
Alternative definition of excitation amplitudes in multi-reference state-specific
coupled cluster
Yann Garniron, Emmanuel Giner, Jean-Paul Malrieu, and Anthony Scemama

Citation: The Journal of Chemical Physics 146, 154107 (2017); doi: 10.1063/1.4980034
View online: http://dx.doi.org/10.1063/1.4980034
View Table of Contents: http://aip.scitation.org/toc/jcp/146/15
Published by the American Institute of Physics

Articles you may be interested in
Equation-of-motion coupled-cluster methods for atoms and molecules in strong magnetic fields
The Journal of Chemical Physics 146, 154105 (2017); 10.1063/1.4979624

Incremental full configuration interaction
The Journal of Chemical Physics 146, 104102 (2017); 10.1063/1.4977727

Excited states from modified coupled cluster methods: Are they any better than EOM CCSD?
The Journal of Chemical Physics 146, 144104 (2017); 10.1063/1.4979078

A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled
cluster singles and doubles theory
The Journal of Chemical Physics 146, 164105 (2017); 10.1063/1.4981521

Correlated natural transition orbitals for core excitation energies in multilevel coupled cluster models
The Journal of Chemical Physics 146, 144109 (2017); 10.1063/1.4979908

Driven similarity renormalization group: Third-order multireference perturbation theory
The Journal of Chemical Physics 146, 124132 (2017); 10.1063/1.4979016

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/20939943/x01/AIP-PT/JCP_ArticleDL_0117/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Garniron%2C+Yann
http://aip.scitation.org/author/Giner%2C+Emmanuel
http://aip.scitation.org/author/Malrieu%2C+Jean-Paul
http://aip.scitation.org/author/Scemama%2C+Anthony
/loi/jcp
http://dx.doi.org/10.1063/1.4980034
http://aip.scitation.org/toc/jcp/146/15
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4979624
http://aip.scitation.org/doi/abs/10.1063/1.4977727
http://aip.scitation.org/doi/abs/10.1063/1.4979078
http://aip.scitation.org/doi/abs/10.1063/1.4981521
http://aip.scitation.org/doi/abs/10.1063/1.4981521
http://aip.scitation.org/doi/abs/10.1063/1.4979908
http://aip.scitation.org/doi/abs/10.1063/1.4979016


THE JOURNAL OF CHEMICAL PHYSICS 146, 154107 (2017)

Alternative definition of excitation amplitudes in multi-reference
state-specific coupled cluster

Yann Garniron,1 Emmanuel Giner,2,3 Jean-Paul Malrieu,1 and Anthony Scemama1,a)
1Laboratoire de Chimie et Physique Quantiques, CNRS 5626, IRSAMC, Université Paul Sabatier,
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A central difficulty of state-specific Multi-Reference Coupled Cluster (MR-CC) in the multi-
exponential Jeziorski-Monkhorst formalism concerns the definition of the amplitudes of the single
and double excitation operators appearing in the exponential wave operators. If the reference space
is a complete active space (CAS), the number of these amplitudes is larger than the number of singly
and doubly excited determinants on which one may project the eigenequation, and one must impose
additional conditions. The present work first defines a state-specific reference-independent operator
ˆ̃Tm which acting on the CAS component of the wave function |Ψm

0 〉 maximizes the overlap between

(1 + ˆ̃Tm)|Ψm
0 〉 and the eigenvector of the CAS-SD (Singles and Doubles) Configuration Interaction

(CI) matrix |Ψm
CAS–SD〉. This operator may be used to generate approximate coefficients of the triples

and quadruples, and a dressing of the CAS-SD CI matrix, according to the intermediate Hamiltonian
formalism. The process may be iterated to convergence. As a refinement towards a strict coupled clus-

ter formalism, one may exploit reference-independent amplitudes provided by (1 + ˆ̃Tm)|Ψm
0 〉 to define

a reference-dependent operator T̂m by fitting the eigenvector of the (dressed) CAS-SD CI matrix. The
two variants, which are internally uncontracted, give rather similar results. The new MR-CC version
has been tested on the ground state potential energy curves of 6 molecules (up to triple-bond breaking)
and two excited states. The non-parallelism error with respect to the full-CI curves is of the order of
1 mEh. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4980034]

I. INTRODUCTION

The single-reference Coupled Cluster (CC) formalism1–4

is the standard technique in the study of the ground state of
closed-shell molecules, i.e., those for which a mean-field treat-
ment provides a reasonable zeroth-order single-determinant
wave-function Φ0. This method incorporates the leading con-
tributions to the correlation energy in a given basis set; it is
based on the linked-cluster theorem5 and is size-extensive
since it is free from unlinked contributions. The method gener-
ates an approximate wave function under the action of a wave
operator Ω̂ acting on the single-determinant referenceΦ0, and
assumes an exponential character to the wave operator

Ψ = Ω̂Φ0 = eT̂
Φ0. (1)

The most popular version only introduces single and dou-
ble excitation operators in T̂ , and is known as the Coupled
Cluster Singles and Doubles (CCSD) approximation. It incor-
porates the fourth-order correction of the quadruply excited
determinants. The lacking fourth-order contribution concerns
the triply excited determinants, which may be added in a per-
turbative manner. The CC equations, obtained by projecting
the eigenequation on each of the Singles and Doubles (SD),
lead to coupled quartic equations. In practice, guess values of

