}Z (jlwihycy,,

1#] liaag)=-Aliaag) or |aajs)=-~7|an)lis)
Let us now analyze the separability properties of the

second-order effective Hamiltonian. Consider a sysfeBh  because the configuratiohs,ag)=. #|@,)|ag) and charge

composed of two noninteracting fragmertsand B with its  transfer states do not interact directly with® LS.

Hamiltonian HAB=H”A+H® and assume that each spin—-  Assume, for instance, that the substitution producing the

orbital is completely localized on one of the fragments. Theouter-space determinant is localized An Since the total

sets of active orbitals localized ok andB define the com- Hamiltonian H”B is simply the sum of fragment Hamilto-

plete model spaces of the fragmefit$ andLB); we shall  niansH” and H®, an outer-space determinajai,jg) con-

denote the determinants spanning those spacegjity  tributes only to the matrix eIemen(kAjB|H(2)AB|jAj g) by

— k . HAB - - HAB . .
(Kni sl H @28 pj )i aj ) = (Kaisgl | i g)(@alsl liais) . (10)

71 . .
€jais " CanigT Cinlg.uv %B (i ai gl WABllalg)er 1 v

IalB#iaiB

Let us first note that the numerator in E{O) does not . .
depend orjg 3=cp |Z (islWellg)ei, - (149
B

. . . . lg#]
(KajglH"®laaig)(aislH ®j aj ) o .B e .

Omitting in Eq.(13) the last term(X,) explicitly depend-

=(kn|HAlap){ ap| HAj o) (1)  ing on the model-state label of the fragmeBit one could

. N _arrive at the equation
Further, it is natural to assume the separability of the eigen-

values of zero-order operators (kaislH?"B(apjp)|jnis) = (ka HPA(a)ljn), (19

which guarantees the separability of the effective interaction
under the fragmentation &B into A andB. Therefore the
which holds automatically for Epstein—Nesbet and convenlack of separability may be directly associated with the ap-
tional generalized Mker—Plesséf~*® H,. Since Pearance oj‘B-de.pendent term,, in the denominator of per-
WAB=WA+WB, the eigenvectors of the model-space prob_turbatlve correctioEq. (10)] and this term should be con-

lems[Eq. (8)] can always be chosen consistently such that Sidered as spurious. _
Taking into account this fact, one may try to restore the

(13 separability of state-specific effective Hamiltonians by dis-
carding from the energy denominators in £®).all the terms
Taking into account Eq$12) and(13), one can write down cfj(j |W]| k)cy, which can enter the separability-violating

€iis=Cia T iy Capig=Cay T €y (12

apg

CjAjB vP«V: CJA}’«CJBV :

the denominator in Eq.10) as sum 3, [Eq. (140)] at least for one possible fragmentation
channel. An exception can be made for the cases when the
€, "€t 21122, (148 pumerator of corresponding contribution tends to zero at the

fragmentation limit.
_~-1 C WA Let us consider two substitution operatoB!(j—1):
1m0 & AW, (4D 1) DI 1)[j) andD'(j —a): [)=D'( —a)l}), and as-
IA#]a sume that each of these operators change the occupancy of a
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certain active spin—orbital, in other word3)(j—1)|a)=0.  E£—e, asj-independent energy denominators. The follow-

Suppose that for a certain fragmentation channel the substing discussion shows that both limits may be reached by the

tution D*(j—>a) is completely localized on one of the frag- denominators in Eq.16).

ments(otherwise the numerator of the corresponding contri- . -

bution to (k|H®)|}) is zerd. One readily realizes that the “'Nactve double excitations

matrix element j|W|I) which might enter th& ,-like sum in Suppose that an outer-space determinanis obtained

Eq. (14) vanishes because of connectivity \&f from a given reference determingi} by an inactive double
This observation gives rise to a general rule enabling tsubstitution, i.e., a substitutidh;r involving two core spin—

discard the separability-violating terms in the denominator®rbitals and two secondary spin—orbitdis) = D;r|j>. In this

and to arrive at the following analogue Bf? [Egs.(4) and  casela) interacts only with one model stde. Since for any

9)] I1#j DT(j—1)|a)#0, A{,=0 and the second-order effect of
. | reduced to a diagonal correction
igy-3 IR (163 (iHla)alHli)
Sepl/ = ’ e
T ee AL (A e)]jy= Lo m 19
i~ Ca

