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On the origin of size inconsistency of the second-order state-specific
effective Hamiltonian method
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The deviations of the second-order state-specific effective Hamiltonian method from the strict size
consistency are analyzed. Provided that complete or separable model spaces are used, these
deviations can be suppressed by a proper choice of nonuniform shifts of energy denominators.
© 1996 American Institute of Physics.@S0021-9606~96!01539-5#

I. INTRODUCTION

The second-order state-specific effective Hamiltonian
methods such as the ‘‘shiftedBk’’ scheme,

1 intermediate-
Hamiltonian generalized degenerate perturbation theory,2,3

state-selective QDPT~quasidegenerate perturbation theory!
of Hoffmann,4 MROPT-n techniques,5–7 etc., have become
an extremely popular tool for intermediate accuracy calcula-
tions on ground and excited electronic states of molecules.
These methods combine several attractive features such as
low computational cost, numerical stability and proper ac-
count for the outer-space correlation effects on the reference
space part of the wave functions. Unfortunately, all the ap-
proaches of this group suffer from the lack of size consis-
tency of resulting energy estimates even when complete
model spaces are used. This problem does not bear such a
catastrophic character as for the predecessor second-order
Brillouin–Wigner–type (Bk) method.

8–10 Nevertheless, it is
in no way of purely theoretical interest; for instance, the
deviations from size consistency can be one of the main
sources of errors in the calculations on excitation energies
even for medium-size molecules.11

While the size inconsistency of approximate state-
specific effective Hamiltonians has been a subject of several
numerical studies,5,11–13up until now only a special aspect of
this problem concerning the separation of a closed-shell frag-
ment has been analyzed theoretically.5,14

In the present article we propose a simple interpretation
of the origin of size inconsistency of second-order state-
specific effective Hamiltonians in complete model spaces.
The understanding of this origin enables to force the exact
separability ~and therefore size consistency! by a proper
modification of energy denominators.

II. THEORY

Assume that we are searching for a single eigenstateucm&
of a many-electron system with its HamiltonianH:

Hucm&5Emucm&. ~1!

We start with splitting the total space ofN-electron wave
functions into the model spaceLP and the outer spaceLQ
projected by the operatorsP and Q512P respectively.
Both LP andLQ are supposed to be spanned by appropriate
sets of Slater determinants~$u j &% and $ua&%!:

P5(
j

u j &^ j u, Q5(
a

ua&^au. ~2!

We shall restrict our attention to complete model spaces
uniquely defined by the partitioning of the spinorbital set into
core, active and secondary subsets. Let us introduce a zero-
order operatorH0 which is diagonal in the basis of the de-
terminants

H05(
j

u j &ej^ j u1(
a

ua&ea^au ~3!

and a perturbationV5H2H0. The second-order state-

specific effective HamiltonianH̃ corresponding to the target
eigenstateucm& is usually defined1–7 as

H̃5PHP1H̃ ~2!5PHP1PV
Q

Em
02H0

VP. ~4!

The choice of the parameterEm
0 is rather arbitrary and

usually related to the model space eigensolution which is
believed to correlate withucm&. Let us separate a closed non-
diagonal part of the total Hamiltonian written in the normal
form with respect to the core vacuum

W5(
a

(
b

aÞb

f abaa
†ab1

1
2 (

ab
(
cd

abÞcd

^abucd&aa
†ab

†adac , ~5!

where the indicesa, b, c, d correspond to active spinorbitals
and f ab , ^abucd& are the one- and two-particle amplitudes of
the normal-orderedH, and specify the parameterEm

0 as an
appropriate eigenvalue of the operatorP(H01W)P:

P~H01W!Puxm&5Em
0 uxm&, ~6!

uxm&5(
j
cjmu j &. ~7!

Note that for an Epstein–Nesbet–type zero-order
operator15,16P(H01W)P5PHP andEm

0 is an eigenvalue of
the model-space problem as it is usually assumed in the
shiftedBk scheme. It should also be noticed that with any
reasonable choice ofH0 and LP our definition should not
cause the appearance of ill-defined denominators in Eq.~4!
provided thatucm& is a low-lying state.

6887J. Chem. Phys. 105 (16), 22 October 1996 0021-9606/96/105(16)/6887/5/$10.00 © 1996 American Institute of Physics



The expansion coefficients ofuxm& in the basis of deter-
minants should satisfy the matrix eigenvalue equation which
may be written as

(
k

kÞ j

^ j uWuk&ckm1~ej2Em
0 !cjm50 ; j : u j &PLp . ~8!

Provided that all the coefficientscjmÞ0, we can represent
any matrix element of the second-order effective interaction
H̃ ~2! @Eq. ~3!# in the form

^kuH̃ ~2!u j &5(
a

^kuHua&^auHu j &

ej2ea1cjm
21(

l
lÞ j

^ j uWu l &clm

. ~9!