a)Electronic mail: scemama@irsamc.ups-tlse.fr

the amplitudes of the T̂0→i operators appearing in the T̂ opera-
tor may be taken as the coefficients of the singles and doubles
|i〉 in the intermediate normalization of the SD Configuration
Interaction (CI) vector. The solution of the CC equations may
be obtained by treating the effect of the triples and quadruples
as an iterative dressing of the SD CI matrix,6 according to the
Intermediate Effective Hamiltonian (IEH) theory.7,8 The field
of application of this method, which satisfies formal require-
ments and is numerically efficient, is however limited to the
systems and the situations where a single-determinant zeroth-
order description is relevant. This is no longer the case when
chemical bonds are broken, creating open shells, as occurs in
most of the chemical reactions. The magnetic systems gener-
ally present several open shells, and the low spin-multiplicity
states are inherently of multiple-determinant character. Due
to near degeneracies, most of the excited states are not only
of multi-determinantal but of multi-configurational character.
The conception of a multi-reference (MR) counterpart of the
CCSD formalism is highly desirable, and has been the subject
of intense research. The most comprehensive review has been
given by Bartlett and his colleagues.9 For formal reasons and
in particular to treat correctly the breaking of bonds, the ref-
erence space, or model space, is usually taken as a Complete
Active Space (CAS), i.e., the Full-CI (FCI) of a well-defined
number of electrons (the active electrons) in a well-defined
set of orbitals (the active MOs). The other MOs are called
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inactive. Let us label |I〉, |J〉, . . . the reference determinants.
The determinants |i〉, |j〉, . . . which interact with the reference
space are obtained under purely inactive or semi-active single
and double excitations; they generate the CAS-SD CI space,
the diagonalization of which provides a size-inconsistent
energy Em

CAS-SD and the corresponding eigenvector,

|Ψm
CAS-SD〉 = |Ψ

m
0 〉 + |Ψm

SD〉

=
∑

I ∈CAS

Cm
I |I〉 +

∑
i<CAS

cm
i |i〉 (2)

with 〈Ψm
CAS-SD |Ψ

m
CAS-SD〉 = 1.

One strategy, which is not very aesthetic since it breaks
the symmetry between degenerate reference determinants, but
which has given rather satisfactory results, consists in selecting
(eventually in an arbitrary manner) a specific single reference
and in introducing in the wave operator the multiple excitations
which generate the other references (the other determinants of
the model space).10 A similar procedure was proposed by Li
and Paldus which uses specific three and four body ampli-
tudes issued from a MR-CISD function.11 The other strategies
consider all the references on an equal footing, and are really
multi-reference. Let us call N the number of references, and
n the number of SD determinants. If the treatment pretended
to provide N eigenvectors simultaneously, one might define
the N × n amplitudes sending from the references to the outer-
space determinants, in a unique manner but this state-universal
approach is not practicable when the model space is a CAS.

Most of the proposed formalisms are state-specific. In this
case one faces the famous multi-parentage problem. This prob-
lem is recalled in Section II A. Sufficiency conditions have to
be imposed.12 One solution was proposed by Mukherjee and
co-workers, and has been widely tested.13–15 Another one had
been proposed earlier by one of us (JPM) and co-workers.16 It
consists, for a given outer-space determinant, in scaling the
amplitudes of the various excitation operators T̂I→i on the
interaction between the outer-space determinant and its par-
ents. A recent work has implemented this second solution of
the state-specific Multi-Reference Coupled Cluster (MR-CC)
problem and has tested its accuracy and robustness on a series
of molecular benchmarks, comparing its results to the full-CI
energies.17 In the text, we will refer to this method as λ-MR-
CCSD. The present work proposes an alternative process to
define the amplitudes of the excitation operators, and this new
method will be called µ-MR-CCSD.

The state-specific MR-CC formalisms are usually based
on the Jeziorski-Monkhorst18 splitting of the wave operator
into a sum of operators acting individually on the various
references

T̂m =
∑

I

T̂m
I |I〉〈I |. (3)

We shall leave in a first time this assumption and define in
Section II B a reference-independent operator T̂ which acting
on the component of the desired state in the model space,
|Ψm

0 〉, provides a vector as close as possible to the CAS-
SD eigenvector. This solution, defining reference-independent
amplitudes of the excitations, may be exploited directly to gen-
erate approximate values of the coefficients of the triply and
quadruply excited determinants, according to the exponential

structure of the wave operator. From these coefficients, one
may dress the CAS-SD CI matrix, redefine amplitudes, and
iterate the process to convergence. This solution, presented in
Section II C, is not an MR-CC technique; one may call it an
exponential dressing of the CAS-SD CI matrix. Section II D
redefines reference-dependent excitation amplitudes from the
reference-independent amplitudes by a fitting of the previous
amplitudes on the coefficients of the singles and doubles of the
(dressed) CAS-SD CI eigenvector. This represents an alterna-
tive solution to multi-parentage problem and opens the way
to a strict MR-CC formalism. Section III presents a series of
numerical tests on the bond breaking of single, double, and
triple bonds in ground states of molecules as well as a few
tests on excited states. The results are compared to our pre-
vious proposal and with Full Configuration Interaction (FCI)
results.

II. FORMALISMS

In this section, all the presented formalisms are state-
specific. To simplify the notations we will consider that the
state superscript m is implicit for the wave functions (Ψm → Ψ)
and for the excitation operators (T̂m → T̂ ).

A. The multi-parentage problem
in the Jeziorski-Monkhorst approach

Since one wants to produce a MR-CCSD method, one
may start from a preliminary CAS-SD CI calculation which
will help to fix guess values of the amplitudes of the excitation
operators. Let us call |I〉, |J〉, . . . the determinants of the CAS,
i.e., the so-called reference vectors, and |i〉, |j〉, . . . the singles
and doubles which do not belong to the CAS and interact with
them. The resulting approximate wave function of the targeted
state |Ψ〉 is written as

|ΨCAS–SD〉 =
∑

I

CI |I〉 +
∑

i

ci |i〉. (4)

Although this function is not size consistent, one may note that
the coefficients on the CAS determinants are no longer those
of the CAS-CI: they incorporate the effect of the dynamical
correlation on the composition of the CAS component of the
wave function.