AL =c1> (W Df(j—1)|a)=0 (16h  which is identical to the second-order contribution to the
ja ™ Mip & we . . -
E state-universal effective Hamiltonidh.If we choose the
Mdller—Plesset definition oH,, the denominators become

lar to that presented by Eq4.0—(14) readily shows that the independent ohj) and the effect of inactive excitations is a
uniform shift of all diagonal matrix elements. This is an ex-

separability-violating sum, Eq140), is now empty and the o . ) " -
P Hity-viorating su q140, i W Py plicit manifestation of separability of the definitiqd6) for

analog of Eq(15) is really satisfied. Therefore E¢L6) de- h h h . bital localized fth
fines a strictly separable approximate effective Hamiltonian{N® cases where the active orbitals are localized on one of the

It should be noted that the whole set of energy denomi-SUbSYSte”(\_Neak, separabilit’f'zﬁ. Notice that th? occupied
nators in Eq.(16) for all possible valueg,k: |j),|k)eLp and virtual inactive MO’s being well separated in energy for

cannot be represented in terms of any unique manifold ofNY reasonable choice of the model space, these excitations

zero-order energies. Therefore the identification of this aannnOt produce any intruder problem.

proximation with a second-order correction of the conven-s. Case of two active electrons in two active orbitals
tional perturbation theory with any unique zero-order opera- . . .
tor at least is not straightforward. In contrast, Eg6) is Consider the breaking of homopolar bond or the rotation

readily interpreted as a second-order approximation of thgr(:uno: tthe C—Cihbondt_ of ethylente):. Lrlllthestg prli)/lbl?mz It is
multipartitioning perturbation theoryMPPT).2% The zero- natural to span the active space by two active M@'an

o ) . .
order operator corresponding to thigh basis determinant ¥ of different symmetrie¢oy, o, for the first problemar, ,
may be defined as g for the second one The corresponding fully symmetric

sector of the complete model space involves only two deter-
. minants|1)=|core o | and|2)=|core ¢* ¢*|. One easily sees
Ho(j)= Ek: |K)ex(k|+ za: la)(ea=Aj (el (A7) gt an)|/ mo|del spgce Sl|,IbSti|tuti(ﬁT(l—|2) and D'(2-1)]
lkyelp layelq involves all the active spin—orbitals. Therefore for any outer-
space determinaf), except those obtained by inactive sub-
stitutions, the energy denominators in E46) reduce to
~2 . o those from Eqs(4) and (9), i.e., Ef—e,. For the ground
Hizer= > PV() 7o VDIl state study(u=1), the gapE4—e, remains large whatever
] (iHo(DIi)—Ho(j) 0 . e
(18) the bond length of the homopolar smgle_ bond or the tW|st|ng
angle of the double bond. Hence the intruder states which
whereV(j)=H—Hq(j), immediately yields Eq(16). It is  make the conventional effective Hamiltonian expan&iafi
interesting to note that the MPPT has already provided anyergent through the occurrence of smeji-e, denomina-
other solution to the problem of constructing a separabléors do not cause any trouble.
state-specific second-order Hamiltonfan. As a simple numerical illustration we investigated the
accuracy of formula16) in describing the ground-state po-
tential curve of 5. We used the same §8p1d]/[4s3pld]
IIl. DISCUSSION basis set as Laidig, Saxe, and Bartfein their thorough
study on this system. The model space was generated by the
It is worth comparing the matrix elemefi6) with the = CASSCF (complete active space self-consistent field
corresponding second-order contribution to the Bloch stategalculationé® with only two MO's (30g, 30y) in the active
universal effective Hamiltoniaff. They have the same nu- space. To specify the Mler—Plesset—type zero-order
merators while the denominators differ by the terfs. On ~ Hamiltonian, CASSCF pseudocanonical MO’s and general-
the other hand, one may refer to the original expression oized orbital energiéS€ were used. Our results along with
the second-order state-specific effective Hamiltonidn  those from some previous second-order calculations and
which also involves the same numerators and introduce$nearly full-CI” data from?* are given in Table I.