Let us now analyze the separability properties of the
second-order effective Hamiltonian. Consider a systemAB
composed of two noninteracting fragmentsA andB with its
Hamiltonian HAB5HA1HB and assume that each spin–
orbital is completely localized on one of the fragments. The
sets of active orbitals localized onA andB define the com-
plete model spaces of the fragments~LP

A andLP
B!; we shall

denote the determinants spanning those spaces byu j A&,

ukA&,... andu j B&, ukB&,... . All the possible antisymmetrized
productsu j Aj B&5Au j A&u j B& span a subspaceLP

A
^LP

B of the
complete model space of the whole system which does not
interact with other~charge-transfer! model states and there-
fore can be considered separately. Suppose that we are inter-
ested in a stateucmn& of the supersystem arising from the
statesm andn of the fragments.

Any matrix element of the state-specific effective inter-
action as given by Eqs.~4! and~9! is a sum of contributions
from individual outer-space states. Without loss of general-
ity, we can restrict our attention to outer space states arising
from localized substitutions

u j AaB&5Au j A&uaB& or uaAj B&5AuaA&u j B&

because the configurationsuaAaB&5AuaA&uaB& and charge
transfer states do not interact directly withLP

A
^LP

B.
Assume, for instance, that the substitution producing the

outer-space determinant is localized onA. Since the total
HamiltonianHAB is simply the sum of fragment Hamilto-
niansHA andHB, an outer-space determinantuaAj B& con-
tributes only to the matrix elements^kAj BuH̃ (2)ABu j Aj B& by

^kAj BuH̃ ~2!AB~aAj B!u j Aj B&5
^kAj BuHABuaAj B&^aAj BuHABu j Aj B&

ejAj B2eaAj B
1cjAj B ,mn

21 (
l Al B

l AlBÞ j Aj B

^ j Aj BuWABu l Al B&clAlB ,mn

. ~10!

Let us first note that the numerator in Eq.~10! does not
depend onj B

^kAj BuHABuaAj B&^aAj BuHABu j Aj B&

5^kAuHAuaA&^aAuHAu j A& ~11!

Further, it is natural to assume the separability of the eigen-
values of zero-order operators

ejAj B5ejA1ejB, eaAj B
5eaA

1ejB, ~12!

which holds automatically for Epstein–Nesbet and conven-
tional generalized Mo” ller–Plesset17–19 H0. Since
WAB5WA1WB, the eigenvectors of the model-space prob-
lems @Eq. ~8!# can always be chosen consistently such that

cjAj B ,mn5cjAmcjBn . ~13!

Taking into account Eqs.~12! and~13!, one can write down
the denominator in Eq.~10! as

ejA2eaA
1S11S2 , ~14a!

S15cjAm
21 (

l A
l AÞ j A

^ j AuWAu l A&clAm , ~14b!

S25cjBn
21 (

l B
l BÞ j B

^ j BuWBu l B&clBn . ~14c!

Omitting in Eq.~13! the last term~S2! explicitly depend-
ing on the model-state label of the fragmentB, one could
arrive at the equation

^kAj BuH̃ ~2!AB~aAj B!u j Aj B&5^kAuH̃ ~2!A~aA!u j A&, ~15!

which guarantees the separability of the effective interaction
under the fragmentation ofAB into A andB. Therefore the
lack of separability may be directly associated with the ap-
pearance ofj B-dependent termS2 in the denominator of per-
turbative correction@Eq. ~10!# and this term should be con-
sidered as spurious.

Taking into account this fact, one may try to restore the
separability of state-specific effective Hamiltonians by dis-
carding from the energy denominators in Eq.~9! all the terms
cjm

21^ j uWuk&ckm which can enter the separability-violating
sumS2 @Eq. ~14c!# at least for one possible fragmentation
channel. An exception can be made for the cases when the
numerator of corresponding contribution tends to zero at the
fragmentation limit.

Let us consider two substitution operators,D†( j→ l ):
u l &5D†( j→ l )u j & andD†( j→a): ua&5D†( j→a)u j &, and as-
sume that each of these operators change the occupancy of a
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certain active spin–orbital, in other words,D†( j→ l )ua&50.
Suppose that for a certain fragmentation channel the substi-
tutionD†( j→a) is completely localized on one of the frag-
ments~otherwise the numerator of the corresponding contri-
bution to ^kuH̃ (2)u j & is zero!. One readily realizes that the
matrix element̂ j uWu l & which might enter theS2-like sum in
Eq. ~14! vanishes because of connectivity ofW.