In CC formalisms the wave operator Ω̂ is assumed to take
an exponential form

Ω̂ = exp(T̂ ) (5)

and in our previous MR-CC formalism17 the Jeziorski-
Monkhorst multi-exponential structure of the wave operator
was adopted, introducing reference-specific wave operators
acting specifically on each reference vector (Eq. (3)). One
may exploit the knowledge of the CAS-SD CI eigenvector
to determine guess operators T̂I defined in such a manner that

|ΨCAS–SD〉 =
∑

I

CI T̂I |I〉. (6)

Each of the T̂I operators is a sum of single and double
excitations T̂I→i possible on |I〉, multiplied by an amplitude
tI→i,

T̂I =
∑

i

tI→iT̂I→i. (7)
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In the single-reference CC, the amplitudes of the excitation
operators are obtained by projecting the eigenequation on
the singly and doubly excited determinants; the number of
unknowns is equal to the number of equations. This is no longer
the case in the MR context: projecting the eigenequation on
each of the singly or doubly excited vectors |i〉 is not suffi-
cient to define the amplitudes tI→i since for many classes of
excitation, an outer-space determinant interacts with several
references, |i〉 = T̂I→i |I〉 = T̂J→i |J〉. The condition

Ci =
∑

I

tI→i CI (8)

is not sufficient to define the amplitudes, even if one restricts
the excitation operators to single and double excitations. Addi-
tional constraints have to be introduced to fix the amplitudes,
and this is the famous multi-parentage problem. The number
of amplitudes is larger than the number of outer-space deter-
minants so that one cannot determine directly the guess values
of the amplitudes from Eq. (6). Different additional constraints
have been proposed. One of them consists in scaling the ampli-
tudes on the Hamiltonian interactions between the references
and the outer space determinants,

tI→i

tJ→i
=
〈i|Ĥ |I〉

〈i|Ĥ |J〉
. (9)

This constraint is expressed as

tI→i = λi〈i|Ĥ |I〉, (10)

where
λi =

ci

〈i|Ĥ |Ψ0〉
. (11)

This solution has been recently implemented17 and shown
to provide excellent agreements with full-CI results on a series
of molecular problems. From now on, we will refer to this
method as the λ-MR-CCSD.

When the term 〈i|Ĥ |Ψ0〉 is small, the λ-MR-CCSD
presents minor stability problems which may introduce some
jitter in the potential energy surfaces. A more important prob-
lem of the λ-MRCC is illustrated by considering the case
of a non-interacting A · · ·B system with localized MOs on
A and B. The 2-hole 2-particle inactive double excitations of
the type T̂iAjB→rAsB have zero amplitude in the λ-MRCC for-
malism since the integral 〈iAjB |rAsB〉 = 0. The coefficient of
the determinant T̂iAjB→rAsB |I〉 is not zero but it is equal to the
product tiA→rA tjB→sB cI . In Sec. II B, we propose an alternative
solution to the multi-parentage problem to define amplitudes
which do not suffer from this pathological behavior.

B. Introduction of reference-independent amplitudes

The present method differs from the λ-MR-CCSD in the
definition of the amplitudes, introduced in this section. The
formalism will leave in the first step the Jeziorski-Monkhorst
formulation of the wave operator and will consider the possi-
bility to define a unique state-specific reference-independent
operator T̂ , written as a sum of single and double excitation
operators,

T̂ =
∑
mnpq

tmn→pq a†pa†qanam +
∑
mp

tm→p a†pam, (12a)

=
∑
mnpq

tmn→pq T̂mn→pq +
∑
mp

tm→p T̂m→p, (12b)

where the indices p and q run on the virtual and active MOs
and the indices m and n run on the inactive occupied and active
MOs, excluding the possible occurrence of 4 active MOs. An
operator of this kind (but keeping only the linearly indepen-
dent combinations of the elementary operators) is used in the
internally contracted MR-CC method (ic-MRCC) by Evange-
lista and Gauss,19 and by Hanauer and Köhn.20 A similar and
more compact formulation was already suggested by Mahap-
atra et al.21 Our formalism differs by both the determination
of the amplitudes and by the way we use them, as will appear
later. The ic-MRCC method determines the amplitudes of the
excitations by solving the projected coupled cluster equations,
where the amplitudes appear up to quartic terms. Hereafter
we exploit the knowledge of the CAS-SD CI eigenvector
to determine the guess values of the reference-independent
amplitudes. These excitation amplitudes will be used later on
to estimate the coefficients of the triples and quadruples, and
perform an iterative dressing of the CAS-SD CI matrix intro-
ducing the coupling between the singles and doubles with the
triples and quadruples.

We propose a criterion to fix the amplitudes t
= {tmn→pq, tm→p}. Given the fact that we have at our disposal
the CAS-SD wave function, a natural way to solve this overde-
termined problem is to minimize the distance between the
CAS-SD vector and the vector obtained by applying the (1+T̂ )
operator on the CAS wave function

arg min
t
‖(1 + T̂ )|Ψ0〉 − |ΨCAS–SD〉‖

= arg min
t
‖T̂ |Ψ0〉 − |ΨSD〉‖, (13)

T̂ |Ψ0〉 being normalized such that ‖T̂ |Ψ0〉‖ = ‖|ΨSD〉‖.
To perform the minimization, we build the NSD × Nt trans-

formation matrix Ai,mn→pq = 〈i|T̂mn→pq |Ψ0〉 which maps from
the outer space of determinants {|i〉} to the space of excited
wave functions {T̂mn→pq |Ψ0〉}, and we search for the vector of
amplitudes t which minimizes ‖A.t−c‖ by solving the normal
equations,

(A†A)t = A†c. (14)

Note that in the single-reference case, A is a permutation
matrix and the CAS-SD wave function is exactly recovered.

The matrix A is usually so large that the use of standard
singular value decomposition (SVD) routines to obtain the
least squares solution is prohibitive.

Let us first consider the most numerous 2-hole-2-particle
inactive double excitations T̂jk→rs. These excitations consist
in creating two holes in the doubly occupied orbitals and
two particles in the unoccupied orbitals. For each excitation
of this kind, as all the involved orbitals are outside of the
active space, the number of determinants originating from this
process is equal to the number of determinants in the refer-
ence. Moreover, each one of these excited determinants is
doubly excited with respect to only one determinant |I〉 of
the reference, and the excitation degree with respect to all
other reference determinants is necessarily higher than two.
Therefore, all excited determinants created by such a 2-hole-
2-particle process have only one parent in the reference, and
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the corresponding rows of A contain only one non-zero ele-
ment located in the jk → rs column with value Ai,jk→rs =CI .
The condition fixing the amplitude tjk→rs is given by

arg min
tjk→rs

‖T̂jk→rs |Ψ0〉tjk→rs − |ΨSD〉‖ (15)

which is obtained by minimizing

min
tjk→rs

*
,

∑
I

*
,
CI tjk→rs −

∑
i

ci〈i|T̂jk→rs |I〉+
-

+
-

2

(16)

using Eq. (14), and this condition turns out to be satisfied using
only one non-zero coefficient ci with

tjk→rs =

∑
I CI ci∑

I C2
I

. (17)

