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A formulation of the extension of the method of Kutzelnigg and Klopper, to include terms that are linear in the interelectronic 
distances in the Ansatz for the wavefunction, to general multiple-reference CI (r,,-MR-Cl) with the same basis set requirements 
as in the closed-shell single reference case, is presented. The implementation into existing direct CI programs is straightforward. 
The additional CPU time needed by the ri2 part should be negligible. rrz-MR-CI is readily extended to rrs-MR-ACPF, which 
allows for accurate approximations of full-C1 energies. This implies the possibility of accurately solving the electronic Schriidinger 
equation for medium-sized atoms and molecules. 

1. Introduction 

The most common technique used to solve the 
Schrodinger equation approximately for medium- 
sized atoms and molecules is to expand the wave- 
function in antisymmetrized products of orbitals (i.e. 
Slater determinants), which themselves are ex- 
panded in a finite (one-electron) basis set. It is, 
however, well known that such an approach suffers 
from slow convergence with respect to increasing ba- 
sis set. This slow convergence is due to the inability 
of the simple product Ansatz to describe accurately 
the behaviour of the wavefunction at regions where 
two electrons approach each other and where the 
wavefunction does not tend to zero [ 11, since it is 
well known that at these regions the wavefunction is 
linear in the interelectronic distance ri2 [2]. 

Convergence is dramatically improved if one in- 

cludes terms which are linear in r12 in the Ansatz for 
the wavefunction [ 11. Such a naive approach, how- 
ever, leads to many (up to 4) electron integrals which 
require expensive numerical integrations, and whose 
number ( a n 8, where n is the number of one-elec- 
tron basis functions, as compared to an4 with sim- 
ple orbital products) is (with the exception of very 
small systems) too large for them to bc handled 
efficiently. 

Recently, Kutzelnigg and Klopper [ 3,4] have 

shown that when using one-electron completeness 
insertions which are approximated in the given basis 
set, and which are required to be saturated up to a 
given value of I, it is possible to avoid three- and four- 
electron integrals. The resulting types of integrals (see 
below) are efficiently computed using standard 
methods [ 5,6]. Their so-called “ri2” method has so 
far been formulated for and implemented in Moller- 
Plesset perturbation theory up to second-order 
(MPZ) [3,4,5,7], MP3 [4,8], U(D) [4,8] (in- 
cluding reformulation in CEPA and CPF), CC( SD) 
and CC(SD) [T] [9]. These r12 methods are, how- 
ever, presently limited to a single-reference closed- 
shell Ansatz, and therefore (perhaps with the excep- 
tion of CC( SD) [T] ) arc not capable of accurately 
approximating a full-CI expansion. 

Recently, it was shown how to account for higher 
substitutions in a general multiple-reference (MR)- 
CI(SD) Ansatz [lo]. With this method (ACPF), 
which requires no changes to the part of the CI code 
where the action of the Hamiltonian on a trial func- 
tion is computed, it is in fact possible to accurately 
approximate full-C1 1 lo], A MR formulation would 
also be particularly useful for studying general chem- 
ical systems. 

Based on the ideas of Kutzelnigg and IUopper [ 4 ] 
in the present work a formulation of r,,-MR-CI is 
given, which is readily implemented in any existing 
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MR-CI code. The integrals required (in terms of the 
basis functions), are the same as in single-reference 
Cl. Except for calculating and transforming the in- 
tegrals not needed in a traditional CI, the additional 
computational effort needed for including the r,2 

terms is expected to be negligible. 

2. Notations 

Throughout this work, we will mainly use the syn- 
tax of ref. [4]. a: and a$ are the usual excitation 
operators which, when acting on a Slater determi- 
nant 4, replace the orbitals K byb and 1 by V. We then 
define 

#:=a#, f$g:=afJqb. (1) 

A Slater determinant will be labeled with ,u, u if it 
belongs to the reference space and with K, II if it is 
an arbitrary determinant. 

