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I. INTRODUCTION

Progress in the reliability of quantum-chemical ab initio techniques has
i been so impressive that the quantum-chemical calculations are sometimes
proposed to chemists as a ‘new spectroscopy’; in many cases they can actually
provide information more direct than (and almost as reliable as) the
experimental spectroscopies. This is especially true for problems concerning
the possible existence and structure of transient polyatomic small molecules,
the order of magnitude of activation energies, and so on. This increasing
efficiency in the prediction ability of these instruments is largely due to
technological progress in computers (i.e. to an exogenic factor), but it has
proceeded through the development of mathematically efficient and physically
relevant algorithms, which required a new scientific profile for quantum
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chemists. Their pride and hopeful prospects are thus partly grounded. One
should, however, point out two types of problems.

A. Quantum Chemistry as a Science or a Technology?

The numerical efficiency of black boxes giving more and more precise
numbers to experimentalists is a technological goal; it actually exhibits a
tendency to transform this field into a numerical spectrometer, but it defines
neither a scientific field nor a scientific demand. The physical sciences are (or
were?) essentially deductive, i.e. they started from general principles and,
through a series of simplifying and reasonable assumptions, they were able to
derive—mostly through analytical models—some laws, trends, orders of
magnitude, etc., in an explicit way. Computational black boxes deliver the
desired energy, and as a by-product, a wavefunction spread on thousands of
determinants, which can neither be read nor understood, and does not even
offer a possible way for an a posteriori rationalization, The information
becomes so vast that it becomes useless. If one still believes that science must
bring some explanation or derivation, reduction of information must be
considered as a desirable task. The present contribution assumes that the
rational reduction of information represents an essential goal for understand-
ing physics and chemistry, and this must proceed through physically grounded
simplified schemes.

B. Reduction of Information: Two Essential Tools

The present review is devoted to two main approaches that may lead in a
controlled way from the exact Hamiltonian to simplified Hamiltonians, which
are more easy to handle and on which deductive derivations may be easier
to draw. One approach proceeds through projections of some exact wavefunc-
tions into a relevant reduced subspace and leads to the effective Hamiltonian
methodology. The techniques will be described in Section II.A, and their
applications in Section III. The other procedure may be considered as a
simulation of the considered exact Hamiltonian by a simpler Hamiltonian, the
efficiency of the simulation being measured through a reduced distance, taken
on a small subspace. This procedure, described in Section IL.B, leads to the
definition of pseudo-Hamiltonians or pseudo-operators. The corresponding
applications are reviewed in Section IV.

C. Terminology: a Proposal

Despite the large confusion in the terminology existing in this field (to which
the authors have also contributed), we propose for the future the following
vocabulary:

1. The term ‘effective Hamiltonian’ should be used for Hamiltonians obtained
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by projections of some exact wavefunctions onto a finite model space. The

corresponding theory is well established and the practical (perturbative or

not) procedures are numerous and well documented.

2. The term ‘pseudo-Hamiltonian’ should be used when they are obtained
through simulation techniques, i.e. minimization of the distance between
the exact and pseudo-operators in a reduced subspace.

The term ‘model Hamiltonian’ is more general. From this point of view the
‘effective Hamiltonians’ and ‘pseudo-Hamiltonians’ could also be considered
as ‘model Hamiltonians’. However, for clarity, we suggest that the term ‘model
Hamiltonian’ should be used when some simplified form of an approximate
Hamiltonian has been guessed from a preliminary physical analysis. In
contrast with the ‘effective Hamiltonians’ and the ‘pseudo-Hamiltonians’ that
can be obtained by means of well defined mathematical procedures, the ‘model
Hamiltonians® are generally parametrized from experiment. They would
involve the semi-empirical Hamiltonians of quantum chemistry and solid-
state physics (Hiickel, Hubbard, Pariser—Parr—Pople (PPP),...).

D. Desirable Simplifications in Quantum Chemistry

Modelling involves a reduction or a simplification of the problem. This
reduction may concern:

1. The number of particles of the problem. This is the scope of 7 theories for
conjugated systems and valence Hamiltonians more generally, but other
reductions are conceivable.

2. The basis set of atomic orbitals (AO) in which the problem is supposed to be
treated. All b initio calculations use projected Hamiltonians since they
work in finite basis sets, of course, solving

PsHP, s‘/’g' = Es'??

where Pg is the projector onto the space of determinants built in the
considered AO basis set. But one may also try to build ‘effective’
Hamiltonians, different from the exact one, working only in a small basis
set, but with modified operators giving better energies and wavefunctions
than the previously defined E¥ and y2. This strategy is the one followed by
K. Freed and coworkers in a series of papers, discussed later, which also try
to achieve the previously mentioned goal (reduction of the number of
particles).

3. The number of N-electron configurations (or determinants) in which one
would like to treat the problem. Instead of handling the huge number of
configurations which span the Hamiltonian in a finite basis set (full
configuration interaction (CI)), one may wish to explain the behaviour of a
few solutions in terms of a few leading configurations only, without losing
the quality of the energetic information. There exist two main examples of
this strategy,
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a. one s the interpretation of curve crossings between molecular potential
energy surfaces and their diabatic description in terms of dominant
configurations,

b. the other concerns the Heisenberg Hamiltonians, which only treat
neutral situations in minimal basis sets in such a way that they deliver
correct energies, despite the lack of inclusion of ionic states.

One should notice that point 2. implies a reduction of the number of

determinants, but point 3 is not reducible to point 2.

4. The relativistic molecular calculations are very difficult as long as they keep
four-component wavefunctions according to the Dirac theory. The
reduction to a two-component Pauli-like formalism within the effective
Hamiltonian theory allows one to perform standard relativistic variational
calculations.

5. Asa basically different approach, one may consider the simplification of the
Hamiltonian, for instance its analytical form. One may try to build a purely
monoelectronic Hamiltonian that is ‘as close as possible’ in some aspects to
the exact (bielectronic) Hamiltonian; for instance, which reproduces as
closely as possible the Fock monoelectronic energies obtained from the
exact Hamiltonian, or the total energy and its changes.

E. Simplification and Efficiency Overlap

As a concluding remark, we would like to stress the fact that effort to find
efficient and physically grounded simplified Hamiltonians is not only the
answer to a desire for interpretation, it is also a valuable technical tool for the
treatment of large systems, since the N dependences of ab initio quantum-
chemical algorithms are still prohibitive and forbid the treatment of large
polyatomic systems, despite the expected progress in computational facilities.
Happily enough, the desire for simplification of the information, the desire for
understanding, is not at odds with research into numerical efficiency. This is
clear for the treatment of large systems, but it is even true for the heavy ab initio
techniques concerning small systems: techniques that express the CI results in
terms of more convenient nearly diabatic pictures rest on the effective
Hamiltonian theory. They are less expensive than the usual adiabatic
approaches and they may help to solve numerical accuracy problems in the
treatment of excited states in large CI approaches, as shown in Section IILB.

Il. MATHEMATICAL TOOLS

A. Effective Hamiltonians by Projection Techniques!~3

1. The Model Space

The concept of model space plays a central role in the theory of effective
Hamiltonians.? It is a finite N,,-dimensional subspace S, of the entire Hilbert
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space. Physics will further be projected in this model space. Its orthogonal
complement is the outer space S5. The orthogonal projection operators
associated with S, and Sy are P, and Q,, respectively:

Nm
Fo= ;J"O<m| Qo =Yla><al Po+Qo=1 (1)

a

The Latin letters m, n, ... and Greek letters o, f8,... will label functions of the
model space and the outer space, respectively.

It is also useful to consider an N,,-dimensional subspace S spanned by Ny,
exact solutions W, of the exact Hamiltonian H. These solutions will
correspond to the part of the spectrum in which we are interested. The
orthogonal complement of § is denoted S*. The orthogonal projectors
associated with S and S* are P and Q:

P= S ol 0-IWOWI  Presl O

The y, are the exact solutions of H belonging to S L. The projections ®,, of the
exact solutions V,, into the model space play a central role in the theory:

I//mES:(Dm = Pol//meSO (3)

Relation (3) establishes a one-to-one correspondence between S and S,. The
projected wavefunctions ®,, are usually not orthogonal and the corresponding
bi-orthogonal states in S, noted @2, have the usual properties:

(OHO=by Y [0CDAI=Pe @

2. The Feschbach—Lowdin Hamiltonian*~®

Let us consider an exact eigenstate of energy E:
Hy =Ey )

This state may be non-degenerate or degenerate. Using the projections
operators P, and Qg, Eq. (5) can be partitioned according to (partitioning
technique)

PoHPoY + PoHQoY = EPoyY
QoHPoY + QoHQo¥ = EQo¥ (6)

It can easily be seen from (6) that the projection @ = Poys of Y in the model
space is a solution of :

H® = E (7)
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where

P, ®)

Heff=PoHPo+P0HE

Qo/(E — H) is a reduced resolvent defined in the outer space. Hf can also be
written in the form

Qo

H* = P HP, + Pl

VP, ©)

where the coupling operators PoHQ, and Q,HP, have been denoted PV Q,
and Q, VP, respectively.

H*" given by (8) or (9) is an effective Hamiltonian which possesses the exact
eigenenergy E and the corresponding wavefunction ® = Pyy. It can also be
written in the form

H*" = P HQ, (10)

Qo
E—H

where

Qp=P,+ VP, (11)
Qg is a wave operator, parametrized by the exact energy E, which has the basic
property of generating the exact wavefunction when acting on its projection in
the model space:

Q= QP =y (12)

Figure I gives anillustration of the correspondence between i and ® by means
of Py and Q.

Despite its apparent simplicity the Feschbach-Lowdin Hamiltonian suffers
from a severe limitation: it is relevant for only one energy level and there are as
many H' as energies. This limitation pleads in favour of a energy-
independent formalism that will now be presented throughout this section.

OUTER SPACE S

¥

o MODEL
SPACE So
Fig. 1. From the exact wavefunction ¥ to the projected
wavefunction ® and back from ® to ¥ by the wave operator Q.
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H H®
EXACT EFFECTIVE

Fig. 2. The exact Hamiltonian H and the effective Hamil-
tonian have the same eigenenergies in the subspaces S and
So, respectively.

3. The Bloch and des Cloizeaux Effective Hamiltonians™®

The basic idea is to pass from the exact Hamiltonian H to an effective
Hamiltonian whose eigenenergies coincide within a subset of the eigenenergies
of H (Fig. 2). In this approach all the information on the other eigenenergies of
H is lost. The theory can easily be derived from the basic equation®

HQ =QH*""

Q=0P,

then
Y =QD,,

theory of effective Hamiltonians.

where H" is an effective Hamiltonian defined in the N,-dimensional model
space S, and Q is the associated wave operator acting in the model space:

Equation (13) shows immediately that if @, is an eigensolution of energy E,,

is an exact solution of H. Equation (15)expresses a one-to-one correspondence
between the N,, solutions of H* which span the model space S, and N, exact
solutions of H which span the relevant physical space S. Hereafter this a priori
unknown space will be called the target space. Equation (13) appears as a
simple generalization of the ordinary Schrodinger equation for one state
(Eq. (5)) to an operator equation for handling simultaneously N, states. In this
: equation the unknown quantities are Q and H*". Equation (13) has many
’ solutions and the most meaningful ones were identified in the 1950s by Okubo,
i Bloch and des Cloizeaux.””®'° The solution obtained by Bloch in the
| framework of perturbation theory now appears as the most fundamental in the
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The Bloch formalism is determined in a natural way by choosing that the N,
solutions of H" in the model space must be the projections in the model space
of N, exact solutions y,, spanning the target space S:

H'®, = E, @, ®,, = Po,, m=1,2,...,N,, (16)

The wave operator associated with the solutions can be written in compact
form as!!:12

: Q= P(P,PP,)" ! 17)

Itis worth noting that Q depends only on the projectors P and P,,. From (17) it
can immediately be checked that Q has the following properties:

PQ=P, Q=0 Q' £0 (18)

The first one is associated with the so-called intermediate normalization and
the second one means that Qis a non-orthogonal projection operator. From Q
one can obtain the expression for the projector P:

P =Q(Q'Q)~'Qt (19)

Multiplying both sides of Eq. (13) on the left by P, and using the intermediate
normalization property leads to the Bloch effective Hamiltonian:

H*' = P,HQ (20)

the spectral decomposition of which is
N"l
H = 3 E,|0,)<®,| (21
m=1

Introducing the above expression for Hf in (13) leads to the basic wave
operator equation:!3
HQ = QHQ 22)

This equation is a generalization of an equation previously found by Bloch
and generalized by Lindgren.!* Solving the operator equation (22) appears as
the main task in the Bloch theory of effective Hamiltonians since H* can
immediately be deduced from Q by means of (20). It will also be shown below
that the wave operator Q plays a fundamental role in the whole theory of
effective Hamiltonians.

The Bloch Hamiltonian (20) is non-Hermitian since its solutions are the
projections in the model space of exact solutions of the exact Hamiltonian.
This can also be seen directly from expressions (17) and (20). The hermitization
of the Bloch Hamiltonian can easily be obtained by requiring that the
solutions of the new effective Hamiltonian are the symmetrically ortho-
gonalized solutions of the Bloch Hamiltonian:?

H"(des Cloizeaux) = (Q'Q)2H*"(Bloch) (Q!Q) ~1/2 (23)
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This expression does not appear to be Hermitian, but in fact it is. From (17)
one obtains

OIQ = (PyPPy)t (24)
and (23) becomes
H°*®(des Cloizeaux) = (P,PP,) " 2?PHP(P,PP,) ™ '/? (25)

This last expression is obviously Hermitian and its spectral decomposition is
Non

H*'(des Cloizeaux) = ) E,,|®},>{ D, (26)
m=1

where @), is defined in eq. (28).
a. The non-orthogonality problem

For a deeper understanding of the non-Hermitian Bloch and Hermitian des
Cloizeaux formalisms, it is useful to consider the expressions of ®,, and @,
appearing in (21) and (26):

Nm
Q= Y, (5™ Du®, 27)
n=1

Nm
D= Y, (§71%),®, (28)
n=1

S being the overlap matrix between the ®,,, and (S '), and (S~ '/?),,,, represent
the (m, n) matrix element of the matrices S ~! and S~ /2, respectively. When this
matrix is almost unity, the functions ®,,, @, and @, look like the exact
wavefunction y,, and the Bloch effective Hamiltonian is almost Hermitian. In
contrast, when the physical content of at least one projected wavefunction
®@,, = Py, is far from the exact wavefunction y,, or, expressed in mathemat-
ical terms, when at least one diagonal matrix element of the overlap matrix S is
small with respect to unity, then the matrices S~1/2 and S~ ! become singular.
The bi-orthogonal wavefunctions ®,, become meaningless and the Bloch
Hamiltonian (21), the spectral decomposition of which implies the @,
becomes strongly non-orthogonal. Many possibilities can be considered for
facing up to these difficulties.

First one can build up other effective Hamiltonians based on hierarchized
orthogonalization procedures. The Gram-Schmidt procedure is recommen-
ded if one starts from the best projected wavefunctions of the bottom of the
spectrum. Thus one can obtain a quite reliable effective Hamiltonian with
well behaved wavefunctions and good transferability properties (see
Section ITIL.D.2). The main drawback of this approach is that the Gram—
Schmidt method, which involves triangular matrices, does not lead to simple
analytical expressions for perturbation expansions. A partial solution to these
limitations is brought about by the new concept of intermediate Hamiltonian,
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which will be presented in Section IIL.A.6. One can easily obtain almost
Hermitian Hamiltonians that can easily be expanded by standard perturb-
ation theory but with the new limitation that only one part of their roots are
exact eigenenergies of the full Hamiltonian.

Another way of handling the non-orthogonality problem was suggested by
Kato more than 30 years ago.'> By means of (17) and (20), the eigenvalue
equation (16) can be transformed into!®

(# —EF)DL=0 m=12,...,N, (29)
where
H = Py,PHP, and J =P,PP, (30)

The ‘effective’ Hamiltonian # and the metric (or overlap) operator .# are
Hermitian. The equation looks like those frequently used for solving the
Schrédinger equation by means of a non-orthogonal basis set, as for instance
in valence-bond (VB) theory. The operators # and .# seem to have interesting
transferability potentialities but up to now they do not seem to have been used
for practical investigations. A more general approach has recently been given
by Suzuki.l7-18

4. Solutions of the Bloch Equation

Im most cases the wave operator cannot be determined from expression (17)
since the projector P on the target space is generally unknown. Then one has to
solve directly the wave operator equation (22). Let us first introduce a reduced
wave operator X by using the intermediate normalization and writing Q as

Q=(Py+Qo)Q=P, + X (1)
X is a transition operator that couples the model space and the outer space:
X =QoXP, (32)

This operator had previously been denoted x by Lindgren? and o by Suzuki.!?
A lower-case letter seems a good choice for the reduced operator, keeping the
capital letter Q for the full operator. However, we prefer to use the notation X,
which clearly indicates that X is the unknown quantity.'®> We will see below
that an operator equation for X can be put in the form F(X)=0, which
suggests that this equation could be solved in close analogy with the standard
methods of resolution of an ordinary algebraic equation Fx)=0:

An equation for X, originally given by Okubo, can easily be obtained by
multiplying both sides of Eq. (22) on the left by 0yt

QoH(Py + X) = XH(P, + X) (33)
This equation can be written in the form
F(X)=0 with F(X)=Qo(1 — X)H(1 + X) (34)
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Equation (34) can be solved by the standard iterative methods, which can be
classified according to their rates of convergence: linear, quadratic or quasi-
quadratic.'® The true quadratic methods, which are analogous to the
Newton-Raphson procedure for ordinary algebraic equations, would involve
the inversion of huge superoperators acting in the linear space of all transition
operators coupling the model space and the outer space. These inversions
would be as difficult as the direct resolution of the Schrodinger equation for
the exact Hamiltonian. For many-body applications the inversion of these
operators is performed in an approximate way by methods similar to the
partial infinite summation techniques of many-body theory. The linear
methods are also attractive for a first approach since they are closely
associated with the standard perturbation theory which finds in this approach
its rigorous foundation.!3209:21

The simplest way for deriving approximate compact expressions for X is to
introduce an energy parameter E, approximately equal to the mean value of
the eigenenergies of H". Subtracting E,X from both sides of Eq.(33) gives.

Qo(Eo — H)X = QoHPy — XH(Py + X) + Eo X (35)
which can be put in the form
X =f(X) with
fX)= % VP, + Q° [X(E,— H)—XVX]P, (36)
E,—H E,—H

In this last expression we have again used the perturbation notation
QoVPo=QoHPyand P,VQ, = P,HQ,. The solution of Eq. (36) can immedi-
ately be found by iteration:

X©=0 (37a)
).(u) = f('X(°’) - EOQ+H VP, (37b)
X+0 = f(xm) (37¢)

The expression (36) of f(X) indicates that the convergence properties of the
iterative procedure will depend on the smallness of the coupling operator and
on Py(E, — H)P, defined in the model space with respect to the reduced
Green'’s operator Q/E, — H. Keeping terms up to the second iteraction gives

Q Qo
EO—HVPO-'-WVPO(EO H)Po

Qo Qo
— V
KES E,—H

(Eo — H)?