One may notice that this is the weighted average of the ratios
between the coefficients of the doubly excited determinants |i〉
and the coefficient of their unique reference generator,

tjk→rs =
1∑
I C2

I

*
,

∑
I

C2
I

(
ci

CI

)
+
-

. (18)

The maximum number of non-zero elements per row of
A is equal to the number of reference determinants since each
excitation operator applied on a reference produces no more
than one excited determinant. Hence, for all the remaining
active excitations, A remains sparse and we solve Eq. (14)
using Richardson’s iterative procedure22




t0 = A†c,
tn+1 = A†c +

(
I − A†A

)
tn,

(19)

which may be implemented very efficiently using sparse
matrix products.

There are cases where multiple amplitudes applied to
different references lead to same determinant: T̂jk→rs |I〉
= T̂lm→tv |J〉= |i〉. The linear system is underdetermined, so
there are infinitely many possible amplitudes verifying the
equations. Among the infinity of possibilities, the SVD picks
one particular solution given by A+c, where A+ is the pseudo-
inverse of A. As this solution minimizes the norm of the
amplitude vector,23 the arbitrariness brought by the null space
of A is minimized and one obtains the most sensible solution.

C. Evaluation of the coefficients of triples
and quadruples and iterative dressing
of the CAS-SD CI matrix

This section recalls the procedure described in our previ-
ous work.17 The so-determined excitation operator T̂ may be
used to generate the approximate values of the coefficients of
the triples and quadruples as obtained by the action of 1

2 T̂2.
Actually one may assume, in the spirit of the internally con-
tracted MR-CC methods, that the wave operator Ω̂ generating
the correlated wave function Ψ from Ψ0,

Ψ = Ω̂Ψ0, (20)

has an exponential structure,

Ω̂ = exp(T̂ ). (21)

But this form will be simply used to estimate the coefficients
of the triply and quadruply excited determinants {|α〉}, leav-
ing the internally contracted structure of the outer-space. The
coefficients of these determinants are estimated as

cα =
1
2
〈α |T̂2 |Ψ0〉. (22)

All the determinants {|α〉} are generated by applying all
the single and double substitutions on the singles and dou-
bles, and filtering out the determinants which are already in
the wave function. For each |α〉 one searches for the reference
determinants {|I〉}α which differ by no more than 4 orbital
substitutions from |α〉 (its grand-parents). One then identifies
the set of all possible complementary excitations as the prod-
ucts of excitations T̂p and T̂q, which generate |α〉 from every
member |I〉 of the set {|I〉}α, i.e.,

Sα =
{
(p, q, I) : ∀|I〉 ∈ {|I〉}α,

(
T̂pT̂q |I〉 = |α〉

)}
. (23)

It now straightforward to find the set of singles and doubles
with which |α〉 interacts through the matrix elements 〈i|Ĥ |α〉,
namely,

{|i〉}α =
{
|i〉 : ∀(p, ·, ·)∈ Sα,

(
|i〉 = T̂†p |α〉

)}
. (24)

For each |i〉, in the eigenequation(
〈i|Ĥ |i〉 − E

)
ci +

∑
J

〈i|Ĥ |J〉CJ +
∑
j,i

〈i|Ĥ |j〉cj

+
∑
α

〈i|Ĥ |α〉cα = 0, (25)

the coefficient cα is given by the genealogy of |α〉,

cα =
∑

(p,q,I)∈Sα

(−1)n(I→α)tptqCI , (26)

n(I → α) being given by the number of permutations needed
to go from |I〉 to |α〉. One may replace the sum over the α by
a dressing of the matrix elements between the determinant |i〉
and the references which are grand-parents of |α〉,

〈i|∆̂|I〉 =
∑
α

〈i|Ĥ |α〉 *.
,

∑
(p,q,J)∈Sα :(J=I)

(−1)n(I→α)tptq
+/
-

(27)

since ∑
I

〈i|∆̂|I〉CI =
∑
α

〈i|Ĥ |α〉cα. (28)

The effect of the triples and quadruples is thus incorporated as a
change of the columns of the CAS-SD CI matrix corresponding
to the interaction between the references and the singles and
doubles,(
〈i|Ĥ |i〉 − E

)
ci +

∑
J

〈i|(Ĥ + ∆̂)|J〉CJ +
∑

j

〈i|Ĥ |j〉cj. (29)

This type of dressing was already employed in our pre-
vious MR-CC implementation.17 One will find in the same
reference the practical procedure to make the dressed matrix
Hermitian without any loss of information. Of course the whole
process may be iterated. The diagonalization of the dressed
CAS-SD CI matrix provides new values of the coefficients, not
only of the singles and doubles which no longer suffer from
the truncation but also those of the references: the method is



154107-5 Garniron et al. J. Chem. Phys. 146, 154107 (2017)

fully decontracted. From the new wave function new ampli-
tudes are obtained, a new dressing is defined and the process
is repeated till convergence, which is usually rapidly obtained
(3-4 iterations).

As opposed to the λ-MR-CCSD method which uses
reference-specific amplitudes, the amplitudes introduced in
Sec. II B are reference-independent. As a consequence, the
formalism is not a strict MR-CC method since we exploit the
CAS-SD CI function which slightly differs from the vector
resulting from the action of T̂ on the vector. Although the dis-
tance between these two vectors has been minimized, they are
not identical, (1 + T̂ )|Ψ0〉 , |ΨCAS–SD〉.

Once the T̂ operator has been obtained, one might imag-
ine a contracted exponential formalism calculating T̂2 |Ψ0〉 and
the interaction between T̂ |Ψ0〉 and T̂2 |Ψ0〉, but this calculation
requires to return to the determinants. This formalism would
remain internally contracted and would be less accurate than
the decontracted procedure we propose. Actually in this ver-
sion, the deviations of the approximate reference-independent
amplitudes from optimal ones, those which would generate
the exact coefficients of the singles and doubles, only affect
the evaluation of the coefficients of the triples and quadruples,
and these deviations represent a minor source of error in the
correction restoring the size extensivity. This reliability will
be illustrated in the numerical tests.