In the case of the orbital indices, i,, j#, k,, . . . de- 
note occupied orbitals, a&, b,, c,, . . . denote virtual 
orbitals expressible in the given basis set and LY@, /J’,, 
yF, . . . denote virtual orbitals belonging to a complete 
set, all with respect to the ,&h reference. If orbitals 
are occupied in, or virtual with respect to all refer- 
ences, the indices denoting the reference will be 
dropped; i.e. i, j, k, . . denote internal orbitals, CI, b, 
c, .._ denote external orbitals expressible in the given 
basis set and (Y, B, y, . . . denote external orbitals, be- 
longing to a complete basis set. p, q, Y, . . . are arbitrary 
orbitals expressed in the given basis set, and finally 

K, A, ,K .I. are arbitrary orbitals belonging to a com- 
glete set. All orbitals of each set are assumed to be 
normalized and pairwise orthogonal. Spatial orbitals 
are labelled with capital letters. We use the Einstein 
summation convention. 

One- and two-electron integrals are denoted in 
tensor syntax, 

w::=(~l% IP> 1 x3:= (K4f,;z lpv) . (2) 

Antisymmetrized two-electron integrals are denoted 
by a bar 

2% := x$JJ - xz . (3) 

We further define 

2.54 

[z~]y:=z~~-zg-z~~+z~~, 

{Z~“)~~::=Z~tz$, (4) 

for integrals over two or more electrons. We also use 
the commutators and anticommutators 

3. Theory 

The Ansatz for the wavefunction Y is 

!P= c’cr$, ( (6) 

with the coefficients cK being determined variation- 
ally or otherwise. $, denotes a Slater determinant 
which is given by an antisymmetrized Hartree-prod- 
uct r, of normalized and pairwise orthogonal spin- 
orbitals xP, 

(7) 

where ..$ is the usual antisymmetrizer and N is the 
number of electrons. In eq. (6) it is assumed that the 
expansion consists of some reference determinants 
tiP and of at least all determinants that can be created 
from 9, by single or double substitutions of orbitals 
occupied in 0, by virtual orbitals contained in the 
given basis set, i.e. we have at least CI (SD ). We then 
define additional trial functions which are linear in 
the interelectronic distances, 

The effect of QP is to remove those components of 
LGrl,J$ which are already contained in the CI ex- 
pansion in eq. (6). We then get 
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(9) 

Since the first two terms on the rhs of eq. (9) give 
rise to matrix elements which involve a partial wave 
expansion which, in the atomic case, terminates at 
a given value of I (i.e. 1, + 21,,, respectively, 21, + 
lj,,), the influence of these terms vanishes in the stan- 
dard approximation [ 4 ] (see section 4.2). 

At this point it is important to notice that it is not 
necessary to define a,,, b, and ar,, &, as being virtual 
with respect to #r only, since all all-internal single 
,$t and double p$f$p replacements of orbitals oc- 
cupied in &, are already contained in the CI (eq. 
(6)), the influence of semi-internal substitutions 
with one orbital belonging to the complete basis set 

r@ipjj, a& vanishes in the standard approximation, and 
determinants resulting from triple and higher sub- 
stitutions of orbitals in tip do not overlap with 

Jri,jJ,. 

We finally define additional correlation functions, 
equivalent to G’r~,j,,~~ and which are orthogonal to 
the Slater determinants expressible in the given basis 
set, by 

(10) 

where R& := F&, if xa or xs are not contained in the 
given basis set, otherwise R$, := 0. This Ansatz con- 
tains additional terms [ 9,111 in which i# i; and 
j#j; to ensure the same unitary transformation 
properties among orbitals as in the corresponding CI 
functional. The Ansatz for the wavefunction (com- 
pare eq. (6) ) containing terms that are linear in the 
interelectronic distances is then given by 

4. Matrix elements 

4.1. Preliminary considerations 

This section contains the derivation of explicit and 
easily evaluable expressions for all matrix elements 
which occur in the r,2 part of r,2-MR-CI. Since com- 
putational efftciency is not critical for the r12 part (see 
below), there is no need for repartitioning the Ham- 
iltonian or using spin-free formalisms. We therefore 
decided to formulate the additional matrix elements 
needed for the r12 part using Slater determinants of 
spin-orbitals and the usual Hamiltonian, 

fi:=fi(‘)+@‘) > 

fi(‘):=a$hE, Q(2).-l pu-d 
a- 4adgBvj (12) 

with gi2:= 1 /r12. Please note that with the Ansatz ac- 
cording to eq. ( 1 1 ), it is in general not possible to 
formulate a generalized Brillouin theorem [ 121 
which could be used to aid the derivations. The fol- 
lowing matrix elements occur in the r12 part of r12- 
MR-CI: 

(13) 

=a~s(~rIa~~ba~,,I~Y)~~. (14) 

6 is either 1 (i.e. overlap), F?(l), or fit2). It is im- 
practical in the general MR-CI case to give explicit 
formulas for the matrix elements of 6 because of the 
large number of cases to be distinguished. However, 
all matrix elements are readily computed using a 
straightforward application of standard formalisms, 
e.g. the Slater-Condon rules [ 131. The expressions 
which result from the symbolic evaluation of the ma- 
trix elements of 6 are compiled in table 1. Table 2 
contains the integrals resulting from the expressions 
of table 1. 