X=

WPy (38)
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This expression is more useful for general discussions than for practical
applications since it would require knowledge of the reduced Green’s operator
Qo/Eo — H. However, it must be noted that in relativity the very particular
structure of the Dirac equation allows direct determination of Qo/Eo — H (see
Section I11.A).

a. Solutions by perturbation

The exact Hamiltonian is split into an unperturbed zero-order Hamiltonian
and a perturbation:

H=H,+V _ (39)
where
Non

Hy= ZlEf,’.lm)(mHZEgla)(al (40)
With (39) and (40), Eq. (33) can be transformed into the commutator equation
[X, Ho] = (1 — X)V(1 + X)P, (41)

which can be put in the form of an implicit equation for X:
X = hf 2 (1—=X)V(1 + X)P (42)

m=1 E,(,), T Ho Ny

In Eq. (42) P,,=|m){m| is the projector associated with the unperturbed
eigensolution |m) of H,. Equation (42) can immediately be solved by
successive iterations, which provide the perturbation expansion of X in
powers of V:

X=Y xt (43)
k=1
Nm Q
e N b s prp 44
¥l g_g, P (44)

w_0 0
X®— 2 V= _yp
,,.ZIE,‘,’,—HO PO

Ly Qo
- VP, VP, + ... 45
(B~ ) (B0~ Ty sl
The choice of a degenerate unperturbed Hamiltonian in the model space
greatly simplifies the perturbation expansion of X. With the assumption that
E?=E}= ... = ES = E° expressions (44) and (45) reduce to

Qo
Eo—H,

X0 = VP, (46)
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X2 — QO 174 QO VPO— QO 5
Eo—H, E,—H, (Eo—Ho)

Let us now introduce a more compact notation, which leads to the expansion

VP VP, 47)

©
Q=P,+X=) QW
n=0

Q(l) = gVPo
Qn — g( yom-1 _ "il QU Qn—k- l)) (48)
k=1

where

e Qo =3 la)><a|

“Ey—Hy; “E,—E° “9)

The expansion of Q immediately generates the perturbation expansion of the
Bloch effective Hamiltonian:

o0
£
e ZoHﬁ'?f
o=

H@} = PoH,
Hm: PoVPo
HR = PoVgVP,

H = P,y Qo=1 (50)

Expansion of H*" up to third order can be found in Lindgren.? Very often the
perturbation expansion diverges and the first few terms give only an
approximation of the true solution (asymptotic convergence). Compact
perturbation expansions of the wave operator have recently been given by
Suzuki for both the degenerate and quasi-degenerate cases.??

b. The choice of the target space

The above theory of the Bloch effective Hamiltonian was mainly based on
two finite N,,-dimensional subspaces: the model space S, and the target space S,
with projectors P, and P respectively. There is no difficulty in choosing the
model space on which the reduced quantum information will be projected. The
definition of the target space is not so obvious. If the energy levels associated
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ENERGIES
ENERGIES

a) b)

Fig. 3. Eigenenergies of a four-dimensional Hamiltonian (full

curves and dotted curves). The two eigenenergies of H*" (full

curves) are represented as a function of an arbitrary parameter A

(for example the internuclear distance in a diatomic molecule).

Cases (a) and (b) correspond to the adiabatic and diabatic
definitions of H'", respectively.

. with the model space are well separated from all the other energies of the
spectrum, ore more precisely, in terms of perturbation, if there is a small
coupling between the states of the model space S, and those of the outer space
S5 for the exact Hamiltonian, then there is no ambiguity in identifying the
target space. The resolution of the generalized Bloch equation (22) by means of
the techniques of Section I1.A.4 will always lead to a stable subspace S. The
definition of S is not so obvious when there is a strong coupling between S, and
S5. This occurs for example in the presence of an ionic molecular intruder state
in the model space of neutral states'3 (see Sections ITI.C and IIL.D). This
situation is illustrated in Fig. 3 where one considers two possible ways of
defining S from S, for a two-dimensional effective Hamiltonian. In case (a)
there is a rapid change in the second eigenvector, the component of which in the
model space vanishes asymptotically, making the wave operator undefined.
(The operator P, PP, is singular and the inversion occurring in equation (2.17)
becomes impossible.) In contrast, in case (b), the eigenvalues and eigenvectors
are discontinuous whereas the physical content of S remains stable. This means
that, for all values of parameter A, the subspace § remains as similar as possible
to the model subspace S,,. In both cases we are faced with discontinuities in the
effective Hamiltonian either in the physical content of the solutions (case (a))
or in the energies (case(b)). These difficulties are partially solved by introduc-
ing the concept of intermediate Hamiltonian (Section IL.A.6). From a
mathematical point of view, any subspace made up of N,, exact solutions of H
can be chosen as the target space but for physical purposes only two main
criteria seem to be useful: the subspace S can be chosen from an energetic
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criterion, taking the N, lowest states of the relevant symmetry (adiabatic
definition of S); S can also be chosen by selecting the N, states that maximize
their occupation (/| Po|¥ ) in S, (diabatic definition of S). From a practical
point of view, the resolution of the generalized Bloch equation is unstable
when there is strong coupling between the model space and the outer space.
Special devices must be introduced for turning on to either adiabatic or
diabatic solutions.

5. Other Approaches and Further Developments

The two basic effective Hamiltonians of Bloch and des Cloizeaux can also be
obtained by means of similarity transformations, which reveals with deeper
details the mathematical structure of the theory.?*~?® The exact Hamiltonian
is first transformed by means of a similarity transformation:

H'=U"'HU (51)

U has an inverse but it is not required to be unitary. Various effective
Hamiltonians can be obtained under the assumption that the transformation
U decouples H within the model space and the outer space (Fig. 4):

H =P Po+Qo# Qo

Heff Heff 1 (52)

The most basic transformation can be written as
U =P(PyPPy)""+ Q(Qo00Q0) "
U™'=(PoPPy)" 'P+(Q000Q0) 'Q (53a)

where v is a non-negative index.'*2® It can easily be checked that the values

(a) (b)

eff
RHE | PHQ 0
effl
QHPR | QHQ 0 H

Fig. 4. (a) Matrix re‘presenlation of H. (b) Matrix represent-

ation of H* and H®™*, The projectors onto the model space

S, and its orthogonal complement are P, and Q,,
respectively.



EFFECTIVE HAMILTONIANS AND PSEUDO-OPERATORS 337

v=1and v = § generate the Bloch and des Cloizeaux Hamiltonians. For v = |

U(Bloch) = P(P4PP,) ™! + Q(Qy0Q,) ! (54a)
U~ !(Bloch) = P, P + 0,0 (54b)
The Bloch U operator can also be written in the form
U(Bloch) =1 +u (55)
where
u=X-Xxt (56)
u is an anti-Hermitian operator (u' = — u). Expression (56) emphasizes again

the central role played by the reduced wave operator X in the theory of
effective Hamiltonians. The value v — 3 leads to the des Cloizeaux formalism

U(des Cloizeaux) = P(P,PP,)~"/? + 0(0000Q,) 112 (57)
This operator is obviously Hermitian:
U~ '(des Cloizeaux) = U'(des Cloizeaux)
=(PoPPo)™ 2P +(000Q,) 120 : (58)
U of expression (57) can also formally be written as
U(des Cloizeaux) = (1 + u)(1 — u?)~ 12 = (—:;-:-)m (59)

It is sometimes useful for separability problems (i.e. size consistency) to
introduce an exponential operator G by

U(des Cloizeaux) = ¢¢ (60)
G can be expressed as a simple analytical function of ;242527
G=tanh™ 'y (61)

In the last few years the general theory of effective Hamiltonians has been
reformulated by Kutzelnigg in the Fock space.?33 The use of creation and
annihilation operators is supposed to simplify the calculation of quantities
involving variation of the number of particles, such as ionization potentials or
clectron affinities. Up to now no specific applications have been published
with this formalism, the practical efficiency of which is still to be established.

6. Intermediate Hamiltonians3*

The discussions concerning the non-orthogonality problem (Section I1.A.3)
and the choice of the target space (Section I1.A.4) have shown that the Bloch
and des Cloizeaux effective Hamiltonians suffer from convergence difficulties
especially in the presence of molecular intruder states that lead to discontinu-
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E
SJ.
...... ----lintermediate
...... = space
model
S{ —— SO ~— | main model|space
ey o space
H Hint
EXACT INTERMEDIATE

Fig. 5. The exact Hamiltonian H and the intermediate Hamiltonian

H'™ have the same eigenenergies in a subspace of S and in the main

model subspace. Moreover, H'™ also has approximate eigenenergies
(dotted lines) in the intermediate subspace.

ities of their matrix elements as a function of internuclear distances. To combat
these difficulties, the concept of an intermediate Hamiltonian has recently been
proposed (Fig. 5).

The model space is split into an N,,-dimensional main model space and an
N-dimensional intermediate space with projectors

Nm Ni
Pp= 3 ImyCml  P=3 10l PutPi=Po (6

The intermediate Hamiltonian, denoted H'™, is defined in the (N, + N,)-
dimensional model space. Among the N,, + N, eigenenergies of H'™, only N,
are exact eigenvalues of H. This loss of information on the energies is the price
one has to pay for improving the hermiticity and the convergence properties of
an intermediate Hamiltonian with respect to the previously described effective
Hamiltonians.

The theory of intermediate Hamiltonians is based on the introduction of a
new wave-like operator R. Then a large class of intermediate Hamiltonians
can be written as

H"'= P HR (63)
with R fulfilling the condition
RQ=Q (64)

Qs the Bloch operator associated with the main model space. In close analogy
with the Bloch theory, an equation for R can be chosen in the form

Q.HR = Q,QHR (65)

O et PR G T
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or more generally one can take
Qo(Eo — H)R = Qo Q(E, — H)R (66)

where E, is an unperturbed energy typically of the order of magnitude of the
exact eigenenergies in the main model space. In Eq. (66) the operator R is
weakly E,-dependent. Equation (66) can be solved by perturbation theory.
Assuming that H, is degenerate in the main model space:

Nm Ni
Ho= 3, Eolm{ml+ 5. Eli><il + L ESlay<al 67)
Eq. (66) can be written in the form
ay{a
QR=g(l-QWR =31 (68
a Dog— 2L, |

Assuming that R still obeys the intermediate normalization, Eq. (68) leads to
the perturbation expansion:

0 \
R=Py+QoR = 3 R (69)

R — g(VR"'“” ik ilg(k)VR(n—k—l)>
K=1

The expansion of the intermediate Hamiltonian is obtained order by order
from the expansion of R. Note that the expansions of H™ and H*(Bloch)
coincide up to second order.

7. Size-consistency Problems33 ™44

The present review does not enter into the famous and fundamental
question of size consistency in many-body problems. This problem is well
clarified in non-degenerate perturbation theory through the linked cluster
theorem and for other approximate algorithms for the calculation of the
correlation energy of an N-electron system. The size-consistency properties of
the (nearly) degenerate perturbation theories are not as easy to establish.
Brandow?>? has demonstrated a generalized linked cluster theorem when the
model space is a complete active space, ie. when it involves all the
determinants in which p molecular orbitals (MO) (the core) are always doubly
occupied while g (active) MOs receive k electrons with all possible distri-
butions of these k electrons among the ¢ MOs. This is a strong limita-
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tion. Diagrammatic expansions have also been proposed for general
model spaces*!*#? (i.e. leaving the preceding restriction) but the diagrammatic
factorization ensuring size consistency is not perfect. One should notice here a
fundamental contradiction: the complete active space requirement frequently
leads to very large and broad model spaces (spread in a large range of energies),
i.e. to convergence problems and difficulties in defining a target space while it
ensures the size consistency; in contrast, smaller (non-complete) model spaces
may face size-consistency problems. One should notice, however, that the
Heisenberg Hamiltonians (cf. Section I11.D) are based on a very incomplete
model space, and are perfectly size-consistent. The complete active space
condition thus appears as a sufficient but non-necessary condition. Much
work remains to be done in this field.

B. Pseudo-Hamiltonians by Simulation Techniques

The previously described effective Hamiltonians cannot give a direct
solution to the general problem of modelling in quantum chemistry and
atomic physics. They only provide finite matrices of numbers that can be
diagonalized to obtain a finite number of exact eigenenergies. In a rather
unphysical way, all the other eigenenergies are equal to zero. On the contrary,
the empirical or semi-empirical Hamiltonians (Hiickel, PPP) generally involve
one- and two-body interactions which have a clear physical meaning. The
spectrum of these model Hamiltonians is extended but most often only the
lowest states are significant. For example, a CNDO-type (complete neglect of
differential overlap) Hamiltonian describes only the ground and the first few
valence excited states of a molecule. An attractive characteristic of these
Hamiltonians is that they contain transferable potentials and interactions,
such as, for example, the § parameter in the Hiickel theory which characterizes
the interaction between any two n-bonded carbon atoms. A severe limitation
of these models, generally parametrized from experiment, is that their
theoretical status and their range of applicability are not well defined. The
purpose of this section is to show that theoretical approximate Hamiltonians
or pseudo-Hamiltonians can easily be derived from first principles by rigorous
simulation techniques. This technique will be presented in Section ILB.1. It
will also be shown in a second step that the practical determination of pseudo-
operators and pseudo-Hamiltonians generally requires an intermediate step
with the knowledge of a truncated Hamiltonian that contains less information
than the original exact Hamiltonian.

1. Simulation Techniques*®

Starting from an exact Hamiltonian H, one looks for an approximate
pseudo-Hamiltonian H® as close as possible to H. This can be achieved by
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minimizing the distance between H?® and H:
" HP— 1] " minimum (70)

In the following it is assumed that H and H® are Hermitian. Let us suppose
that H is acting in a basis of orthonormalized states denoted |I ). The simplest
definition of the distance between H®® and H is

1/2
lIH"’—HII=<,§;|<1|H"S—HIJ>|2> (71)

For most applications this definition of the distance is not relevant; if the
distance was taken in %2, the distance would be infinite and since the
determination of H is not required to have the same quality for all states |1 ),
a better definition of the distance requires a reduced distance:

1/2
||HPS—H||=<;’|<I|HPS—H|J>IZW,,> (72)

where the wy; are real positive (or zero) weights. For the following, it is useful to
introduce a scalar-product notation. The Hermitian scalar product between
two operators 4 and B belonging to the vectorial space of al] operators acting
in the space of the states |I) is defined by

(AIB)=IZJUIA’IJ)(JIBII)WU (73a)

(4| B) = (B| A)* (73b)

With this notation the reduced distance (72) can be expressed as the square
root of the scalar product of H* — H with itself:

| B — H|| = (H — H|H™ — H)"" (74)
and condition (70) becomes
(H* — H|H — H)ninimum (75)
Very often the pseudo-Hamiltonian can be written in the form of a linear
combination of a priori known operators:

=Y C4, (76)

The operators A; may also depend on non-linear coefficients. In all cases the
best choice for the non-linear and linear coefficients C; is obtained by
minimizing the distance between H and H™. According to the usual Fourier
techniques, the minimization in (75) with respect to the coefficients C;,
assumed to be real, leads to the linear system of equations:

(Ai|H) =} (4| 4)C; (77)
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H Htr I_"ps

(facultative step)

Fig. 6. The exact Hamiltonian H and the pseudo-

Hamiltonian have approximately the same cigenenergies in

the subspaces S and S, respectively H" having exact
energies and truncated wave functions.

If the operators A4; are orthonormal,

(AIIA]) =i 5.‘;’ (78)
the resolution of (77) gives immediately
C;=(4;|H) (79)

In most applications one is only interested in an accurate description of the
bottom of the spectrum (Fig. 6). The previously undetermined states [1>
become the exact solutions of H and the N, lowest solutions define a subspace
S previously called the target space. The projectors associated with S and its
orthogonal complement are denoted P and Q, respectively. H® is now
characterized by the requirement that H® and H have almost the same matrix
elements in S and that there is almost no coupling between S and S*. This
implies that

1 if I, JeS
i {0 if Jest (80)
The reduced distance (72) can now be written as a partial trace:
1/2
IIH"’—HII=( Z: I<¢.,.IH"“—H|¢:>|2> (81)
(meS)

= {Tr[P(H™ — H)*]}12.

From a practical point of view, the determination of a pseudo-Hamiltonian by
minimizing the distance between H" and H has the decisive advantage of
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keeping simple linear mathematics. However, it has the drawback that there is
no guarantee concerning the energies of H® belonging to S*. They can enter
the desired region of energies or even go below the energies of H” obtained by
simulation in S. To eliminate these spurious unphysical intruder states, one
can proceed as follows. First one diagonalizes H? characterized by an initial
choice of parameters. The N,, lowest solutions i/, with energies E/, define a
subspace §', the projector of which is P’. In a second step one minimizes the
distance between P'H*P’ and PHP. The reduced distance can be taken either
in S orin §"

| H? — H || s = {Tr[P(P'H?*P' — PHP) 22

Nm Nm 2\ 1/2
= (m "Z=l pgl (E;Smp'sp’n a Epampapn) ) (82)
I H® — H|| 5. = {Tr| P'(P"H*P' — PHP)|?}/?
Nm | Nom 2\ 1/2
= (m "Z= 7 pzl (E;émp‘spn T EpSm’pSpn') ) (83)

where S, and S, denote the overlaps Yl and (Y|, >, respectively.
Expressions (82) and (83) clearly indicate that their minimization implies that
the N,, lowest solutions of H® (wavefunction and energies) are as close as
possible to the N,, solutions of H. The minimization of (82) or (83) provides
new parameters for H? and the above two-step procedure must be repeated
until the determination of a fixed parametrization for H*. The drawback of the
method is that it is highly non-linear and that the self-consistent procedure
may become very computer-time-consuming for many-body problems.

2. The Concept of Truncated Hamiltonian

Up to now it has been considered that the pseudo-Hamiltonian H®® should
simulate the exact Hamiltonian H. This means that, at least for a part of the
spectrum, the solutions of H™ (energies and wavefunctions) look like those of
H. This is not always the best way to proceed since the main purpose of
theoretical ab initio modelling is to derive pseudo-Hamiltonians that possess
for part of the spectrum energies as close as possible to the exact energies and
simplified truncated wavefunctions belonging to some well characterized
predetermined model space. For instance, one may wish to project the physics
in the space of all Slater determinants arising from a minimal basis set of
atomic orbitals. For that purpose, it may be convenient to introduce some
truncated Hamiltonian defined only in a restricted space. Figure 6 gives a
schematic illustration of the intermediate role played by such a truncated
Hamiltonian, denoted H", which appears as a new intermediate step for
deriving a pseudo-Hamiltonian from an exact Hamiltonian. H" is defined in
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some significant model space S, the projector of which is P,. Its spectral
decomposition can be written as

B 3 BSOS )

Expression (84) defines a Hermitian Hamiltonian. A possible choice for H" is
obviously the des Cloizeaux effective Hamiltonian or some of its generaliz-
ations investigated in Section IL.A. With this choice, the E,, of (84) remain exact
energies of the original exact Hamiltonian H. But other choices are possible for
H' that also may be characterized by its matrix elements. The best pseudo-
Hamiltonian is now obtained by minimizing the distance

| H?® — H' || = {| Te[Po(H®® — H*)]|?}*/2 (85)
or equivalently by requiring
(Hps . H(rals o H")mlnimum (86)

Up to now the conceptual importance of this truncated Hamiltonian does
not seem to have been clearly recognized. According to our experience in the
field, it is most often a necessary intermediate step for deriving pseudo-
operators and pseudo-Hamiltonians from exact Hamiltonians by first prin-
ciples. This will be clearly indicated by applications in Section IV.