This observation gives rise to a general rule enabling to
discard the separability-violating terms in the denominators
and to arrive at the following analogue ofH̃ ~2! @Eqs.~4! and
~9!#

^kuH̃Sep
~2! u j &5(

a

^kuHua&^auHu j &
ej2ea1Aja

m , ~16a!

Aja
m 5cjm

21(
l :

^ j uWu l &clm , D†~ j→ l !ua&50 ~16b!

An analysis of a second-order contribution toH̃Sep
~2! simi-

lar to that presented by Eqs.~10!–~14! readily shows that the
separability-violating sum, Eq.~14c!, is now empty and the
analog of Eq.~15! is really satisfied. Therefore Eq.~16! de-
fines a strictly separable approximate effective Hamiltonian.

It should be noted that the whole set of energy denomi-
nators in Eq.~16! for all possible valuesj ,k: u j &,uk&PLP
cannot be represented in terms of any unique manifold of
zero-order energies. Therefore the identification of this ap-
proximation with a second-order correction of the conven-
tional perturbation theory with any unique zero-order opera-
tor at least is not straightforward. In contrast, Eq.~16! is
readily interpreted as a second-order approximation of the
multipartitioning perturbation theory~MPPT!.20 The zero-
order operator corresponding to thej th basis determinant
may be defined as

H0~ j !5 (
k

uk&PLP

uk&ek^ku1 (
a

ua&PLQ

ua&~ea2Aja!^au ~17!

and the expression for the second-order MPPT correction

H̃MPPT
~2! 5(

j
PV~ j !

Q

^ j uH0~ j !u j &2H0~ j !
V~ j !u j &^ j u,

~18!

whereV( j )5H2H0( j ), immediately yields Eq.~16!. It is
interesting to note that the MPPT has already provided an-
other solution to the problem of constructing a separable
state-specific second-order Hamiltonian.21

III. DISCUSSION

It is worth comparing the matrix element~16! with the
corresponding second-order contribution to the Bloch state-
universal effective Hamiltonian.22 They have the same nu-
merators while the denominators differ by the termsAja

m . On
the other hand, one may refer to the original expression of
the second-order state-specific effective Hamiltonian~4!
which also involves the same numerators and introduces

E0
m2ea as j -independent energy denominators. The follow-

ing discussion shows that both limits may be reached by the
denominators in Eq.~16!.

A. Inactive double excitations

Suppose that an outer-space determinantua& is obtained
from a given reference determinantu j & by an inactive double
substitution, i.e., a substitutionDr

† involving two core spin–
orbitals and two secondary spin–orbitals:ua& 5 Dr

†u j &. In this
caseua& interacts only with one model stateu j &. Since for any
lÞ j D †( j→ l )ua&Þ0, Aja

m 50 and the second-order effect of
ua& reduced to a diagonal correction

^ j uH̃Sep
~2! ~a!u j &5

^ j uHua&^auHu j &
ej2ea

, ~19!

which is identical to the second-order contribution to the
state-universal effective Hamiltonian.22 If we choose the
Mo” ller–Plesset definition ofH0, the denominators become
independent onu j & and the effect of inactive excitations is a
uniform shift of all diagonal matrix elements. This is an ex-
plicit manifestation of separability of the definition~16! for
the cases where the active orbitals are localized on one of the
subsystem~weak separability14,23!. Notice that the occupied
and virtual inactive MO’s being well separated in energy for
any reasonable choice of the model space, these excitations
cannot produce any intruder problem.

B. Case of two active electrons in two active orbitals

Consider the breaking of homopolar bond or the rotation
around the C–C bond of ethylene. In these problems it is
natural to span the active space by two active MO’sf and
w* of different symmetries~sg , su* for the first problem,pu ,
pg* for the second one!. The corresponding fully symmetric
sector of the complete model space involves only two deter-
minantsu1&5ucoreww̄ u andu2&5ucorew* w̄* u. One easily sees
that any model space substitution@D†~1–2! and D†~2–1!#
involves all the active spin–orbitals. Therefore for any outer-
space determinantua&, except those obtained by inactive sub-
stitutions, the energy denominators in Eq.~16! reduce to
those from Eqs.~4! and ~9!, i.e., E0

m2ea . For the ground
state study~m51!, the gapE0

m2ea remains large whatever
the bond length of the homopolar single bond or the twisting
angle of the double bond. Hence the intruder states which
make the conventional effective Hamiltonian expansion22 di-
vergent through the occurrence of smalle22ea denomina-
tors do not cause any trouble.