In the formulas for the matrix elements, the 
expressions of table 1 actually occur again with cy and 
/3 being interchanged and the sign changed. If one uses 
the Slater-Condon rules, it is therefore not necessary 
to repeat the procedure with (Y and p interchanged, 
since it is sufficient to simply multiply the resulting 
integrals (see table 2) by two. 
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Table I 
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Expressions resulting from the symbolic evaluation of the matrix elements occurring in the r,* part of r,z-MR-CI 

‘) Integrals that vanish exactly are enclosed by braces. 

4.2. Approximation of integrals 

We now give easily evaluable expressions for the 
integrals in table 2 using the “standard approxima- 
tion” of ref. [ 41, 

AKBK+APBP, (15) 

which is certainly justified, if the partial wave ex- 
pansion of the integral on the lhs of eq. (15) ter- 
minates at some finite 1 and the basis set is saturated 
up to that I value. Since all integrals arising from the 
symbolic evaluation of the matrix elements occur- 
ring in the r,* part are over at least two internal or- 
bitals (see eqs. ( 13) and ( 14) of section 4.1), this 
is clearly the case for many types of integrals (see 
below) if atoms are considered. As in the single-ref- 
erence case [4], the basis set is required to be sat- 
urated up to 31,,, where l,,, is the largest azimuthal 
quantum number of all internal orbitals. If Brillouin 
theorems [ 121 hold, various expressions can be sim- 
plified or vanish entirely (see below). Additionally, 
there occur expressions which are diffkult to eval- 
uate and which can not be approximated in a simple 
way. These expressions will be neglected, since for- 
tunately they converge fast enough to zero to ensure 
that the truncation error is still smaller than in tra- 
ditional CI (i.e. smaller than ~1~~ [ 11). 

In the molecular case, the partial wave expansions, 
in general, do not terminate. However, experience 
shows that if the molecular orbitals are expanded in 
basis functions centered at the locations of the nu- 

2.56 

clei, the partial wave expansions of those types of in- 
tegrals whose expansions terminate in the atomic 
case, converge rapidly. For example in the case of F,, 
the internal orbitals are accurately described using l- 
and 2d orbitals; at most 2f polarisation functions, in 
addition to the usual sp-basis set, for the SCF- and 
MCSCF-energies are necessary for convergence to 
about 1 mhartree [ 141. 

It should be noted that the approximations needed 
for closed-shell single-reference CI (SD) with SCF 
orbitals have already been derived in ref. (4 1. Those 
needed for internally contracted MR-CI have been 
derived by Kutzelnigg [ 151. In the following, the ap- 
plication of the standard approximation will be de- 
noted by “2”. 

The approximation of the following three integrals 
is straightforward [ 4,15 ] 
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r~~hY~k’=~abhyykl_~~hc~kl 
0 a Yb II (I yb II e cb. (22) 

The expression in eq. (22) may either cancel with 
the corresponding g integrals (see below) due to a 
Brillouin condition [ 4,121, or if the basis set used is 
saturated in every occurring 1 quantum number. We 
then get 

Z? [ rfhgr.2 -r$gh;r:J]$‘. (23) 

To proceed further, we have to find an evaluable 
expression for the first term on the extreme rhs of eq. 
(23) (pleasenote that [fi,,r,,]=[T,, rlz] since v, 
and r12 commute) 

~~(~S~~?~+{(r~~)$h,k}~), (24) 

where we have used [ r,2, [ fl, r12] ] = 1. We finally 

get 

R$p( h&S;)R$ 

~[~(s:s:+{(r:,)~~~}~~)-r~h~r”~]~. (25) 