III. APPLICATIONS OF EFFECTIVE HAMILTONIANS

A. Relativity

For heavy atoms, the instantaneous velocities of the electrons near the
nuclei cannot be neglected with respect to the velocity of light. These electrons
must be described within the Dirac relativistic theory. For the sake of
simplicity, let us consider a one-electron system in a central field. The Dirac
Hamiltonian, shifted for the energy by ¢, can be written in atomic units (a.u.)
as

H=f—1)c*+cap+V 87

Here « and f are the four-component matrices

0 o I 0
I I

where o are the Pauli matrices in their standard representation and I is the
2 x 2 unit matrix; c is the velocity of light (¢ = 137 in atomic units) and V = V(r)
depends only on the distance r between the electron and the nuclei.

Most often we are interested in solutions corresponding to the negatively
charged electrons of chemistry and physics, the so-called positive-energy
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solutions.*® For these solutions the first two components y/; and y, of y are
large with respect to the small components Y3 and 4. Thus it seems obvious
that one has to look for two-component formalisms, which were first
investigated by Pauli. Foldy and Wouthuysen*” have shown that, by means of
successive unitary transformations, it is possible to expand in a systematic way
the Pauli Hamiltonian in powers of 1/c2. Unfortunately, this series is highly
singular for a Coulomb potential and it results that the standard two-
component Pauli Hamiltonian cannot be used for variational calculations,

The purpose of this section is to show how the problem of passing from
the four-component Dirac equation to two-component Pauli-like equations
can be systematically investigated within the framework of the theory of
effective Hamiltonians.!%!! Beyond the above-mentioned difficulties, we will
be able to derive energy-independent two-component effective Hamiltonians
that can be used for variational atomic and molecular calculations. To
introduce the subject and the notation, let us first consider the simple case of a
free electron.

1. Free Electron (V=0)
Hamiltonian (87) reduces to
H=(f—1)c*+cap (89)

Within the energy-dependent Feschbach—Lowdin approach (Section I1.A.2)
one obtains

1 a'p
= et B 90
2 P°+1+E/2c2 2 1o )
and
1 2
HY¥ = P P p’=—-A 91)

T 14+Ef2¢22°°

Within the energy-independent Bloch formalism (Section II.A.3), the reduced
wave operator (33) can be written as

Iy OB
Koo~ %K 92)

The exact solution of this equation is!°
2

2P e T
A= 2¢ ! s 1+ 1+ p?/c?)\?

where [ is a kinetic cut-off operator, which tends towards 2¢/p for high values
of p. From X, the Bloch and des Cloizeaux Hamiltonians can easily be
obtained. In the particular case of a free electron, they have the same

%3)
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expression:
H*f(Bloch) = H*(des Cloizeaux)=4p*f ©4)

Note that by adding the energy c? (in a.u.) these effective Hamiltonians can be
put in the usual form:

Heff = cz hd %pzf - c2(1 +p2/02)l/2 (95)

2. Central-field Potential

In the presence of ¥, the Feschbach-Lowdin wave operator becomes

1 a'p
=Pt E Ve 2 1 ©6)
and
Hff = o pfgop+V (97)
where
1
fE (98)

T1+(E-V)23

is a cut-off function of r which for a Coulomb potential (V = — Z/r) tends
towards zero with r (Fig. 7).48:4°

Within the energy-independent Bloch approach, the reduced wave operator
becomes

a'p 1 ap
= T —X—X
X ¥ P0+2C2 [V,X]—X = 99)

[V, X]is the commutator of ¥V and X. The iterative solution of (99) leads to the
perturbation expansion

L T . o
X= - Py + ¥ [V,ap]P, 23 P P, + (100)

fe

1 K~ ::g
/ E>0

0A5 //_—_

B r

Fig. 7. The cut-off function f;as a function of
the distance r between the electron and the
nucleus. For a Coulomb potential, the cut-off
radius is r. = Z/2c? where Z is the atomic
number and ¢ is the velocity of light.
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From knowledge of X one can easily derive the Bloch and des Cloizeaux
effective operators:

A%

H‘"(Bloch)=—§+ V———~———( o'L+... (101)

o Ly o s

d\fdv 1 1dv
8c?  4c?

H*(des Cloizeaux) = —%+ |4

A? AV 1 1dv
82 T3 tagrar
mass Darwin spin—orbit
correction

oL+
(102)

The Hermitian des Cloizeaux effective Hamiltonian is identical to the Pauli
Hamiltonian obtained by means of the F oldy-Wouthuysen transformation. It
is highly singular for a Coulomb potential, since the Darwin term becomes
proportional to the Dirac function §(r) and since the spin—orbit term behaves
asr 2 near the nucleus. Even worse, the series diverge for higher terms in 1 Jc*,
which would imply the meaningless product of Dirac functions. Moss et al. 5952
have studied these singularities and searched for methods to avoid these
divergences and eliminate the singularities. However, it is easier to notice that
the perturbation expansion of X from (99) is incorrect near the nucleus where
V becomes infinite and for instantaneous classical velocities of the electron
greater than c. To isolate such a strong singularity one has to look for some
infinite summation in (99). This can easily be performed if (99) is written in the
form s

ap ap
X—fzc P, zchV fX 5, X (103)
where
1

1—V/2c?

For a Coulomb potential the cut-off function f varies from 0 to 1 as
illustrated in Fig. 7. The iterative solution of (103) provides regular terms that
finally lead to a regular expansion of the Bloch and des Cloizeaux effective
Hamiltonians. The first terms are:

= (104)

1 1
H*(Bloch) = — A, + Vog@dabitmaV +-  (105)

1
H*(des Cloizeaux)= — 1A, + V —i—t,)c—z(AzAl +A,4A,)

1
+@(A2V+ VA,)+ - (106)
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where
Ay=opftop (107)

These effective Hamiltonians are regular near the nuclei. They provide
accurate results for atoms and open the way for relativistic variational two-
components calculations in molecules.’?

B. Research on Nearly Diabatic Potential Energy Surfaces

1. Difficulties of Adiabatic Approaches; Interest in
Nearly Diabatic Treatments

It is well known that the solutions of the electronic Hamiltonian H*' for a
molecule in the Born—Oppenheimer approximation define potential energy
curves or surfaces that do not cross when they belong to the same symmetry
(except for a few nuclear configurations for which essential or accidental
degeneracies may occur). It is also well known that in most cases the molecular
wavefunctions keep a well defined dominant character, at least in some regions
of the nuclear configuration space. They are for instance valence or Rydberg,
ionic or neutral. When following the ith root of the electronic Hamiltonian, the
dominant character may change when the nuclear configuration changes. For
instance in a diatom, like Na, (Fig. 8), the second 2'Z .} root3+3% is essentially
‘Rydberg’ Na(4s) + Na(3s) at long interatomic distances and it generates a
rather flat potential curve. Then at shorter distances, it becomes essentially
ionic, dominated by a Na* + Na™~ (3s?) character, and the corresponding
potential curve is attractive, due to r ~ ! electrostatic interaction. At still shorter
interatomic distances the same root changes its physical content to become
essentially of Na(3s)+ Na(3p) valence-promoted character, and the curve
becomes repulsive, defining a long-range minimum near 12 bohr. At still
shorter interatomic distances (r < 10 bohr), the dominant character changes
once more, becoming dominated by a Rydberg character and attractive (as is
the Na; potential curve) (Fig. 8). This adiabatic description, in which the
potential curves do not cross (no electronic coupling between the adiabatic
states), leads to wavefunctions that change their electronic content from one
region of the configurational space to another. It is well known®®37 that one
might be tempted to propose an alternative picture where the wavefunctions
would keep an invariant content but would of course be electronically
coupled. If the derivative dy/dr of the wavefunctions were strictly zero, the
representation would be said to be diabatic. The dynamic (collisional or
vibronic) treatments which follow the calculation of potential energy curves
require computation of radial couplings, i.e. {,|dy;/dr) matrix elements
between the adiabatic wavefunctions, and if the function ; changes its
character rapidly the derivative is a sharp function of the nuclear coordi-
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Fig. 8. Tllustration of the changes in the content of an adiabatic
wavefunction and of a qualitative diabatic reading. Case of the
2 2%} state of Na,.

nates.*® Owing to this rapid variation, the integration of the matrix element
{¥:ldy;/or) requires the calculation of the wavefunctions for a very dense
series of nuclear geometries, and it is therefore either very costly or inaccurate.

One has thus in principle a choice between adiabatic and diabatic
approaches

Adiabatic Diabatic
Solve H'Y = Ey/ Use diabatic wavefunctions
No electronic coupling No radial coupling
Radial coupling difficult to calculate Large and numerous electronic
couplings

depending on the privilege given to a preliminary research of the electronic
Hamiltonian solutions. The adiabatic approach has the advantage of reducing
the dynamic or vibronic problem to a few adiabatic states close in energy, since
the radial coupling cannot mix states lying too far apart in energy. The
diabatic approach faces two difficulties: (i) It is general impossible® to find or
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to use strictly diabatic wavefunctions. One is compelled for instance to use
valence-bond (VB) determinants which keep a well defined physical character
when the nuclear coordinates are varying, and to neglect their derivatives (or
to interpolate them). (ii) The electronic wavefunction has in principle to be
developed on a very large number of determinants to obtain reliable energies.

Both approaches have then their practical defects. As far as the wavefunc-
tion is dominated by a few VB determinants or configurations (a Rydberg

configuration crossing a valence repulsive curve, for instance), one may of -

course restrict the problem to this space and give an approximate elegant
diabatic picture of the problem.5”

2. Ab Initio Nearly Diabatic Treatments

There exist two ways to combine the numerical accuracy requirement with
the desire of a simple nearly diabatic representation of the problem. One
solution consists of performing a unitary transformation on the set of n
eigenvectors /2 of H"

{yi} =U{y3} ik=1,2,...,n (108
21 10y5/or ) = minimum (109)

U being such that the (y{|ay$/dr) radial couplings of the transformed
wavefunctions are minimum.?® This condition is not very useful from a
practical point of view since it requires the knowledge of the radial couplings in
the adiabatic basis, which are difficult to calculate. A more practical solution®!
consists of maximizing the overlap of the transformed vectors Yy with
unvariant asymptotic vectors y2:

;|<w:|w£>| = maximum (110)

This procedure gives nearly diabatic vectors; their radial couplings may be
cither neglected or interpolated, since the y¢ vary slowly with nuclear
coordinate changes (see also Ref. 62).

Instead of working in a stable subspace of H*' (ie. in a basis of 10p
determinants), one may work in a basis of a rather limited number of
configurations, those which play a major role in the adiabatic eigenfunctions
of interest, and build an effective electronic Hamiltonian in this model space.
For instance, for the curve crossing between the ionic and neutral
configuration in NaCl, one may define as a model space the two leading
configurations

¢, = |4s8,35%,3p2)| Na-Cl neutral
¢ =13s¢,-3p8;-| Na*Cl™  ionic
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If the treatment was limited to these two determinants with a common set of
3sci3pc) atomic orbitals (AO) taken from either the Cl- or C1~ Hartree—Fock
(HF) calculation, the treatment would be quite incorrect and would predict an
erroneous curve crossing distance and avoidance. But one may use these two
determinants to define a 2 x 2 model space and apply the theory of effective
Hamiltonians, as suggested by Levy®>* (with a slightly non-orthodox
definition of the effective Hamiltonian). One may use either the Bloch or des
Cloizeaux definition of H*'f as a 2 x 2 matrix, the eigenvalues of which are the
exact adiabatic eigenvalues

[gg‘; g:;éff]@'"-o =¢,0,.0 (111)
where
HY = ey
D0 =" [V > bu + D' 1Y) b (112)

The matrix elements of H*' may be obtained from a former large
CI diagonalization, by perturbative expansions, or by iterative techniques.

Spiegelmann and Malrieu have proposed improved versions of this
procedure,®® where the model space is spanned by several multi-
configurational zeroth-order descriptions of the various diabatic eigenfunc-
tions. This proposal, which fits very well the architecture of the CIPSI
algorithm,°® 7 has received applications on Ar¥ excited states, NaCl curve
crossing,®® HeNe?*%* and the Cs*(7p) + Hy(X'2Z[) - CsH(X'Z,}) + H reac-
tive collision.®8

Other refinements, combining unitary transformation theory, have been
proposed by Persico et al.5* and now seem to be the most rational and efficient
procedure to convert the large CI calculations (keeping their energetic
reliability) into a simple nearly diabatic picture through a small-sized
Hamiltonian. The diagonal (and off-diagonal) terms of this effective Hamil-
tonian have regular behaviour, since they reflect the variation of the energy of
(and coupling between) physically nearly invariant wavefunctions. They may
be interpolated easily without loss of accuracy. This solves two types of
problems: (i) the calculation of the radial couplings for vibronic problems
becomes easy, and (ii) the quantum semiclassical or classical calculations of the
dynamical cross-sections requires the knowledge of the energy at a very large
number of nuclear configurations; the use of adiabatic potential surfaces
usually requires difficult analytic fittings.®® The analytic fitting of well behaved
diabatic potential surfaces and electronic couplings is much easier. One must
simply diagonalize a small interpolated effective Hamiltonian when energies
are needed in trajectory calculations; this is the philosophy of the use of the
DIM method’® in dynamical calculations, and the ab initio nearly diabatic
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effective Hamiltonian approach introduces three- (or more) body effects, and
ensures a much better reliability of the energies while keeping the same
advantage in the dynamics calculations.

3. A Special Application to Research on Resonant States
in e —~Molecule Collisions

As a special application of the diabatization techniques of ab initio MO-CI
calculations, one should mention the research on resonant states in electron—-
molecule collisions.”"7? The problem concerns the existence of a discrete
(usually valence) state of the molecular anion, embedded in a continuum of
diffuse states. For a molecule like H,, the electronic Hamiltonian of H; has a
2%} bound state at large interatomic distance (since H ™ is stable), while it has
no bound state for interatomic distances shorter than 1.4A. Collisional
properties, however, suggest the existence of a broad resonance of 2Z)
character, which may be seen to be due to the coupling of a discrete state of
essentially 620, valence character with a continuum of diffuse states associated
with the 'ZS (02) ground state of the molecule, the outer electron being
unbound. This problem may be treated in various modes, but it appears as a
challenge to quantum chemists, whose finite basis sets seem to forbid the
examination of such a problem. Nevertheless some approximate methods
have been proposed (known as ‘stabilization techniques’”’*~7) to find the
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Fig. 9. (a) Adiabatic potential curves of the H; problem

in various finite basis set CI calculations.”" (The numbers

refer to the exponent of a diffuse p AO in the centre of the

molecule). The full curve refers to the bound-state region.

(b) Diabatization of the preceding potential curves;”'
(same comments as in Fig. 8a).

position of the so-called discrete state; for weak couplings between the
resonant state and the continuum, the method simply consists in a qualitative
diabatic reading of the resonant state potential curve through the avoided
crossings with potential curves which are basis set dependent. For strong
couplings (broad resonances) some constraints must be added. It may be
noticed that finite basis set MO-CI calculations give a sampling of the
continuum states through wavefunctions of the type (/)(X('Zg*)) x d where
d is a diffuse MO. The more diffuse is the d MO, the closer the energy of
this unbound state to that of the neutral ground state; the coupling between
the hypothetical discrete state, the potential curve of which should be
repulsive, and the sampling of diffuse states (with potential curves parallel
to the ground-state potential curve) should result in a series of curve crossings,
according to Figs. 19a and b.

The usual MO-CI calculations provide adiabatic potential curves. In some
cases of weak coupling between the discrete and diffuse states, it has been
possible to recognize the place of the discrete potential curve under the net of
adiabatic potential curves calculated from various basis sets (see for instance




354 PHILIPPE DURAND AND JEAN-PAUL MALRIEU

Ref. 75). This recognition is impossible when the electronic coupling between
the discrete and diffuse states is too large (broad resonances). In that case the
above-mentioned diabatization procedure may be applied, as suggested by
Komiha etal,”* furnishing a description corresponding to Fig.8b. The
problem is presented as a finite effective Hamiltonian; the model space is
spanned by (a) a determinant derived from the asymptotic H+H™ limit,
which corresponds to the discrete state, and (b) determinant products of the
neutral ground-state wavefunction by a diffuse MO, which have large
components in the diffuse states. The eigenvalues of this effective Hamiltonian
reproduce the exact adiabatic energies and there is no loss of information
regarding the energies. The diagonal matrix element relative to the discrete
state, i.e. the potential curve of the diabatic discrete state, fits asymptotically
into the bound state in the long-distance region, and presents a well defined
and specific shape, almost independent of the chosen basis set, for short
interatomic distances. In contrast, the positions of the diabatic state potential
curves relative to the diffuse states strongly depend on the basis set, but they
are always parallel to the neutral ground-state potential curve. The amplitude
of the diffuse—discrete electronic coupling depends strongly on interatomic
distance. Approximate expressions for the definition of the resonance position
and width have been proposed following the basic ideas of Fano,”” and they
appear to give stable results with respect to the choice of the basis set.

C. Reduction of the Number of Particles and/or of the Atomic-orbital
Basis Set Through Effective Hamiltonian Approaches: Construction of
Valence-only Effective Hamiltonians

1. Preliminary Remarks

The present section essentially discusses the attempts to build effective
valence-only Hamiltonians spanned by a valence minimal basis set, which has
been the subject of several tens of papers by Freed et al. (reviewed in Ref. 78;
see also Westhaus’® and Mukherjee®®). One should notice first that the
purpose of such attempts is two-fold: elimination of the core electrons from
the explicit treatment; and reduction of the basis set for the treatment of the
valence states of the molecule to a minimal valence basis set. The effective
Hamiltonian should reproduce the energetic results of a calculation including
the core electrons, their exclusion, polarization and correlation effects, and
performed in a large basis set (for both the concentrated core distribution and
the more diffuse valence cloud).

From a basic point of view, the two purposes are different and should be
distinguished; one may be tempted to eliminate the core electrons while
keeping a non-minimal valence basis set, as occurs in pseudopotential
techniques, on the one hand, while on the other hand, one may try to treat a
coreless problem such as a cluster of hydrogen atoms in a minimal basis set, or
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treat both the core and the valence shells in a minimal basis set. The present
section will try to analyse the two purposes independently, in order to simplify
the discussion.

As a second important point, one should note that the reduction of the
number of electrons or of the basis set, which may be performed through the
effective Hamiltonian theory on the atom or on a diatom, is of little interest if it
is not used in the treatment of larger systems. The reduction of the information
on a diatomic problem is not an interesting problem per se, it is only worth
while if it results in transferability of effective interactions from small to large
systems. The present section will always discuss the effective Hamiltonian
reliability from this point of view, which initiated the work of Freed when he
realized that effective Hamiltonian theory might give a strong ground and a
practical ab initio derivation to the very cheap and quite inelegant (since
resting on trial and error in the determination of the parameters) semi-
empirical Hamiltonians of quantum chemistry. We shall not discuss the
practical successes of the attempts of transfer, which are quite limited, but its
theoretical legitimacy, from the basic content of the model spaces.