D. State-specific MR-CC variant

In order to return to MR-CC formalism, one may sim-
ply exploit the reference-independent amplitudes as an initial
guess to define reference-dependent amplitudes. Currently the
determinant |i〉 belonging to the singles and doubles has a
coefficient c̃i in T̂ |Ψ0〉,

c̃i = 〈i|T̂ |Ψ0〉 =
∑

{(p,I):(T̂p |I〉= |i〉)}

tp CI , (30)

which differs from the coefficient ci in |ΨSD〉. One can define
a parameter µi, specific of the determinant |i〉,

µi =
ci

c̃i
, (31)

which multiplying with c̃i will produce the exact coefficient ci

of |i〉 in the (dressed) CAS-SD CI eigenvector. So the pre-
vious reference-independent amplitudes have now become
reference-dependent. The excitation T̂p which excites |I〉 to
|i〉 (|i〉 = T̂p |I〉) receives a reference-dependent amplitude

tI→i = tp,I = µitp . (32)

The same excitation will receive a somewhat different
amplitude when it acts on another reference tp,J , tp,I . This
version returns to the Jeziorski-Monkhorst formalism as the
wave operator again is a sum of reference-specific operators.
The so-obtained amplitudes may be exploited to generate the
coefficients of the triples and quadruples, and one may follow
the same strategy as in our previous formalism, with an iter-
ative column dressing of the interactions between the singles
and doubles and the references. In what follows, we will refer
to this method as µ-MR-CCSD as it involves the µi (Eq. (31)).

As the overlap between (1 + T̂ )|Ψ0〉 and |ΨCAS–SD〉 has
been maximized, the coefficients c̃i and ci are expected to

be very close in particular if ci is large, and the parameter
µi should be close to 1, at least for the determinants which
contribute significantly to the wave function. In practice we
observe this tendency, but the smallest coefficients are sacri-
ficed during the maximization of the overlap and their µi can be
very far from 1. This introduces some instabilities in the itera-
tions, so we chose to limit the values of µi in the [−µmax

i , µmax
i ]

range, with

µmax
i = 2 + 100 × exp

(
−20

|ci |

maxj |cj |

)
. (33)

In this way, when ��ci
�� is large µi is constrained in the [�2,2]

range, and when ��ci
�� is small, µi is constrained in [�102,102].

The effect on the stability of the iterations is significant, and
the effect on the energy differences is not noticeable, as seen
in Sec. III.

Our procedure makes use of an (non-compulsory but con-
venient) approximation, namely, the fact that we have not
subtracted the product of the single excitations (the T̂2

1 contri-
butions) from coefficients of the doubles to fix the T̂2 ampli-
tudes. From a perturbation expansion, one sees that this neglect
only introduces fifth-order errors on the energy, which are
responsible for small deviations from strict additivity of the
energies. Notice that a correct treatment of the T̂n

1 operations,
although tedious, is perfectly conceivable in our formalism
and would insure a perfect MR-CC character.

III. NUMERICAL TESTS

In this section, we first numerically evaluate the errors
made by the different approximations. Then, we compare
the here-proposed dressed CAS-SD and µ-MR-CCSD to the
λ-MR-CCSD presented in Ref. 17 on standard benchmark
systems.13,15,19,20,24–33

The basis set used is Dunning’s cc-pVDZ,34 and the
molecular orbitals were obtained using the CAS-SCF code
present in GAMESS.35 All the following calculations were
made using the Quantum Package,36 an open-source program
developed in our group. Full-CI energies were obtained using
the CIPSI algorithm.37–39 In all the calculations (full-CI, CAS-
SD, and MR-CC), only the valence electrons are correlated
(frozen core approximation).

A. Approximations

1. T̂2
1 × T̂2, T̂3

1 , and T̂4
1

To estimate the errors due to the approximate treatment of
the T̂2

1 × T̂2, T̂3
1 , and T̂4

1 operators, we chose a single-reference
example in which the single excitations are important at the
CISD level. In the single reference case, all the excitations
are of the 2 hole-2 particle type, so the normal equations
(Eq. (14)) are solved exactly and all the values of µ are equal
to 1. The only difference to standard CCSD is the approximate
treatment of the T̂3

1 and T̂4
1 , as explained in Section II D.

We have calculated the energy of the FH molecule at a
distance of 1.2 Å with the single-reference CCSD programs of
GAMESS40 and Gaussian 09,41 and our µ-MR-CCSD imple-
mentation using the Hartree-Fock determinant as reference.
The results are presented in Table I. The Hartree-Fock and
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TABLE I. Comparison of the single-reference energies obtained with Gaus-
sian 09, GAMESS, and the Quantum Package for FH at 1.2 Å, cc-pVDZ. All
energies are converged below 10�10 a.u.

Hartree-Fock CISD CCSD

Gaussian 09 �99.959 526 039 �100.170 216 059 �100.178 425 609
GAMESS �99.959 526 065 �100.170 216 086 �100.178 425 629
Quantum package �99.959 526 065 �100.170 216 097 �100.178 426 538

CISD energies agree up to 10�8 a.u., but our implementation
differs from the CCSD by almost ∼−10−6 a.u. We attribute
this difference to the approximation in the T̂2

1 × T̂2, T̂3
1 , and T̂4

1
operators, and it represents a relative error of 4.4 × 10�6 on
the correlation energy.

To measure the effect of this approximation on the size
consistency, we have calculated the energy of the CH3 radical,
with C–H bond lengths of 1.103 Å and H–C–H bond angles
of 107.69◦ in the 6-31G basis set. We have also calculated the
energy of the dimer with an intermolecular distance of 100 Å.
The active space of the monomer contains only the singly
occupied orbital, and the dimer is an open shell singlet with a
CAS(2,2) wave function. For the µ-MR-CCSD calculation, we
have constrained the µi as in Eq. (33) or we have let it uncon-
strained. The results are given in Table II and show that the
deviation to additivity of the energy is reduced by an order of
magnitude going from the CAS-SD to the dressed CAS-SD,
and by two orders of magnitude when including the µi fac-
tors. The constraint on the µi introduces a small error which
is below 10�4 a.u.