It is, however, not necessary to neglect the expres- 
sion in eq. (22) since it can be rewritten as 

r~~h~R~~=r~b(h~r~~-h~~~~) 

=r~b([~‘lrr,2]~~+(r,z~,)~~-h~r~~). (26) 

The integrals of [F,, r12] are of non-standard type, 
but efficient programs to evaluate them in terms of 
Cartesian Gaussians already exist [ 5,6]. The final 
result then is [4,15] 

R;j(hhS$)&gExpr. on the rhs ofeq. (25) 

+ [{rtb( [f’,, r12]~lb+r~6h~-h~r~~)}~~]~‘. (27) 

The next g integral has a similar structure as the 
previously treated 6 integral, 

R$fl(& 6;)R;; =@fig$j:. @ 

=ryB&$F$-{rrj g -ab -C +$} $’ + r$bg$ r:i 

E $g$ +J - { ~$~~;;: F$ ) ; + $7g$ )$; . (28) 

We neglect contributions arising from g%r, since the 
truncation error (in the atomic case) of $gf$‘r$ 
is r I-’ [ 41 and the truncation error of r$gg$J, if it 
does not cancel due to a Brillouin condition [ 4,12 ] 
together with the corresponding h integrals anyway 
(see above), is at most xl-’ (see below). Since r12 
and g,, commute, we then get 

g$ r$ = r;tgzF: ifi r;(;g$k” , 

and the final result is [ 15 ] 

(29) 

E$fl(g$I $)R$E [ { jg$“( rf,)$-r$!7r&g~!f}$! 

t r;gg$ rfi] y . (30) 

The last h and g integrals (see eqs. (32) and (33 ) 
below) cancel each other if the extended Brillouin 
theorem [ 4,121 holds. The h integral vanishes within 
the standard approximation if the basis set used is 
saturated in every occurring 1 quantum number. Its 
evaluation is nevertheless straightforward (compare 
the derivation of eq. (27) ) 

d$fi(h”,S;) =l?;dh;=f;“h!&f$h; 

g [ [r12, Tl]fthyr$-r$‘hi]ij. (31) 

The last g integral, which may cancel with the cor- 
responding A integral (see above), 

&fi( &; Jdg) = &d&:: = r;;dg$:’ _ flg$,” , (32) 

257 



Volume 2 IO, number 1,2,3 CHEMICAL PHYSICS LETTERS 23 July 1993 

does not automatically vanish in a more general case 
since (in the atomic case) the partial wave expan- 
sion of the first term on the rhs of eq. (32) may in- 
volve orbitals with 1 quantum numbers that are not 
contained in the given basis set, e.g. lM=fi +ij+ 
Id = 1,” + I,* + I, > 1,=x. However, using the procedure 
described in the appendix of ref. [ 4 1, it can be shown 
that 1t-y 1 cc/i3 and jgr 1 ccZi2, where 6; is a Is Sla- 
ter-type orbital (STO) and 4, is a ST0 with azi- 
muthal quantum number 1,. This means that ne- 
glecting &$dgz? introduces an error of at most ;cI-’ 
(in the atomic case). Using the fact that r12 and g12 
commute we finally get 

symmetric with respect to an interchange of I” and 
K”. 

The computation of ALL, cr”, dry, @, Ff, 
R;“j, I%, I?GL, Lg‘F and h?E$F ’ IS simple because 
all intermediate matrices can be held in memory. In 

“FL the cases of B, , w and Jrp it is recommended 
that one matrix is kept in memory during the trans- 
formation and the file containing r% and g;$ is read 
once. In the cases of &SF, 6F and @F, a ma- 
trix might become too large to be held in memory 
completely. It is then recommended that the matri- 
ces be computed only for a given pair (Z”K” ) at a 
time. 

Table 3 contains the final expressions for all in- 
tegrals occurring in the r,2 part in terms of the ma- 
trices of eq. (33 )_ Their counterparts over spin-or- 
bitals are easily obtained by noting that all matrices 
vanish unless the labels which are exactly one upon 
another, belong to orbitals with the same spin. 