The present section will be organized as follows. It first analyses briefly the
effect of the core electrons on the valence energies, and which are the main
impacts of enlargement of the valence basis set for the molecular calculation.
This will be done on an elementary problem, an alkali diatom, and the
analysis will be performed through an appropriate orthogonal valence-bond
(OVB) approach. The strategy followed by Freed and coworkers will then be
briefly reported. It rests on a low-order degenerate perturbative expansion
which faces difficult problems, some of them being mentioned there. The next
subsections move to the basic definition of Hf. In a following subsection,
the chances of eliminating the core electrons are briefly discussed, in order to
compare with the pseudopotential techniques discussed elsewhere. The last
subsection discusses a few difficulties for deriving a minimal basis set effective
Hamiltonian, namely intruder state problems, especially at large interatomic
distances and the occurrence of intrinsically new valence situations in a
polyatomic molecules valence problem, which cannot be derived from
diatomic interactions.

This section concludes that, despite its advantages, the attempts to define
complete valence effective Hamiltonians will probably face tremendous
problems, owing to the large heterogeneity of the valence spectrum, which
involves low-lying neutral states and up to multiply ionic states embedded in a
far continuum (autoionizing states).

2. Role of Core Electrons and of Basis Set Extension.
Analysed for an Alkali Diatom Problem

The simplest typical problem concerns the alkali diatom (Li,) or the
ethylene molecule. The active electrons are the two valence 2s electrons or the
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two melectrons, and the effective space is generated by two 2s or two 2p, AOs a
and b supposed to be properly orthogonalized (vide infr-a). The core electrons
represent either the 1s pairs or the ¢ frame. For the sake of simplicity, we
reduce the core to one electron pair, for instance the localized C—C bond pair,
in one g, MO. The model space is spanned by four determinants, two of them
being neutral, two of them being ionic in the sense of VB theory

Po= Y. 16:5<4l
¢ =|oGab]
.B.
b, = |obal A neutral
¢5=|odaal A B* ionic
¢4 =|oabb] A*B~ (113)
The first-order Hamiltonian keeps the form
b1 b2 ¢3¢
0 Kab Fab Fab
0 . By Fiy (114)
AE K,
AE

where K, is an interatomic exchange integral, F,, is a hopping integral and
AE, the transition energy from the neutral to the ionic determinants, is
positive. If these four determinants define the model space, the corresponding
effective Hamiltonian will keep the same structure, imposed by symmetry. In
Hermitian formalisms the outer space will change the matrix into

—0E K, +0K F,+dF F,+0F

- Fuy+0F F,+0F (115)
AE—8E K, + 0K’
AE — '

and the question under analysis is the understanding of the main differences
between this effective OVB matrix and the first-order one.

This matrix may be factorized by spin and space symmetries into a one-
dimensional triplet antisymmetric, a one-dimensional singlet antisymmetric
and a two-dimensional singlet symmetric subspaces

SA=(py — p2)/s/2
'A=($s— pa)/\/2
1Sy = (¢, + $2)/\/2
1S2 = (¢3 i ¢4)/\/2
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The outer space will involve two types of determinants: (i) those which keep the
frozen ¢ core, and (ii) those involving excitations from the o core. The former
represent the effect of an extension of the valence basis set, and their effect may
be analysed first.

We may assume first that the a and b orbitals have been determined self-
consistently for the lowest triplet state >A which is neutral in character since
the §, = 1 solution may be written unambiguously by a localization of the
symmetry-adapted singly occupied MOs, into a localized picture®!

3A = |oGab| (116)

and obtained from a preliminary restricted Hartree—Fock (RHF) calculation.
One should notice that the distortion of these two localized MOs a and b with
respect to the free-atom RHF AOs @ and b’ is very important. It involves,
besides orthogonalization tails, contractions and distortions in the molecular
field and significant hybridizations which minimize the electronic repulsion,
avoiding for instance the neighbouring core:

a=a+ Y Cyup+ Y Cuq
peA geB

p#d

These preliminary distortions are of major energetic importance.

Then one may introduce orthogonal atomic orbitals a; and b}, which are
excited atomic orbitals of A and B orthogonalized to a and b, and one will
generate single and double excitations towards these virtual MOs from either
neutral (¢, ¢,) or ionic (¢3, ¢,) valence determinants.

Single excitations from ¢, or ¢, will generate

(oGaib|H|p, > = {aj| — Ky|a) = (a;b, ab)

ie. rather small corrections (due to the weakness of the interatomic
distributions). K, is the exchange operator associated with orbital b. Double
excitations from ¢, or ¢, will generate

(odaibi|H|p,) = abilab) = (ad;, bb;))

i.e. stabilizing interatomic dispersion forces, of moderate amplitude. Single
excitations from ¢, or ¢, will lead to much larger corrections since the matrix
element represents

(oaia|H| ;) = aj|lJ,— J,|a)

i.e. the coupling of the (a;a) dipolar distribution with the valence dipolar field
of the A"B* distribution, where J, and J, are the coulomb operators
associated with orbitals a and b respectively. This represents both an atomic
reorganization of the A~ electron pair (which tends to be more diffuse) and
its molecular distortion towards the B* centre. Double excitations from ¢,
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or ¢,) will lead to
(ooaidj|H| ;) = {aaj|aa) = (aa;, ad))

corrections correlating the electron pair of the negative ion A~, either
radially if a; and aj have the same [ value I, or angularly if a; and a} have
a value of [ =1, + 1. Double excitations from the ionic valence components
therefore introduce the radial and angular correlation of the monocentric
electron pair.

The conclusion is thus that the extension of the basis set with respect to the
minimal atomic basis set is important (i) to distort the AOs in order to
minimize the interatomic repulsion in the neutral forms, and (ii) to lower the
energies of the ionic components of the VB wavefunction by important
instantaneous repolarization and correlation effects.82~84

If the atoms bear more than one electron, for instance for a carbon atom, the
VB wavefunction of a C-containing molecule will introduce some components
where the C atom is neutral, in several possible s?p?, sp?, p* valence states (the
latter being hybridized), and other components of C*,C~, C2*,C2",...singly
or multiply ionic character. The use of large basis sets in CI calculations
essentially results in lowering of the effective energies of the various excited
neutral, ground and excited ionic valence states appearing in the full valence
CI wavefunction.

The influence of core excitations may be studied according to a similar
analysis. One may first consider o — o* single excitations. The effect on the
neutral determinants ¢, ¢,

(¢1lHlaga,p,)=o|—Kylo*)

is weak, due to Brillouin’s theorem. In contrast, single excitations acting on the
ionic determinants ¢, ¢,, lead to a very important coupling

(PslHlaga,3) = o] —J,+ Jylo*)

which represents the coupling between the oo* transition dipole and the
A™B* valence dipole.®> The corresponding correction represents the re-
polarization of the ¢ core under the instantaneous valence field of the ionic
valence determinants. This correction will be a major molecular correction.

Double excitations involving two core electrons introduce core correlation
effects, almost independent of the valence electron distribution; they have a
pure translational effect on the energies.

Double excitations involving both one core and one valence electron
aiaja,a, lead to (oo*, aa}) matrix elements when they act on either the neutral
or the ionic determinants. Their effect is essentially translational on the
valence states. They stabilize the Rydberg states much less and become zero in
the positive ion. They thus have an important spectroscopic effect,#6-°° but
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they are not crucial for the energy differences between valence states of the
neutral molecule.

One should therefore remember that the main effect of the core appears from
single excitations on the valence ionic VB components.

One thus sees that the core electrons will essentially act as a polarizable
system, sensitive to the electric field instantaneously created by the valence
electrons. This field is especially large in ionic VB components and the core—
valence interaction should essentially result in a differential stabilization of the
valence VB ionic structures with respect to the valence-only approach.

Therefore, both valence basis set enlargement and core correlation effects
might be seen as going essentially through a coupling with the ionic
components of the valence wavefunction. One may thus imagine immediately
that their effect will be some specific energy lowering of these ionic VB
component energies, with respect to those that one would predict from a
frozen-core and/or from a minimal basis set calculation. In Eq. (115) the larger
corrections will be dE'. In an effective Hamiltonian calculation the effect of
these corrections will essentially be a dressing of the ionic V B components, i.e. a
lowering of the self-repulsion, as well known in n-electron theories.

3. Simultaneous Reduction of the Number of Particles and
Basis Set; the Valence Effective Hamiltonians of K. Freed

In a large series of papers, Freed and coworkers have tried to define
valence-only minimal basis set effective Hamiltonians. This idea was first
applied to the m system of conjugated hydrocarbons, eliminating the explicit
treatment of the o core and attempting to find rigorous foundations®!~ ¢ for
the = semi-empirical Hamiltonians of the Pariser—Parr—Pople family,’*:°% or
to obtain non-empirical derivations of these simplified Hamiltonians. The
CNDO valence-only Hamiltonians®” excluded the 1s? core electrons of
the atoms and belonged to the same category. The same idea therefore received
numerous other applications to atoms®® (including transition metals®®:1°°),
hydrides.'°1:192 alkali diatoms,'3:1°* diatoms with more than two valence
electrons (0,),'%37197 etc.

The method 8~ 119 is frequently referred to as the partitioning (Feshbach—
Lowdin) technique (see Section I1.2). The model space is the valence complete
active space, i.e. the whole set of determinants involving the same (unspecified)
frozen core and all possible electronic distributions in the valence orbitals.
This space is, of course, very large and spread on a huge range of energies. For
O,, for instance, it involves O(2p®)+ O(2p°) configurations, which are
unbound. It also involves, for instance, 0%~ (2s*p®) + O%* (2p*) situations,
which also generate unbound states at all distances. If the effective Hamil-
tonian was that produced by the partitioning technique, it would be energy-
dependent. In other words, one would have a different valence effective
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Hamiltonian for each state. The effective integrals would then be very difficult
to transfer to larger problems. The first papers on 7 electron effective
Hamiltonians were actually presented as energy-dependent.

In most papers, Freed et al.!°% 19 (i) develop the energy denominator of
Eq.(9) in a power expansion, thus going back to a Rayleigh—Schrodinger
version of the quasi-degenerate perturbation theory (QDPT); (ii) use a
monoelectronic definition of H, = ¥ ¢,a;" a; (Moller—Plesset definition of the
unperturbed Hamiltonian); (iii) introduce a full degeneracy of the valence
space, which, while this complete degeneracy results from the choice of H,
in the case of a single band, further requires giving equal energies to s and
p AOs in systems involving both s and p orbitals; (iv) define a set of rationally
orthogonalized AOs by a proper combination of Schmidt and S~'/2
transformations. Alternative definitions of localized equivalent crbitals may
be obtained from the valence MOs of the upper multiplet. The QDPT
expansion is performed in a basis of OVB determinants.

One should notice first that, from the very theory, the effective Hamil-
tonian of an n-active-electron problem spanned in a basis of N determinants is
a series of n-electron operators

N

H = 5 o) <ilH"|$;><¢,l (117)

ILJ=1

which are quite difficult to handle if one wants to transfer them into a larger
problem. Freed et al.*°8~ 119 succeed in expressing the effective Hamiltonian in
terms of one-, two-, three-,... particle operators. This is always possible in
principle but quite arbitrary. If ¢, and ¢, differ by two spin orbitals only

¢, = aj+ @' a0, (118)
one may be tempted to define the effective bielectronic integral as
(i, k)™ = (| H | ;)

but if one considers another couple of determinants, also differing by the same
spin orbitals

L= a_i+ a' aax (119)
the effective interaction has no reason to be the same
o |H ¢ > #<ds| H | dr) (120)
since they include high-order processes which are different. If
bk = Oy Py (121)

one may be tempted to write
oyl H |y > = (if, kD)™ + O jkt mn (122)

O4ju1,mn TEPTEsenting an increment of the (ij, kl) effective interaction when MO n
is empty and the MO m is occupied.
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In terms of operators this may be written as a six-body operator
+ + + +
6Ukl.mnaj a qaa,a, a, a,

This procedure may be generalized and is well defined, but it depends on the
order of appearance of the @;. If one of the ¢, played a special role, as the
Hartree-Fock (HF) determinant, it might be taken as the vacuum state, and a
hierarchy of singly, doubly,...excited determinants might be defined, but since
one is looking for local (transferable) interactions involving orthogonal AQOs,
all VB determinants play the same role and any ordering would be arbitrary.

Freed et al.'°8= 11 therefore do not follow this way. They expand the
effective Hamiltonian to second order, and since all the determinants of the
model space are kept degenerate, the second-order corrections only introduce
one-, two- and three- particle operators which only depend on the index of the
connected propagation lines in the diagram. If one defines the reference
description of the core as the vacuum, the model space states are defined by a
certain number of upwards propagation lines, equal to the number of valence
electrons. For a four-electron problem, the state ¢, is defined by the four
indices

defining ¢, = a; a} af o}t ¢...
Then a one-body operator may change ¢,into ¢, = a, a¢p,. A second-order
correction may be viewed as

*, ¢ L (CC*’ /u)('{p’ CC*)
/ / K Ec+El_El_Ec’

o

where the double arrows symbolize MOs which do not belong to the active
space. The downward

(123)
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line necessarily concerns a core MO while

and

belong to the virtual space. Now it becomes clear from hypothesis (iii) that the

process

will result in an equal correction and one may say that

il P
'! 57
/4
1' (cc*, Al)(Ap, cc*)
! (:Z;;EC+EO-EA—E,.> (24}

is the amplitude of an effective second-order correction to the first-order

interaction through the core Fock operator.
Typical two-body operators are

Vr {

TR 2
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or

the second diagram involving a core excitation. The three-body terms are of
the type

l—(_““ m n
K
T

and may change there valence orbitals, but only involve one outer orbital,
One should notice, however, that the third-order corrections will destroy
this apparent simplicity. The third-order corrections are given from Eq. (43) by

@ g - 5 Pl VIad<alVIBYBIV I,
<o |HD ;> a'ﬂZ‘ZS (E,~ E)E, — E)
=55 Ol Vie) <l VgL )< pul Vs )

a¢S LeS (EJ L, Ea)2

(125)

and since the model space involves some valence states of very high energy (for
instance, highly hybridized VB structures, or multiply ionic components),
some of the diagonal terms of the perturbation operator are actually huge. The
second summation in Eq. (125) will involve some tremendous terms, which will
make the perturbation expansion quite unreliable and will destroy the
apparent simplicity of the above-mentioned one-, two-, and three-body
operators. For instance the same one-body operator
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will be associated with contributions involving other valence MOs, which may
have completely different amplitudes:

K /

/

k /

involves J;, while P
Y] J
;
L SR T
J i

involves J;, which may be much larger. (These diagrams should be folded to
enter the canonical diagrammatic QDPT expansion.)

The trick of introducing full degeneracy of the model space is only efficient
at the second order, and the transformation of an effective Hamiltonian into
one-, two-, three-,... body operators is questionable since from their very
definition the effective Hamiltonians are actually N-body operators.

In practice, several questions arise:

1. When one uses a low-order perturbation expansion, resting on a very crude
H, definition, are the lowest valence potential curves equally correct? The
large series of papers by Freed and coworkers devoted to
diatoms!01:192:105 actyally seem to support a positive answer.

2. Is the transferability to positive and negative (di)atomic ions ensured, when
the extraction has been done from neutral (di)atoms? A large series of
papers have given satisfactory results for the positive ions of atoms®® (even
when multi-ionized) and of diatoms.'°':'°® For negative ions Freed
et al.*°7 claimed that the use of valence effective interactions might solve the
difficult resonance problem for negative ions, since it would directly give the
potential curves of a dressed valence negative ion, which is supposed to
generate the discrete state embedded in the continuum. Again, one should
say that from the very principles the effective Hamiltonians for X5 or X3
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are completely different from that of X,. If X = Li for instance the effective
Hamiltonian for Li; cannot in principle be reduced to the one-particle
effective operator of Li,. The most recent attempts to calculate Li; from
Li, have actually failed.!?3-104

3. Isthe transferability to larger molecules ensured? The derivation of effective
interactions from a diatomic problem is useless except for transferability to
larger systems. An approach of this main goal has not been even attempted,
except for the 7 systems of conjugated hydrocarbons. In that precise case®*
an effective Hamiltonian has been proposed for butadiene, and keeping the
nearest-neighbour interactions from a similar calculation on ethylene, it
was possible to estimate long-distance one- and two-body interactions and
many-body terms. The results were very discouraging since the one-
electron 1-4 hopping integral between the terminal atoms appeared to be
as large as —1.6¢V, i.e. of the same order of magnitude as the hopping
integral between adjacent atoms (8,, = —4.0eV).

In view of these practical difficulties, and in order to separate the
convergence problems of the perturbative approach from basic problems
inherent to the effective Hamiltonians themselves, we would like to reanalyse
the core—electron elimination and the reduction of the basis set in basic terms,
i.e. referring to the definitions of the exact effective Hamiltonians.

4. Reduction of the Number of Particles

Let us define ¢, as an HF or internally correlated description of the core
shell of an atom (or a molecule). Then one may choose as a valence model
space the set of functions which are antisymmetrized products of ¢, by a
valence function ¢;, in which the n, valence electrons occupy valence, or
Rydberg, or arbitrary orbitals orthogonal to the core orbitals (and not
involved in its description)

PO=,;SI¢C'¢I><¢C'¢I| (126)

For the lithium atom, for instance, ¢, may be a 1s* product or a linear
combination

¢ = o(1s?) + B(1s'%) +y(p?)

including the largest part of the radial and angular correlation of the 1s? pair.
¢, may include a set of n valence plus diffuse plus oscillating AOs, orthogonal
to the core AOs. Then the target subspace, of dimension n, has to be defined. If
one defines it as the n lowest roots of the Li problem treated in the same basis

set
n

Z x> Eiinl (127)
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with

Hply > = En> (128)

Hp being the exact Hamiltonian restricted to the finite AO basis set, one
should note two difficulties: (i) If the basis set involves spatially concentrated
(oscillating) AOs, some of the roots may be unbound, i.e. embedded in the
continuum; they are then strongly dependent on basis set. (i) Some core
excited solutions close, for instance, to | 1s2sns > may be lower in energy than
some roots keeping a frozen core ((1s?ks) where ks would be a very
concentrated and oscillating AO). This will result in an intruder state problem.

To avoid the arbitrariness noticed in (i), one may introduce a spectroscopic
basis set of AOs spanning only the valence and lowest Rydberg states of the
atoms. But it is known that the molecular construction implies some orbital
contraction, which can hardly be mimicked from spectroscopic AOs. It is also
very important when an atom A approaches an atom B that the basis set of the
atom B involves same oscillating spatially contracted functions which are used
by the outer electron orbitals of A to minimize their repulsion with the
electrons of B. It seems almost compulsory for a correct molecular treatment
that the atomic information concerns the energy of unbound spatially
concentrated atomic distributions. Then the occurrence of the second problem
(i.e. the occurrence of core excited intruder states) is not excluded.

The problem is worse when one considers atoms involving several valence
electrons. If one wants to obtain the information relative to a double-zeta
valence basis set of the C atom, it will be necessary, in principle, to find states of
the type 1s?2p* and also 1s*3p*; if 2p and 3p are the RHF AOs in the basis set,
the latter (1s*3p*) determinant will certainly be higher in energy than core
excited states of the type (1s2s2p?), which will act as intruder states. The
definition of the target space will then be quite difficult, since for some basis
sets it will be difficult to discriminate between the eigenstates of the problems
which keep a frozen core from those which are core excited.