B. Bond breaking

For all the applications we compare the dressed CAS-
SD and µ-MR-CCSD with the λ-MR-CCSD and the CAS-SD
values. Results are also given using the reference-independent
dressing of the CAS-SD CI matrix. All the applications are pre-
sented as energy differences with respect to the full-CI energy
estimated by a CIPSI calculation with a second-order pertur-
bative correction. The smallest and largest values of the CIPSI
perturbative corrections along the curves are given in Table III.
We empirically estimate the error to the FCI energy to be in the
order of 10% of the largest contribution. For ethane and twisted
ethylene, which have the largest perturbative corrections, we
have performed a larger CIPSI calculation at the point with
the largest PT2 contribution. For ethylene the PT2 contribu-
tion was reduced to �5.6 mEh, but the total energy changed by
only 0.08 mEh. In this case, we can consider that the CIPSI
energy of ethylene is converged. In the case of ethylene, the

TABLE III. Second-order perturbative correction in the CIPSI calculations.
Minimum and maximum values among all the points of the potential energy
curve.

EPT2 (Eh)

Smallest Largest

C2H6 �13.4 × 10�3
�17.8 × 10�3

C2H4 twisted �3.37 × 10�3
�9.86 × 10�3

C2H4 �2.41 × 10�3
�6.85 × 10�3

F2
3Σ+

u �0.31 × 10�3
�1.42 × 10�3

F2 �0.13 × 10�3
�0.47 × 10�3

N2 �61.1 × 10�6
�0.41 × 10�3

BeH2 �12.3 × 10�6
�35.4 × 10�6

H2O �1.59 × 10�6
�69.1 × 10�6

FH �0.23 × 10�6
�55.1 × 10�6

LiF �0.17 × 10�6
�12.3 × 10�6

largest calculation dropped the PT2 value to �6.7 mEh and
the total energies differed by 1.4 mEh. So we estimate that
the CIPSI curve of ethane has an accuracy less than 2 mEh in
total energy, and all the other curves have an accuracy below
the mEh. The non-parallelism errors (NPEs) of all the CIPSI
curves are estimated with an error below the mEh.

For the full series of compounds, Figure 1 shows the
energy difference with respect to the full-CI along the reaction
coordinate. Table IV summarizes the non-parallelism errors
(NPEs) and the maximum of the error obtained along the curve.
The MR-CC treatment reduces the average and maximum error
of the CAS-SD with respect to the full-CI by a factor close
to 4. The correction is larger when the system involves an
important number of inactive electrons (F2, C2H6) than when
this number is small (BeH2, N2). One actually knows that the
size-consistency error of the CAS-SD treatment increases with
the number of inactive electrons; this error disappears in the
MRCC treatment, which essentially misses some fourth-order
connected effects of the triples.

1. Single-bond breaking

We present here the single bond breaking of theσ bonds of
the C2H6 and F2 molecules and of the π bond of ethylene. The
active spaces were chosen with two electrons in two MOs, the
minimal wavefunctions to describe properly the dissociation
of the molecules. In the case of ethane, the NPE of the CAS-SD
is 5.1 mEh, and is reduced to 3.5 mEh with the µ-MR-CCSD.
The curve of the dressed CAS-SD has the lowest NPE (1.3
mEh). The curves obtained by both MR-CCSD methods give
equivalent results, with NPEs of 3.5 and 3.6 mEh.

TABLE II. Evaluation of the size-consistency error in the dressed CAS-SD and the µ-MR-CCSD, 6-31G basis
set.

Dressed µ-MR-CCSD µ-MR-CCSD
CAS-SCF CAS-SD CAS-SD µ ∈ Eq. (33) unconstrained µ

·CH3 �39.528 586 5 �39.622 437 9 �39.625 570 2 �39.625 570 2 �39.625 570 2
·CH3 ×2 �79.057 173 0 �79.244 875 8 �79.251 140 3 �79.251 140 3 �79.251 140 3
H3C· · ·CH3 �79.057 173 0 �79.237 098 2 �79.250 695 7 �79.251 039 3 �79.251 107 3

Error 7.78 × 10�3 4.44 × 10�4 1.01 × 10�4 3.29 × 10�5
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FIG. 1. Dissociation curves. Differ-
ence with respect to the full-CI energy
using the MR-CCSD method presented
in Ref. 17 and with the MR-CCSD
method proposed in this work, as well as
the CAS-SD and the dressed CAS-SD.

In the case of F2 the NPE of the dressed CAS-SD is
0.9 mEh and the NPE of the µ-MR-CCSD is 1.5 mEh; both
are better than the NPE of the λ-MR-CCSD which is 3.1 mEh.
Also, one can remark here some numerical instabilities in the
λ-MR-CCSD where the curve is not smooth.

In the next example, the π bond of ethylene is broken by
the rotation of the CH2 fragments. The CAS-SD has an NPE
of 1.5 mEh, and using the dressed CAS-SD reduces the NPE
to 0.7 mEh. The µ-MR-CCSD gives an NPE of 0.5 mEh, and
the NPE obtained with the λ-MR-CCSD is slightly better with
a value of 0.3 mEh.

2. Insertion of Be in H2

We present the results obtained by the insertion of a beryl-
lium atom into the H2 molecule, which is a popular benchmark
for MR-CC methods. The reference is still a CAS(2,2) for
comparison with the literature, even though this choice of

reference is not the most appropriate for a correct description
of the reaction. The geometries are given by the relation

z = 2.54 − 0.46x (a.u.), (34)

where the beryllium atom is at the origin and the hydrogen
atoms are at the coordinates (x, 0,±z). In this particular case,
the µ-MR-CCSD gives an NPE of 1.7 mEh which is larger than
the NPE of 1.3 mEh obtained by the λ-MR-CCSD. This is due
to only one point of the curve, the maximum which is higher
by 0.3 mEh; all the other points being very close by less than
0.1 mEh. Here, the dressed CAS-SD and the µ-MR-CCSD are
equivalent.