4.3. Handling of integrals 5. Conclusions 

To evaluate the formulas derived in section 4.2 ef- 
ficiently, it is recommended that one computes the 
following matrices: 

d#” are invariant with respect to a simultaneous 
interchange of (IJ) with (EL). Jrp and zEL are in- 
variant with respect to a simultaneous interchange of 
the two lower indices with one another and, at the 
same time, of the two upper indices with one an- 
other. zE$!“, a$$?‘, @$r, @,$K” and pf,TI;” are 

It has been shown that even without the possibility 
of using Brillouin theorems [ 121 (see ref. [ 41) it is 
possible to formulate easily evaluable expressions for 
r,,-MR-Cl, which have the same basis set require- 
ments as in the single-reference rL2-CI [ 41. The basis 
set truncation error of the present formulation (in 
the atomic case) is x2-5 in the worst case which is 
still better than xiv3 [l] of traditional CI. The 
maximum performance to be expected, is the same 
as in the single-reference case, i.e. ccl-‘. Apart from 
the types of integrals common to large scale quan- 
tum chemistry (h? and gF$), the only additional 
types necessary are (r”)?, r:rZ and [p,, r12]f_P, 
which are readily computed; e.g., in terms of Carte- 
sian Caussians. The integrals [ f’, , r12]I? may be 
avoided at the expense of a basis set of higher quality 
(see section 4.2). 

The largest memory requirements during the CI 
iterations are ziV2n2 (at most) for the matrix ele- 
ments ofeqs. (17), (31) and (33) and ;tiN4 for 
the remaining matrix elements (see table 3) if only 
the parts needed for one pair (I”K”) are kept in 
memory. N is the number of internal (spatial) or- 
bitals and n the number of basis functions. The CPU 
time used for one CI iteration is aNB for the inter- 
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Table 3 
Non-vanishing values of the symbolic expressions resulting from the matrix element evaluations of the Hamiltonian occurring in the r12 
part of r,,-MR-CI 

Matrix element Expression Value in the standard approximation ‘) Eq. b’ 

(,&V I JL > 67 CP a B sy a= [A;‘-&; 

c ‘&kP I A’ ’ ) I Y&2,‘ > hYGa a 4 [j(s;s;+2;;)-E;];‘+ C) [F;+fi;‘-Iy]y 
/$‘6Ydd _? h !$” 3” 

2[k$-rfj]f ( %$” I flC2)I “id,, > Et? 
&.S$ [fC$ -,Q$ +&j;F.“l;~ dl 

&$;i” S;S; g$! 3; 

(qgpIA”‘I@,> hpdd 
* 

a P [G*-fiq- [T,, r121$,, 
( p&$5 1 PI(‘) I $h, > E?B I@@ -J$qlC 

g$ S$ [&$- _,$J+“] d) ‘I’ v 

a) See section 4.2; for the definitions ofthe matrices, see section 4.3. 
b, Number of the equation in which the formula has been derived. 
c) Correction to previous expression. 
d, A term with truncation error of at most x 1-’ in the atomic case which has been neglected. 

(16) 
(25), (27) 
(19) 
(18) 

(30) 

(20) 

(31) 
(17) 
(33) 

actions of the r12 determinants among themselves 
(eq. ( 14) in section 4.1), J; N ‘n * for the interaction 
of the r,* determinants with the determinants of the 
traditional CI( SD) (eq. ( 13) in section 4.1), and 
cc N2n4 for the traditional CI (SD) part, which clearly 
dominates for n xa N. 

Since the r$:$,ti, eq. (lo), are in general not pair- 
wise orthogonal, one has to compute the metrical 
tensor using $f;’ according to eq. ( 16 ) . This non-or- 
thogonality, however, does not complicate the cal- 
culation. In some MR cases, the Ansatz according to 
eq. ( 11) contains redundant terms which are easily 
deleted. 

The method is presently being implemented in the 
Columbus-MR-CI(SD) program [ 161 which is a di- 
rect CI program based on the “graphical unitary 
group approach” (GUGA). In our implementation, 
the part where the CI matrix elements are computed 
is not changed. To compute the interaction between 
the r12 part of the Ansatz and the CSFs, the latter are 
decomposed into Slater determinants and the for- 
mulas needed are computed for each occurring walk. 

The implementation of the present method into 
ACPF [lo] is also straightforward: the r&dpjb are 
simply added to the correlation function I1v,. With 
r,,-MR-ACPF one has a powerful tool to solve the 
electronic Schrgdinger equation approximately for 
medium sized chemical systems simultaneously at 
both the full-C1 expansion limit and the basis set 
limit. 
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