Once the model and target spaces have been chosen, the atomic effective
Hamiltonian is defined and its use in molecular calculations may be examined.
For the Li atom, for instance,

Hi'= Y |1s%k)E,{ 15%k| (129)
k=1
H§{"is purely monoelectronic and monocentric. If one goes to Li, one may first
assume a purely monoelectronic form of the Hamiltonian
H3 = B + H* (130)

while the basis set will involve 2n AOs on A and on B. Then the effective
Hamiltonian will reduce to a valence Hiickel-type problem

(H*—ES)C=0
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where for instance
{254|H|25,> = E;5 + ) {255| ks ) 2E,,
kb
<2SA|He"|28b> =2E,,{2s,|2s,,)

It is clear that such a Hamiltonian can only rationalize a Hiickel-type
Hamiltonian (eventually in a non-minimal basis set) and that it essentially
leads to a pure Mulliken-type approximation for the bicentric integrals (which
play the key role in the construction of the bond through electron delocaliz-
ation). It is known that such approximations usually fail; an empirical k
parameter is used in the proportionality of the hopping integrals to the overlap
and atomic energies (Wolfsberg—Helmholtz approximation).

An alternative strategy consists of considering that

Ey = (15%| T — Z o Jra + v | 152> (131)

i.e. that the effect of the core electrons goes through a monocentric correction
to the integrals of the (kinetic + nuclear attraction) operator

va =Y (Bx — (152k| T — Z, Jra| 152k )| 152k > { 152K ]
. ‘

The molecular calculation of Li, will then be performed through a two-
electron Hamiltonian

H=T—&x§5+L+vA+vB (132)

Fa—Ts Ti2

and developed in the basis of determinants |I1si1s3kl>. The correction
operator v,, which may be considered as a core-potential correction written in
anon-local finite expansion, will act on the atomic orbitals centred on atoms A
and B.

This procedure offers in principle an alternative to the pseudopotential
approaches for the treatment of electron coreS. It faces two problems: (i) The
non-local expansion of v, is quite arbitrary. (ii) The process is difficult to
generalize to atoms having several valence electrons. For boron atoms, for
instance, the effective Hamiltonian should be written

He™ = | 15%2s22p ) { 1s?2s*2p|E(*P)
+ |(*D)1s%2s2p? ) {(*D)1s22s2p?| E(*D)
+ | (3S)1522s2p? » {(®S)1s%2s2p?| E(?S) + -+ (133)
ie. it is intrinsically trielectronic, without any rigorous reduction to a
monoelectronic operator. Attempts along this way have never been practised,

and should be performed carefully. The fact that multi-electronic operators are
required does not condemn this approach, since these multi-electronic
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operators should receive a monocentric expansion and would only generate
the calculation of overlap integrals in molecular calculations.

To summarize this section one should say that an effective Hamiltonian
treatment of the core electron effect faces a contradiction between the necessity
to use extended valence basis sets for the extraction and the risk of appearance
of core excited intruder states. One should also recognize that this approach
leads to p-electron operators for atoms involving p valence electrons and
seems much more difficult to handle than the monoelectronic core pseudo-
potentials extracted by simulation techniques and discussed in Section IV of
the present contribution. As a counterpart one should mention that this core
effective Hamiltonian would be much superior, since it would include for
instance the core—valence correlation effects which play such an important
role in alkali- or alkaline-earth-containing molecules.

5. Reduction to Minimal Basis Sets

The problem consists of defining a valence minimal basis set effective
Hamiltonian which would reproduce the valence part of the exact molecular
spectrum. As already mentioned the problem might concern atoms involving
core electrons, described in the same frozen wavefunctions. For the sake of
simplicity we shall first consider hydrogen atoms, and a minimal basis set
would be spanned by a single 1s AO per atom. For the H atom, the effective
operator is —0.5(a.u.)| 1s > { 1s|. For H, the model space is spanned by four
determinants; calling a and b and S™'2 orthogonalized AOs Is, and Isg
respectively, these four determinants are

¢, = IaEI }
_ neutral OVB components
$,=|bal 4
¢3=|aal } ;
ionic OVB components
bu=Ibb] | J
4
Po = _Zl |¢.><¢x|

as already discussed in Section IIL.C.2.

The first main problem concerns the choice of the target space. The (b) T}
[lab| — |ba] |/,/2 combination will always correspond to the lowest (b) 3z
exact state, which dissociates into ground-state atoms. The ground state (')
has very large components in the model space, on neutral determinants only
for large interatomic distances, and on neutral and ionic valence determinants
at short interatomic distances. The two lowest eigenstates of H, should
definitely belong to the target space.

For short interatomic distances the lowest (B)'Z;* state is known to have
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large components on the antisymmetric combination of ionic determinants
| |aa| — |bb] |/,/2, and it should therefore definitely belong to the target space.
The model space contains a second ', state, a linear combination of valence
neutral and ionic components, and one may assume that the fourth eigenstate
of the target space is the lowest excited E (') state. Thus

P=](X)'Zg ><X)'Z; |+ (B)'Z; Y(B)'Z, |
+1(PZS ><(bPZy | +((B)'Zy >{(B)'Z; | (134)
P,, P and the exact energies being known, the effective Hamiltonian is defined
in one of its usual versions.
As a first remark, one should mention that the projections of the two 'Zf
states into the model space have no reason to be orthogonal, since in
W(X)'Z = al|ab] + [bal) — p(|aal +|bb]) + ---
W(E)'Z, = B(lab| + |bal) + o/ (|aa| + |bb]) + ---
o,f>0 (135)

B and f (resp. o’ and «) are of the same order of magnitude but different. If
f'/a’ = B/a one might write ~

H*" = E((0)*2,)[| |ab] — |bal >{|ab| — |ba| | + | |ab| )< |ab| |
+1lab|><|ab| ]
+ E((B)'Z)| |aa| — |bb] )<|aal — |bb] |
+ E((X)'Z)[lo(|ab] + |bal) — B(laa| + |bb])> {a(lab] + [bal)

— B(laa] + [bb])]
+ E((E)'E;)[1B(1abl + |bal) + «(|aa| +|bb]) )< B(|ab] + |bal)
+ of|aal + |bb))|] (136)

This will be the general expression of the Schmidt-orthogonalized effective
Hamiltonian. If f/a#0o'/f, the Bloch effective Hamiltonian will be non-
Hermitian. The relative advantages of the Bloch, des Cloizeaux, Schmidt-
orthogonalized effective Hamiltonians, or of the intermediate Hamiltonians
has never been tested, especially in transfers to large systems.

A second remark concerns the definition of the target space of large
interatomic distances, and the occurrence of intruder states. For large enough
interatomic distances the lower (B)!Z [ state ceases to be valence (and ionic) to
become of H(n = 2) + H(n = 1) character. It dissociates into the H(2s) + H(1s)
asymptote, i.e. an avoided curve crossing occurs between the ionic state and a
Rydberg state. The same remark is valid for the second ' state, which is
known to have two minima,''" one of them being of Rydberg character. This
state is only ionic for intermediate atomic distances, it is Rydberg on both
short and large interatomic distances (cf. Fig. 10).
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Fig. 10. Potential curves of the valence states of the H, molecule, showing the mixing
with non-valence states.

Then one faces a dilemma:

1. One may either choose as target eigenvectors those which have the largest
components onto the model space (maximum projection criterion) and in
the 'S symmetry, for instance, this eigenvector is the lowest 'Z; root at
short interatomic distances, then the second root besides a certain distance
r., and may even go to the third root if a second Rydberg state appears
below the ionic vector, etc. The problem is even worse with the 'Xf
symmetry. The consequence is that the effective Hamiltonian matrix
elements are not continuous functions of the interatomic distances! The use
of a discontinuous operator in larger systems (hydrogen clusters) seems to
be very difficult. '
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. One may forget this disappearance of the ionic components into higher
eigenvectors and take an adiabatic definition of the target space assuming
that the concerned roots are always the lowest of their symmetry, whatever
their physical content. Then the effective operator matrix elements will be
continuous functions of the interatomic distance, but the eigenvectors

(I)m:PO'pm

tend to have a vanishing amplitude when R, increases. This may result in
numerical instability. It may also be dangerous to assume that in a cluster
H, a valence situation

5 QO 2 (O © (O = (N - (S |
will have the same energy as the situation

H.--H(2s)---H.--H---H(ls)---H

6. Transferability; Appearance of New Situations

It one wants to treat an H, problem using a bielectronic effective

Hamiltonian derived from exact calculations on H,, several questions arise
concerning:

1. The choice of the basis set. One may perform a new S~ '/ transform for the
H, conformation and identify the new orthogonalized AOs with that of the
bicentric problem. This is the most direct solution but the orthogonaliz-
ation tails will be different and the use in this new basis of the effective
bielectronic Hamiltonian given in Eq. (136) for instance may result in
uncontrolled effects. One may also express the bielectronic operator of
Eq. (136) in the non-orthogonal basis set and calculate the Hamiltonian
matrix of H, in the basis of non-orthogonal determinants, antisymmetrized
products of 1s AOs. The problem to solve is then of (H-ES) type and it faces
a typical non-orthogonality problem of VB methods, which has been a
major drawback of these approaches.

. The occurrence of new situations. In a linear H system, for instance, one
must consider (a) neutral determinants, for instance |abced| or |abed|, etc.; (b)
singly ionic determinants, some of them having dipoles between adjacent

atoms (Iabﬂl, i.e. AB™C*D), while others introduce long-distance electron
jumps (|aabé|, ie. A"BCD*); and (c) doubly ionic determinants such as
A B'C D' or AA"B"C*D*

One may wonder whether a bielectronic Hamiltonian extracted from the H,

problem is able to deal with some of these situations and to assign reasonable
energies to them. The neutral determinants only involve neutral-neutral
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interatomic interactions which appeared in the H, problem. Assuming that
{abcd|H*|abedy = {ab|H**|ab) + {ac|H*"|ac) + {ad|H**|ad) + etc.

essentially neglects the possible three-body terms governed by the overlap
expansion. But when one goes to singly ionic determinants in the energy of

|abb'd| (B~ C*), while information concerning the B~C™ interaction or the
AD interaction is contained in the H, effective Hamiltonian, information
concerning the AB~ or the C*D interactions are lacking. They should be
extracted from H; and H; problem respectively, i.e. from the one- and three-
electron diatomic problems. This might be done in principle although one may
notice that H; is unbound at short interatomic distances, i.e. that it is
impossible to define exact valence states of H; .

The A”BC™* D determinants involve strong polarizations of the intermedi-
ate B atom, which are not given by numerical transfers from A"B or BC*, due
to the non-additivity of polarization energies.

When one goes to doubly ionic structures, A"B"C*D™ for instance, the
relevant information concerning-the A~B~ interaction should be extracted
from the H%~ valence state, which of course cannot be defined.

The transferability of a valence effective Hamiltonian defined on H, to H,
clusters therefore faces a series of basic difficulties, which leaves little hope of
success. The situation would be even worse of course if one dealt with boron or
carbon atoms since for C, already one should introduce strongly hybridized
(for instance C(p*) + C(p*)) or multiply ionic (for instance C** + C*~(s?p®))
states which are unbound. The choice of the target space is already impossible
on the diatom, and the definition of an exact (Bloch, des Cloizeaux,...)
effective Hamiltonian from knowledge of the spectrum of the diatom is either
impossible or perfectly arbitrary. Even if it were possible, the treatment of B,
or C, would introduce some multiply ionic valence (C3*C* C* C*")
determinants for which the assessment of an effective energy would be
impossible.

There is thus little hope, in our opinion, for a rigorous definition of valence
minimal basis set effective Hamiltonians. To build them, the use of the
diatomic effective Hamiltonian may be useful, but some supplementary
assumptions should be made, along a physically grounded model, to define for
instance three-body polarization energies and the energies of highly hy-
bridized or multi-ionic VB structures. One should realize the physical origin of
these numerous troubles; they essentially come from the inclusion of the ionic
determinants in the model space. This inclusion first resulted in intruder state
problems for the diatom; it also leads to the appearance of multiply ionic
structures in the valence minimal basis set space of the cluster. It seems that,
even for H, the definition of a full valence space is too ambitious.

Besides the effort to give theoretical grounds (and non-empirical versions)
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for the semi-empirical quantum chemistry or solid-state physics simplified
Hamiltonians, which are valence minimal basis set Hamiltonians, Freed’s
attempt rested on a theoretical property, namely the size consistency (and
the linked-cluster  diagrammatic expansion) of the Rayleigh-
Schrédinger QDPT development when the model space is a complete active
space. The price to pay for the benefit of this theoretical guarantee is so large
and so dramatic that one may wonder whether obtaining less ambitious
effective Hamiltonians would not be preferable. (Notice that an effective
Hamiltonian restricted to neutral non-hybridized plus neutral singly hy-
bridized and singly ionic structures would be size-inconsistent, as is the double
CI truncated treatment of the electronic correlation problem for the same
fundamental reasons.)
This step towards simplification may proceed along two different ways:

I. One may resign oneself to treat the ionic states exactly, and use an
intermediate Hamiltonian spanned by the full valence space but which
concentrates on the neutral states and does not try to reproduce the ionic
eigenstates. Work is in progress along this line; it shows that this approach
solves many difficulties discussed above. The effective energies of the ionic
determinants are not as critical, since they simply appear through their
interaction with the neutral determinants to stabilize the lowest neutral
states through electronic delocalization.

2. One may limit the model space to neutral situations. This is the philosophy
of the Heisenberg Hamiltonians, which we discuss now.

D. Effective Hamiltonians Spanned by Neutral-only Valence-bond
Determinants: Magnetic (Heisenberg) Hamiltonians and Their Possible
Generalizations

The last class of effective Hamiltonians rests on the choice of a very limited
model space, spanned by the neutral structures of an orthogonal VB
development. This choice of the model space is grounded on the facts that (i)
the neutral VB determinants are usually those of lowest energy, and (ii) the
lowest eigenstates have large components on the neutral VB determinants.
This model space is a part of the full valence space previously defined, and it is
no longer a complete active space. The development of the corresponding
effective Hamiltonians is especially simple for homogeneous systems involving
only one type of active orbital (i.c. a single band), each atom having p electrons
in p AOs (half-filled band). The simplest problem concerns systems where each
atom brings one active electron in one AO. This is the case of clusters of
hydrogen, alkali, or noble-metal atoms. The conjugated hydrocarbons may
also be considered as belonging to that family if the active electrons are the
electrons, one per C atom in a 2p, AO.
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1. Half-filled Bands with One Active Electron,
One Atomic Orbital per Centre

If a and b are two orthogonal localized orbitals of H (obtained for instance
from the SCF calculation of the (b)*Z;) state), the model space of neutral
determinants is defined by

Py =] labl><|abl | +]||ably +(lab| | +|lab|>{|ab|| +||ab|><|ab] ~(137)

Then, as previously discussed (see Section II1.C.2) the most neutral eigenstates
of 1s character are the ground (X)'Z;" and lowest (b)*Z; states. Thus

P=|(0)*Z, ) <(b)°Zy | +1(X)'Z5 ><(X)'Z | (138)

where (b)*Z. involves its three S, =0, + 1 components,
Owing to space and spin symmetry, the eigenvectors projected into the
model space are necessarily orthogonal

llabl> for S,=1
POI(b)32u>={ lab|> for S,=—1

(llab|y — [Ibal>)//2 for §,=0
Pol(X)'ES =(llab|) + lbal>)//2 (139)

Then the effective Hamiltonian is entirely defined. It is Hermitian.

H = ECZ)[| |ably<lab| | +| [ab|y<|abl | +|ab] —|bal><|ab| ~bal |]
+ E(*Z,)| |ab] +|bal )<|ab] + |bal | (140)
It may be written in second quantization form
H"(a,b) = ECZ )ap + [E('Z{ Jap — ECZ{ an]
(ay a5 +aya;)(aga,+a,a,) (141)

There are only two parameters in the model, ECZ;") and E(*Z;"), which are
distance-dependent, and may be expressed as

R(rs)) = ECZy)
g(rap) =3[E('Zg) — ECZY)] (142)
r., being the interatomic distance.

For the isoelectronic problem of the ethylene molecule, where the model
space is reduced to two determinants having the same ¢.o core

¢1 =I¢c'a| ¢2=I¢c'b' (143)

a and b are now 2p, AOs on atoms A and B, and the target eigenstates are the
X(*A,) ground state and the lowest (*B,) nn* triplet state. The two basic
parameters are then functions of both the r,, distance and the torsional angle
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around the C-C bond 6,

7ab
A B
/
R(rup Op) = ECB,) (144)
9(ar, 0u) =4 [E('A ) — ECB,)] (145)

(Other parameters such as the pyradimalization angle of a C atom might be
considered as well.)

Since the two determinants of the model space have the same space part and
only differ by their spin, the effective Hamiltonian may be written as a spin-
dependent Hamiltonian, the space part becoming implicit, but well defined
(close to that of the separate atoms). A direct algebraic derivation shows that, if
one defines E, as the barycentre of the configuration (which includes three
triplets and one singlet),

Eo=[3ECZ,)+ E('x}))/4 (146)
it becomes possible to write Eq. (141) as
HY = Ey + 2¢S,°S, (147)

where S, is the spin angular momentum on atom A, and g may be seen as an
effective exchange integral.

One recognizes here the expression of a magnetic or Heisenberg Hamil-
tonian.''2 Heisenberg Hamiltonians were first proposed as phenomenological
Hamiltonians and used to fit!13114 the spectroscopic splittings between the
multiplets of atoms or of molecular systems having several centres with
unpaired electrons. Anderson®! (see also Ref. 115) recognized that the
Heisenberg Hamiltonians might be understood as effective Hamiltonians,
deduced from the exact Hamiltonian by the choice of a model space reduced to
the neutral VB components of the system of n electrons in n AO:s. For a
problem with two electrons, two AOs and two centres, the amplitude of the
magnetic coupling 2g is directly reducible to the gap between the lowest singlet
and triplet states (Eq. 145)); when working in an orthogonal basis set, this
difference is known to come from the mixing between neutral and ionic
components, which occurs in the singlet manifold, while it is impossible for the
triplet stage. Turning back to the 4 x 4 matrix (Eq. (114)), it is clear' 6117 that
after symmetry transformations and diagonalization of the 2 x 2 matrix
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concerning the 'Z symmetry

ECZ))=—Kg (148)
E(Z}) =K, +3[AE— (AE? 4 16F*)'2] (149)

ie.
2g =2K,, —AE—(AE* + 16F%)!/2 (150)

where K, is the direct (first-order) exchange integral between the aand b AOs,
F the hopping integral between them, and AE the energy difference between
neutral and ionic determinants. If | F| « AE, one may write

g =K, —2F2/AE (151)

K, is always positive. It lowers the triplet state energy and is said to be
ferromagnetic. The second term lowers the singlet state and is called
antiferromagnetic; and in most cases it predominates over the direct exchange,
most systems therefore being antiferromagnetic.