3. Two bond breaking

For breaking two bonds we have used CAS(4,4) wave
functions as the reference space. The first example is the
simultaneous breaking of the two O–H bonds of the water
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TABLE IV. Non-parallelism errors (NPEs) and maximum errors with respect to the full-CI potential energy
surface (mEh).

CAS-SD λ-MR-CCSD Dressed CAS-SD µ-MR-CCSD

NPE Max error NPE Max error NPE Max error NPE Max error

C2H6 5.1 35.5 3.6 8.4 1.3 8.3 3.5 8.3
F2 3.8 19.8 3.1 4.0 0.9 4.2 1.5 3.8
C2H4 twist 1.5 27.7 0.3 6.7 0.7 7.1 0.5 6.5
BeH2 2.9 4.1 1.3 1.8 2.0 2.4 1.7 2.1
H2O 1.9 4.8 0.7 1.2 0.2 1.3 0.5 1.3
C2H4 stretch 2.7 20.0 1.6 5.2 1.7 6.2 1.8 6.0
N2 1.7 9.0 0.9 2.2 1.7 3.8 0.3 2.3

F2
3Σ+

u (ms = 1) 2.6 18.6 1.3 3.3 1.2 3.5 1.2 3.3
F2

3Σ+
u (ms = 0) 2.6 18.6 1.2 1.8 1.3 3.5 1.1 3.3

FH (ground state) 2.6 14.6 1.8 4.0 2.1 4.5 1.8 4.0
FH (excited state) 3.3 20.9 8.8 8.5 10.5 10.1 7.1 8.3

F2 (local) 3.8 19.8 1.2 3.2 1.5 3.5 0.9 3.0
N2 (local) 1.7 9.0 3.6 5.0 1.1 3.5 0.4 1.8

molecule by stretching. Here, the CAS-SD exhibits an NPE
of 1.9 mEh which is significantly improved to 0.2 mEh with
the dressed CAS-SD. The µ-MR-CCSD, with an NPE of
0.5 mEh, is slightly more parallel to the full-CI curve than
the λ-MR-CCSD which has an NPE of 0.7 mEh.

The second example is the double-bond breaking of ethy-
lene by stretching. One should first clarify that the energy
differences in the figure do not match those of the torsion along
the bond because in the former example the reference was a
CAS(2,2), and here it is a CAS(4,4). Dressing the CAS-SD
reduces the NPE from 2.7 mEh to 1.7 mEh. One can remark
a discontinuity in the curve at large distances. The µ-MR-
CCSD and λ-MR-CCSD slightly improve the NPE to values of
1.7 mEh and 1.8 mEh.

4. Triple-bond breaking

N2 is the typical benchmark for breaking a triple bond.
Here, we have used a CAS(6,6) reference wave function. At the
CAS-SD level, the NPE is 1.7 mEh, and the dressed CAS-SD
does not reduce the NPE. Here, it is necessary to use reference-
dependant amplitudes to recover a low NPE: 0.9 mEh with the
λ-MR-CCSD, and 0.3 mEh with the µ-MR-CCSD.

C. Excited states
1. Triplet state of F2

We report here calculations on the triplet state 3Σ+
u of F2.

The reference wave function was prepared in two different
ways, both using restricted open-shell Hartree-Fock molecular
orbitals. The first reference wave function labeled ms = 1 is a
single open-shell determinant, and the second wave function
is the triplet ms = 0, made of two determinants 1/

√
2(αβ− βα).

To ensure that the CAS-SD is a strict eigenfunction of the
Ŝ2 operator, we have included inΨSD all the determinants with
the same space part as the singles and doubles with respect to
the CAS. These determinants are treated in the same way as
singles and doubles and are treated variationally in the diag-
onalizations. Of course, those which are triples or quadruples

with respect to Ψref are excluded from the set of the {α} and
have no effect in the dressing.

To reduce the computational cost, the triples and quadru-
ples were not augmented with all the determinants with the
same space part. The absence of some determinants gives rise
to a slight deviation (<10−6 a.u.) of 〈Ŝ2〉 from the desired eigen-
value, and it is expected to have some impact on the iterative
dressing. It is worth checking the effect of this deviation from
the exact spin multiplicity. The first test concerns the com-
parison of the ms = 0 and ms = 1 components of a triplet
state.

According to Figure 2, in all the cases, the NPE of the
CAS-SD (2.6 mEh) is improved to a value of 1.1–1.3 mEh. As
expected the dressed CASSD and the µ-MR-CCSD are strictly
equivalent for ms = 1. Indeed, for both variants, the usual
single-reference amplitudes ci/c0 are recovered. The ampli-
tudes of the λ-MR-CCSD lower the curve by 1 mEh when
going from ms = 1 to ms = 0. The dressed CAS-SD gives
a slightly higher energy by only 0.3 mEh, and introducing
the reference-dependence via the µi reduces the difference to
0.2 mEh.

If one considers the error on the singlet-triplet gap
with respect to the full-CI reference, it appears clearly
that the µ-MR-CCSD with ms = 0 gives the most accurate
results, with errors lying between 0 and 0.9 mEh along the
curve.

2. Avoided crossing in FH and LiF

We have calculated the potential energy surfaces of the
two lowest 1Σ+ states of FH, using as reference wave function
the CAS(2,2) with state-averaged CAS-SCF molecular orbitals
in the aug-cc-pVDZ basis set. Figure 3 shows the NPEs of
the ground and excited states. In the ground state, the NPE is
1.8 mEh for both MR-CCSD variants, but the λ-MR-CCSD
shows some numerical instabilities, as opposed to the µ-MR-
CCSD which gives a very smooth curve.

In the excited state, the situation is different: surprisingly
the best NPE is obtained by the CAS-SD. The reason is the
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FIG. 2. F2
3Σ+

u . Difference with respect to the full-CI
energy for the ms = 0 and ms = 1 wave functions (top), and
error on the singlet-triplet gap ∆E = E(3Σ+

u )−E(1Σ+
g )

(bottom). On both graphics, the two curves of the dressed
CAS-SD coincide.