As a simple numerical illustration we investigated the
accuracy of formula~16! in describing the ground-state po-
tential curve of F2. We used the same [9s5p1d]/[4s3p1d]
basis set as Laidig, Saxe, and Bartlett24 in their thorough
study on this system. The model space was generated by the
CASSCF ~complete active space self-consistent field!
calculations25 with only two MO’s ~3sg , 3su* ! in the active
space. To specify the Mo” ller–Plesset–type zero-order
Hamiltonian, CASSCF pseudocanonical MO’s and general-
ized orbital energies19 were used. Our results along with
those from some previous second-order calculations and
‘‘nearly full-CI’’ data from24 are given in Table I.
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The ~3sg , 3su* ! CASSCF approximation recovers only
44–45 % of the bonding energy which can be reproduced
within the given basis set. Straightforward application of the
conventional effective Hamiltonian PT~Ref. 22! is meaning-
less because of several crossing between the model and outer
zero-order levels near the equilibrium geometry. The second-
order degenerate PT treatment with averaged active orbital
energies26,27provides a smooth potential curve but markedly
overshoots the dissociation energy and the vibrational fre-
quency. The size-inconsistent state-specific effective Hamil-
tonian procedures deriving the zero-order model-space en-
ergy from the solution of the reference space problem4,27

seem to yield more reliable curves although the dissociation
energy is still too large. Our method gives a considerably
better approximation to nearly full-CI spectroscopic con-
stants of Laidig, Saxe, and Bartlett.24 The remaining slight
overestimation of the bond energy may be attributed to the
systematic error inherent to the second-order treatment with
the chosen form of one-particle zero-order operator~see Ref.
28 for a detailed discussion!.

It should be mentioned that the decontracted treatment of
the model space part of the wavefunction is essential for a
proper description of the F–F bonding, since the starting
CASSCF model substantially underestimates the occupancy
of the bonding 3sg MO ~see Fig. 1!.

C. Practical aspects

While the present analysis aimed essentially to reveal the
origins of the size inconsistency of conventional state-
specific effective Hamiltonian approach, it can also give rise
to a practically valuable tool for molecular electronic struc-
ture computations. The direct use of the approximation de-
fined by Eq.~16! is limited by the risk of numerical insta-
bilities which should appear when some ofcjm coefficients
are small or zero. These problems may be circumvented via
an appropriate denominator averaging over the model space,
i.e., by replacing the set ofj -dependent denominators
$(ej2ea1Aja

m )%, u j &PLp, by a single denominator

den~m,a!5(
j

r ja
m ~ej2Aja

m !1ea , ~20!

where the weightsrja
m are scaled on the contributions of the

determinantsu j & to the target wave function. For instance,
rja

m can be identified with the genealogical weights29

r ja
m 5

^auHu j &cjm
(k^auHuk&ckm

. ~21!

One can verify that the averaging procedure withrja
m defined

as in Eq.~21! preserves the separability of resulting effective
Hamiltonian.

It should be noticed that the denominators~20! may be
also used in nondegenerate formalisms which perturb a mul-
ticonfiguration wave function~an eigenfunction ofPHP! by
the effect of the outer space determinants.30 One may dem-
onstrate that these contracted procedures then become size
consistent ~strictly separable when localized orbitals are
used! provided that the model space is complete.

Let us note finally that the additional computational ef-
forts arising from the necessity to evaluate the shift values
Aja

m can be drastically reduced by an appropriate preliminary
partial summations, and the procedure may be competitive
with conventional second-order schemes.

IV. CONCLUSIONS

We presented an analysis of the conventional second-
order state-specific effective Hamiltonians revealing the ori-
gin of their inherent size inconsistency in the situations
where the complete or separable model spaces are used. Dis-
carding the separability-violating term from the energy de-
nominators, one can arrive at a strictly size-consistent ex-
pression which admits a simple interpretation in terms of the
second-order multipartitioning perturbation theory. The nu-
merical instability of this expression can be in principle
avoided by a proper averaging of the energy denominator
without destroying the separability.

TABLE I. Spectroscopic constants for the F2 ground state calculated within
the [4s3p1d] basis set~Ref. 24!.

r e ~Å! De ~eV! ve ~cm21!

MCSCF 1.500 0.562 583
Second-order PT:
Ref. 27a 1.368 2.411 1115
Ref. 27b 1.392 1.784 997
Ref. 4b,c 1.434 1.621
Present workd 1.438 1.451 850
Nearly full-CI data
Ref. 24
MRDCI 1.436e 1.275e 821c

MR LCCM 1.439e 1.257e 842c

aState-universal effective Hamiltonian, degeneracy of the model space is
forced by averaging the active orbital energies.
bSize-inconsistent state-specific effective Hamiltonian.
cThe model space is extended to 10 configurations.
dSize-consistent state-specific effective Hamiltonian.
eThe model space is extended to 32 configurations.

FIG. 1. Occupation number of the bonding 3sg-MO F2 as a function of the
internuclear separation. Solid line: MCSCF. Dashed line: size-consistent
second-order effective Hamiltonian method.
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