Equation (151) may be obtained directly in a second-order (Q)DPT
derivation of an effective Hamiltonian spanned by |ab| and |ba|,and where the
jonic determinants |aa| and |bb| span the outer space

(|ab|| H*||ab| = Ko, — {|ab| H || aa| >{|aa| H | ab|>/AE
—<|ab]|| H | bb]><|bb| H | bb| >/AE
=K, — 2F%/AE (152)

(|ab| H||ba|y = K, — <|ab| H| ad| )<|aa| H||ba|>/AE
—(|ab|| H| ab|»<|bb| H | ba|>/AE
=K, — 2F%/AE (153)

This perturbative approach is of course only valid when | F|/AE « 1,1i.e. when
the electronic delocalization, governed by F, is smaller than the increase in the
electronic repulsion when going from neutral to ionic determinants

AE ~ Jaa == Jab
=U in the Hubbard Hamiltonian''®

The outer space may be extended to any kind of determinant, involving
angular and radial correlations of the ionic pairs |aa|, or instantaneous
repolarizations of the core in the ionic structures, as. discussed in Section
IIL.C.2. It becomes possible to treat these effects, which are additional to the
second-order correction, as a dressing of the ionic structure energy, i.c. as a
change of AE

— (alJ,— Jylo*)? (adi, aa})?
AE—AE = AE — -
Z,: AE' datn  AE"

(154)

through infinite summations of diagrams.*'”
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We would like to stress the fact, however, that the convergence of the
(QDPT perturbation expansion is by no means necessary to define a
Heisenberg Hamiltonian, which is perfectly defined by the model space, the
target space and the corresponding eigenenergies, all of which are known
unambiguously in this precise problem. The possibility to define a Heisenberg
Hamiltonian is not restricted to the case |F| < AE, i.e. to problems which are
weakly delocalized or strongly correlated, as usually believed.

a. Transfer

One may be tempted to transfer the Heisenberg Hamiltonian from the
diatom to a cluster of atoms, or from ethylene to larger conjugated
molecules,! 87128 ¢ to write

H'=Y H;ft (155)
i,j
This Hamiltonian will act on the neutral OVB determinants of the cluster, the
space part of which are identical to the product of the valence AOs (i) centred
on the various atoms (I), and supposed to be orthogonal. The various
determinants differ by the spin distribution

¢K=(1]i>(ljo,~x) ‘ (156)

where o, is the spin (« or f) borne by the atom I in the determinant ¢ Forthe
S, = 0(resp. 3) manifold, which contains all possible multiplets of the problem,
in a 2n (resp. 2n + 1) centre problem, the size of the model space is C3, (resp.
C3n+1), 1.e. the number of ways to put n electrons on 2n (resp. 2n + 1) centres.

This size is much smaller than that of the full VB matrix in the same minimal
basis set, an of course fantastically smaller than the size of the CI in a large
basis set. The treatment can of course only give neutral eigenstates, i.e. those
which have the largest projections onto the neutral determinant subspace.
Notice that this sentence has a very precise meaning; it does not mean that the
corresponding eigenstates have a larger component into the model space than
on the outer space; {i/,,| Po,, > may be smaller than {i/,,| Qo¥,.» aseasily seen
by considering nH, diatoms at infinite distances: if for H,

YOE)IPY('ES)) =a (157)
for (Hz)n
{YolPood ="« 1 —an for n sufficiently large

The Heisenberg Hamiltonian, of course, cannot deliver the energies of the
states which are essentially ionic. It cannot give the energy of the lowest excited
singlet state of H, (dipole-allowed 'Z,) nor the lowest 'B, (nn*) singlet state
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of ethylene. The lowest dipole-allowed singlet states of conjugated hydrocar-
bons are essentially ionic and they cannot be reached by such an effective
Hamiltonian.

The legitimacy of the transfer from the two-centre to the n-centre problem
may be discussed along two lines:

1. As previously discussed in Section IIL.C, about the transferability of the
valence minimal basis set effective Hamiltonians, the orthogonal valence
AOs are not he same in the two-centre and n-centre problems, due to large
orthogonalization tails if one uses S™'/? procedures, or to many-body
distortions if one uses the localized MOs of the upper valence multiplet.®!
But it has been noticed!?” that the two-centre Heisenberg Hamiltonian is
entirely determined by symmetry, the amplitude of its operators being
independent of the precise content of the two orthogonal valence orbitals aand
b. One may thus define truncated ad hoc AOs with weak (or even Zero)
spatial overlap. In that precise case the model space AOs are transferable.
The second-order corrections inducing spin exchanges between atoms B
and C in an ABCD cluster are identical to those concerning the BC spin
exchange in the BC diatom. The same is true for higher-order terms
involving only the two ad hoc valence AOs b and ¢. *

2. Many-body (i.c. many-centre) terms would appear’*? if one derived directly
the effective Hamiltonian spanned by the neutral OVB determinants of the
H, problem. Even the two-body terms between, say, two determinants
differing by a spin exchange between atoms B and Cin an ABC cluster will
be different from the effective exchange in the BC diatom

(labed || Hico llabed| > # <|bel| HEE| bel )

due to perturbation orders larger than two, which imply for instance A"C*
singly ionic determinants between non-adjacent atoms, which do not
appear in the BC problem. This question has been well studied by Maynau
et all?»124128 on model problems (ie. starting from a PPP type
Hamiltonian of 7 systems). They concluded that

a. two-body terms are quite transferable,

b. three-body terms are negligible,

¢. four-body terms are large in compact (square) structures and negligible
when the four atoms do not define a cyclic structure, and

d. six-body terms are lower than four-body terms but remain significant
for cyclic structures.

The Heisenberg Hamiltonians should therefore include many-spin
operators, which are essentially functions of the |F |/AE (i.e. B/U) ratio. The
derivation of spin effective Hamiltonians is again always possible, whatever
the | F|/AE ratio, but the negligibility of many-spin (> 2) operators is only
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valid for small | F|/AE values, i.. for the highly correlated case, at least in
compact structures. This restriction is not valid for systems involving only
linear or branched chains or large cycles.

The most convincing applications of Heisenberg Hamiltonians in chemistry
concern the X problem (X being an H or alkali atom),'*° for which the two-
body Heisenberg Hamiltonian is very efficient in predicting geometries and
energies, and conjugated hydrocarbons. In a series of papers!23~126 it has been
shown that most chemical concepts for these problems might be translated in
terms of spin organization. Even the Woodward-Hoffmann rules may be
demonstrated in this language where they concern the cyclic many-body
operators. A careful extraction of the R and g parameters from accurate MO-
CI calculations on ethylene as functions of bond distance and torsion angle
gives a fantastically cheap and accurate tool'*#!2% in the simplest two-body
version of the Heisenberg Hamiltonian. Geometries are provided within
0.015 A; the isomerization enthalpies and the rotational barriers are excellent;
the transition energies towards neutral excited states are in very good
agreement with the experimentally known values; and the model is able to
treat the geometry reorganizations in neutral excited states, which are so
difficult to calculate in MO-CI calculations. The open-shell problems are as
easy to treat as are the closed-shell ones. The simplicity of the Heisenberg
Hamiltonian has made possible research on asymptotic laws2%~127 for linear
or cyclic polyenes concerning bond alternation, rotational barriers, solitonic
deformation and excitation energies to the lowest triplet state (or lowest
doublet excited state). The fantastic successes of these approaches—
completely foreign to the conceptual background of chemistry—is in strong
contrast with the difficulties encountered in research on valence-only effective
Hamiltonians.

The model has even been used with success for the study of nitrogen-
containing conjugated systems, = C=N-—bonds, i.e. weakly polar mole-
cules'3"132 and is being extended to= C=0 containing systems.

The number of systems defining a half-filled band with one ¢, one AO per
centre is however very limited. The alkali-metal and noble-metal clusters and
solids belong to this category, but they are conducting metals and it seems
risky to treat a conducting metal through a model that has been developed
especially for a peculiar class of insulators (Mott insulators), which only treats
explicitly neutral structures, in which each atom of the lattice keeps one
electron. This challenge has been attempted, however, by Malrieu et al.,'2°
who extracted accurate two-body Heisenberg Hamiltonians from the diatom
lowest potential curves, and treated the solid by perturbing the spin wave
presenting the largest number of spin alternacy between neighbouring atoms.
This zeroth-order wavefunction is perturbed to fourth order by the spin
exchanges. One may optimize the lattice parameters and compare the cohesive
energy of various crystalline lattices. The results are surprisingly good,
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concerning the preferred crystallization mode (b.c.c. ~ compact ones for Na,
Li, compact forms more stable than b.c.c. for Cu), the lattice parameters, the
cohesive energy and even the bulk modulus (compressibility).

This highly unorthodox model of the conducting solid cannot explain the
conductivity, although it is not incompatible with it since the wave operator Q
would build ionic components from the projected (neutral-only) wavefunc-
tion. From the principles, and as shown by the previously mentioned success of
Heisenberg Hamiltonians on the most metallic chemical systems (aromatic
molecules), almost any system of which the lowest VB determinants are
neutral may be treated either by the independent-particle approach followed
by a treatment of electronic correlation which reduces the ionic compo-
nents'33:13% or by a Heisenberg-type effective Hamiltonian. This statement
seems to be true whatever the /U ratio. Malrieu et al.'?® also noticed that the
many-body effects (for instance four-body cyclic contributions), which are so
important on small molecules and clusters, play a much less important role in
the solid.

One should point out, however, that the Heisenberg Hamiltonian fails to
predict correctly the planar rhombus structure of Li, (and Na, or Cuy)
clusters. This failure has two origins: one is the involvement of the p band,
which begins to be significantly populated in X4 systems; the other is the highly
jonic character of the ground state in its rhombus equilibrium geometry

+ 0.5
-0.5 -0.5

+0.5
where the short diagonal has almost lost one electron. This means that the

+

+

di-ionic component is quite low in energy, and the problem apparently cannot
be treated by taking a model space of neutral VB structures. This opens two
general questions concerning conducting solids: (i) Are the lowest-energy VB
determinants the neutral ones? Might not multiply and regularly ionized
determinants be lower in energy, if the + and — atoms regularly placed along
a sublattice induce a stabilizing Madelung’s field and polarize the neutral
atoms? (ii) Is the Hubbard Hamiltonian, generally used to treat the correlation
effects in solids, relevant since it cannot take into account this collective
electrostatic stabilization?
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These fundamental questions regarding the description of the simplest
metals are actually fascinating and a major challenge on the borderline
between quantum chemistry and solid-state physics.

2. Half-filled Band with p Electrons in p Atomic Orbitals per Centre

It might be thought that the foundation of Heisenberg Hamiltonians for half-
filled bands where each atom brings p electrons in p AOs is evident. The
Heisenberg Hamiltonian would distinguish intra-atomic (generally ferromag-
netic, due to Hand’s rule) and inter-atomic (generally antiferromagnetic)
effective exchanges

£f _ + AT
Him AZBRab i ;Z K‘AJA(aJAaJ_: + aiAa&(aan‘A % arAajA)
IAJA

+y ZZ g, ,.B(a‘.:af: + a,:a,-‘; )a,a, + a,a;)

AB iy ja

=EO +ng‘jsi.sj (158)

In general the atomic orbitals i, and j, on the same centre are orthogonal by
symmetry. As examples of half-filled bands, one might consider a cluster of
nitrogen (N) atoms, keeping the s?p* configuration with one electron in each
P, Py» P-AO, as occurs in the free atom ground state. Then in N, the p,, p, and
p.AOs belong to three different symmetries (w,,7, and ¢) and

<iA|FUA>=<iAIF|jB>=0 ifi?éj

The only hopping integrals occur between AOs of the same molecular
symmetry ({is|F|j,> # 0) and Anderson’s delocalization mechanism will take
place within each symmetry subspace. The integrals K, ;, are essentially first-
order terms, responsible for the atomic preference for high-spin order (the
ground state of N is (4S), i.e. s?p,p,p,) While the interatomic effective exchange
will again come from the second-order coupling between the neutral and
singly ionic determinants; for instance for S, =0

(sEXAYaZaShXpTnZn H| SaXaTaZaS3%8YaZs) = (VaVB: YAYB)
+ (S3xaYAZaSEXnPnZn| H|SAXAVATAZABE%sZ8 ) (AE, 1 ye) ™!
X (SAXaYATAZASEXnZn| H|SXXAVAZASEX V828 )
+ inverse (y, — yp) term

=(yAyB’ yAyB)+ 2F3A.VB/AEYA_'YB (159)

where the interatomic direct exchange integral is very small, while the second
term is due to the electronic delocalization in the m, subsystem. Maynau
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et al.'35 have tried to analyse the effect of higher orders on a problem involving
two electrons and two orthogonal AOs per centre, namely the acetylene 7
problem when the o core is taken frozen. Using accurate large basis set

ot
H

b 7

MO-CI wave functions, they noticed that the Bloch effective hamiltonian was
highly non-Hermitian, and that its diagonal energies did not follow the
Heisenberg structure. The des Cloizeaux effective Hamiltonian also deviated
strongly from the structure of a Heisenberg Hamiltonian. Both the Bloch and
des Cloizeaux effective Hamiltonians when transferred into the upper
homologue (H—C'=C=C—H) were unable to predict correctly the
ground-state nature. In contrast with these failures, the Schmidt-
orthogonalized effective Hamiltonian appeared to keep the Heisenberg
structure and predicted correctly the lower parts of the linear HC;H molecule.
The reasons for these unexpected results were analysed, and were shown to be
due to the occurrence of low-lying neutral VB vectors in the outer space. For
the acetylene problem these states are x3yj and y2x3. They have a different

TR I .
/W /N

space part than (0)x,yaxgys and they cannot therefore enter the model space
generating a spin-only effective Hamiltonian. These determinants are neutral,
the atoms are no longer in their ground state, but such VB structures are quite
low in energy, and they will act as intruder states. They appear at second order

H
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in the wavefunction expansion through processes like
b e B
Ao/ 74 i A/ s e~

ie. with a large coefficient. Note that the model space necessarily involves
situations of the type

i
¥ s gl

in which the overlapping AOs (x,, x;) and ( Ya» Xxp) have the same spin, and
therefore do not permit any delocalization. These determinants, coupled with
the lower ones through the intra-atomic spin exchange, are higher in energy
than the neutral VB determinants belonging to the outer space. This generates
trouble in the perturbation expansion and non-orthogonality between the
projections of the eigenfunctions (D,|®,>#0 in the 'L} sym-
metry, due to strong components of the second and third eigenvec-
tors on the (model space)| x, j, x5 Vsl and (outer space)|x, X, ys | VB compo-
nents. This analysis shows that, for systems where each atom brings more than
one active electron in one AO, (i) the perturbative (QDPT) generation of the
Heisenberg Hamiltonian would diverge (the second-order result, which gives
the expected Heisenberg structure, can only be considered as asymptotic), and
(ii) the Heisenberg Hamiltonian is obtained from the Schmidt orthogonaliz-
ation of the projections @, of the eigenvectors into the model space (i.e. one
accepts to lose more information on the upper eigenvectors than on the lowest
ones, as seems reasonable). The same Heisenberg structure is obtained by
using the intermediate Hamiltonian theory.3*

(XxaXpYaTB)

3. Non-heisenberg Effective Hamiltonians Spanned by All Neutral
Valence-bond Structures for Half-filled Bands

An attractive solution**® would simply consist of enlarging the model space,
leaving the constraint that all its determinants have the same x AVaXBYg Space
part with one electron per active AO. If one includes the neutral VB
determinants with zero or two electrons in the same AQ, i.e. the determinants
which acted previously as intruder states, one enlarges the model space, and
one also introduce states of a different space part. For C,H, again the
Heisenberg Hamiltonian was spanned by six determinants (for S, = 0) of three
types, namely
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b
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which satisfy the atomic Hund’s rule and the antiferromagnetic molecular
arrangement, the first-order energy of which is E, — 2K, and the second-
order energy E, — 2K — 2g;

b
AV

which do not satisfy the atomic Hund’s rule but keep the bond antifer-
romagnetic alignment, the first-order energy of which is E,, and the second-
order energy E, — 2g;

I
Nt/

which do not satisfy neither the atomic Hund’s rule nor the bond antifer-
romagnetism, and have an energy E, at both first and second orders.

Then one must add two types of determinants:
4.

which have a first-order energy E,+ 2U, due to the repulsion of the
electrons in the same AQ, and a second-order energy E, + 2U — 2g; and

M
/o

which do not permit electron delocalization, remaining very repulsive, with
an energy E, + 2U.

Notice that in a minimal basis set U = 2K and the coupling between the last
two types of determinants is K({x%y3|H|x%yi> = K,), so that the number of
parameters is not enlarged at this low order of perturbation. The coupling
between the neutral (0 or 2 ¢~ per AO) determinants and those spanning the
Heisenberg Hamiltonian (1e~ per AO) occurs at the second order, as already
mentioned (cf. Eq. (160)), and its magnitude is 2F . F, /AE, i.e. 2F*/AE = g if the




EFFECTIVE HAMILTONIANS AND PSEUDO-OPERATORS 385

two subsystems n, and r, are equivalent (or \/(g,‘g,) if the two subsystems are
not equivalent). This enlarged effective Hamiltonian spanned by all the neutral
VB determinants of the band does not introduce severe complexity and a
tremendous number of parameters. We do not give here a detailed second
quantization formulation of the effective Hamiltonian, which belongs to a
more general category given below, but one may say that it introduces some
operators

Z Uia; o aa;)
i
i.e. an operator counting the number of electron pairs in the same AO and

terms involving four atomic orbitals, two of them belonging to atom A and
two of them belonging to atom B, since the extradiagonal terms

‘H | e h +l

/N Aoy

for instance, involve four AOS.

This effective Hamiltonian, which may be seen as a generalized Heisenberg
Hamiltonian, since it is inspired by the same philosophy, solves some
previously mentioned intruder states and thus convergence difficulties since it
includes the intruder states of the strict Heisenberg Hamiltonian in its
enlarged model space. One should note, however, that the price to pay is the
inclusion of the strongly repulsive | x2x2| determinants in the model space,
which may in turn introduce other intruder states (for instance o — o* excited
determinants).

4. Non-half-filled Bands: Example of Systems Having One Electron in
p Atomic Orbitals per Centre (Magneto-angular Effective Hamiltonians )

Up till now we have only considered half-filled bands. One might wonder
whether the basic idea which leads to Heisenberg Hamiltonians might not be
generalized, again considering a model space spanned by the neutral VB
determinants, even when these determinants do not have the same space part.
The simplest problem concerns atoms having one valence electron which can
occupy p equivalent AOs (i.e. degenerate in the atom and thus belonging to the
same band). As a tentative example'3” one may consider for instance B atoms,
keeping an s?p character, where each atom has only one 2p electron which can
occupy one of the three p,, p,, p, AOs. There are thus two degrees of freedom,
the space angular momentum of each atom, and its spin momentum. The
‘radial’ parts of the molecular wavefunctions of the model space are identical
and one may immediately see that the effective Hamiltonian will be a magneto-
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angular effective Hamiltonian. This has been proposed by Marinelli et al.,*3”
who analysed the problem on the B, diatom, derived an ‘exact’ effective
Hamiltonian from accurate large basis set MO-CI calculations and tested its
transferability to the B, linear molecule. The effective interactions may
concern four AOs, for instance the space part of atoms A and B are changed
in the second-order coupling between the two determinants spanning the
3%, (S, =1) ground state

A Fy |+ Fax +|
——— ———
! A b

(where @ represents one (2s)? electron pair). The third-order corrections, for

instance
Ky |f Fox +l
4} O

change both the space and spin parts of the atoms; they are however less
important. The ‘exact’ effective Hamiltonian does not deviate strongly from
the structure predicted by the low-order expansion although the terms
appearing at order larger than 2 are damped with respect to their theoretical
value.