FIG. 3. Difference with respect to the full-CI energy for the two lowest 1Σ+

states of FH.

following. At large distances, the CAS-SD description is cor-
rect, but the size-consistency error raises the energy. At short
distances, the CAS-SD description of the excited state is not
as accurate as for large distances since there are determinants
with a large coefficient which are not in the active space: the
CAS contributes by 0.85 to the norm of the FCI wave func-
tion, but in the case of the CAS-SD its contribution is 0.91.
This bad description of the CAS-SD raises also the energy at
short distances, and the errors compensate along the curve.
All the other methods correct the size-consistency error, so
the long range errors are corrected but not the error due to
the incompleteness of the CAS at short range. This explains
why the deviations to the FCI decrease with the distance, and
why the NPEs are so large. The two variants of the MR-CCSD
agree at short and long distances, but they differ significantly
between 1.5 and 2.5 Å; the region of the avoided crossing. To
understand these differences, we have plotted in Figure 4 the
two eigenvalues of the two state-specific Hamiltonians—one
dressed for the ground state and one dressed for the excited
state. It appears that the state of interest is very well described,
but the dressing for other root has a much lower quality. This
strong state-specific character is due to the fitting procedure
which is implicitly weighted by the state of interest. The large
coefficients have a higher quality in the amplitudes, but the



154107-10 Garniron et al. J. Chem. Phys. 146, 154107 (2017)

FIG. 4. Potential energy surfaces of the two lowest 1Σ+ states of FH with the
µ-MR-CCSD method. The energy of the state corresponding to the dressing
is plotted in plain curves, and the energy of the other state is plotted in dashed
curves.

important determinants of the second root are usually not
the same as in the state of interest. The λ-MR-CCSD has
amplitudes which depend less on the wave function, so the
quality is comparable on both states, and the choice of
these amplitudes is better suited for calculating excited states
within the same symmetry, as will be confirmed by the next
example.

In Figure 5 we have represented the avoided crossing
of LiF, also calculated with the aug-cc-pVDZ basis set. The
physical situation is similar to FH, but the energy difference
between the ground and the excited states is much smaller. A
striking result is that the λ-MR-CCSD, although being state-
specific, is able to reproduce very well the whole potential
energy surfaces of both states. The position of the avoided
crossing is very well reproduced by the three methods: the
CAS-SD crosses at 6.3 Å, the full-CI crosses at 6.8 Å, and
the dressed CAS-SD and the two MR-CCSD variants cross
at 6.9 Å. The µ-MR-CCSD and λ-MR-CCSD coincide in the
short-range (≤5 Å) and in the long range (≥7.2 Å), but when
the two states become very close in energy in the region of the
crossing the dressed CAS-SD and the µ-MR-CCSD are unable
to give reasonable values. This disappointing result motivates
a future work on a multi-state µ-MR-CCSD.

D. Sensitivity to the choice molecular orbitals

The µ-MR-CCSD algorithm we propose is in the
Jeziorski-Monkhorst framework, so it is not invariant with
respect to the choice of molecular orbitals. In this section,
we checked its sensitivity to the choice of the MO set by

FIG. 5. Potential energy surfaces of the two lowest 1Σ+ states of LiF.

FIG. 6. Comparison between pseudo-canonical (dashed curves) and localized
(plain curves) MOs in F2 and N2. Difference with respect to the full-CI energy.

comparing results obtained with pseudo-canonical CAS-SCF
orbitals and with localized MOs in the F2 and N2 molecules
(Figure 6).

In the F2 molecule, using localized MOs is a better choice
than the pseudo-canonical MOs. The best NPE is obtained
by the µ-MR-CCSD method with a value of 0.9 mEh. In the
case of N2, the situation is different: the NPE of the λ-MR-
CCSD goes from 0.9 mEh to 3.6 mEh, and the NPE of the
µ-MR-CCSD is relatively stable around 0.3–0.4 mEh. On the
other hand, the dressed CAS-SD gives a better NPE with local
orbitals, going from 1.7 mEh to 1.1 mEh.

The fact that the µ-MR-CCSD is less sensitive to the MO
set than the λ-MR-CCSD can be understood. By changing
the MO set, a single excitation rotates into a combination of
single and double excitations. In the λ-MR-CCSD method, the
amplitudes are calculated by taking into account the matrix
elements of the Hamiltonian, which are of different nature
depending on the degree of excitation, so the amplitudes are
expected to change significantly. In the µ-MR-CCSD variant,
the amplitudes are adjusted in such a way that they fit the CAS-
SD wave function, which is invariant by rotation of the MOs.
Therefore, it is expected to be more robust with respect to the
change of MO set.

IV. CONCLUSIONS

We have proposed a method to determine reference-
independent amplitudes by fitting the CAS-SD CI vector.
These amplitudes may be used to perform a state-specific iter-
ative dressing of the CAS-SD Hamiltonian in order to take into
account the effect of the triples and quadruples in the spirit of
the coupled cluster formalism. Alternatively, these amplitudes
may be rescaled to reproduce the exact coefficients of the sin-
gles and doubles to introduce a reference-dependent character.
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In that case, the CAS-SD CI vector is recovered by the appli-
cation of (1 + T̂ ) on the reference wave function, so we reach
here the Jeziorski-Monkhorst coupled cluster formalism.

The CAS-SD dressed with reference-independent ampli-
tudes gives excellent results for single-bond breaking (F2 and
ethane) and the simultaneous breaking of the two O–H bonds
of water, with a non-parallelism error lower than the milli-
Hartree. When the active space becomes larger, it is necessary
to go to the reference-dependent MR-CCSD introducing the µ
factors in Eq. (31). In the case of ethylene and N2, this keeps
the NPE to a value close to the milli-Hartree.

We have shown numerically that the here-proposed ampli-
tudes are not very sensitive to the value of ms for open-shell
systems, and to the choice of the molecular orbitals. This is
clearly an improvement compared the amplitudes proposed
earlier.17 But we have also shown that the former amplitudes
are a better choice when computing excited states of the same
symmetry because the here-proposed amplitudes have a much
more pronounced state-specific character which may be disad-
vantageous if the states are too close in energy. This problem
can be cured by leaving the state-specific formalism for a
multi-state formalism,42 and this will be the object of a future
work.
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