An analysis of a second-order contributionH&), simi-

and the expression for the second-order MPPT correction

J. Chem. Phys., Vol. 105, No. 16, 22 October 1996
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TABLE |. Spectroscopic constants for the round state calculated within

—
the [4s3pld] basis setRef. 24. E T~
ro (A) D, (eV) w, (cm™) % 1.8

MCSCF 1.500 0.562 583 ; i

Second-order PT: [} |

Ref. 27 1.368 2411 1115 E -

Ref. 27 1.392 1.784 997 e r

Ref. 4¢ 1.434 1.621 8 14|

Present work 1.438 1.451 850 o -

Nearly full-CI data |

Ref. 24 -

MRDCI 1.436 1.275 82r° r

MR LCCM 1.439 1.257 847 I

1.0 | | | | | 1

aState-universal effective Hamiltonian, degeneracy of the model space is 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
bfo_rce(_j by ayeraging the actiyg orbitall energie_s. _ INTERNUCLEAR DISTANCE, A.U.
Size-inconsistent state-specific effective Hamiltonian.
“The model space is extended to 10 configurations.
dSize-consistent state-specific effective Hamiltonian. FIG. 1. Occupation number of the bondingaMO F, as a function of the
®The model space is extended to 32 configurations. internuclear separation. Solid line: MCSCF. Dashed line: size-consistent

second-order effective Hamiltonian method.

The (304, 30y;) CASSCF approximation recovers only
44-45 % of the bonding energy which can be reproduced
within the given basis set. Straightforward application of the

conventional effective Hamiltonian P(Ref. 22 is meaning- , " I
less because of several crossing between the model and outépere the weightgf, are scaled on the contributions of the

zero-order levels near the equilibrium geometry. The secondieterminantsj) to the target wave function. For instance,
order degenerate PT treatment with averaged active orbit&l« Can be identified with the genealogical weidfits
energie$®?’ provides a smooth potential curve but markedly (alHlj)c;,
overshoots the dissociation energy and the vibrational fre- PﬁFW- (21)
guency. The size-inconsistent state-specific effective Hamil- g kit
tonian procedures deriving the zero-order model-space erfne can verify that the averaging procedure with defined
ergy from the solution of the reference space proBigm asin Eq.(21) preserves the separability of resulting effective
seem to yield more reliable curves although the dissociatiofiamiltonian.
energy is still too large. Our method gives a considerably !t should be noticed that the denominat¢2f) may be
better approximation to nearly full-Cl spectroscopic con-also used in nondegenerate formalisms which perturb a mul-
stants of Laidig, Saxe, and BartléftThe remaining slight ticonfiguration wave functiofian eigenfunction oPHP) by
overestimation of the bond energy may be attributed to théhe effect of the outer space determinatit@ne may dem-
systematic error inherent to the second-order treatment witAnstrate that these contracted procedures then become size
the chosen form of one-particle zero-order operésee Ref. consistent(strictly separable when localized orbitals are
28 for a detailed discussipn used provided that the model space is complete.

It should be mentioned that the decontracted treatment of L€t us note finally that the additional computational ef-
the model space part of the wavefunction is essential for £rts arising from the necessity to evaluate the shift values
proper description of the F—F bonding, since the startind®j» Can be drastically reduced by an appropriate preliminary

CASSCF model substantially underestimates the occupandjartial summations, and the procedure may be competitive
of the bonding 3, MO (see Fig. 1 with conventional second-order schemes.

der(u,a)= 2 pl(e—AL)+e,, (20

C. Practical aspects IV. CONCLUSIONS

While the present analysis aimed essentially to reveal the We presented an analysis of the conventional second-
origins of the size inconsistency of conventional state-order state-specific effective Hamiltonians revealing the ori-
specific effective Hamiltonian approach, it can also give risggin of their inherent size inconsistency in the situations
to a practically valuable tool for molecular electronic struc-where the complete or separable model spaces are used. Dis-
ture computations. The direct use of the approximation deearding the separability-violating term from the energy de-
fined by Eq.(16) is limited by the risk of numerical insta- nominators, one can arrive at a strictly size-consistent ex-
bilities which should appear when some @f, coefficients  pression which admits a simple interpretation in terms of the
are small or zero. These problems may be circumvented visecond-order multipartitioning perturbation theory. The nu-
an appropriate denominator averaging over the model spacmerical instability of this expression can be in principle
i.e., by replacing the set of-dependent denominators avoided by a proper averaging of the energy denominator
{(ej—e,+ A}, |i) eLp, by a single denominator without destroying the separability.

J. Chem. Phys., Vol. 105, No. 16, 22 October 1996
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