The model space for B, does not span the state L which is nearly
degenerate with the *Z, ground state; the °Z_ state is spanned by hybridized
VB determinants involving the lowest excited state (sp?) of one atom s,z,x,
and a ground-state atom sfyy

}

(where O represents the 2s AO). Despite this near-degeneracy, the effective
Hamiltonian was able to predict correctly the ordering and spacing of the four
lowest states of the B, linear molecule, independently determined by accurate
MO-CI calculations. The model suggests that the linear B, chain might be
ferromagnetic.'’

The remark concerning the low-lying hybridized state questions, however,
the reliability of effective Hamiltonians spanned by the neutral non-hybridized
OVB determinants, i.e. involving a single band.
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5. General Effective Hamiltonians Spanned by All Neutral OVB
Determinants, and Involving Several Bands'®8

In a further step to generalize the Heisenberg Hamiltonians, one may decide
that they will be spanned by all the possible OVB valence neutral determi-
nants, without any assumption concerning their hybridization state. The
carbon atom will be either s?p?, sp® or p* for instance. In the language of solid-
state physics, one would say that the two bands s and p are both involved. The
various zeroth-order energies of the determinants belonging to the model
space are no longer degenerate, since in C,, for instance, the VB determinant

2 2z -
SAXAYA — SXp)a,

A
0 ; N
A f

in which both atoms are in their atomic ground state, is much lower in energy
than the determinant p,,p, P s r o g Y

A
Y A

in which both atoms are excited and which induces large interatomic
repulsions in the ¢ symmetry.

One should therefore introduce mono- and bielectronic diagonal terms
which take into account both the spectroscopic state of the atom and the
interatomic repulsion energies, which depend on the orbital occupancies. The
second-order Anderson-type corrections would then concern all back-and-
forth processes from a neutral to a neutral OVB determinant through a singly
ionic VB determinant. For instance in C,, the second-order process

—

A | ~ 4 Y A 4 Y
N L L
1 } A A ! M *

involving four AOs through an A « B electron jump followed by an A —»B
reverse electron jump, may be seen as a generalization of Anderson’s process
leading the antiferromagnetic effective exchange in a half-filled band.

The general back-and-forth operators may be written

(ia jos kals)™ (@i a;,)(ai ar,)
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where
(ia JBs kAlB)e" =~ ZFiAjBFkAla/AE ' (161)

where iy, jg, k, Iz are now spin orbitals. Notice that one may have jg = Iy,
i = k,, i.e. diagonal corrections. The problem concerns the definition of AE,
which should be the energy of the two intermediate (singly ionic) outer
determinants, with respect to the ket neutral determinant, in a Bloch-type
expansion. The non-degeneracy of the model space, due to the hybridization,
leads to the already discussed non-hermiticity problems. These problems may
certainly be solved either through the hierarchic (i.e. Schmidt-type) ortho-
gonalization procedure of the projected eigenvectors @,, or by the use of an
intermediate Hamiltonian approach in which the main model space would
only involve the non-hybridized neutral VB determinants.

Two other difficulties must be mentioned, namely (i) the possible occurrence
of ionic intruder states since some highly hybridized neutral VB determinants
may be high in energy, and (ii) the difficulty of calculating and selecting the set
of exact wavefunctions ¥, to define the target space, if one wants to use an
a posteriori definition of the effective Hamiltonian, from knowledge of the
target space.

Again the use of an intermediate Hamiltonian formalism may solve these
difficulties.

The last problem concerns the size of the model space, which rapidly
becomes very larger when the number of atoms increases and new approxim-
ations would certainly be required.

One may nevertheless think that the above-mentioned strategy, which
generalized Anderson’s derivation of the Heisenberg Hamiltonian, is both
conceptually interesting and practically useful especially if some simple
parametrized formulae were used to obtain the effective integrals. Work is
under progress'®® to define some Anderson-Hoffmann model where the
diagonal energy differences (and monocentric exchanges) would be taken from
the atomic spectra, the repulsive terms would be simple functions of
interatomic overlaps and distances, and the effective bielectronic terms would
be governed by simple AO overlap dependences.

6. Effective Hamiltonians for Non-neutral Systems; an Effective
Hamiltonian for the Cation of a Half-filled Band*>®

So far the systems under study in this section have been neutral, and the
effective VB was spanned by the neutral VB determinants. One might wonder
whether it would not be possible to treat a non-neutral system in a similar way.
To do this one must again consider among the OVB determinants those which
have the lowest energy. While for neutral systems one had an energetic
hierarchy according to the inonicity of the determinants

neutral < singly ionic < doubly ionic < -
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for the cations one may introduce the following hierarchy of determinants
one hole < two holes < three holes < ---

The holes are the number of atomic positive charges. A two-hole determinant
necessarily involves two positively charged atoms or an atom bearing two
positive charges, and another atom bearing one negative charge.

The simplest problem again concerns the cations of a half-filled band, for
instance the cations of conjugated molecules, for which one may consider an
S, =0 (or %) model space of dimension

nx Come

since each atom may be positively charged, the other atoms bearing one
electron of o or B spin. This dimension is larger than that of the neutral
problem. The effective Hamiltonian involves first-order hopping integrals
between determinants differing only by the hole, for instance between |abd|
and |acd| in [ABCD]*

2505 0 S

A B ¢t D A B*YC D

Second-order effective exchanges occur, as in neutral systems, between atoms
which do not bear the hole,

A B ¢t p A~ Bt ot p A. 8. s
lab_cl Iaidl Ia_bd|
but one may also notice the occurrence of effective hopping integrals between

non-adjacent atoms

Bty g

¥ + +
|oba | |664 | |Gea |

In this process the hole jumps to the second-neighbour atom. Once may notice
a similar second-order process which simultaneously changes one hole and
permutes the spins of two electrons
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by t e bt a ti

- + - +
| abo | | 6 | | bea |

This effective Hamiltonian proposed by Gadéa et al.'° for the cations of
conjugated molecules is able to give many more eigenvectors of the positive
ion than Koopman’s theorem. It provides a direct estimate of the spectrum of
the positive ion, involving the non-Koopmans states, which appear to occur at
quite low energy and are described as two-hole one-particle states in the
delocalized MO-CI language.

One may then establish that generalizations of the effective Hamiltonians to
non-neutral systems are also possible. It is clear that in that case hole
delocalization appears explicitly, while for neutral systems the effective
Hamiltonian treated the electron delocalization through effective interatomic
exchange operator only, or more generally through bielectronic bicentric
effective integrals reflecting the back-and-forth electronic movement coupling
neutral VB structures. These effects also appear for the cations, when they do
not concern the hole, but first-order delocalization effects are also present.

A general scheme picturing the generalization of Heisenberg Hamiltonians
is given in TableI.

E. Numerical Applications in the Search of
Configuration-interaction Solutions

One should simply mention briefly the application of the effective Hamil-
tonian approaches which use them as technical tools to solve numerically
complex problems. The uses of partitioning techniques and of quasi-
degenerate perturbation theory are especially frequent in solving the
configuration-interaction (CI) problem in molecular physics.

In most chemical systems, the SCF single determinant represents a good
starting point for the description of the ground-state wavefunction. It has a
large overlap with the exact wavefunction in the finite basis set, and is
energetically well separated from the ‘excited’ determinants, obtained by
single, double, triple, ... substitutions of the ground-state occupied molecular
orbitals by virtual MOs above the Fermilevel. These conditions make relevant
a non-degenerate perturbative approach of the ground-state energy and
wavefunction, assuming purely monoelectronic definition of the non-
perturbed Hamiltonian (as originally suggested by Moller and Plesset'*?) or
taking the diagonal part of the full Hamiltonian as non-perturbed Hamil-
tonian (a version named!*!~1** Epstein—Nesbet according to its former
applications).

For excited states of molecules, it rapidly appeared that it was quite
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impossible to find a satisfactory single-determinantal zeroth-order descrip-
tion. While the ground-state SCF determinant only interacts with doubly
substituted determinants of much higher energy (due to the Brillouin’s
theorem), a singly excited (with two open shells) SCF configuration interacts
with all other singly excited configurations, some of them being almost
degenerate. For excited-state problems, it becomes necessary to use multi-
configurational zeroth-order descriptions, a goal which is also desirable for
some ground-state strongly correlated problems, for instance when some
bonds are broken or when the molecule has large diradical character.

Methods have then been built to start multi-configuration (multi-reference)
zeroth-order descriptions. The full CI space is first partitioned into a (small)
main subspace involving the leading configurations for the descriptions of the
states to be studied. Then

I. One may use the partitioning technique as suggested by Shavitt et al.!44
20 years ago. If it was applied strictly the method would require the
inversion of a very large matrix (cf. Eq. (8)) and would be as expensive as the
direct diagonalization. The large matrix is then supposed to be diagonal
and the process reduces to the multiplication of rectangular submatrices.
The method has not been used frequently for CI calculations because it is no
longer size-consistent at this level of approximation.

2. One may diagonalize first the small main subspace S (which involves all the
nearly degenerate configurations, the number of which is usually taken
from 20 to 200); if Pg is the projector on the main subspace

" :
PS=KZI|¢K><¢K|

PsHPs|Yns) = Eps|¥ns>
ll//gs>=xze;scmx|¢x> (162)

the multi-configurational wavefunctions [Yms> should no longer be
degenerate and might (in principle but vide infra) be treated independently.
Some of these functions may be perturbed to the second order as in the
original CIPSI algorithm®® by configurations outside of S. Other al-
gorithms, such as the MRDCI (multi-reference double CI) 45 of Buenker
and Peyerimhoff or the improved CIPSI algorithm,5” define a second class
of determinants of mean importance and treat their effect variationally (i.e.
to infinite order). These determinants are usually between 1000 and 10 000,
while the others (in number larger than 10 or 10°) are treated to second
order only. These procedures do not lead to effective Hamiltonians and are
simply mentioned for comparison and forthcoming discussion.

3. One may use directly the quasi-degenerate perturbation theory, or an
iterative algorithm, to solve the Bloch equation, taking the main subspace S
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as model space. But this procedure usually faces major intruder state
problems, since some of the main configurations in the model space are high
in energy (for instance, doubly excited configurations embedded in the
continuum, without any spectral meaning, but strongly coupled to the
ground or low excited configurations). Some more or less diffuse excited
configurations which do not belong to S are lower in energy than these
doubly excited configurations and happen to behave as intruder states,
making the perturbation expansion divergent. This difficulty cannot be
solved by including the intruder states in the model space for two reasons:
(i) The enlargement of the model space results in a rapid increase of the
computational cost. (if) The newly introduced configurations generate their
own set of intruder states and the series remain divergent. Despite this
practical problem (see Robb and Hegarty'#°), Bartlett etal'*’ have
implemented a second-order Rayleigh—Schrodinger QDPT expansion,
which has not received many applications (see however Refs. 148 and 149).
. Instead of using the QDPT expansion in a model space of single
configurations, one may choose a model space of multi-configurational
wavefunctions resulting from a preliminary diagonalization of a small
subspace.!397152 The preliminary diagonalization of 200 determinants
gives a few physically relevant eigenvectors |0 > (the number of which will
typically be lower than 10). Let us calls this new subspace S,
n=10

Ps, =mZ=:1 1> Wl (163)

which will be taken as a model space for the QDPT expansion. The
resulting effective Hamiltonian has much smaller size than the effective
Hamiltonian built on § (ie. on N determinants). Owing to the multi-
configurational nature of |9 ), one must generate all the determinants
from the N |¢, ), and the cost of the perturbative expansion is equal to that
of a direct expansion in the basis of configurations, but the convergence
behaviour is better by far, since one only perturbs the lower eigenvectors of
PgHPg, which are energetically far from the determinants outsides of S. The
other eigenvectors of PsH Pg which do not belong to S, are closer in energy,
but they are not coupled with the vectors spanning S, and do not contribute
to the second order.

This procedure had been proposed by Daudey and Malrieu.'*° To
second order the diagonal corrections of the effective Hamiltonian are
identical to those calculated in the original CIPSI algorithm. The
procedure simply consists of adding off-diagonal perturbative corrections
between the zeroth-order multi-reference wavefunctions. These off-
diagonal terms lead, after diagonalization of the effective Hamiltonian, to
mixing of the zeroth-order wavefunctions, this mixing being of perturbative
origin.

This mixing has proved to be very important in treating correctly the
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weakly avoided crossings in multi-reference CI procedures, as shown by
Spiegelmann and Malrieu.!*! The construction of a small-sized effective
Hamiltonian is necessary to avoid the artefacts noticed by Bonacic—
Koutecky etal.'** in the MRDCI scheme,'*? also present in the CIPSI
algorithm.
The procedure now currently used in CIPSI calculations under the label

‘CIPSI-Brandow’ has also been suggested by Schneider et al.! 5

5. Another type of effective Hamiltonian has been proposed by Davidson and
coworkers'** for the practical treatment of CI problems in nearly
degenerate cases, under the name ‘shifted B,” approximation (which refers
to a version of the partitioning technique proposed by Gershgorn et al.!#4
and already discussed). To second order the effective Hamiltonian

H*' = Py HPg, + P HQo(Eo — Ho)™ 'QoHPs, (164)

is identical to the usual Rayleigh—Schrédinger second-order QDPT
effective Hamiltonian, except for the fact that all denominators are taken
from a common zeroth-order energy E, (that of the lowest-energy
configuration, for instance). This procedure, which may be shown to be size-
consistent'** on typical problems, might a priori be viewed as a level shift in
the model space. It is more relevant to see it as the second-order expansion
of the generalized degenerate perturbation theory recently proposed by
Malrieu et al.** and briefly outfield in Section IL.A. This procedure has the
only defect of being explicitly energy-dependent. It might be used as well
after a preliminary first-order diagonalization of the model space, and a
redefinition of a main-model subspace on the lowest eigenvectors, as
previously proposed in the CIPSI-Brandow scheme.

A general summary of the main CI techniques proposed for the treatment of
excited states in nearly degenerate situations is pictured in Table II, mention-
ing their advantages and defects.

One should notice that these techniques may be used as well to search the
solutions of Heisenberg Hamiltonians when the number of neutral VB
determinants (i.e. of spin distributions) becomes too large. Sanchez-Marin
et al. have recently treated" > the molecular spectroscopy of large conjugated
molecules through a Heisenberg Hamiltonian by truncating the basis of
determinants and dressing the matrix through the generalized degenerate
perturbation theory.>* The results are very encouraging.

IV. APPLICATIONS OF SIMULATION TECHNIQUES

The applications presented in this section are limited to a selected choice of
pseudo-Hamiltonians that will be determined by the non-empirical simulation
method presented in Section II.B. The emphasis will be put more on the
methodological aspects than on the results of these methods.
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Note that our purpose of rigorous modelling cannot be completely
separated from earlier research on semi-empirical or model Hamiltonians.
On one side these Hamiltonians could be parametrized by theoretical
simulation techniques and on the other some experimental data could also be
introduced in the simulation techniques, for example in the characterization of
truncated Hamiltonians. Finally it should be emphasized that research on
pseudo-Hamiltonians and model Hamiltonians is always guided by some
intuitive knowledge of the passive and active constituents of the system
(atomic cores, atoms in molecules, functional group,...) and by the assump-
tion of transferability of their potentials and interactions.

A. Pseudopotentials

A reasonable assumption for any chemist is that molecules are made up of
fixed cores (the nucleus and the inner electrons) and of chemically active
valence electrons moving in the field of these fixed cores (frozen-core
approximation). Obviously for accurate investigations in spectroscopy this
assumption would fail, for example for alkali or alkaline-rich elements on the
left of the periodic table, which possess highly polarizable cores. In the
following only fixed atomic cores will be considered.

Pseudopotentials describe the interaction of a valence electron with the core
of the atoms. They are known in the literature under various names, such as
model potentials, effective core potentials,. ... Model potentials are generally
parametrized from atomic spectroscopic data whereas effective core potentials
and pseudopotentials are most often derived from ab initio calculations. There
is a huge literature on the subject and several review articles.'>”~ 1% The
recent paper by Krauss and Stevens is recommended for an overall survey of
the subject with applications and comparisons with all-electron calcula-
tions.*3° The recent review paper of Pelissier et al. is devoted to transition
elements.*®° In the following we shall only review the main characteristics of
the determination of atomic pseudopotentials by the ab initio simulation
techniques of Section IL.B.

The total Hamiltonian of an atom can be written in atomic units (a.u.) as

H= -i (—3A=Z[r)+ ¥ 1/r,; (165)

For an even number of electrons, the Fock operator derived from H is

=—3A+Y (). -K)+Y(2J,—K,)

=Zc:8cl<pc><<ﬁcl + 280l @0) <@l + L8l 9D (i (166)

where the indices ¢, v and i* label the core, valence and the excited levels
respectively. J and K are the usual Coulomb and exchange operators.
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In a pseudopotential approach, one considers explicitly only the N, valence
electrons. Without considering the fixed core energy, the pseudo-Hamiltonian
is assumed to be of the form

HP = NZ [—4Ai+ V™0 + % 1ry (167)
i=1 i<j

In Eq. (167) the atomic pseudopotential is a one-electron operator which takes
into account the interaction of a valence electron with the core. At large
distance from the nuclei, ¥* tends to the Coulomb potential — z/r where z is
the net charge of the core of the atom. The valence pseudo-Fock operator
takes the form

FP= —3A+ VP4 Y (2J,-K))
=282I¢L><¢LI+Z£2I¢2«><fp’*| (168)
The valence energies become the lowest. Here ¢, and ¢/, resemble as much as

possible the exact solutions &,, ¢, of (166). The determination of ¥'** in (168)
may be achieved by minimizing a reduced distance between F* and F:

[P F || it (169)
Expressions (81)-(83) can be used by considering
P=310,><0,l and P'=310,)< ol (170)

The method provides valence orbitals in (168) with internal nodes, which
closely resemble the original valence Hartree—Fock orbitals of (166). This
method has been developed mainly by Huzinaga and colleagues, who
determine atomic pseudopotentials (model potentials in their terminology) of
the form!6?

z 2
Joea —;<1+ZCM"‘C""’ >+2Z|6c|'l¢c><¢cl (171)

The pseudopotential is the sum of a function of r(which depends on
parameters C;, n;, ;) and a non-local operator diagonal on the basis set of the
core orbitals which shifts the core energies above the valence energies in FP:.
The parameters of V'** are determined at best from a condition which is very
similar to (169).

The advantage of Huzinaga’s approach is that the model structure of the
valence orbitals is preserved but the price one has to pay is the use of large
basis sets of atomic orbitals which are not drastically reduced with respect to
those used in standard all-electron calculations. Another approach to the
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problem is to start from coreless valence orbitals which can be expanded in a
smaller atomic basis of Gaussian functions. For computational reasons, this
last approach has been advocated by the majority of authors in the last 10
years. Note that these coreless orbitals, hereafter called pseudo-orbitals, are
not defined in a unique way. Their definition is slightly different from one
group to another. However, in all cases, they are norm-preserving (in contrast
with the early pseudopotential methods in solid-state physics). Outside the
core their amplitudes are as close as possible to the exact Hartree—Fock
solutions and they also tend smoothly towards zero near the nucleus (Fig. 11).
All the information used for determining the pseudopotential is contained in
the truncated valence Fock-like operator

F"=;8.,I¢.,><¢.,I (172)

The ¢, in (172) are still exact energies of the original Fock operator and the ¢,
are the a priori defined nodeless pseudo-orbitals. Instead of using (169) the
pseudo-orbital is now determined by*62:163

”Fps = Fu " minimum (173)

The distance is given by (85) and the projectors on the model spaces of F'" and
HP® are

P=314,><{d,l P=3 ¢, <ol (174)
as where @}, is a valence pseudo-orbital obtained by the variational solution of
the pseudo-Hamiltonian (168).

For most applications, atomic pseudopotentials are in local, semi-local or
non-local form. The simplest local form

VP = VP(r) (175)

consists of choosing a simple function of r; it is a too crude approximation for

Fig. 11. Radial amplitude P(r)=R(7)'r of a valence
Hartree-Fock orbital ¢, (full curve) and of a nodeless
pseudo-orbital ¢, (dotted curve).
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accurate molecular calculations, especially for atoms of the first row of the
periodic table. The semi-local form is at the present time the most popular;!64

Ve =Y VE(r)P, (176)
[]

P, is the projector on the I-space of spherical harmonics. VP*(r)is a function of
describing the potential acting on an electron locally of I symmetry. The matrix
elements of semi-local pseudopotentials can be expressed in terms of almost
analytical expressions, the computational time of which is negligible with
respect to that of the two-electron matrix elements. The most general
pseudopotentials can be written in the non-local form

VeIt L ORI YKL (177)
pq

The functions f, are generally Gaussian functions. This non-local form is very
convenient for molecular calculations which involve the calculation of the
overlap between the /» and the atomic orbitals and for calculation of energy
derivation (gradient techniques) for geometry optimizations.

If the Hartree-Fock equations associated with the valence pseudo-
Hamiltonian (167) are solved with extended basis sets, then all the above Vs
are almost basis-set-independent. At the present time, and for practical
reasons, most of the ab initio valence-only molecular calculations use coreless
pseudo-orbitals. The reliability of this approach is still a matter of discussion.
Obviously the nodal structure is important for computing observable
quantities such as the diamagnetic susceptibility which implies an operator
proportional to 1/r*.'¢> From the computational point of view, it is always
easy to recover the nodal structure of coreless valence pseudo-orbitals by
orthogonalizing the valence molecular orbitals to the core orbitals. This
procedure has led to very accurate results for several internal observables in
comparison with all-electron results. The problem of the shape of the pseudo-
orbitals in the core region is also important in relativity. For heavy atoms, the
valence electrons possess high instantaneous velocities near the nuclei.
Schwarz has recently investigated the compatibility between the internal
structure of valence orbitals and the representations of operators such as the
spin-orbit which vary as 1/r* near the nucleus, !5

One should stress the fact that the simulation runs on the ground-state HF
solution of the atom only. Despite this fantastic limitation, the method is able
to provide reasonable estimates

1. of the correlation energy of this state (slightly overestimated by the nodeless
structure of the pseudo-orbital),67

2. of the valence multiplet splittings (but vide infra),

3. of the Rydberg energies, and

4. of the ionization potentials and electron affinities of the atom,




400 PHILIPPE DURAND AND JEAN-PAUL MALRIEU

and of the corresponding energies of molecules involving the pseudo-atom.
This success is essentially due to the physically grounded form given to the
pseudopotential. The essential defect of this method concerns the lack of core-
valence correlation which may be treated later on.

Let us note however that the present methodology of pseudopotentials is
based purely on one-electron methods. There is no guarantee with these
techniques that the total energies of the various multiplets of an atom will be
correctly reproduced from the valence Hamiltonian (167). The problem is
particularly difficult for transition elements which involve nearly degenerate
configurations, for understanding and computing their properties.'®® Some
attempts have already been made to parametrize these pseudopotentials
from total energies of the multiplets.'®® Much work remains to be done in this
field.

One should also mention discussions concerning the relevant border
between the core and the valence shells.'¢°"172 For copper atom, for instance,
one may either consider a (19¢~) 3s23p®3d!%s, an (11e”) 3d"'%s or even a
(1e™) 4s valence shell. In the latter case the core polarizability effects must be
treated explicitly. As an extreme case, one might introduce (0e™) pseudo-
potentials, for a rare gas for instance, which would be very useful to treat
molecular interactions and matrix spectroscopy results. Attempts to define Ar
(0e ™) pseudopotentials from the virtual MO spectrum of Ar have failed to give
relevant intermolecular energies and diatomic extraction appeared to be
necessary.'”? ‘

B. Groups and Fragments

Very often the chemical properties of a molecule or of a functional group are
governed by a few electrons. For instance, the donor properties and proton
affinity of ammonia can be understood from the character of its lone pair;
bonding properties of an alkyl radical depend on its unpaired electron. As
these molecules or functional groups are basic entities in chemistry, it can be
conjectured that they could be described by fragment pseudopotentials quite
similar to the atomic pseudopotentials associated with the cores of the
atoms.!”*

Such a pseudopotential has been derived by Morokuma et al'”® for
ammonia. The 10-electron molecule is reduced to a fictitious system of two
active electrons, those of the lone pair moving in the field of the three inactive
electron pairs of the N-H bonds. The interaction between the lone pair and the
other electrons and the nuclei of the molecule is described by means of a
fragment potential (an effective fragment potential according to the termi-
nology of the authors).!” Their method is a straightforward extension of the
techniques developed by Huzinaga. The interest in such an investigation is
obviously to obtain transferable fragment potentials. Morokuma et al. have
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checked that their pseudopotential led to accurate results for predicting bond
distances and bond energies when ammonia considered as a fictitious two-
electron systems reacted with electron acceptors such as H* or BH;. This is an
encouraging result which suggests that determining fragment potentials for
CO, PH;, ... would be very useful in the treatment of coordination chemistry
problems. In the following the main steps of the derivation of a fragment
potential by simulation techniques is applied to an open-shell one-electron
pseudo-atom.

Let us consider a crystal of silicon and suppose that we are interested in a
study of the local distortion associated with the creation of a vacancy in the
crystal. For such local properties in the vicinity of the vacancy it may be
reasonable to simulate the infinite crystal by a finite cluster of atoms. The
silicon atoms on the surface of the cluster have to be replaced by one-electron
pseudo-atoms denoted Si*. The saturation of a finite cluster by H atoms would
be irrelevant since the Si—H bonds are polar and short, inducing artefactual
polarization effects in the vacancy region. If the Si~H bonds are lengthened to
the Si—Si bond length, the Si—H bond is too weak and introduces artefacts in
the monoelectronic energy spectrum. A correct pseudo-atom Si* should bring
one electron only, building a non-polar single bond with one Si atom. A
convenient monoelectronic pseudopotential describing Si* can be chosen to
be of the form

Vgls‘= _1/r+chq|fp><fq| (178)
pa

The first term in (178) provides a correct asymptotic Coulomb dependence.
The second term is a non-local operator of symmetry C,, projected onto a
finite basis of functions f,. The C,, are coefficients that will be best determined
by simulation. The theoretical parametrization of (178) can be obtained from a
full ab initio all-electron calculation on the disilane molecule and on the
fictitious system SiH;Si*. These two systems contain the relevant information
on the Si-Si bond (Fig. 12).

H H H
N £ N\ |
H—Si—Si—H H—Si— Si
i
a) b)

Fig. 12. (a) Disilane (14 valence electrons). (b) Fictitious
molecule with a one-electron pseudo-atom of silicon Si*
(eight valence electrons).
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One can define a truncated Fock Hamiltonian as
4
F'" = PFP = Z sp,1|<p},°°)(<p},"°' (179)
pg=1

where F is the original Fock operator of the disilane molecule and P is the
projector corresponding to the six Si—H bonds and to the Si-Si bond. The
localized orbitals ¢° are determined by a proper orthogonal transformation
of the delocalized Hartree-Fock orbitals. Other definitions of these bond
orbitals are possible in close analogy with the definition of the coreless pseudo-
orbitals reviewed in Section IV.A. Finally Vg, is obtained by minimizing a
convenient distance between F** and F'. F™ is the Fock pseudo-Hamiltonian
arising from the solution of the pseudo-Hamiltonian of SiH,Si*.

The same technique could be used for deriving fragment potentials of the
alkyl radical to be used for instance in the treatment of alkylated conjugated
hydrocarbons. One should note that the pseudo-alkyl group may be a single-
electron group, and one will only require o type AOs in the subsequent
molecular treatment if one is only interested in the inductive effect. If one is
interested in the hyperconjugative effect too, one should introduce 7 type AOs
on the pseudo-CH, and determine a = symmetry potential to mimic the
acceptor ability of the o* MOs.

C. Atomic Operators for Pseudo-fock Molecular Calculations*’

Despite their strong limitations, purely monoelectronic pictures, as the
Hiickel scheme (especially extended Hiickel theory) or the tight-binding band
model in solid-state physics, support a basic representation of the electronic
population. These semi-empirical systematics are supposed to mimic the exact
Fock monoelectronic operator, without calculating the integrals of the static
electronic field and the exchange integrals. It might be tempting to avoid the
semi-empirical fitting of parameters and to define a purely monoelectronic
molecular operator which would simulate as closely as possible the exact Fock
operator. This would ensure better reliability of Hiickel-type models, which
are so convenient.

From a conceptual point of view, this technical problem is related to a
qualitative question: would it be possible to define a universal monoelectronic
potential characteristic of an atom, say the C atom? Any chemist would
consider that atoms in molecules keep some of the characteristics of the
isolated atoms. Is it possible to give a quantitative justification of this idea? It
would be interesting, for instance, to estimate whether singly, doubly and
triply bonded carbon atoms can be considered as fixed carbon atoms in the
series of saturated and conjugated hydrocarbons. It will be shown below that
quantum chemistry is able to determine purely monoelectronic
(pseudo)potentials of atoms in molecules and to check their transferability.
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This will be done by the theoretical simulation techniques described in Section
ILB by extracting information from molecular ab initio all-electron
calculations.

Let us consider a molecule made up of atoms A, B, C,.... It is assumed that
the Fock operator can be written as the sum of the kinetic energy and of the
various atomic potentials in the molecule

FP= 1A+ Y Vs (180)
A

Vi is the monoelectronic pseudopotential of atom A. (Notice the disap-
pearance of any r~*, J or K operator.) For computational simplicity it may be
chosen in the form of a non-local operator:

V=T Gl U] (181)
pq

The theoretical determination of the coefficients C,, proceeds as follows. In a
first step one determines the valence Fock operator of a molecule containing
A. This can be done by solving the valence pseudo-Hamiltonian which leads to

F=%¢l0,><0,l (182)

For economy we intend to perform further molecular calculations within a
minimal basis set of atomic orbitals. Then the parametrization of F has to be
performed not from F but from the truncated valence Fock operator

F* =36, | 03P > 3P| (183)

The ¢, are exact Hartree—Fock energies of (182) and the @uPP" are approximate
valence molecular orbitals computed within a minimal basis of Slater orbitals
(2s and 2p orbitals for a carbon atom). Finally the determination of the Cpqin
(181) is obtained by minimizing a reduced distance between F** and F ', the
trace being kept in the subspace of the ¢*P*. Most often the information
contained in one molecule is insufficient to obtain transferable potentials. For
example, the extraction from CH, gives information which is only valid for
C-H bonds. To determine universal atomic potentials able to reproduce the
formation of single, double and triple carbon—carbon bonds, one needs to
extract information from molecules containing these bonds. This has been
done by minimizing a distance involving ethane, butadiene and acetylene:

(” FP — Flr "bulnne + ” FP— F" "ethylene + " FE— F" ”acelylene)minimum (184)

This technique has provided a potential for the carbon atom which is universal
in the sense that it can be transferred with good accuracy in the whole series of
hydrocarbon compounds.***7¢ The main advantage of simulating the Fock
operator by the kinetic operator plus the sum of atomic potentials is to
produce approximate valence Fock Hamiltonians which can be solved with
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computational times similar to those of the Hiickel method. Under the
(confusing) name of valence effective Hamiltonian (VEH) the method has been
widely applied by Brédas et al. to band calculations of organic polymers
especially for polyacetylene, polyethylene, polythiophene and polypyrole.
Useful estimates have been found from these methods concerning ionization
potentials, band widths, band gaps and electrical conductivity properties of
doped polymers.'7"~182

D. Simulation of Bielectronic Operators

To our knowledge, a rigorous simulation of bielectronic operators has never
been attempted. One might use this technique for instance to fit bielectronic
integrals. Turning again to the H, problem, one might wish to work in a
minimal basis set to use exact monoelectronic operators and to reduce the
bielectronic integrals to (aa, aa) and (aa, bb), as occurs in CNDO approxim-
ations, determining their values to give the best simulation of the lowest states,
both the energy and the wavefunction. As previously discussed (Section IIL.C)
the valence states which one may reproduce in a minimal basis set are the
X)), (bZ,, (B)'Zy and (E, F)'Z; states. The wavefunctions of these
states should be reduced to their valence components according to Egs. (135)
and renormalized. Since one searches Hermitian operator, the two 'Z " states
should be made orthogonal, either by a symmetrical or a Schmidt ortho-
gonalization, the second solution appearing to be preferable to save inform-
ation. Then the most relevant truncated Hamiltonian would be defined from

1, = [(cos ¢)(|ab| + |bal) + (sin @)(|aal +bb])]/+/2

3, = (|ab] — |bal)/\/2

W, = (|aa| — |bbl)/\/2

Ly = [(sin @)(|ab| + |bal) — (cos ¢)(|aal +|bb])]/y/2

HY = E((X)'Z)| "W > gl + E(BPZ 1Y) Cibl

+ E((B)'Z) 1P > vl + E((B, F) 20 "> (gl

The simulation determining the effective integrals (aa, aa) and (aq, bb) may
then concern

1. the ground state only, which involves two degrees of freedom, namely the
energy and the angle ¢, and implies both (aa, aa) and (aa, bb),

2. the ground state and the triplet state, the latter implying (aa, bb) only,

3. the ground state, the triplet state and the purely ionic singlet state, the latter
implying (aa, aa) only, or

4. the four states.

It would be interesting to compare the values of the integrals so obtained,
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the reduced distances between HP® and H", and the errors on the valence states
which were not involved in the simulation process. (This exercise should
preferably be performed simultaneously on the mono- and bielectronic
pseudo-integrals, in order to avoid a simulation of the hybridization effect
(largely monoelectronic) through the bielectronic integrals.)

One should note that some of the difficulties mentioned in Section III.C may
be met here, if one wants to simulate too many states. If the simulation
concerns only the two neutral states (X) and (b) (solutions 1. and 2.), there is no
ambiguity and no continuity problem, but the ionic states may be quite
erroneous. If the simulation also concerns the lowest ionic state (solution 3.)
there will be a problem in assigning its energy at large interatomic distances,
due to the change of the (B)!Z. state into a Rydberg state. The same trouble
occurs even at short interatomic distances for the upper (E, F)'Z ;" state, which
is no longer valence for r ~r,.

A preliminary diabatization, defining valence ionic *Z; and 'Z; diabatic
states, would be necessary before defining H", in order to avoid these intruder
state problems.

It is interesting to note that the intruder state problem, which appeared
.explicitly in the effective Hamiltonian approach, is also present in pseudo-
Hamiltonian formalisms when the simulation is too ambitious and claims to
concern some states strongly mixed with other states out of the model.

V. CONCLUSIONS

Both the methodological part and the review of applications have shown the
similarities and differences between effective Hamiltonians and pseudo-
Hamiltonians. The similarities sometimes concern the purpose of the model-
ling (for instance the reduction to a minimal basis set) which may be attained in
one way or another. They also concern the use of some reduction of information
to a definite part (in general the lowest one) of the spectrum. This reduction is
explicit in the effective Hamiltonian theory, through the choice of a model
space, while in the pseudo-Hamiltonian approach it goes through the choice of
a reduced distance between the exact Hamiltonian and the pseudo-
Hamiltonian.

But it must be clear that this reduction of information and this focus on
some low part of the spectrum proceed differently and lead to completely
different tools. The effective Hamiltonians appear as N-electron operators
acting in well defined finite bases of N-electron functions. The effective
Hamiltonians obtained from the exact bielectronic Hamiltonian introduce
three- and four-body interactions. They may essentially be expressed as
numbers multiplied by products of creation and annihilation operators. In
contrast, the pseudo-Hamiltonians keep an a priori defined analytic form,
sometimes simpler than the exact Hamiltonian to mimic. For instance, the
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core pseudopotentials are monoelectronic while they simulate complex one-
and two-body effects.

As another important difference between the two philosophies one may
stress the fact that the effective Hamiltonians acting out of the model space
simply give zero, while the pseudo-Hamiltonians give some flexible answer,
the reliability of which essentially depends on the physical realism of the
pseudo-operators assumed at the beginning of the simulation. The core
pseudopotentials are an excellent example of this flexibility; extraction
proceeds on the ground (valence) state of the atom, and the resulting
pseudopotential is apparently able to give with a good accuracy the various
valence multiplets, the Rydberg spectrum, and the positive and negative ion
energies, provided that the pseudopotential has a reasonable shape with a
short-range repulsive potential and a Z*"/r long-range tail. This flexibility, this
ability to follow physical situations which were not involved in the
simulation process (since not concerned in the reduced distance), explain the
greater success of pseudo-Hamiltonians over the more rigorous but too rigid
effective Hamiltonian approaches.

The two methodologies should not be considered as contradictory; they
may. be used in conjunction, as has been mentioned. It may be useful for .
instance to use the projection approach, defining a valence effective Hamil-
tonian, which will be later mimicked (as H") by simulation techniques. The
diabatization potential energy surfaces might be an important step to define
valence states, in regions where non-valence intruder states appear, before
simulating them by pseudo-Hamiltonian techniques.

One of the contributions of the present review concerns the question of the
intruder state. This question is frequently seen as convergence trouble in a
perturbation expansion. Moving back to the basic equations defining the wave
operator and the effective Hamiltonian, it appears that the intruder state
problem is a problem concerning the definition of the target space, when the
correspondence between the model space and the target space becomes
ambiguous. Two choices have been proposed, based on either a projection
criterion or an adiabatic energy following, but both solutions lead to major
difficulties if transferability of effective interactions is desired.

One should finally stress the fact that more flexible algorithms should be
sought in the field of effective Hamiltonian theory. For a given model space (of
dimension N,, + N;) the lowest part of the spectrum involving only N, roots,
for instance, must satisfy the basic properties of effective Hamiltonians (i.e. the
roots must be exact energies and projections of exact eigenvectors) while the
upper part of the spectrum must simply be realistic, continuously varying with
internuclear distance. In simulation techniques this flexibility may be obtained
by the weighting coefficients appearing in the reduced distance. In effective
Hamiltonian techniques, Gram—Schmidt or hierarchized hermitization of the
effective Hamiltonians, which proved to be a fruitful technique, is a step
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along this direction, since it favours the lowest part of the spectrum, the
eigenvectors of the upper roots deviating significantly from the projections of
the exact eigenvectors in the model space. The introduction of intermediate
Hamiltonians as a new class of more flexible effective Hamiltonians is inspired
by the same philosophy. It consists of accepting, for consistency reasons, to
work in a rather large model space, but to lose some accuracy in both the
energies and eigenvectors of the upper roots. These techniques, which directly
realize some approximate diabatization when intruder states appear, may
solve many of the intruder state problems.

Both effective Hamiltonians and pseudo-operators achieve rigorous sim-
plifications of the ab initio schemes. They offer a way to recombine the two
fundamental tasks of quantum chemistry, namely the desire for numerical
accuracy and efficiency and the desire for understanding the forces governing
the electronic population.
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